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Abstract

In mulit-target tracking and labelling (MTTL), mixed labelling corresponds to a situation where there is ambiguity in labelling,
i.e. in the assignment of labels to locations (where a “location” here means simply an unlabelled single-target state. The phenomenon
is well-known in literature, and known to occur in the situation where targets move in close proximity to each other and afterwards
separate.

The occurrence of mixed labelling has been empirically observed using particle filter implementations of the Bayesian MTTL
recursion. In this memorandum, we will instead demonstrate the occurrence of mixed labelling (in the situation of closely spaced
targets) using only the Bayesian recursion itself, for a scenario containing two targets and no target births or deaths. We will also
show how mixed labelling generally persists after the targets become well-separated, and how mixed labelling might not happen
when the unlabelled single-target state contains non-kinematic quantities.

NOTATION CONVENTIONS

An upper-case letter (like X) denotes a vector-valued random variable, and its lower-case counterpart (like x) denotes, as

usual, a particular realization. An upper-case bold-faced letter (like X) denotes a finite set-valued random variable, and its

lower-case counterpart denotes the corresponding realization.

I. THE MTTL BAYESIAN RECURSION IN THE TWO-TARGET CASE

Consider the mathematical formulation of the Bayesian MTTL problem in [1]. Assuming that there are two targets, that the

number of targets is known, and that there are no target births or deaths, at some time k, let Xk =
{
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k
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be a Random
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be a RFS describing the unlabelled states (locations), and
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be a RFS describing the labels. Without loss of generality, we also assume that a target’s label is either A

or B.
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where pl(·|·) denotes the labelling probability (see [1]). From [1], we know that

pl(xk|sk) =

∫
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where, assuming without loss of generality that location S
(i)
k

assumes values in an Euclidean space R
n, we have
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Let us recall the formula of the state transition density for the case of no births/deaths (from [1]):

f(xk|xk−1) =
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θ∈Θtk
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where Θtk is the set of all permutations on {1, . . . , tk}. From the definition of split density in [1]
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and using (3), we obtain
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Analogously, we can show that
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II. ORIGIN OF MIXED LABELLING

In multi-target tracking, if N
S
0 denotes the single-target location state space (for instance, R4 for position and velocity in

x and y coordinates), given enough measurements, the Belief mass associated with f
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in good observability conditions, NS
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will be formed by the regions surrounding the true target states.
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i.e. there will be “total mixed labelling” as described in [1]. Interestingly, (7) will hold regardless of s
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Note that, if the targets are reasonably close to each other, but not that much given observability conditions, the most likely

result will be some degree of “partial mixed labelling” (see [1]) instead.
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III. PERSISTENCE OF MIXED LABELLING

If “total mixed labelling” (i.e. the situation given by (7)) affects the entire space of Sk, we can see that the situation will

persist indefinitely, even after the targets separate from each other. The reason is that, if pAB
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If we have instead “partial mixed labelling”, it is possible that mixed labelling disappears with time. An interesting question,

however, is whether partial mixed labelling may disappear after the targets become well-separated again. To illustrate this

situation, let us assume that at time k − 1, we have N
S
∗
= Ω(1) ∪ Ω(2), with Ω(1) ∩ Ω(2) = ∅, which would be the case if the

targets are well-separated and Ω(1),Ω(2) are the regions surrounding each of the true target states.

We also assume that Ω(1) and Ω(2) are small enough such that the probability (conditioned on Zk−1) that a certain element

of Ω(1) corresponds to A and that a certain element of Ω(2) corresponds to B is more-or-less constant and equal to Pk−1.

Conversely, P ∗

k−1 would be the probability that an element of Ω(2) corresponds to A and an element of Ω(1) corresponds to

B.
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Using the probabilities Pk−1 and P ∗
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IV. MIXED LABELLING AND NON-KINEMATIC STATES

It is possible that we have a situation of closely space targets, but mixed labelling does not arise. This may happen when
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