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Abstract

In this paper we present an analytical model accurately describing the
forwarding behaviour of a multi-hop broadcast protocol. Our model cov-
ers the scenario in which a message is forwarded over a straight road
and inter-node distances are distributed exponentially. Intermediate for-
warders draw a small random delay before forwarding a message such as
is done in �ooding protocols to avoid the broadcast storm problem.

The analytical model presented in this chapter focuses on having a
message forwarded a speci�c distance. For a given forwarding distance
and a given node density our model analysis is able to capture the full
distribution of (i) the end-to-end delay to have the message forwarded
the entire distance, (ii) the required number of hops to have the message
forwarded the entire distance, (iii) the position of each intermediate for-
warder, (iv) the success probability of each hop, (v) the length of each
hop, and (vi) the delay of each hop. The �rst three metrics are calculated
assuming that the message is successfully forwarded the entire forwarding
distance.

The model provides the results in terms of insightful, fast-to-evaluate
closed-form expressions. The model has been validated by extensive sim-
ulations: modelling results stayed within typically 10%, depending on the
source-to-sink distance and the node density.

1 Introduction

In this document we analytically model the behaviour of a multi-hop broadcast
protocol. Speci�cally we consider a scenario in which nodes are spread out over
a straight line with the source at one end and the sink at the other end. The
source node initiates the forwarding by broadcasting an application message.
The message has a geographically de�ned destination address which includes
the position of the sink. All nodes apply the following forwarding rule: when
a node receives a message for the �rst time, and the node is positioned closer
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to the sink than the previous sender, the node draws a forwarding delay that
is exponentially distributed with mean Td. If before the end of the delay the
node receives the message from another node that is positioned closer to the
sink than the node itself, then the node will cancel the scheduled rebroadcast.

Multi-hop broadcast protocols such as these, in which nodes have identically
distributed forwarding delays, are often employed by delay tolerant �ooding
protocols. These are protocols that aim to deliver information to all nodes
within a certain region but that do not have strict delay requirements. In
vehicular networks such �ooding protocols are used to disseminate non-safety
local tra�c information, such as the average speed on the road or dangerous
road conditions [12] [14].

Although several studies exist on analytically modelling multi-hop forward-
ing in wireless networks, so far we have not found any models that use as-
sumptions that apply to our scenario. Especially regarding the level of realism
of modelling single-hop transmissions existing work is lacking, as often a �xed
transmission range is assumed. In contrast, in this study we model the probabil-
ity of a successful single-hop transmission as a function of the distance between
sender and receiver. Moreover, whereas the focus of existing models is often
limited to network connectivity, dissemination reliability, or end-to-end delay
bounds, our model gives a full distribution of a number of performance metrics.

The contribution of this document is an analytical model that expresses the
performance of a multi-hop broadcast protocol as presented above in terms of
insightful and fast-to-evaluate formulas. Our model covers the scenario in which
a message is forwarded a speci�c distance over a straight road, assuming expo-
nentially distributed inter-node distances. In particular, for a given forwarding
distance and transmission function, the model gives expressions of the following
performance metrics:

1. the distribution of the end-to-end delay;
2. the distribution of the required number of hops;
3. the distribution of the position of each forwarder;
4. the success probability of each op;
5. the distribution of the length of each hop;
6. the distribution of the delay of each hop.

The model analysis applies to message that have successfully been forwarded
for the entire forwarding distance only; the e�ect of message loss on the end-to-
end metrics is left for future work. The model has been veri�ed using extensive
simulations. For the most relevant scenarios results typically stay within 10%; as
node densities decrease and dissemination distances increase the model becomes
less accurate.

We have split our model analysis into two parts: the �rst part shows how
to express the behaviour of the �rst three hops of the forwarding protocol in an
exact manner. Although this method can be applied for following hops as well,
doing so becomes increasingly complex with each following hop. Based on the
results of the �rst part we therefore show how to approximate the behaviour of
the forwarding protocol for an arbitrary number of hops in the second part.
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Before presenting our analytical model we �rst discuss some of the work that
has been done previously on analytically modelling multi-hop forwarding in the
next section.

2 Related work

Although there is a plethora of performance studies on multi-hop forwarding
protocols in vehicular networks, practically all of these studies are simulation
based. The available analytical studies mainly focus on network connectivity,
i.e., the probability that a route exists between a source and a sink [18] [15]
[17], or have assumptions that do not apply to our scenario. Below we brie�y
discuss some of the more relevant analytical studies on multi-hop forwarding.
Their relevance to forwarding scenario considered in this report is discussed at
the end of the section.

In [9] a scenario is considered in which a message is forwarded by means
of broadcast transmissions over a straight line with �xed inter-node distances.
When a car transmits a message, all nodes within a certain range from the sender
have the same probability p (0 ≤ p ≤ 1) of correctly receiving the message in
absence of interference. Interference of transmissions may be taken into account
and if so will result in a loss. Which node becomes the next forwarder depends
on the dissemination strategy that is used: three such strategies are evaluated.
Forwarding is performed in communication rounds with a constant forwarding
delay between each round.

In [4] the end-to-end delay of an emergency message dissemination protocol
is analytically calculated. A �xed transmission range and exponentially dis-
tributed inter-node distances are assumed. Nodes are assumed to have formed
communication clusters with each cluster of nodes having a cluster head node.
All forwarding is done by the head nodes, which makes it relatively easy to
calculate the end-to-end delay. So far no standardisation on clustering has been
performed however.

In [16] the required number of hops to disseminate a message from source
to sink is analytically modelled. Nodes are spread out over a straight line with
exponentially distributed inter-node distances, with a �xed transmission range.
The node that lies furthest in the direction of the sink is assumed to forward
the message, similar to how forwarding is done in distance-based forwarding.
The model is quite accurate for high node densities and large distances but less
so when densities are low and distances are short. Hop delays and end-to-end
delays are not taken into account.

In [11] a straight road with exponentially distributed inter-node distances
and a �xed transmission range are considered. Two forwarding strategies are
considered. In the �rst each node that has received the message and that lies
closer to the sink than the previous forwarding node will forward the message
with a certain probability p (0 ≤ p ≤ 1). The forwarding delay is considered
constant for each hop. With the second strategy the forwarding delay is a
function of the node's distance to the previous forwarder. The model gives
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bounds on the required number of hops to have a message forwarded a certain
distance, as well as the end-to-end delay to have a message forwarded a certain
distance.

For various reasons none of the studies described here can be applied to our
forwarding scenario. Most importantly, all of the studies use strongly simpli�ed
assumptions regarding single-hop transmission. Inter-node distances are more-
over �xed in [9], and none of the methods used in [9], [4] and [16] to determine
the next forwarder apply to our forwarding protocol. Although the forwarding
rules applied in [11] are quite similar to those in the forwarding protocol con-
sidered in our scenario, the lack of a realistic transmission model prevents the
model from being used.

3 The system model

In this section we present our system model: an abstract representation of the
forwarding scenario considered that forms the basis of our analysis in subsequent
sections. We also specify the forwarding rules of the protocol and introduce
de�nitions and notations that are used throughout this document. A complete
overview of these is given in Table 1.

We model a road as a straight line with vehicles (henceforth referred to
as nodes) placed on this line, with the source node and sink node at either
end of the line. Inter-node distances are exponentially distributed with mean
dIN (in meters). Previous studies suggest that this distribution gives a good
approximation of the inter-vehicle distance in case of free �owing tra�c [6] [13]
[5]. Due to the di�erences in scale between the speed with which information is
usually routed through a network (meter per millisecond) and the speed with
which nodes move (meter per second), we assume the network to be static for
the duration of time that a message is being forwarded from source to sink.
Nodes are therefore immobile.

Fig. 1 illustrates the system model. Nodes are numbered and referred to
with Xi, i = 0, 1, . . . , 10. Node X0 acts as the source, node X10 acts as the sink.
The �rst three hops are shown and with each hop the nodes that have received
the message are coloured black. Initially only the source has the message.

To facilitate our analysis we divide the road into equal-sized intervals: start-
ing from the source the road is divided into intervals of length dint, with the
ith interval referring to the range 〈(i− 1) · dint, i · dint] from the source. In our
analysis the size of dint is such that the probability of having more than one
node in an interval becomes negligible. For the remainder of our analysis an
interval is therefore assumed to have either zero or one node(s).

To model the propagation of a transmitted signal from a sender to a receiver
we use a packet success ratio Si that gives the success probability of a single-
hop transmission as a function of the number of intervals i between sender
and receiver. Each node thus has an independent probability Si of receiving
a transmission. The packet success rate Si is non-zero over the range [1, R],
where R is the maximum number of intervals away from the sender at which the

4



X1

F0

F1

L1

F2

L2

X2X3 X4 X5X6 X7 X8 X9

X10
(sink)

X0
(source)

(a) Distances between the black nodes are exponentially distributed.

X1

F0

F1

L1

F2

L2

X2X3 X4 X5X6 X7 X8 X9

X10
(sink)

X0
(source)

(b) The source broadcasts the message.

X1

F0

F1

L1

F2

L2

X2X3 X4 X5X6 X7 X8 X9

X10
(sink)

X0
(source)

(c) Node C acts as the �rst forwarder and retransmits the message.

X1

F0

F1

L1

F2

L2

X2X3 X4 X5X6 X7 X8 X9

X10
(sink)

X0
(source)

(d) Node F acts as the second forwarder and retransmits the message.

Figure 1: The 0th, �rst, and second hop of an example scenario. The
blue shape shows the maximum transmission distance R from the most
recent forwarder. Black nodes have received the message.
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receiver still has a non-zero probability of receiving the message. An abstraction
such as Si is commonly used to take into account fading e�ects that in�uence
the reception of a signal. It ignores deterministic shadowing e�ects (e.g., due to
an obstruction) however, since the signal reception probability is independent
for each node and for each interval.

All delays related to transmitting and processing a signal (i.e., transmission
delay, propagation delay, switching times, etc.) are assumed to be negligible.

The source node initiates the forwarding by broadcasting an application
message. The message has a geographically de�ned destination address which
includes the position of the sink. All nodes apply the following forwarding rule:
when a node receives a message for the �rst time, and the node is positioned
closer to the sink than the previous sender, the node draws a forwarding delay
that is exponentially distributed with mean Td. If before the end of the delay
the node receives the message from another node that is positioned closer to the
sink than the node itself, then the node will cancel the scheduled rebroadcast.
In this way a message is progressively forwarded in the direction of the sink.

We use the following notation throughout the document. The nth forwarder
is the node that retransmits the message for the nth time after the source's
original transmission; Fn denotes the interval in which it is positioned. Although
not a forwarder since it originates the message, the source node is referred to
as the 0th forwarder and is by de�nition positioned in interval 0, i.e., F0 = 0.
Because there can be at most one node in an interval two forwarders can never
be in the same interval, i.e., Fn > Fk for n > k. In Fig. 1 F0, F1, and F2 are
given.

The nth hop refers to the transmission made by the nth forwarder; the
source's transmission is by de�nition hop 0. Fig. 1 shows the 0th, �rst, and
second hop. The hop length of the nth hop Ln refers to the distance in intervals
between the nth forwarder and the (n − 1)th forwarder, i.e., Ln = Fn − Fn−1.
By de�nition L0 = 0; Fig. 1 illustrates L1 and L2. The hop delay Dn of the
nth hop refers to the time between the moment the n− 1th forwarder transmits
the message and the moment the nth forwarder transmits the message.

In our model we focus on the progress that a message makes as it is for-
warded through the network. Let Ni denote the number of hops required to
have the message forwarded i intervals, i.e., to have it forwarded by a node that
is positioned in interval i or beyond. The end-to-end delay to have the message
forwarded i intervals is denoted Ei and is the sum of the delays of the required
hops, given by Ei =

∑Ni
n=1Di.

Each time the message has been forwarded there will be a set of nodes
that have all received the message and are all positioned closer to the sink
node than the most recent forwarder. Since one of these nodes will become
the next forwarder we call these nodes candidate forwarders. Let Cn be the
number of candidate forwarders for the nth hop, and let Cn,i be the number of
candidate forwarders for the nth hop in interval i. In Fig. 1 nodes X1, X2, and
X4 are all �rst-hop candidate forwarders. The number of nodes in interval i
that have not received the message from either the source or one of the n − 1
previous forwarder, and have therefore not become nth-hop candidate forwarder,
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is denoted Kn,i. In Fig. 1 node X3 is the only such node. By de�nition it holds
that the total number of nodes in interval i, Vi, is given by

Vi = Cn,i +Kn,i, n = 1, 2, . . . , i = Fn−1 + 1, Fn−1 + 2, . . . (1)

Sometimes we are interested in the set of nth-hop candidate forwarders that did
not become the nth forwarder. In Fig. 1 the set of �rst-hop candidate forwarders
that did not become the �rst forwarder consists of nodes X1 and X4. Let Hn,i

denote the number of nth-hop candidate forwarders in interval i, excluding the
nth forwarder itself, and let Gn,i denote the number of nth-hop forwarders in
interval i. By de�nition it holds that

Cn,i = Hn,i +Gn,i, n = 1, 2, . . . , i = Fn−1 + 1, Fn−1 + 2, . . . (2)

For each hop beyond the �rst hop the set of candidate forwarders consists of
nodes that received the message for the �rst time from the most recent forwarder
and of nodes that received it from some previous forwarder. The nth-hop can-
didate forwarders that received the message for the �rst time from the (n−1)th

forwarder are referred to as additional nth-hop candidate forwarders. In Fig. 1c
the set of additional second-hop candidate forwarders consists of nodes X3 and
X6. The number of additional n

th-hop candidate forwarder is denoted An; the
number of additional nth-hop candidate forwarder in interval i is denoted An,i.
By de�nition it holds that

An,i = Cn,i − Cn−1,i, n = 1, 2, . . . , i = Fn−1 + 1, Fn−1 + 2, . . . (3)

with C0,i = 0 by de�nition.
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An The number of additional nth-hop candidate forwarders, i.e., the num-
ber of nth-hop candidate forwarders i that �rst received the message
from the (n− 1)th forwarder. It holds that An = Cn − Cn−1.

An,i The number of additional nth-hop candidate forwarders in interval i.
Cn The number of nth-hop candidate forwarders.
Cn,i The number of nth-hop candidate forwarders in interval i.
Dn The hop delay (in seconds) of the nth hop, i.e., the time between

the moment the (n − 1)th forwarder forwards the message and the
moment the nth forwarder forwards the message.

Ei The end-to-end delay (in seconds) to have the message forwarded by
a node that is positioned in interval i or beyond.

Fn The position (in intervals) of the nth forwarder, i.e., the forwarder
that retransmits the message for the nth time after the source's trans-
mission. The source is by de�nition position in interval 0, i.e., F0 = 0.

Gn,i The number of nth forwarders in interval i.
Hn,i The number of nth-hop candidate forwarders in interval i, excluding

the nth forwarder.
Kn,i The number of nodes in interval i that have not received the message

from either the source or any of the �rst n forwarders. It holds that
Kn,i = Vn,i − Cn,i.

Ln The hop length (in intervals) of the nth hop, de�ned as the distance
between the (n − 1)th forwarder and the nth forwarder, i.e., Ln =
Fn − Fn−1.

Ni The number of hops required to have the message forwarded by a
node that is positioned in interval i or beyond.

Si The single-hop packet reception probability as a function of the dis-
tance (in intervals) between the sender and receiver.

R The maximum transmission range in intervals.
Td The mean per-hop forwarding delay in seconds.
Vi The number of nodes in interval i.

Table 1: Nomenclature used throughout this document.
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4 Exact analysis of the �rst three hops

In this section we given an exact analysis of the system model for the �rst three
hops. Although the method presented here can be applied for an arbitrary
number of hops, it becomes increasingly complex with each hop however. We
therefore determine the behaviour of the �rst three hops only. Based on the
results of this section we then give a number of approximate methods in the next
section that allow for fast calculation of hop metrics and end-to-end metrics for
an arbitrary number of hops.

To determine the behaviour of a hop we require (i) the distribution of the
number of candidate forwarders and (ii) how they are positioned. For the �rst
two hops we specify both, allowing us to express the hop success probability,
the position of the forwarder, the hop length, and the hop delay. For the third
hop we specify how the candidate forwarders are positioned only, and for this
reason only express the position of the forwarder and the hop length. For all
hop metrics a full distribution is given.

We specify the behaviour of each hop separately. For each hop holds that
we �rst determine the distribution of the candidate forwarders and then its hop
metrics.

Throughout this section we clarify some of our modelling steps using (in-
termediate) results from an evaluation study that we performed. The set-up of
this study is described in Section 6.1. Results include both analytical results
and simulation results; analytical results are illustrated using solid lines while
simulation results are illustrated using dashed lines.

4.1 First hop

4.1.1 Candidate forwarders

Since inter-node distances are distributed exponentially with mean dIN m and
intervals have a length of dIN m, the distribution of Vi is given by the Poisson
distribution with mean E(Vi) given by

E(Vi) =
dint
dIN

, i = 1, 2, . . . (4)

Note that the Vi's, i = 1, 2, . . . , are independent.
Since a node in interval i has a probability Si of becoming a �rst-hop can-

didate forwarder, and the number of nodes in interval i is Poisson distributed
with mean E(Vi), the number of �rst-hop candidate forwarders in interval i is
Poisson distributed with mean

E(C1,i) = E(Vi) · Si, i = 1, 2, . . . , R, (5)

with E(C1,i) = 0 for other values of i.
The total number of �rst-hop candidate forwarders is equal to the sum of

�rst-hop candidate forwarders in the R intervals following the source. According
to [10] the sum of a number of independent Poisson distributed random variables
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Figure 2: Expected values of Vi, C1,i, K1,i for dIN = 50 m and dint = 5.

is also Poisson distributed, with its mean equal to the summed up means. Hence,
C1 has a Poisson distribution with mean

E(C1) =

R∑
i=1

E(C1,i) (6)

=

R∑
i=1

SiE(Vi). (7)

The probability of having at least one �rst-hop candidate forwarder is given
by

P(C1 > 0) = 1− P(C1 = 0)

= 1− e−
∑R
i=1 SiE(Vi). (8)

Because we will need it later on, we determine here the distribution of the
number of �rst-hop candidate forwarders, given that there is at least one �rst-
hop candidate forwarder. It is calculated by normalising the distribution of C1

with respect to P(C1 > 0):

P(C1 = c1 | C1 > 0) =
P(C1 = c1)

P(C1 > 0)

=
λc1

c1! e
−λ

1− e−λ
, λ =

R∑
i=1

SiE(Vi), c1 ∈ N+, (9)

with P(C1 = c1 | C1 > 0) = 0 for other values of c1.
The expected number of �rst-hop candidate forwarders in interval i, given
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that there is at least one �rst-hop candidate forwarder is given by

E(C1,i | C1 > 0) =

∞∑
c1,i=0

c1,i · P(C1,i = c1,i | C1 > 0)

=
1

P(C1 > 0)
·
∞∑

c1,i=1

c1,i · P(C1 > 0 | C1,i = c1,i) P(C1,i = c1,i)

=
E(C1,i)

P(C1 > 0)

=
SiE(Vi)

1− e−
∑R
j=1 SjE(Vj)

, (10)

with E(C1,i | C1 > 0) = 0 for other values of i. Fig. 2 shows E(C1,i | C1 > 0)
as a function of interval number i.

Finally, since the number of �rst-hop candidate forwarders in an interval
is an independent Poisson process, the expected number of �rst-hop candidate
forwarders, given that there is at least one �rst-hop candidate forwarder, is given
by

E(C1 | C1 > 0) =

R∑
i=1

E(C1,i | C1 > 0)

=

∑R
i=1 SiE(Vi)

1− e−
∑R
i=1 SiE(Vi)

, (11)

4.1.2 Probability of success

The probability of success of the �rst hop is equal to the probability of having a
�rst forwarder, i.e., of having at least one candidate forwarder for the �rst hop:

P(`successful �rst hop') = P(C1 > 0), (12)

with P(C1 > 0) given by Eq. (8).

4.1.3 Position of the forwarder

For a given set of candidate forwarders, the candidate forwarder that has the
shortest residual forwarding delay will become the next forwarder. Candidate
forwarders draw their forwarding delay when they receive the message for the
�rst time. Since the forwarding delay is distributed exponentially, and the ex-
ponential distribution is memoryless, the residual forwarding delay is i.i.d. with
mean Td for each candidate forwarder, regardless when the candidate forwarder
�rst received the message. Thus, for a given set of candidate forwarders the
probability of becoming the next forwarder is equal for all candidate forwarders.

Since the probability of becoming the next forwarder is equal for all candidate
forwarders, the probability that the �rst forwarder will be located in interval i,
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Figure 3: The distribution of the position of the �rst forwarder, for
dIN = 50 m and dint = 5 m.

given that there is a �rst forwarder, is equal to the expected value of the number
of candidate forwarders in interval i normalised over the expected total number
of �rst-hop candidate forwarders, given that there is a �rst forwarder. As we
prove in Appendix A.1.1 this is given by

P(F1 = i | C1 > 0) = E
(C1,i

C1
| C1 > 0

)
=

E(C1,i)

E(C1)
, i = 1, 2, . . . , R. (13)

with P(F1 = i | C1 > 0) = 0 for other values of i.
The probability that the �rst forwarder is positioned in interval i is equal to

P(F1 = i | C1 > 0) multiplied with the probability that there is a �rst forwarder:

P(F1 = i) = P(C1 > 0) · P(F1 = i | C1 > 0), i = 1, 2, . . . , R, (14)

with P(F1 = i) = 0 for other values of i and P(C1 > 0) given by Eq. (8). Fig.
3 illustrates P(F1 = i).

Given that there is �rst forwarder, the expected number of �rst forwarders
in interval i is equal to the probability that the �rst forwarder is positioned in
interval i, i.e.,

E(G1,i | C1 > 0) = P(F1 = i | C1 > 0), i = 1, 2, . . . (15)

4.1.4 Hop length

Since the source is by de�nition positioned in interval 0, the distribution of the
hop length of the �rst hop is equal to the distribution of the position of the �rst
forwarder, given that there is a �rst forwarder, i.e.,

P(L1 = l1) = P(F1 = l1 | C1 > 0), l1 = 1, 2, . . . , R, (16)

with P(L1 = l1) = 0 for other values of l1.
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4.1.5 Hop delay

For each hop holds that the candidate forwarder that has the shortest forwarding
delay will become the next forwarder. The hop delay is therefore distributed as
the minimum residual forwarding delay of all the �rst-hop candidate forwarders.
The �rst-hop candidate forwarders draw their forwarding delay when they �rst
receive the message. Since the forwarding delay is distributed exponentially and
the exponential distribution is memoryless, the forwarding delay of each can-
didate forwarder is identical, independent, and exponentially distributed with
mean Td. Given that there are c candidate forwarders, the hop delay is therefore
distributed as the minimum value of c forwarding delays, that are each expo-
nentially distributed with mean Td. This minimum value is itself exponentially
distributed with mean Td/c. To calculate the distribution of the nth-hop hop
delay we therefore have to condition on the number of nth-hop candidate for-
warders, given that there is an nth forwarder. The CDF of the hop delay of the
�rst hop is thus given by

FD1
(t) = 1−

∞∑
c1=1

P(C1 = c1 | C1 > 0) · e(c1· t)/Td , t > 0, (17)

with FD1
(t) = 0 for t ≤ 0 and P(C1 = c1 | C1 > 0) given by Eq. (9).

4.2 Second hop

4.2.1 Candidate forwarders

We �rst determine the expected number of second-hop candidate forwarders in
an interval, given the position of the �rst forwarder, denoted E(C2,i | F1 = j),
and then the distribution of the total number of second-hop candidate for-
warders, given the position of the �rst forwarder, denoted C2 | F1 = j.

The set of second-hop candidate forwarders in an interval consists of re-
maining �rst-hop candidate forwarders (excluding the �rst forwarder itself) and
additional second-hop candidate forwarders, i.e., C2,i = H1,i +A2,i. We are
interested in their expected values for a given position j of the �rst forwarder:

E(C2,i | F1 = j) = E(H1,i | F1 = j) + E(A2,i | F1 = j), i = j + 1, j + 2, . . .
(18)

To determine E(C2,i | F1 = j) we �rst calculate E(H1,i | F1 = j), then E(A2,i | F1 = j).
To calculate the expected number of �rst-hop candidate forwarders in an

interval, excluding the �rst forwarder itself and given that there is a �rst for-
warder, we take the expected values of Eq. (2), condition on the existence of a
�rst forwarder, and rearrange terms:

E(H1,i | C1 > 0) = E(C1,i | C1 > 0)− E(G1,i | C1 > 0), i = 1, 2, . . . , R, (19)

with E(H1,i | C1 > 0) = 0 for other values of i, E(C1,i | C1 > 0) given by Eq.
(10) and E(G1,i | C1 > 0) given by Eq. (15). Fig. 4 illustrates E(H1,i | C1 > 0).
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Figure 4: Expected values of C1,i, H1,i, and G1,i for dIN = 50
m and dint = 5 m. The analytical results of E(H1,i | C1 > 0) and
E(H1,i | F1 = j) overlap.

Because of the complexities involved, and in order to keep our discussion
focussed, the method to explicitly calculate E(H1,i | F1 = j) is given in Ap-
pendix A.1.2. However, both extensive simulations and numerical calculations
for a wide range of parameters have shown that the expected number of �rst-hop
candidate forwarders in interval i, excluding the �rst forwarder, given that there
is a �rst forwarder, is independent of the actual location of the �rst forwarder,
i.e.,

E(H1,i | F1 = j) = E(H1,i | C1 > 0), i = 1, 2, . . . j = 1, . . . , R. (20)

Proof of Eq. (20) is given in Appendix A.1.3 in case of an ideal transmission
model. Based on this proof, as well as on those results obtained by extensive
simulations and numerical calculations, we conjecture that Eq. (20) also holds
for the general case, i.e., for a non-ideal transmission model. As Eq. (20) is
considerably faster than the method presented in Appendix A.1.2 we will use it
to calculate E(H1,i | F1 = j) for the remainder of this document. The similarity
of E(H1,i | F1 = j) and E(H1,i | C1 > 0) is illustrated in Fig. 4.

The number of additional second-hop candidate forwarders in interval i is
de�ned as the number of nodes in interval i that received the message for the
�rst time from the �rst forwarder. The number of nodes that did not receive the
message from the source in interval i, denoted K1,i, has a Poisson distribution
with mean

E(K1,i) = E(Vi) · (1− Si), i = 1, 2, . . . , R, (21)

with E(K1,i) = 0 for other values of i. The distribution of K1,i is independent of
the distribution of the number of �rst-hop candidate forwarders. Fig. 2 shows
E(K1,i).

Given that the �rst forwarder is positioned in interval j, the probability that
a node in interval i successfully receives the message from the �rst forwarder
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Figure 5: Expected values of H1,i, A2,i, and C2,i for dIN = 50 and
dint = 5.

is given by Si−j , i > j. A2,i | F1 = j is thus Poisson distributed with mean
E(A2,i | F1 = j) given by

E(A2,i | F1 = j) = E(K1,i) Si−j , i = j + 1, . . . , j +R, (22)

with E(A2,i | F1 = j) = 0 for other values of i, and with E(K1,i) given by
Eq. (21). Combining Eq. (20) and Eq. (22) into Eq. (18) we thus have an
expression to calculate E(C2,i | F1 = j). Fig. 5 illustrates E(A2,i | F1 = j).

Given that the �rst forwarder is positioned in interval j, the total number
of second-hop candidate forwarders C2 is made up out the number of remaining
�rst-hop candidate forwarders in intervals j + 1 through R, denoted C1,j+1:R,
plus the number of additional second-hop forwarders in intervals j + 1 through
j +R, i.e.,

P(C2 = c2 | F1 = j) = P(C1,j+1:R +A2 = c2 | F1 = j)

=

c2∑
c1,j+1:R=0

P(C1,j+1:R = c1,j+1:R | F1 = j) ·

P(A2 = c2 − c1,j+1:R | F1 = j),

c2 ∈ N, j = 1, 2, . . . , R, (23)

with P(C2 = c2 | F1 = j) = 0 for other values of c2, j. P(C1,j+1:R = c1,j+1:R | F1 = j)
is given by Eq. (90) in Appendix A.1.4. The distribution of A2 | F1 = j is inde-
pendent of the number of �rst-hop candidate forwarders; it is Poisson distributed
with mean

E(A2 | F1 = j) =

j+R∑
i=j+1

E(A2,i | F1 = j), j = 1, 2, . . . , R. (24)

The distribution of the number of second-hop candidate forwarders, given
the position of the �rst forwarder and given that there is at least one second-hop
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candidate forwarder, is de�ned as

P(C2 = c2 | F1 = j ∧ C2 > 0) =
P(C2 = c2 | F1 = j)

1− P(C2 = 0 | F1 = j)
, j = 1, 2, . . . , R. (25)

Analogue to the �rst hop, see Eq. (10), the expected number of second-hop
candidate forwarders in interval i, given the position of the �rst forwarder and
given that there is at least one second-hop candidate forwarder, is given by

E(C2,i | F1 = j ∧ C2 > 0) =
E(C2,i | F1 = j)

1− P(C2 = 0 | F1 = j)
,

j = 1, 2, . . . , R, i = j + 1, j + 2, . . . , j +R, (26)

with E(C2,i | F1 = j ∧ C2 > 0) = 0 for other values of i, j.
Finally, because we will need it later on we express the expected number of

nodes in an interval i following the �rst forwarder. Given that the �rst forwarder
is positioned in interval j, the expected number of nodes in interval i is given
by

E(Vi | F1 = j) = E(H1,i +K1,i | F1 = j)

= E(H1,i | F1 = j) + E(K1,i | F1 = j), i = j + 1, j + 2, . . . (27)

since H1,i and K1,i are independent, with E(H1,i | F1 = j) given by Eq. (20)
and E(K1,i | F1 = j) given by Eq. (21).

4.2.2 Probability of success

The probability of success of the second hop is equal to the probability of having
at least one second-hop candidate forwarder. For a given position of the �rst
forwarder it is therefore given by

P(`successful second hop' | F1 = i) = P(C2 > 0 | F1 = i), i = 1, 2, . . . , R, (28)

with C2 > 0 | F1 = i distributed according to Eq. (23). To determine the general
probability of a successful second hop we take the position of the �rst forwarder
into account:

P(`successful second hop') =

R∑
i=1

P(F1 = i) · P(C2 > 0 | F1 = i). (29)

Finally, the probability that the �rst two hops are successful is given by

P(`two successful hops') = P(`successful �rst hop') · P(`successful second hop'),
(30)

with P(`successful �rst hop') given by Eq. (12).
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Figure 6: The distribution of the position of the second forwarder for a
given position of the �rst forwarder, for dIN = 50 m and dint = 5 m.

4.2.3 Position of the forwarder

We determine the distribution of the position of the second forwarder in a
manner analogue to how the position of the �rst forwarder is calculated in
Eq. (13):

P(F2 = i | F1 = j ∧ C2 > 0) = E
(C2,i

C2
| F1 = j ∧ C2 > 0

)
≈ E(C2,i | F1 = j)

E(C2 | F1 = j)
,

j = 1, 2, . . . , R, i = j + 1, . . . , j +R, (31)

with P(F2 = i | F1 = j ∧ C2 > 0) = 0 for other values of i. E(C2 | F1 = j)
can easily be derived from Eq. (23). Note that Eq. (31) is an approx-

imation because E
(C2,i

C2
| F1 = j ∧ C2 > 0

)
=

E(C2,i | F1=j)
E(C2 | F1=j) only holds if both

C2,i | F1 = j ∧ C2 > 0 and C2 | F1 = j ∧ C2 > 0 are Poisson distributed, which
is not the case: both variables have a shifted Poisson distribution. For practi-
cal purposes the margin of error introduced by this approximation is negligible
however, as will be shown in Section ??. Fig. 6 illustrates P(F2 = i | F1 =
j ∧ C2 > 0).

P(F2 = i | F1 = j) is calculated by multiplying P(F2 = i | F1 = j ∧ C2 > 0)
with the probability that there is a second forwarder:

P(F2 = i | F1 = j) = P(C2 > 0 | F1 = j) · P(F2 = i | F1 = j ∧ C2 > 0),

j = 1, 2, . . . , R, i = j + 1, . . . , j +R, (32)

with P(F2 = i | F1 = j) = 0 for other values of i, C2 > 0 | F1 = j distributed
according to Eq. (23). Fig. 6 illustrates P(F2 = i | F1 = j) with respect to
P(F2 = i | F1 = j ∧ C2 > 0).

The probability that the second forwarder is in interval i, given that there is
a �rst forwarder but irrespective of its position, is denoted P(F2 = i | C2 > 0).
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Figure 7: The distribution of the position of the forwarder for dIN = 50
m and dint = 5 m.

It is calculated by conditioning on the position of the �rst forwarder, given that
there is a �rst forwarder:

P(F2 = i | C2 > 0) =

R∑
j=1

P(F1 = j | C1 > 0) · P(F2 = i | F1 = j ∧ C2 > 0),

i = 2, 3, . . . , 2R, (33)

with P(F2 = i | C2 > 0) = 0 for other values of i. Fig. 7 illustrates
P(F2 = i | C2 > 0).

The probability that the second forwarder is in interval i is denoted P(F2 = i)
and is calculated by conditioning on the possible positions of the �rst forwarder:

P(F2 = i) =

R∑
j=1

P(F1 = j) · P(F2 = i | F1 = j), i = 2, 3, . . . , 2R, (34)

with P(F2 = i) = 0 for other values of i, P(F1 = j) given by Eq. (14), and
P(F2 = i | F1 = j) given by Eq. (32). Fig. 7 illustrates P(F2 = i).

Finally, given that there is a second forwarder and given that the �rst for-
warder is positioned in interval j, the expected number of second forwarders in
interval i is given by

E(G2,i | F1 = j ∧ C2 > 0) = P(F2 = i | F1 = j ∧ C2 > 0)

j = 1, 2, . . . , R, i = j + 1, . . . , j +R, (35)

with E(G2,i | F1 = j ∧ C2 > 0) = 0 for other values of i, j.

4.2.4 Hop length

The distribution of the hop length of the second hop is calculated with respect
to the position of the �rst forwarder. For a given position of the �rst forwarder
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the distribution of L2 is given by

P(L2 = l2 | F1 = j) = P(F2 = j + l2 | F1 = j ∧ C2 > 0), l2, j = 1, 2, . . . , R,
(36)

with P(L2 = l2 | F1 = j) = 0 for other values of l2, j. For an arbitrary position
of the �rst forwarder the distribution of L2 is given by conditioning on the
position of the �rst forwarder:

P(L2 = l2) =

R∑
j=1

P(F1 = j | C1 > 0) P(F2 = j + l2 | F1 = j ∧ C2 > 0),

l2, j = 1, 2, . . . , R, (37)

with P(L2 = l2 | F1 = j) = 0 for other values of l2.

4.2.5 Hop delay

Analogue to how the hop delay of the �rst hop is determined, the distribution
of the hop delay of the second hop, denoted D2, is given by conditioning on the
number of second-hop candidate forwarders. Given that the �rst forwarder is
positioned in interval j, the CDF of the hop delay is given by

FD2 | F1=j(t) = 1−
∞∑
c2=1

P(C2 = c2 | F1 = j ∧ C2 > 0) · e(c2·t)/Td , t > 0, (38)

with FD2 | F1=j(t) = 0 for t ≤ 0 and P(C2 = c2 | F1 = j ∧ C2 > 0) given by Eq.
(25). For an arbitrary position of the �rst forwarder the distribution of D2 is
given by conditioning on the position of the �rst forwarder:

FD2(t) =

R∑
j=1

P(F1 = j | C1 > 0) · FD2 | F1=j(t), t > 0, (39)

with FD2
(t) = 0 for t ≤ 0.

4.3 Third hop

4.3.1 Candidate forwarders

We determine the expected number of third-hop candidate forwarders in inter-
val i, given that the �rst forwarder is positioned in interval j and the second
forwarder is positioned in interval k, denoted E(C3,i | F1 = j ∧ F2 = k).

The set of third-hop candidate forwarders in an interval consists of remaining
second-hop candidate forwarders (excluding the second forwarder itself) and
additional third-hop candidate forwarders, i.e., C3,i = H2,i + A3,i. Taking the
expected values, for given positions of the �rst two forwarders, we get

E(C3,i | F1 = j ∧ F2 = k) = E(H2,i | F1 = j ∧ F2 = k) + E(A3,i | F1 = j ∧ F2 = k),

j = 1, 2, . . . , R, k = j + 1, j + 2, . . . , j +R, i = k + 1, k + 2, . . . , k +R. (40)
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Figure 8: Expected values of H2,i, A3,i, C3,i, and K2,i for dIN = 50 m
and dint = 5 m.

Analogue to the second hop, see Eq. (20), we state

E(H2,i | F1 = j ∧ F2 = k) = E(H2,i | F1 = j ∧ C2 > 0),

j = 1, 2, . . . , R, i = j + 1, j + 2, . . . , j +R, (41)

with E(H2,i | F1 = j ∧ F2 = k) = 0 for other values of i, j. E(H2,i | F1 = j ∧ C2 > 0)
is by de�nition given as

E(H2,i | F1 = j ∧ C2 > 0) = E(C2,i | F1 = j ∧ C2 > 0)− E(G2,i | F1 = j ∧ C2 > 0),

j = 1, 2, . . . , R, i = j + 1, j + 2, . . . , j +R, (42)

with E(H2,i | F1 = j ∧ C2 > 0) = 0 for other values of i, j, E(C2,i | F1 = j ∧ C2 > 0)
given by Eq. (26), and E(G2,i | F1 = j ∧ C2 > 0) given by Eq. (35).

The number of additional third-hop candidate forwarders in interval i is
de�ned as the number of nodes in interval i that received the message for the
�rst time from the second forwarder. The number of nodes in interval i that did
not receive the message from the source and did not receive the message from
the �rst forwarder, given that the �rst forwarder is positioned in interval j, has
a Poisson distribution with mean

E(K2,i | F1 = j) =

{
E(K1,i) · (1− Si−j), i = j + 1, . . . , j +R,

E(K1,i), i = j +R+ 1, j +R+ 2, . . . ,

(43)

with E(K2,i | F1 = j) = 0 for other values of i. The distribution of K2,i | F1 =
j is independent of the distribution of the number of second-hop candidate
forwarders.

Given that the second forwarder is positioned in interval k, the probability
that a node in interval i successfully receives the message from the second for-
warder is given by Si−k, i > k. A3,i | F1 = j∧F2 = k is thus Poisson distributed
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with mean

E(A3,i | F1 = j ∧ F2 = k) = E(K2,i | F1 = j) Si−k,

j = 1, 2, . . . , R, k = j + 1, j + 2, . . . , j +R, i = k + 1, k + 2, . . . , k +R, (44)

with E(A3,i | F1 = j ∧ F2 = k) = 0 for other values of i, j, k, and with
E(K1,i | F1 = j) given by Eq. (21). Combining Eq. (41) and Eq. (42) we
thus have an expression to calculate Eq. (40). Fig. 8 shows the expected values
of H2,i, A3,i, C3,i, and K2,i.

The expected total number of third-hop candidate forwarders is given by

E(C3 | F1 = j ∧ F2 = k) =

k+R∑
i=k+1

E(C3,i | F1 = j ∧ F2 = k),

j = 1, 2, . . . , R, k = j + 1, j + 2, . . . , j +R, (45)

with E(C3 | F1 = j ∧ F2 = k) = 0 for other values of j, k.
Lastly, because we will need it later on we express the expected number

of nodes in an interval i following the second forwarder. Given that the �rst
forwarder is positioned in interval j and the second forwarder is positioned in
interval k, the expected number of nodes in interval i is given by

E(Vi | F1 = j ∧ F2 = k) = E(H1,i | F1 = j ∧ F2 = k) + E(K1,i | F1 = j ∧ F2 = k),

i = j + 1, j + 2, . . . , (46)

with E(H2,i | F1 = j ∧ F2 = k) given by Eq. (41) and E(K2,i | F1 = j ∧ F2 = k)
given by Eq. (43).

4.3.2 Position of the forwarder

Analogue to the �rst and second hop the position of the third forwarder, given
that there is a third forwarder and given the position of the �rst two forwarders,
is approximated by

P(F3 = i | F1 = j ∧ F2 = k ∧ C3 > 0) = E(
C3,i

C3
| C3 > 0)

≈ E(C3,i)

E(C3)
,

j = 1, 2, . . . , R, k = j + 1, j + 2, . . . , j +R, i = k + 1, k + 2, . . . , k +R. (47)

When it is given that there is a third forwarder, the distribution of its position
is calculated by conditioning on the position of the �rst two forwarder:

P(F3 = i | C3 > 0) =

R∑
j=1

j+R∑
k=j+1

P(F1 = j | C1 > 0) · P(F2 = i | F1 = j ∧ C2 > 0)·

P(F3 = i | F1 = j ∧ F2 = k ∧ C3 > 0),

i = 3, 4, . . . , 3 ·R, (48)

with P(F3 = i | C3 > 0) = 0 for other values of i. Fig. 9 illustrates
P(F3 = i | C3 > 0).
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Figure 9: The distribution of the position of the third forwarder for
dIN = 50 m and dint = 5 m.

4.3.3 Hop length

The hop length of the third hop is calculated with respect to the position of the
second forwarder. For a given position of the �rst two forwarders the distribution
of L3 is given by

P(L3 = l3 | F1 = j ∧ F2 = k) = P(F3 = k + l3 | F1 = j ∧ F2 = k ∧ C3 > 0),

l3 = 1, 2, . . . , R, (49)

with P(L3 = l3 | F1 = j ∧ F2 = k) = 0 for other values of l3, j, k. For arbitrary
positions of the �rst two forwarders the distribution of L3 is given by condition-
ing on the position of the �rst two forwarders:

P(L3 = l3) =

R∑
j=1

j+R∑
k=j+1

P(F1 = j | C1 > 0) P(F2 = k | F1 = j ∧ C2 > 0) ·

P(L3 = l3 | F1 = j ∧ F2 = k)

l3 = 1, 2, . . . , R, (50)

with P(L3 = l3) = 0 for other values of l3.

5 Approximate analysis of following hops

Based on the exact analysis of the �rst three hops we give approximate meth-
ods in this section to determine the behaviour of the forwarding model for an
arbitrary number of hops. These methods are of limited complexity, allowing
for fast evaluation.
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5.1 Probability of success

The probability of success of a hop is approximated for the third and following
hops by assuming that it does not change beyond the �rst hop, i.e.,

P(`successful nth hop') = P(`Successful second hop'), n = 3, 4, . . . , (51)

with P(`successful second hop') given by Eq. (29). The probability of having n
successful hops is then approximated by

P(`n successful hops') =

n∏
k=1

P(`successful kth hop'). (52)

5.2 Hop length

We approximate the distribution of the hop length of the fourth and following
hops with the distribution of the hop length of the third hop. As we will �nd
from the numerical results in Section 6.2, the distribution of the hop length
of the nth is signi�cantly in�uenced by the hop lengths of previous hops. We
therefore condition the distribution of the hop length of the nth hop on the hop
length of the (n− 1)th hop, i.e.,

FLn | Ln−1=ln−1
∼ FL3 | L2=ln−1

, n = 4, 5, . . . , (53)

with the distribution of L3 | L2 = ln−1 given by

P(L3 = l3 | L2 = l2) =

R∑
i=1

P(F1 = i | C1 > 0) · P(F3 = i+ l2 + l3 | F1 = i ∧ F2 = i+ l2 ∧ C3 > 0),

l3 = 1, 2, . . . , R, l2 = 1, 2, . . . , R, (54)

with P(F1 = i | C1 > 0) given by Eq. (13) and
P(F3 = i+ l2 + l3 | F1 = i ∧ F2 = i+ l2 ∧ C3 > 0) given by Eq. (47).

5.3 Position of the forwarder

We approximate the distribution of the position of the nth forwarder (n > 3)
in a recursive manner, assuming that there is such a forwarder, by taking into
account the length of previous hops.

We have assumed in Eq. (53) that the hop length of each hop beyond the
third hop is distributed identically to the hop length of the third hop, for a
given hop length of the previous hop. The position of the nth forwarder, given
that there is an nth forwarder, can thus be approximated by conditioning on
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the position of the (n− 2)th forwarder and the length of the (n− 1)th hop, i.e.,

P(Fn = i | Cn > 0) ≈
(n−2)R∑
j=n−2

P(Fn−2 = j | Cn−2 > 0) ·

R∑
ln−1=1

P(Fn−1 = j + ln−1 | Fn−2 = j ∧ Cn−1 > 0) ·

P(Ln = i− j − ln−1 | Ln−1 = ln−1),

n = 4, 5, . . . , i = n, n+ 1, . . . , n ·R, (55)

with P(Fn = i | Cn > 0) = 0 for other values of i.
P(Fn−1 = j + ln−1 | Fn−2 = j ∧ Cn−1 > 0) denotes the probability that the (n− 1)th

forwarder is positioned in interval j + ln−1, given that the (n − 2)th forwarder
is positioned in interval j and given that there is an (n − 1)th forwarder. It is
given by

P(Fn = i | Fn−1 = j ∧ Cn > 0) =

(n−2)R∑
k=n−2

P(Fn−2 = k | Cn−2 > 0) · P(Ln = i− j | Ln−1 = j − k),

n = 3, 4, . . . , i = n, n+ 1, . . . , n ·R, (56)

with P(Fn = i | Fn−1 = j ∧ Cn > 0) = 0 for other values of i.

5.4 Required number of hops

We determine the distribution of the required number of hops to have the mes-
sage forwarded by a node at or beyond position i, denoted Ni. We make use
of the fact that the probability that at most n hops are required to have the
message forwarded by a node at or beyond position i is equal to the probability
that the nth forwarder is at or beyond position i, i.e.,

P(Ni ≤ n) = P(Fn ≥ i | Cn > 0)

= 1− P (Fn < i | Cn > 0),

i = 1, 2, . . . , n = 1, 2, . . . (57)

where P(Fn < i | Cn > 0) is equal to the sum of the probabilities that the
forwarder is at position j = 1, . . . , i− 1, given by

P (Fn < i | Cn > 0) =

i−1∑
j=1

P(Fn = j | Cn > 0),

n = 1, 2, . . . , i = 1, . . . , n ·R, (58)

with P(Fn = j | Cn > 0) given by Eq. (55).
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5.5 Hop delay

We approximate the nth-hop hop delay Dn for n > 2.
As we will �nd from the numerical results in Section 6.2 the distribution of

the hop delay changes little after the �rst two hops. We therefore approximate
the hop delay distribution of the nth hop with the hop delay distribution of the
second hop:

FDn(·) ∼ FD2
(·), n = 3, 4, . . . , (59)

with FD2(·) given by Eq. (39). Likewise, for a given length of the (n− 1)th hop
ln−1 we approximate the hop delay distribution of the nth hop by

FDn | Ln−1=ln−1
(·) ∼ FD2 | F1=ln−1

(·), n = 3, 4, . . . , (60)

5.6 End-to-end delay

The end-to-end delay to have a message forwarded at least i intervals is a con-
volution of the required number of hops to have the message forwarded at least
i intervals and the delay per hop. We therefore �rst determine the end-to-end
delay to have the message forwarded at least i intervals in n hops, denoted
FEi | Ni=n and then condition on the required number of hops to have a mes-
sage forwarded i intervals. For the �rst two hops the end-to-end delay is exact;
for following hops the end-to-end delay is approximated.

The distribution of the end-to-end delay for a single hop is independent of
the value of i and is equal to the distribution of the hop delay of the �rst hop,
i.e.,

FEi | Ni=1(t) = FD1
(t), t > 0 (61)

with FD1
(t) given by Eq. (17).

The distribution of the end-to-end delay to have a message forwarded i
intervals in exactly two hops is given by conditioning on the position of the
�rst forwarder and the delay of the �rst hop, given that the second forwarder is
position at interval i or beyond. Normalising F1 with respect to the fact that it
must be within R intervals of interval i but not at or beyond interval i we get

FEi | Ni=2(t) =

min(R,i−1)∑
j=max(1,i−R)

P(F1 = j | C1 > 0)∑min(R,i−1)
k=max(1,i−R) P(F1 = k | C1 > 0)

·

t∫
t1=0

fD1
(t1) · FD2 | F1=j(t− t1) dt1, t > 0, (62)

with P(F1 = j | C1 > 0) given by Eq. (13), fD1(t1) can easily be derived from
Eq. (17), and FD2 | F1=j(t− t1) given by Eq. (38).

If n > 2 hops are needed to have the message forwarded i intervals then the
average hop length l is given by i/n. To approximate the distribution of the end-
to-end delay we condition on the hop delay of the �rst hop, and approximate
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the end-to-end delay of the remaining n − 1 hops as a convolution of n − 1
independent hop delays distributed according to FDn | F1=l(t). The distribution
of n − 1 independent exponential hop delays with identical means is given by
the Erlang distribution [10]. FEi | Ni=n(t) is thus given by

FEi | Ni=n(t) ≈
t∫

t1=0

fD1
(t1) ·

(
1−

n−2∑
k=0

e−λ(t−t1)

k!
(λ(t− t1))k

)
dt1,

t > 0, λ = E(C2 | F1 = l ∧ C2 > 0)/Td, (63)

with E(C2 | F1 = l ∧ C2 > 0) derived from Eq. (25). Note that by assuming
that each hop is of average length and consecutive hops are independent of each
other we ignore any dependencies between consecutive hop lengths. The e�ect
that this has on the accuracy of our model is discussed in detail in Section 6.2.

Finally, to calculate the end-to-end delay to have a message forwarded i
intervals we condition on the required number of hops, such that the end-to-end
delay is given by

FEi(t) =

∞∑
n=1

P(Ni = n) · FEi | Ni=n(t), t > 0, i ∈ N+. (64)

6 Performance evaluation

Having analysed the forwarding protocol in an analytical manner in the previous
sections, in this section we present the set-up and results of an evaluation study
to assess (i) how the forwarding protocol described in Section 3 performs for
varying network parameters, and (ii) how well our analysis presented in the
previous section is able to capture its behaviour. We have done so by evaluating
various forwarding scenarios with di�erent network parameters, both by means
of simulation and by means of our analysis. We discuss the performance of
the forwarding protocol using the results of the simulation study and discuss
the accuracy of our analysis by comparing the results of the simulation study
and our analysis. Below we �rst describe the scenario and the set-up of our
simulation study in Section 6.1 and then discuss the results in Section 6.2.

6.1 Experimental set-up

Nodes are positioned over a straight line of 3000 m with the source at one
end and the message destination at the other end. The inter-node spacing is
exponentially distributed with mean dIN set to 10, 25, and 50 m. With each ex-
periment a message is initially broadcasted by the source and forwarded towards
the message destination by the remaining nodes, following the forwarding rules
speci�ed in Section 3 with the mean forwarding Td = 1 s. To gain statistically
signi�cant results each experiment has been repeated at least 70,000 times with
di�erent random seeds.
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Figure 10: The packet reception curve Si.

Experiments have been performed using the OMNET++ network simulator
v4.1 [2] and using a self-modi�ed version of the MiXiM framework v2.1 [1] to
model the communication architecture. To model the behaviour of the 802.11p
protocol as accurately as possible we have altered the IEEE 802.11 medium
access module in such a way that all parameters follow the 802.11p speci�cation
[3]. The available 802.11 MiXiM physical layer was adapted to include bit error
rates (BER) and packet error rates (PER) for all transmission bit rates used in
our experiments. The centre frequency was set to 5.9 MHz and IEEE 802.11
access category (AC) 0 was used. We use the log-normal shadowing model [8]
for signal propagation with the path loss exponent is set to 3.5 and the standard
deviation to 6. Transmission power was set to 4 mW. To keep the in�uence of
packet collisions due to hidden nodes as low as possible the packet sizes are kept
small (only the headers are included) at 160 bits.

Our model analysis requires the packet reception rate Si as input. Using the
above simulations settings we have measured the packet reception probabilities
at intervals of one meter for R = 300 m, for a single node that broadcasted
a packet ten thousand times without any interfering network tra�c. The re-
sulting packet reception curve Si can be seen in Fig. 10. The packet reception
probability at the edge of the packet reception curve is less than 0.1 %, i.e.,
SR < 0.01.

Note that it is also possible to model Si as a function of transmission power,
propagation e�ects, BER, PER, and forward error correction; see for example
[7].

6.2 Results

Our discussion of the results is split into two parts. We �rst show how the
behaviour of a hop depends on the lengths of all previous hops, and how this
a�ects performance. Then we discuss the results of our evaluation study.
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(c) Two short hops (F1 = 5, F2 = 10),
dIN = 10 m.

Figure 11: Average number of nodes in an interval following the source,
the �rst forwarder, and the second forwarder, for di�erent values of dIN
and di�erent lengths of the �rst two hops.

6.2.1 Dependencies between consecutive hops

The behaviour of a hop depends on the behaviour of previous hops, especially
regarding the lengths of those previous hop lengths. We explain why this is the
case below and show how it a�ects performance. We conclude that to accurately
analyse the behaviour of multiple hops, the length of each intermediate hop must
be taken into account.

Each node that has received the message from a previous forwarder (or the
source) has an equal probability of becoming the next forwarder. An interval
that contains a more than average number of nodes is therefore more likely to
`produce' a forwarder than an interval that contains a less than average num-
ber of nodes and, consequently, an interval that does not produce a forwarder
is more likely to have a less than average number of nodes. This e�ect is il-
lustrated in Fig. 11, which shows the average number of nodes in an interval
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Figure 12: The distribution of the hop length of the second hop L2 and
the number of second-hop candidate forwarders C2, following a short
�rst hop (F1 = 8) and a long �rst hop (F1 = 25), for dIN = 50 m and
dint = 5 m.

E(Vi), the average number of nodes in an interval following the �rst forwarder
E(Vi | F1 = j), and the average number of nodes in an interval following the sec-
ond forwarder E(Vi | F1 = j ∧ F2 = k). The �gure also shows how the decrease
in the average number of nodes in an interval is determined by the packet re-
ception curve Si: intervals that have a low probability of receiving the message
from the previous forwarder are less likely to produce candidate forwarders, and
are therefore less a�ected. The decrease in the average number of nodes in an
interval surrounding the forwarder is stronger for low node densities, since the
impact of the position of a single node (the forwarder) is stronger when the total
number of nodes is less. This can be seen when comparing Fig. 11a and Fig.
11c. The e�ect furthermore adds up for consecutive hops and is stronger when
forwarders are positioned close together, i.e., when hop lengths are short. This
can be seen when comparing Fig. 11a and Fig. 11b.

The e�ect that this decrease in the number of nodes in an interval surround-
ing the forwarder has on performance is signi�cant, since the number of nodes
per interval in the intervals following the previous forwarders determines the
number of candidate forwarders per interval as well as the total number of can-
didate forwarders. Fig. 12a shows the distribution of the number of second-hop
candidate forwarders following a short �rst hop and a long �rst hop. It can be
seen that on average there are more second-hop candidate forwarders following
a long hop, and that the probability of success of the second hop (i.e., of having
at least one second-hop candidate forwarder) is higher following a long hop.
This dependency holds for each hop, i.e., the number of candidate forwarders
following a long hop is on average always higher than the number of candidate
forwarders following a short hop. A hop following one or more long hops there-
fore has a larger probability of being successful and will have a shorter hop
delay.
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The distribution of the hop length is also a�ected. Because the number of
nodes in an interval directly surrounding the previous forwarder is less following
one or more short hops, the number of candidate forwarders in an interval di-
rectly surrounding the previous forwarder is also less. As a result the probability
that a candidate forwarder that is positioned further away from the forwarder
becomes the next forwarder increases. Hop lengths are thus on average longer
following one or more short hops. This has been illustrated in Fig. 12b for the
second hop, showing the distribution of the hop length following a short �rst
hop and a long �rst hop.

In conclusion, for all of the performance metrics discussed here it holds that
to determine the performance of the nth hop in an exact manner the length of
all previous n − 1 hops must be taken into account. Due to the complexities
involved in doing so this is infeasible however, as we have argued in previous
sections. In our analysis we therefore approximate the behaviour of the nth hop
by taking into account the length of the (n − 1)th hop only or, in case of the
end-to-end delay, by assuming that all n − 1 preceding hops are of identical
length. We discuss how well these approximations are able to described the
behaviour of the forwarding protocol in the following.

6.2.2 Protocol performance

We use the Kolmogorov-Smirnov (K-S) statistic to express the di�erence be-
tween two distributions. The K-S statistic K for two distributions F1(x), F2(x)
is equal to the largest distance between the CDFs, given by

K = max{|F1(x)− F2(x)|} ∀ x. (65)

We discuss the following performance metrics in the same order in which we
have presented them in Section 5: (i) the probability of success of each hop,
(ii) the distribution of the hop length of each hop, (iii) the distribution of the
position of each forwarder, (iv) the distribution of the number of hops to have a
message forwarded i intervals, (v) the distribution of the hop delay of each hop,
and (vi) the distribution of the end-to-end delay to have a message forwarded i
intervals.

Performance metrics have been evaluated up to the tenth hop and for dis-
tances up to 1000 m, and are all included in Table 2, showing the K-S statistics of
the resulting distributions. On average 16 hops are needed to have the message
forwarded a 1000 m. For clarity of illustration the �gures show only distribu-
tions of the �rst �ve hops and for distances up to 500 m. For all shown results
dint = 1 m unless speci�ed otherwise. The solid lines represent analytical re-
sults, the dashed lines represent simulation results. In case of average values
con�dence intervals are less than 1 %.

In general we see that the accuracy of our model analysis is very high and
that, excepting the end-to-end delay, all our analytical results stay within 0.1 of
the simulation results. For the end-to-end delay results stay within 0.1 for high
node densities and for forwarding scenarios in which the message is forwarded
on average eight times or less.
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Inaccuracies in our model analysis are mainly caused by (i) the fact that
we ignore some e�ects caused by packet losses, such as the retransmission of
messages, (ii) the fact that we ignore dependencies between consecutive hops
following the third hop. The former holds for high-density scenarios in particu-
lar; the latter for low-density scenarios. Because of these con�icting e�ects we
will sometimes see that results are most accurate for a medium-density scenario
with dIN = 25 m, as in such a scenario both e�ects have the least impact.

Fig. ?? shows the hop success probability of the �rst ten hops. As there are
less nodes on the road the probability that a message gets lost increases: whereas
the probability of having a message forwarded ten times is 1 for dIN = 10 m,
it is almost 0 for dIN = 50 m. It can be seen in the �gure that, regarding the
hop success probability, results of the model simulation and the model analysis
stay within 0.03.

Fig. 14 shows the distribution of the hop length of the �rst four hops for
three values of dIN . Regarding the model analysis only the distributions of the
hop length of the �rst three hops are shown, since in our analysis we assume
that the distribution of the hop length of the fourth hop and following hops is
identical to the distribution of the hop length of the third hop.

Because each candidate forwarder has an equal probability of becoming the
next forwarder, the distribution of the hop length is mainly determined by
the shape of the packet reception curve Si and the distribution of the nodes
following the most recent forwarder. Because of the dependency between hops
that was discussed in the previous section, hops become increasingly longer with
each hop. After the �rst few hop however the distribution of the hop length
converges however, such that the distribution of the hop length of the fourth
hop is quite similar to the distribution of the hop length of the third hop.

As dIN increases the dependency between successive hops increases as well,
and the lengthening of successive hops becomes more pronounced. The e�ect is
still limited however and the average length of a hop changes but little as dIN
is varied.

It can be seen in the �gures as well as in Table 2 that, regarding the distri-
bution of the hop length, results of the model simulation and the model analysis
stay within 0.02. This con�rms our assumption made in Eq. (53) that, for the
purpose of our analysis and for the range of parameters tested here, the distri-
bution of the hop length of the fourth hop (and of following hops) is identical
to the distribution of the hop length of the third hop.

Fig. 15 shows the distribution of the position of the forwarder for the �rst
�ve hops and for three values of dIN . Since the impact of dIN is limited on
the distribution of the hop length, its impact on the position of a forwarder is
similarly limited: the distribution of the position of the nth forwarder does not
change much as dIN is varied.

In our model analysis the distribution of the position of the �rst three for-
warders is calculated exactly (given the model assumptions); it can be seen in
the �gures as well as in Table 2 that, regarding the distribution of the position
of the �rst three forwarders, results of the model simulation and the model anal-
ysis stay within 0.026. Our exact approach is thus very accurate, irrespective
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of the value of dIN . Deviations are mainly caused by the e�ects of transmission
errors that have not been taken into account.

The position of following forwarders is approximated in our model; it can be
seen in the �gures as well as in Table 2 that, regarding the distribution of the
position of the fourth and following forwarders, results of the model simulation
and the model analysis stay within 0.5 for the tenth forwarder. Results become
less for each following hop because in our approximation we do not take into
account the hop lengths of all preceding hops, but only the length of the most
recent hop.

Fig. 16 shows the distribution of the required number of hops to have the
message forwarded i intervals for three values of dIN . Similar to the distributions
of the hop length and the position of the forwarder, and for similar reasons, the
distribution of the number of hops changes little as dIN is varied. Fig. 19,
which shows the average required number of hops as a function of dIN and i,
furthermore illustrate that the average required number of hops grows linearly
as i increases.

It can be seen in the �gures as well as in Table 2 that, regarding the distri-
bution of the number of hops required to have the message forwarded i inter-
vals, results of the model simulation and the model analysis stay within 0.1 for
dIN = 50 m, and generally become increasingly accurate as dIN and i decrease.
Inaccuracies are mainly caused by the fact that we do not take dependencies
between successive hops into account in full.

Fig. 17 shows the distribution of the hop delay of the �rst four hops for
three values of dIN . Of the model analysis only the distribution of the hop
delay of the �rst two hops are shown since in our analysis we assume that the
distribution of the hop delay of the third hop (and of following hops) is identical
to the hop delay of the second hop.

It can be seen that as dIN decreases the average hop delay decreases, due to
the increase in the number of candidate forwarders per hop. Although there is
a small di�erence between the hop delay distribution of the �rst and the second
hop, the di�erences between distribution of following hosp is negligible.

It can be seen in the �gures as well as in Table 2 that, regarding the distri-
bution of the hop delay, results of the model simulation and the model analysis
stay within 0.02. This con�rms our assumption that, for the purpose of our
analysis, the distribution of the hop delay of the third hop (and of following
hops) is identical to the distribution of the hop delay of the second hop.

Fig. 18 shows the distribution of the end-to-end delay to have the message
forwarded i intervals for three values of dIN . Fig. 20 moreover shows the
average end-to-end delay for varying values of dIN and i. It can be seen that
the end-to-end delay increases linearly as i increases, and less than linearly as
dIN increases.

It can be seen in the �gures as well as in Table 2 that, regarding the distri-
bution of the end-to-end delay to have the message forwarded i intervals, results
of the model simulation and the model analysis stay within 0.10 for dIN = 10
m and within 0.19 for lower densities. For distances up to 500 m, which require
on average eight hops to have to have the message forwarded this far, all results
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Figure 13: The probability of having an nth

hop.

stay within 0.10. Regarding the average end-to-end delay results stay within 1
% for dIN = 10, 25 m, but become less accurate as dIN decreases.
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Figure 14: The distribution of the length of the �rst hop for varying
value of dIN . Of the analytical results only the �rst three hops are
shown.
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Figure 15: The position of the �rst �ve forwarder for dIN = 50.
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Figure 16: The required number of hops to have the sink receive the
message for source-to-sink distances of 100, 200, 300, 400, and 500 m,
for dIN = 10.
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Figure 17: The distribution of the hop delay of the �rst four hops for
dIN = 50.Of the analytical results only the �rst two hops are shown.
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Figure 18: The distribution of the end-to-end delay to have the message
forwarded by a node at or beyond 100, 200, 300, 400, and 500 m.
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Figure 19: The average required number of hops.
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Figure 20: The average end-to-end delay.
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Hop 1 2 3 4 5 6 7 8 9 10

dIN Position of forwarder

10 0.008 0.018 0.026 0.032 0.038 0.040 0.041 0.044 0.046 0.047
25 0.011 0.020 0.026 0.028 0.29 0.030 0.029 0.030 0.029 0.029
50 0.008 0.012 0.011 0.013 0.016 0.021 0.025 0.028 0.031 0.033

dIN Hop length

10 0.008 0.016 0.015 0.013 0.016 0.016 0.015 0.016 0.017 0.019
25 0.011 0.016 0.016 0.013 0.015 0.016 0.015 0.013 0.014 0.014
50 0.008 0.018 0.014 0.018 0.016 0.016 0.018 0.016 0.014 0.017

dIN Hop delay

10 0.008 0.005 0.010 0.010 0.013 0.011 0.015 0.013 0.013 0.010
25 0.005 0.006 0.016 0.016 0.016 0.018 0.018 0.020 0.020 0.016
50 0.003 0.007 0.008 0.013 0.015 0.013 0.009 0.015 0.012 0.012

Distance 100 200 300 400 500 600 700 800 900 1000

dIN Required number of hops

10 0.043 0.047 0.045 0.041 0.041 0.036 0.035 0.032 0.034 0.031
25 0.026 0.040 0.032 0.036 0.028 0.030 0.026 0.022 0.022 0.020
50 0.041 0.045 0.055 0.065 0.070 0.079 0.074 0.082 0.094 0.082

dIN End-to-end delay

10 0.045 0.026 0.010 0.018 0.034 0.050 0.065 0.078 0.089 0.099
25 0.006 0.029 0.054 0.082 0.104 0.124 0.144 0.159 0.176 0.189
50 0.036 0.036 0.052 0.071 0.087 0.103 0.117 0.131 0.144 0.154

Table 2: K-S statistics when comparing the results of the model analysis
with the results of the model simulation, calculated using Eq. (65).
Distances in meters.
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7 Conclusions

In this report we have shown how to analytically model a multi-hop broadcast
protocol that uses exponentially distributed forwarding delays, assuming expo-
nentially distributed inter-node distances and a realistic transmission model.
Our analysis is able to express the performance of the forwarding protocol in
analytical expressions that allow for easy and fast evaluation of the protocol's
performance, and that provide for an increased insight in the protocol's be-
haviour. Our analysis gives an exact description of the behaviour of the �rst
three hops and approximates the behaviour of following hops.

For a given node density and a given transmission model the model is able to
capture the full distribution of (i) the end-to-end delay to forward a message a
speci�c distance, (ii) the required number of hops to forward a message a speci�c
distance, (iii) the position of each intermediate forwarder, (iv) the length of
each hop, (v) the delay of each hop, and (vi) the success probability of each
hop. Veri�cation of our model analysis by means of extensive simulations, for
forwarding distances that require on average up to 16 hops, showed that our
analysis is very accurate: all results of our model analysis stay within 0.10 of
the simulated results for forwarding distances that require on average up to
8 hops, and within 0.19 for distances that require on average up to 16 hops.
Especially regarding the required number of hops to disseminate the message
accuracy is high, with results staying within 0.08 for distances that require on
average up to 16 hops. Results are most accurate for high-density scenarios.

A main insight provided by our model is the interdependency that exists
between consecutive hops, especially regarding the lengths of preceding hops.
This interdependency has a signi�cant e�ect on performance as it in�uences
the success probability, length, and delay of each hop, especially in low-density
scenarios. This interdependency applies for all multi-hop forwarding in scenarios
in which tra�c is free �owing and must therefore always be taken into account
to accurately describe the behaviour of a forwarding protocol.
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A Distribution of candidate forwarders

A.1 First-hop calculations

A.1.1 Calculating E(
C1,i

C1
| C1 > 0)

Let X substitute C1,i and let Y be C1 − C1,i. X is Poisson distributed with

mean λ = SiE(Vi) and Y is Poisson distributed with mean µ =
∑R

i=1

i 6=j
SiE(Vi).

Then

E(
C1,i

C1
| C1 > 0) =

∞∑
k=0

∞∑
j=0

k

k + j
· P(X = k ∧ Y = j | X + Y > 0)

=

∞∑
k=0

∞∑
j=0

k

k + j
· P(X = k ∧ Y = j ∧X + Y > 0)

P(X + Y > 0)

=
1

P(X + Y > 0)
·
∞∑
k=0

∞∑
j=0

k

k + j
· P(X = k ∧ Y = j ∧X + Y > 0)

=
1

P(X + Y > 0)
·
∞∑
k=1

∞∑
j=0

k

k + j
· P(X = k ∧ Y = j)

=
1

1− e−(λ+µ)
·
∞∑
k=1

∞∑
j=0

k

k + j
· λ

k

k!
e−λ · µ

j

j!
e−µ

=
λe−λe−µ

1− e−(λ+µ)
·
∞∑
k=1

∞∑
j=0

1

k + j
· λk−1

(k − 1)!
· µ

j

j!

=
λe−λe−µ

1− e−(λ+µ)
·
∞∑
k=0

∞∑
j=0

1

k + j + 1
· λ

k

k!
· µ

j

j!

=
λE( 1

X+Y+1 )

1− e−(λ+µ)
(66)

According to [?] (see Eq. (32) for Q = X + Y, a = 1), if X + Y is Poisson

distributed with mean λ + µ the term E( 1
X+Y+1 ) can be written as 1−e−(λ+µ)

λ+µ ,
so we get

E(
C1,i

C1
| C1 > 0) =

λ

λ+ µ

=
E(C1,i)

E(C1)
, i = 1, 2, . . . , R. (67)

A.1.2 Calculating E(H1,i | F1 = j)

This appendix is meant to support Chapter ??. We show how to calculate the
expected number of �rst-hop candidate forwarders in interval i, given that the
�rst forwarder is positioned in interval j, denoted E(C1,i | F1 = j).
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To calculate E(H1,i | F1 = j) we �rst condition on the number of �rst-hop
candidate forwarders, given that the �rst forwarder is in interval i:

E(H1,i | F1 = j) =

R∑
c1=1

P(C1 = c1 | F1 = j) E(H1,i | F1 = j ∧ C1 = c1) (68)

for i = 1, . . . , R, j = 1, . . . , R, with P(C1 = c1 | F1 = j) being the probability of
having c1 �rst-hop candidate forwarders, given that the �rst forwarder is posi-
tioned in interval j, and E(H1,i | F1 = j∧C1 = c1) being the expected number of
�rst-hop candidate forwarders in interval i, excluding the �rst forwarder itself,
given that the �rst forwarder is positioned in interval j and given that there are
exactly c1 �rst-hop candidate forwarders.

According to Bayes' theorem P(C1 = c1 | F1 = j) is given by

P(C1 = c1 | F1 = i) = P(C1 = c1)
P(F1 = i | C1 = c1)

P(F1 = i)
, i = 1, . . . , R. (69)

P(F1 = i | C1 = c1) is calculated in a manner similar to Eq. (13), given that
there are exactly c1 �rst-hop candidate forwarders:

P(F1 = i | C1 = c) =
E(C1,i | C1 = c1)

E(C1 | C1 = c1)
, i = 1, . . . , R. (70)

Although E(C1 | C1 = c1) is clearly equal to c1, we can also write it as a summa-
tion of the expected number of �rst-hop candidate forwarders of all the intervals
in which there is a non-zero probability of receiving the source's transmission:

E(C1 | C1 = c1) =

R∑
i=1

E(C1,i | C1 = c1). (71)

E(C1,i | C1 = c1) is given by

E(C1,i | C1 = c1) =
E(C1,i)

P(C1 = c1)
, i = 1, . . . , R, (72)

with E(C1,i) given by Eq. (5) and C1 being Poisson distributed with mean
E(C1), see Eq. (6). Since P(C1 = c1) is a constant it holds that

P(F1 = i | C1 = c) =
E(C1,i | C1 = c1)

E(C1 | C1 = c1)

=
E(C1,i)
R∑
j=1

E(C1,j)

= P(F1 = i | C1 > 0), i = 1, . . . , R, (73)

with P(F1 = i | C1 > 0) given by Eq. (13).
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To calculate E(H1,i | F1 = j ∧ C1 = c1) we condition on the number of
�rst-hop candidate forwarders in interval i, given that the �rst forwarder is
positioned in interval j and there are exactly c1 �rst-hop candidate forwarders:

E(Hi | F1 = j ∧ C1 = c1) =
c1∑

c1,i=1

P(C1,i = c1,i | F1 = j ∧ C1 = c1) · E(Hi | F1 = j ∧ C1,i = c1,i),

i = 1, . . . , R, j = 1, . . . , R, (74)

with P(C1,i = c1,i | F1 = j ∧ C1 = c1) being the probability of having c1,i �rst-
hop candidate forwarders in interval i, given that the �rst forwarder is positioned
in interval j and given that there are exactly c1 �rst-hop candidate forwarders,
and with E(H1,i | F1 = j ∧ C1,i = c1,i) being the expected number of �rst-hop
candidate forwarders in interval i, excluding the �rst forwarder, given that the
�rst forwarder is positioned in interval j and given that there are exactly c1
�rst-hop candidate forwarders. It should be clear that H1,i = c1,i for i 6= j and
H1,i = c1,i−1 for i = j. Using Bayes' theorem P(C1,i = c1,i | F1 = j ∧ C1 = c1)
can be rewritten as

P(C1,i = c1,i | C1 = c1 ∧ F1 = j) =

P(C1 = c1 ∧ F1 = j | C1,i = c1,i)
P(C1,i = c1,i)

P(F1 = j ∧ C1 = c1)
,

i = 1, . . . , R, j = 1, . . . , R, (75)

with P(C1 = c1 ∧ F1 = j | C1,i = c1,i) being the probability that the �rst
forwarder is positioned in interval j and there are exactly c1 �rst-hop candidate
forwarders, given that there are exactly c1,i �rst-hop candidate forwarders in
interval i, P(F1 = i ∧ C1 = c1) being the probability that the �rst forwarder is
positioned in interval j and there are exactly c1 �rst-hop candidate forwarders,
and P(C1,i = c1,i) having a Poisson distribution with mean E(C1,i) given by Eq.
(5). P(F1 = i ∧ C1 = c1) is given by

P(F1 = i ∧ C1 = c1) = P(F1 = i | C1 = c1) P(C1 = c1), i = 1, . . . , R, (76)

with both right-hand terms known. P(C1 = c1 ∧ F1 = j | C1,i = c1,i) can be
written as

P(F1 = i ∧ C1 = c1 | C1,j = c1,j) =

P(F1 = i | C1 = c1 ∧ C1,j = c1,j) P(C1 = c1 | C1,j = c1,j),

i = 1, . . . , R, j = 1, . . . , R, (77)

with P(F1 = i | C1 = c1 ∧ C1,j = c1,j) being the probability that the �rst
forwarder is positioned in interval i, given that there are exactly c1 �rst-hop
candidate forwarders and given that there are exactly c1,j candidate forwarders
in interval j, and with P(C1 = c1 | C1,i = c1,i) being the probability that there
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are exactly c1 �rst-hop candidate forwarders, given that there are exactly c1,i
�rst-hop candidate forwarders in interval i. P(F1 = i | C1 = c1∧C1,j = c1,j) can
be calculated by conditioning on the number of �rst-hop candidate forwarders
in interval i:

P(F1 = i | C1 = c1 ∧ C1,j = c1,j) =

c1−c1,j∑
c1,i=1

P(C1,i = c1,i | C1 = c1 ∧ C1,j = c1,j) ·

P(F1 = i | C1 = c1 ∧ C1,i = c1,i ∧ C1,j = c1,j), i = 1, . . . , R, (78)

with P(C1,i = c1,i | C1 = c1∧C1,j = c1,j) being the probability of having exactly
c1,i �rst-hop candidate forwarders in interval i, given that there are exactly c1
�rst-hop candidate forwarders and that there are exactly c1,j �rst-hop candidate
forwarders in interval j, and P(F1 = i | C1 = c1 ∧ C1,i = c1,i ∧ C1,j = c1,j)
being the probability that the �rst forwarder is positioned in interval i, given
that there are exactly c1 �rst-hop candidate forwarders, exactly c1,j �rst-hop
candidate forwarders in interval j, and exactly c1,i �rst-hop candidate forwarders
in interval i. Since the probability of becoming the next forwarder is equal for all
candidate forwarders P(F1 = i | C1 = c1 ∧C1,i = c1,i ∧C1,j = c1,j) is calculated
by dividing the number of �rst-hop candidate forwarders in interval i by the
total number of �rst-hop candidate forwarders:

P(F1 = i | C1 = c1 ∧ C1,i = c1,i ∧ C1,j = c1,j) =
c1,i
c1
,

i = 1, . . . , R, j = 1, . . . , R. (79)

P(C1,i = c1,i | C1 = c1∧C1,j = c1,j) is calculated by multiplying the probability
that there are exactly c1,i �rst-hop candidate forwarders in interval i with the
probability of having c1−c1,i−c1,j �rst-hop candidate forwarders in the remain-
ing R − 2 intervals excluding intervals i and j, divided by the probability that
there are exactly c1 − c1,j �rst-hop candidate forwarders in the R− 1 intervals
excluding interval j. The number of �rst-hop candidate forwarders in interval k
is Poisson distributed with mean E(C1,k) = Sk · E(Vk), see Eq. (5). According
to [10] the summation of a number of Poisson distributed variables is also Pois-
son distributed with the mean equal to the summed up means. The number
of �rst-hop candidate forwarders in n intervals is therefore Poisson distributed
with the mean equal to the expected number of �rst-hop candidate forwarders
in those intervals. P(C1,i = c1,i | C1 = c1 ∧ C1,j = c1,j) is thus given by

P(C1,i = c1,i | C1 = c1 ∧ C1,j = c1,j) =

(Si·E(Vi))
c1,i

c1,i!
e−Si·E(Vi) λ̂c1−c1,i−c1,j

(c1−c1,i−c1,j)!e
−λ̂

λ̆(c1−c1,j)
(c1−c1,j)! e

−λ̆
,

λ̂ =

R∑
k=1
k 6=i
k 6=j

Sk · E(Vk), λ̆ =

R∑
k=1
k 6=j

Sk · E(Vk), i = 1, . . . , R, j = 1, . . . , R. (80)
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P(C1 = c1 | C1,i = c1,i) in Eq. (77) is equal to the probability of having
exactly c1 − c1,i �rst-hop candidate forwarders in the R− 1 intervals excluding
interval i, given by

P(C1 = c1 | C1,i = c1,i) =
λ̂(c1−c1,i)

(c1 − c1,i)!
e−λ̂,

λ̂ =

R∑
k=1
k 6=i

Skλ, i = 1, . . . , R. (81)

Using Eq. (68)-(81) we now have a complete expression for calculating
E(H1,i | F1 = j).

A.1.3 Proof for E(H1,i | F1 = j) = E(H1,i | C1 > 0)

We prove Eq. (20) in case of an ideal transmission model, i.e., Si = 1 for
i = 1, 2, . . . , R and Si = 0 otherwise.

Proof. We write out E(H1,i | C1 > 0) and E(H1,i | F1 = j) in full and show
that they are equal.

Assuming the simple transmission model and substituting E(V1,i) by λ, writ-
ing out E(H1,i | C1 > 0) in full gives

E(H1,i | C1 > 0) = E(C1,i | C1 > 0)− E(G1,i | C1 > 0)

=
E(C1,i)

1− P(C1 = 0)
− P(F1 = i | C1 > 0)

=
λ

1− e−Rλ
− E(C1,i | C1 > 0)

E(C1 | C1 > 0)

=
λ

1− e−Rλ
− λ

Rλ

=
λ

1− e−Rλ
− 1

R
, i = 1, 2, . . . , R, (82)

with E(H1,i | C1 > 0) = 0 for i < 0 and E(H1,i | C1 > 0) = 0 for i > R.
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Writing out E(H1,i | F1 = j) in full gives

E(H1,i | F1 = j) =

∞∑
c1=1

(
P(C1 = c1 | F1 = j) E(H1,i | F1 = j ∧ C1 = c1)

)

=

∞∑
c1=1

(
P(C1 = c1)

P(F1 = j | C1 = c1)

P(F1 = j)
E(H1,i | F1 = j ∧ C1 = c1)

)

=

∞∑
c1=1

(
P(C1 = c1)

E(C1,j)
E(C1)

P(C1 > 0)
E(C1,j)
E(C1)

·

c1∑
c1,i=1

(
P(C1,i = c1,i | F1 = j ∧ C1 = c1) E(Hi | F1 = j ∧ C1,i = c1,i)

))

=

∞∑
c1=1

(
P(C1 = c1)

E(C1,j)
E(C1)

P(C1 > 0)
E(C1,j)
E(C1)

·

c1∑
c1,i=1

(
P(C1 = c1 ∧ F1 = j | C1,i = c1,i)

P(C1,i = c1,i)

P(F1 = j ∧ C1 = c1)
·

E(Hi | F1 = j ∧ C1,i = c1,i)

))

=

∞∑
c1=1

(
P(C1 = c1)

E(C1,j)
E(C1)

P(C1 > 0)
E(C1,j)
E(C1)

·

c1∑
c1,i=1

(
P(F1 = j | C1 = c1 ∧ C1,i = c1,i) P(C1 = c1 | C1,i = c1,i) ·

P(C1,i = c1,i)

P(F1 = j | C1 = c1) P(C1 = c1)
E(Hi | F1 = j ∧ C1,i = c1,i)

))

=

∞∑
c1=1

(
P(C1 = c1)

E(C1,j)
E(C1)

P(C1 > 0)
E(C1,j)
E(C1)

·

c1∑
c1,i=1

( c1−c1,i∑
c1,j=1

(
P(C1,j = c1,j | C1 = c1 ∧ C1,i = c1,i) ·

P(F1 = j | C1 = c1 ∧ C1,j = c1,j ∧ C1,i = c1,i)

)
P(C1 = c1 | C1,i = c1,i) ·

P(C1,i = c1,i)

P(F1 = j | C1 = c1) P(C1 = c1)
E(Hi | F1 = j ∧ C1,i = c1,i)

))
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=

∞∑
c1=1

(
P(C1 = c1)

E(C1,j)
E(C1)

P(C1 > 0)
E(C1,j)
E(C1)

·

c1∑
c1,i=1

( c1−c1,i∑
c1,j=1

(
P(C1,j = c1,j | C1 = c1 ∧ C1,i = c1,i) ·

c1,j
c1

)
P(C1 = c1 | C1,i = c1,i) ·

P(C1,i = c1,i)

P(F1 = j | C1 = c1) P(C1 = c1)
E(Hi | F1 = j ∧ C1,i = c1,i)

))
,

i = 1, 2, . . . , R, j = 1, 2, . . . , R, (83)

with E(H1,i | F1 = j) = 0 for i < 0 and E(H1,i | F1 = j) = 0 for i > R.
Assuming the simple transmission model, substituting E(V1,i) by λ, and (for

now) ignoring the case i = j, the equation above can rewritten as follows

E(H1,i | F1 = j) =

∞∑
c1=1

(
P(C1 = c1)

E(C1,j)
E(C1)

P(C1 > 0)
E(C1,j)
E(C1)

·

c1∑
c1,i=1

( c1−c1,i∑
c1,j=1

(
P(C1,j = c1,j | C1 = c1 ∧ C1,i = c1,i) ·

c1,j
c1

)
·

P(C1 = c1 | C1,i = c1,i)
P(C1,i = c1,i)

P(F1 = j | C1 = c1) P(C1 = c1)
c1,i

))

=

∞∑
c1=1

(
(Rλ)c1

c1!
e−Rλ

λ
Rλ

(1− e−Rλ) λ
Rλ

·

c1∑
c1,i=1

( c1−c1,i∑
c1,j=1

( λc1,j

c1,j !
e−λ · (R−2)λc1−c1,j−c1,i

(c1−c1,j−c1,i)! e−(R−2)λ

(R−1)λc1−c1,i

(c1−c1,i)! e−(R−1)λ
· c1,j
c1

)
·

((R− 1)λ)c1−c1,i

(c1 − c1,i)!
e−(R−1)λ

λc1,i

c1,i!
e−λ

1
R

(Rλ)c1

c1! e−Rλ
c1,i

))
,

i = 1, 2, . . . , R, j = 1, 2, . . . , R, i 6= j, (84)

with E(H1,i | F1 = j) = 0 for i < 0 and E(H1,i | F1 = j) = 0 for i > R.
Renaming c1 to c, c1,i to k, and c1,j to n, and still assuming i 6= j, E(H1,i | F1 =
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j) can be written as

E(H1,i | F1 = j) =
1

1− e−Rλ
·

∞∑
c=1

(
(Rλ)c

c!
e−Rλ

c∑
k=1

(
c−k∑
n=1

(
λn

n! e
−λ ((R−2)λ)c−n−k

(c−n−k)! e−(R−2)λ

((R−1)λ)c−k

(c−k)! e−(R−1)λ
· n
c
·

((R− 1)λ)c−k

(c− k)!
e−(R−1)λ ·

λk

k! e
−λ

1
R

(Rλ)c

c! e−Rλ
· k

)))

=
R

1− e−Rλ
∞∑
c=1

(
c∑

k=1

(
c−k∑
n=1

(
λn

n!
e−λ · ((R− 2)λ)c−n−k

(c− n− k)!
e−(R−2)λ · n

c
· λ

k

k!
e−λ · k

)))
,

i = 1, 2, . . . , R, j = 1, 2, . . . , R, i 6= j, (85)

with E(H1,i | F1 = j) = 0 for i < 0 and E(H1,i | F1 = j) = 0 for i > R.
Rearranging summations followed by a number of substitutions gives us

E(H1,i | F1 = j) =

R

1− e−Rλ
∞∑
k=1

( ∞∑
n=1

( ∞∑
c=0

(
λn

n!
e−λ · ((R− 2)λ)c−n−k

(c− n− k)!
e−(R−2)λ · n

c
· λ

k

k!
e−λ · k

)))

=
R

1− e−Rλ
∞∑
k=1

( ∞∑
n=1

( ∞∑
c=0

(
λn

n!
e−λ · ((R− 2)λ)c

c!
e−(R−2)λ · n

c+ k + n
· λ

k

k!
e−λ · k

)))

=
λ2R

1− e−Rλ
∞∑
k=1

( ∞∑
n=1

( ∞∑
c=0

(
λn

n!
e−λ · ((R− 2)λ)c

c!
e−(R−2)λ · λ

k

k!
e−λ · 1

c+ k + n+ 2

)))

=
λ2R

1− e−Rλ
E(

1

X + Y + Z + 2
), i = 1, 2, . . . , R, j = 1, 2, . . . , R, i 6= j, (86)

with E(H1,i | F1 = j) = 0 for i < 0, E(H1,i | F1 = j) = 0 for i > R, X being
Poisson distributed with mean λ, Y being Poisson distributed with mean λ, and
Z being Poisson distributed with mean (R− 2)λ. Let Q = X + Y + Z, then Q
is Poisson distributed with mean Rλ. It has been shown in [?] that

E(
1

Q+ a
) =

(a− 1)!(−1)a−1

µa

(
1− e−µ

a−1∑
r=1

(−µ)r

r!

)
, a ∈ N+ (87)

with Q being Poisson distributed with mean µ. Thus we can state

E(
1

X + Y + Z + 2
) =

Rλ− (1− e−Rλ)

(Rλ)2
, (88)
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and

E(H1,i | F1 = j) =
λ2R

1− e−Rλ
E(

1

X + Y + Z + 2
)

=
λ2R

1− e−Rλ
· Rλ− (1− e−Rλ)

(Rλ)2

=
Rλ− (1− e−Rλ)

R(1− e−Rλ)

=
λ

1− e−Rλ
− 1

R

= E(H1,i | C1 > 0),

i = 1, 2, . . . , R, j = 1, 2, . . . , R, i 6= j. (89)

A.1.4 Calculating the distribution of C1,j+1:R | F1 = j

Although the number of �rst-hop candidate forwarders in interval i is Poisson
distributed, this does no longer hold when it is given that the �rst forwarder is
positioned in interval j. We therefore given a step-by-step breakdown of how to
calculate the distribution of C1,j+1:R. We start by conditioning on the number
of �rst-hop candidate forwarders, given that the �rst forwarder is positioned in
interval j:

P(C1,j+1:R = c1,j+1:R | F1 = j) =

∞∑
c1=1

P(C1 = c1 | F1 = j) ·

P(C1,j+1:R = c1,j+1:R | F1 = j ∧ C1 = c1),

c1,j+1:R = 0, 1, 2, . . . , j = 1, 2, . . . , R, (90)

with P(C1 = c1 | F1 = j) given by Eq. (69), and
P(C1,j+1:R = c1,j+1:R | F1 = j ∧ C1 = c1) being the probability that there are
c1,j+1:R remaining candidate forwarders, given that the �rst forwarder is posi-
tioned in interval j and given that there are c1 �rst-hop candidate forwarders.

P(C1,j+1:R = c1,j+1:R | F1 = j ∧ C1 = c1) can be rewritten as

P(C1,j+1:R = c1,j+1:R | F1 = j ∧ C1 = c1) =

P(F1 = j ∧ C1 = c1 | C1,j+1:R = c1,j+1:R) · P(C1,j+1:R = c1,j+1:R)

P(F1 = j ∧ C1 = c1)
, (91)

c1,j+1:R = 0, 1, 2, . . . , j = 1, 2, . . . , R, (92)

with P(F1 = j ∧ C1 = c1 | C1,j+1:R = c1,j+1:R) being the probability that the
�rst forwarder is positioned in interval j and there are c1 �rst-hop candidate for-
warders, given that there are c1,j+1:R remaining �rst-hop candidate forwarders,
P(C1,j+1:R = c1,j+1:R) being the probability that there are c1,j+1:R remaining
�rst-hop candidate forwarders, and with P(F1 = j∧C1 = c1) given by Eq. (76).
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P(F1 = j ∧ C1 = c1 | C1,j+1:R = c1,j+1:R) can in turn be rewritten to

P(F1 = j ∧ C1 = c1 | C1,j+1:R = c1,j+1:R) =

P(F1 = j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) · P(C1 = c1 | C1,j+1:R = c1,j+1:R),

j = 1, 2, . . . , R, c1 = 0, 1, 2, . . . , c1,j+1:R = 0, 1, 2, . . . , (93)

with P(F1 = j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) being the probability that
the �rst forwarder is positioned in interval i, given that there are c1 �rst-hop
candidate forwarders and c1,j+1:R remaining �rst-hop candidate forwarders, and
P(C1 = c1 | C1,j+1:R = c1,j+1:R) being the probability that there are c1 �rst-hop
candidate forwarders, given that there are c1,j+1:R remaining �rst-hop candidate
forwarders.

As was already stated in the beginning of this section the number of �rst-
hop candidate forwarders in interval i is Poisson distributed with mean E(C1,i),
given by Eq. (5), so P(C1,j+1:R = c1,j+1:R) in Eq. (91) is Poisson distributed

with mean
∑R
i=j+1 E(C1,i).

P(F1 = j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) can be calculated by conditioning
on the number of �rst-hop candidate forwarders in interval i, given that there
are c1 �rst-hop candidate forwarders and c1,j+1:R remaining �rst-hop candidate
forwarders:

P(F1 = j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) =

c1−c1,j+1:R∑
c1,i=1

P(C1,j = c1,j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) P(F1 = i | C1,i = c1,i ∧ C=c1),

j = 1, 2, . . . , R, c1 = 0, 1, 2, . . . , c1,j+1:R = 0, 1, 2, . . . , (94)

with P(C1,j = c1,j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) being the probability
that there are c1,j �rst-hop candidate forwarders in interval j, given that there
are in total c1 �rst-hop candidate forwarders and c1,j+1:R remaining �rst-hop
candidate forwarders, and P(F1 = i | C1,i = c1,i ∧ C=c1) being the probability
that the �rst forwarder is positioned in interval i, given that there are c1,i �rst-
hop candidate forwarders in interval i and c1 �rst-hop candidate forwarders.

Since each candidate forwarder has an equal probability of becoming the
next forwarder, P(F1 = i | C1,i = c1,i ∧ C=c1) is given by

c1,j
c1

.
P(C1,j = c1,j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) is given by

P(C1,j = c1,j | C1 = c1 ∧ C1,j+1:R = c1,j+1:R) =

P(C1,j = c1,j) P(C1,1:j−1 = c1,1:j−1)

P(C1,1:j = c1,1:j)
,

j = 1, 2, . . . , R, c1 = 0, 1, 2, . . . , c1,j+1:R = 0, 1, 2, . . . , (95)

with P(C1,j = c1,j) being the probability that there are c1,j �rst-hop candidate
forwarders in interval j, P(C1,1:j−1 = c1,1:j−1) being the probability that there
are c1,1:j−1 �rst-hop candidate forwarders in intervals 1 through j − 1, and
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P(C1,1:j = c1,1:j) being the probability that there are c1,1:j �rst-hop candidate
forwarders in intervals 1 through j. Again the number of �rst-hop candidate
forwarders in interval i is Poisson distributed with mean E(C1,i), given by Eq.
(5), so P(C1,j = c1,j) is Poisson distributed with mean E(C1,j), P(C1,1:j−1 =

c1,1:j−1) is Poisson distributed with mean
∑j−1
i=1 E(C1,i), and P(C1,1:j = c1,1:j)

is Poisson distributed with mean
∑j
i=1 E(C1,i).
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