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Abstract

This report gives an exact result on the duality of the divergence
and gradient operators, when these are considered as operators be-
tween L2-spaces on a bounded n-dimensional Lipschitz domain. The
necessary background is described in detail, with a self-contained ex-
position.
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1 Introduction

It is common knowledge that the formal adjoint of the gradient operator,
grad, on an n-dimensional domain is minus the divergence operator, div.
However, when one wants to carry out careful analysis, one also needs to
determine the precise domains and co-domains of these operators. In spite
of our efforts, we could not find a suitable exact statement in the literature.

Hence, in the present work, we compute the adjoint of the gradient op-
erating on a connected, open, and bounded subset Ω ⊂ R

n with a Lipschitz-
continuous boundary ∂Ω. As domain of the gradient, we consider an ar-
bitrary vector space G, such that H1

0 (Ω) ⊂ G ⊂ H1(Ω). From G we con-
struct a subspace D with Hdiv

0 (Ω) ⊂ D ⊂ Hdiv(Ω), for which it holds that
grad|∗G = −div|D. See Section 3 for the definitions of the spaces H1(Ω),
H1

0 (Ω), H
div(Ω), and Hdiv

0 (Ω).

Example 1.1. Let Ω ⊂ R
n and ∂Ω be as above and consider grad defined

on G = H1
0 (Ω). By the main result below, Theorem 6.2, the adjoint of the

gradient with this domain is −div, with domain D = Hdiv(Ω). This implies

that the operator A :=
[

0 div
grad 0

]
with domain dom (A) :=

[
H1

0 (Ω)

Hdiv(Ω)n

]
is

skew-adjoint on
[

L2(Ω)

L2(Ω)n

]
.

We make the exposition self-contained by compiling the necessary back-
ground. Our main sources are Tucsnak and Weiss [TW09, Chap. 13], and
Girault and Raviart [GR86]. We try to make the text accessible to beginners
in the field by filling in details omitted from these two books.

In Section 2, we define test functions and distributions. These are needed
in order to define Sobolev spaces, and the divergence and the gradient op-
erators. This is the topic of Section 3. The boundary ∂Ω of the bounded
Lipschitz domain Ω plays a very important role in the duality of the di-
vergence and gradient operators, due to an integration-by-parts formula in
Section 5. Therefore we need to include background on Sobolev spaces on
Lipschitz manifolds in Section 4. Our contribution is confined to Section 6,
which contains the duality results.

This report can be considered as a detailed introduction to [KZ12b],
where we develop the results presented here much further. The main moti-
vation for [KZ12b] comes from [ZGM11, ZGMV12, KZ12a], where operators
of the type A in Example 1.1 were used extensively for proving the existence
of solutions for wave, heat, and Schrödinger equations on n-dimensional spa-
tial domains.

Following [TW09], we work with complex-valued functions. Girault and
Raviart work with real-valued functions, but on page 1 they state that their
results are equally valid for the complex-valued setting, assuming one makes
correct use of the complex conjugate.
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2 Test functions and distributions

Throughout this article, we take Ω to be an open subset of Rn, n = 1, 2, 3, . . .,
unless anything more is mentioned, and we denote its boundary Ω \ Ω by
∂Ω. For k ∈ Z+ = {0, 1, 2, . . .}, we denote the space of functions mapping Ω
into C with all partial derivatives up to order k continuous by Ck(Ω), and
moreover C∞(Ω) = ∩k∈Z+

Ck(Ω). By Ck(K), for K a closed subset of Rn,
we mean the space of restrictions to K of all functions in Ck(Rn).

A multi-index is an n-tuple α = (α1, . . . , αn) ∈ Z
n
+, and we define |α| :=∑n

k=1 αk. If α ∈ Z
n
+ and f ∈ Cm(Ω) with |α| ≤ m, then we may define

∂αf :=
∂|α|f

∂xα1

1 . . . ∂xαn
n

=
∂α1

∂xα1

1

. . .
∂αn

∂xαn
n
f.

In the case where K ⊂ R
n is compact, we equip Ck(K) with the norm

‖ϕ‖Ck(K) = sup
x∈K, |α|≤k

|(∂αϕ)(x)|.

For closed K ⊂ R
n, we denote the intersection of all Ck(K), k ∈ Z+, by

C∞(K).
Writing e.g. Ck(Ω)ℓ, we mean a column vector of ℓ = 1, 2, 3, . . . func-

tions in Ck(Ω), and we will later also use similar notations for vector-valued
distributions. The support of a function f ∈ C(Ω) is the closure of the set
{ω ∈ Ω | f(ω) 6= 0} in R

n and it is denoted by supp f .
A test function on a domain Ω ⊂ R

n is a function f ∈ C∞(Ω) with
supp f a compact subset of Ω, and we denote the set of test functions on
Ω by D(Ω). If u is a linear map from D(Ω) to C then the action of u on
the test function ϕ is denoted by (u, ϕ). We follow the standard convention
that (u, ϕ) is bilinear, not sesquilinear, i.e., (u, ϕ) is linear in both u and ϕ,
unlike an inner product which would normally be conjugate linear in ϕ.

Definition 2.1 ([TW09, Def. 13.2.1]). By a distribution on Ω we mean a
linear map u : D(Ω) → C such that for every compact K ⊂ Ω there exists
an m ∈ Z+ and a constant c ≥ 0, both of which may depend on K, such
that

|(u, ϕ)| ≤ c‖ϕ‖Cm(K) ∀ϕ ∈ D(Ω). (2.1)

The vector space of distributions on Ω is denoted by D′(Ω). Sometimes we
write (u, ϕ) explicitly as (u, ϕ)D′(Ω),D(Ω) for clarity.

The smallestm satisfying (2.1) for allK is called the order of u, provided
such an m exists. If for a distribution u, there exists an f ∈ L1

loc(Ω), i.e., f
is Lebesgue integrable over all compact K ⊂ Ω, such that

(u, ϕ) =

∫

Ω
f(x)ϕ(x) dx ∀ϕ ∈ D(Ω), (2.2)

then u is called regular.
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Conversely, if f ∈ L1
loc(Ω) then u : D(Ω) → C in (2.2) is a distribution

of order zero, which satisfies

|(u, ϕ)| ≤

∫

K
|f(x)| dx ‖ϕ‖C(K).

Clearly f and u determine each other uniquely if u is a regular distribution,
and so we identify a regular distribution u with its representative f . When
we write that a distribution lies in e.g. L2(Ω), we mean that the distribution
is regular and its representative lies in this space. By the inclusion L2(Ω) ⊂
L1
loc(Ω) and (2.2), we have

(f, ϕ)D′(Ω),D(Ω) = 〈f, ϕ〉L2(Ω) ∀f ∈ L2(Ω), ϕ ∈ D(Ω). (2.3)

Observe that D(Ω) ⊂ L2(Ω), since the elements of D(Ω) are continuous with
compact support.

Definition 2.2 ([TW09, Def. 13.2.4]). The sequence uk ∈ D′(Ω) of distri-
butions converges to u ∈ D′(Ω) if

lim
k→∞

(uk, ϕ) = (u, ϕ) ∀ϕ ∈ D(Ω).

Note that this is a limit in C.

3 Partial derivatives and Sobolev spaces on open

subsets Ω of Rn

Definition 3.1 ([TW09, Def. 13.2.6]). Let Ω ⊂ R
n be open, u ∈ D′(Ω), and

j ∈ {1, . . . , n}. The partial derivative of the distribution u with respect to
xj , denoted by ∂u

∂xj
, is the distribution

(
∂u

∂xj
, ϕ

)
:= −

(
u,
∂ϕ

∂xj

)
∀ϕ ∈ D(Ω).

Higher order partial derivatives are defined recursively and we also use multi-
index notation with distributions.

If u ∈ Ck(Ω), i.e, if u can be identified with a f ∈ Ck(Ω) as in (2.2),
then the distribution partial derivatives coincide with the classic partial
derivatives, again in the sense of (2.2); see [TW09, p. 410].

Lemma 3.2. The following claims are true:

1. The limit in Definition 2.2 is unique and convergence in Lp(Ω) implies
convergence in D′(Ω).

2. If uk → u in D′(Ω) then all partial derivatives of all orders of uk tend
to the corresponding partial derivative of u in D′(Ω).
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Claim 1 is [TW09, Rem. 13.2.5] and claim 2 is [TW09, Prop. 13.2.9].

Definition 3.3. By Hk(Ω), k ∈ Z+ = {0, 1, 2, . . .}, we denote the Sobolev
space of distributions on Ω, such that all partial derivatives of order at most
k lie in L2(Ω). We equip Hk(Ω) with the inner product

〈f, g〉k =
∑

|α|≤k

∫

Ω
∂αf ∂αg dx, f, g ∈ Hk(Ω). (3.1)

Moreover, H1/2(Ω) is defined as the space consisting of all f ∈ L2(Ω)
such that

‖f‖2
H1/2(Ω)

:= ‖f‖2L2(Ω) +

∫

Ω

∫

Ω

|f(x)− f(y)|2

‖x− y‖n+1
Rn

dx dy <∞. (3.2)

The inner product on H1/2(Ω) is found by polarization of (3.2). The
spaces Hk(Ω) and H1/2(Ω) are Hilbert spaces; see [TW09, Prop. 13.4.2] and
[TW09, p. 416], respectively.

Example 3.4. The Heaviside step function is not a member of H1/2(−1, 1).
Indeed, |f(x)− f(y)| = 1 for all x and y on opposite sides of 0, and

‖f‖2
H1/2(−1,1)

= 1 + 2

∫ 0

−1

∫ 1

0

dx dy

(x− y)2

≥ 1 + 2

∫ −ε

−1

∫ 1

ε

dx dy

(x− y)2
= 1− 2 ln 2 + 4 ln(1 + ε)− 2 ln(2ε)

for all ε ∈ (0, 1). Letting ε → 0, we obtain ‖f‖21/2 = ∞, and so f 6∈

H1/2(−1, 1).

Definition 3.5. The divergence operator is the operator div : D′(Ω)n →
D′(Ω) given by

div v =
∂v1
∂x1

+ . . .+
∂vn
∂xn

,

and the gradient operator is the operator grad : D′(Ω) → D′(Ω)n defined by

gradw =

(
∂w

∂x1
, . . . ,

∂w

∂xn

)
.

We will consider grad as an unbounded operator from L2(Ω) into L2(Ω)n

with domain contained in H1(Ω). We will show that the adjoint of this
operator is −div considered as an unbounded operator from L2(Ω)n into
L2(Ω) with domain contained in the space

Hdiv(Ω) :=
{
v ∈ L2(Ω)n | div v ∈ L2(Ω)

}
,

equipped with the graph norm of div.
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Lemma 3.6. The space Hdiv(Ω) is a Hilbert space with the inner product

〈x, z〉Hdiv(Ω) := 〈x, z〉L2(Ω)n + 〈div x, div z〉L2(Ω) , x, z ∈ Hdiv(Ω). (3.3)

Proof. We prove only completeness, leaving it to the reader to verify that
(3.3) satisfies the axioms of an inner product. Let xk be a Cauchy sequence
in Hdiv(Ω), so that xk and div xk are Cauchy sequences in L2(Ω)n and
L2(Ω), respectively. By the completeness of L2(Ω), there exist x0 ∈ L2(Ω)n

and y0 ∈ L2(Ω), such that xk → x0 and div xk → y0 as k → ∞. From
Definition 2.2 and Lemma 3.2 it now follows that

(div x0, ϕ) = lim
k→∞

(div xk, ϕ) = (y0, ϕ) ∀ϕ ∈ D(Ω).

Hence, div x0 = y0 as distributions, and by construction y0 ∈ L2(Ω). This
implies that x0 ∈ Hdiv(Ω), and thus Hdiv(Ω) is complete.

The following subspaces of H1(Ω) and Hdiv(Ω) will turn out to be very
useful for us:

Definition 3.7. We denote the closure of D(Ω) in H1(Ω) by H1
0 (Ω). Simi-

larly, the closure of D(Ω)n in Hdiv(Ω) is denoted by Hdiv
0 (Ω).

4 Sobolev spaces on Lipschitz manifolds ∂Ω

We will make use of Sobolev spaces on the boundary ∂Ω of Ω, and in order
to do this we need to introduce some notions on topological manifolds; see
[TW09, Sect. 13.5] or [Spi65] for more background. We begin by introducing
the concept of Lipschitz-continuous boundary.

We call a C
m-valued function φ defined on a subset of R

n (globally)
Lipschitz continuous if there exists a Lipschitz constant L ≥ 0, such that
‖φ(x)−φ(y)‖Cm ≤ L‖x− y‖Rn for all x, y ∈ dom (φ). Here dom (φ) denotes
the domain of the function φ.

Definition 4.1 ([GR86, Def. I.1.1]). Let Ω be an open subset of Rn with
boundary ∂Ω := Ω\Ω. We say that the boundary ∂Ω is Lipschitz continuous
if for every x ∈ ∂Ω there exists a neighbourhood Ox of x in R

n and new
orthogonal coordinates y = (y1, . . . , yn), with the following properties:

1. Ox is an open hypercube in the new coordinates, i.e., there exist
a1, . . . , an > 0, such that Ox = {y | −aj < yj < aj ∀j = 1, . . . , n}.

2. Denoting y′ := (y1, . . . , yn−1), there exists a Lipschitz-continuous func-
tion φx defined on O′

x = {y′ | −aj < yj < aj ∀j = 1, . . . , n− 1}, map-
ping into R, which locally describes Ω and its boundary near x in the
following sense:
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(a) |φx(y
′)| ≤ an/2 for all y′ ∈ O′

x,

(b) Ω ∩ Ox = {y | yn < φx(y
′)}, and

(c) ∂Ω ∩ Ox = {y | yn = φx(y
′)}.

By a Lipschitz domain in R
n, we mean an open connected subset of Rn

whose boundary is Lipschitz continuous. We usually work with bounded
Lipschitz domains. It is often possible to treat an open subset of Rn, with
Lipschitz continuous boundary and finitely many, say N , disconnected com-
ponents, as N separate Lipschitz domains. One then solves the problem at
hand on one domain at a time and combines the partial solutions.

Example 4.2. Every open bounded convex subset of Rn is a bounded Lip-
schitz domain, [Gri85, Cor. 1.2.2.3].

We will now see that the boundary of a Lipschitz domain is a so-called
topological manifold, or more precisely, it is a Lipschitz manifold.

Definition 4.3. A pair (X, τ), where X is a set and τ is a set of subsets of
X, is a topological space if τ is a topology on X, i.e.,

1. ∅, X ∈ τ and

2. τ is closed under arbitrary union and finite intersection.

The elements of τ are called the open subsets of X.

We have the following lemma:

Lemma 4.4. If Y ⊂ X, where (X, τ) is a topological space, then (Y,Σ) is
also a topological space with the topology

Σ := {Y ∩ T | T ∈ τ} . (4.1)

Proof. Trivially ∅ = Y ∩∅ ∈ Σ, and since Y ⊂ X, we also have Y = Y ∩X ∈
Σ. Moreover, for any collection of Sα ∈ Σ, there by definition exists a
collection of Tα ∈ τ , such that Sα = Y ∩ Tα. As (X, τ) is a topological
space, ∪αTα ∈ τ , and therefore also

∪αSα = ∪α (Y ∩ τα) = Y ∩ (∪αTα) ∈ Σ.

If the collection is finite, then ∩αTα ∈ τ and

∩αSα = ∩α (Y ∩ τα) = Y ∩ (∩αTα) ∈ Σ.
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If (X, τ) is a topological space and Y ⊂ X, then we call (Y,Σ) a topo-
logical subspace of (X, τ), where Σ is the subspace topology (4.1).

A neighbourhood of a point x ∈ X is an open set T ∈ τ such that
x ∈ T . A topological space is a Hausdorff space if distinct points have
disjoint neighbourhoods:

x, y ∈ X, x 6= y =⇒ ∃Tx, Ty ∈ τ : x ∈ Tx, y ∈ Ty, Tx ∩ Ty = ∅.

Let (X, τ) and (Y, ρ) be two topological spaces. A function ψ from (X, τ)
into (Y, ρ) is continuous at the point x ∈ X, if for every neighbourhood R of
ψ(x), there exists a neighbourhood T of x such that ψ(T ) ⊂ R. The function
is continuous if it is continuous at every x ∈ X, and every continuous
function has the property

R ∈ ρ =⇒ {x ∈ X | f(x) ∈ R} ∈ τ,

which is often also taken as the definition of continuity.
A continuous function ψ that maps X onto Y and has a continuous

inverse is called a homeomorphism. If there exists a homeomorphism ψ from
(X, τ) to (Y, ρ), then these topological spaces are said to be homeomorphic,
meaning that they have precisely the same topological structure: T ∈ τ if
and only if ψ(T ) ∈ ρ.

A neighbourhood T of a point x ∈ X is called Euclidean if it is home-
omorphic to a subset O of Rn for some n ∈ Z+, say with homeomorphism
ψ : T → O. In this case we call the pair (T, ψ) a chart on X. In particular,
O = ψ(T ) is an open subset of Rn, since T ∈ τ is open. A topological space
X is locally Euclidean if there exists an n ∈ Z+ such that all x ∈ X have a
neighbourhood that is homeomorphic to an open hypercube in R

n. This is
equivalent to saying that every x ∈ X has a neighbourhood homeomorphic
to all of the Euclidean space R

n. Noting that n may not depend on x, we
make the following definition:

Definition 4.5. A locally Euclidean Hausdorff space, where every neigh-
bourhood is homeomorphic to a hypercube in R

n, is called an n-dimensional
topological manifold.

Let S ⊂ X with X a topological space. A collection (Tj)j∈J ⊂ τ is
an (open) covering of S if S ⊂

⋃
j∈J Tj . A locally Euclidean space has a

covering (Tj)j∈J of Euclidean neighbourhoods, and we call the corresponding
family (Tj , ψj)j∈J of charts on X an atlas for X. On the overlap Tj ∩ Tk of
two charts we define the transition map ψj,k by ψj ◦ψ

−1
k , a homeomorphism

on Tj ∩ Tk which allows us to change charts from (Tk, ψk) to (Tj , ψj).
In the notation of Definition 4.1, if Ω is a Lipschitz domain in R

n then
we can view ∂Ω locally as an n − 1-dimensional topological sub-manifold
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of Rn using the mapping Φx(y
′) := (y′, φx(y

′)), which maps O′
x one-to-one

onto ∂Ω ∩ Ox. This mapping satisfies for all z′, y′ ∈ O′
x:

‖z′ − y′‖2
Rn−1 ≤ ‖z′ − y′‖2

Rn−1 + |φx(z
′)− φx(y

′)|2 = ‖Φx(z
′)− Φx(y

′)‖2Rn

≤ (1 + L2
x)‖z

′ − y′‖2
Rn−1 ,

where Lx is the Lipschitz constant of φx. Hence (∂Ω ∩ Ox,Φ
−1
x ) is a chart

ontoO′
x, which is in addition bi-Lipschitz, i.e., both Φx and Φ−1

x are Lipschitz
continuous.1 This clearly implies that all transition maps Φ−1

x ◦ Φy are bi-
Lipschitz too, and in this way every open covering (Tj)j∈J of ∂Ω gives rise
to a bi-Lipschitz atlas (Tj ,Φj) for ∂Ω.

Definition 4.6. An n − 1-dimensional topological manifold is an n − 1-
dimensional Lipschitz manifold if it has an atlas whose charts are all bi-
Lipschitz.

Above we showed that the boundary of a bounded Lipschitz domain in
R
n is an n− 1-dimensional Lipschitz manifold. Next we define the Sobolev

spaces H±1/2(Γ), where Γ is an open subset of (∂Ω,Σ), with Σ the subspace
topology.

Definition 4.7 ([TW09, Defs 13.5.7]). Let Ω be a bounded Lipschitz do-
main in R

n and let Γ ⊂ ∂Ω be an open set in the subspace topology of
∂Ω.

The space H1/2(Γ) consists of those f ∈ L2(Γ) for which

f ◦ Φx ∈ H1/2(Φ−1
x (Γ ∩ Ox)) (4.2)

for all x ∈ Γ, and Ox, where Φx(y
′) := (y′, φx(y

′)) with φx as in Definition
4.1 as before, and H1/2(Φ−1

x (Γ ∩ Ωx)) is defined in Definition 3.3.

We thus use an atlas (∂Ω ∩ Ox,Φ
−1
x )x∈∂Ω for ∂Ω to define H1/2(Γ). By

[TW09, p. 422], condition (4.2) holds for every atlas of ∂Ω if and only if it
holds for one atlas. For a bounded Lipschitz domain Ω, the boundary ∂Ω is
closed and bounded in R

n. Hence the boundary is compact, and so we can
find a finite atlas to check the condition (4.2) on.

For a fixed finite atlas (∂Ω ∩ Oj ,Φ
−1
j )Nj=1 of ∂Ω, we equip H1/2(Γ) with

the norm given by

‖f‖2
H1/2(Γ)

:=

N∑

j=1

‖f ◦ Φj‖
2
H1/2(Φ−1

j (Γ∩Oj))
. (4.3)

1This is consistent with the notation in [TW09], but [GR86] use the charts Φx instead
of Φ−1

x .

9



According to [TW09, p. 423], H1/2(Γ) is a Hilbert space with this norm.
Moreover, any norm of this type is by [TW09, p. 423] equivalent to the
norm

‖f‖2
H1/2(Γ)

:= ‖f‖2L2(Γ) +

∫

Γ

∫

Γ

|f(x)− f(y)|2

‖x− y‖n
Rn

dσx dσy, (4.4)

where dσx is a surface element in ∂Ω at x ∈ Γ. In the sequel we always
consider H1/2(Γ) with the norm (4.4).

5 Boundary traces and integration by parts

We need duality with respect to a pivot space; see e.g. [TW09, Sect. 2.9] for
more details on this.

Definition 5.1. Let V be a Hilbert space densely and continuously embed-
ded in the Hilbert space W . The dual V ′ of V with pivot space W is the
completion of W with respect to the duality norm

‖w‖V ′ := sup
v∈V, v 6=0

| 〈w, v〉W |

‖v‖V
.

Every element w̃ in this completion is a sequence of wk ∈W , which is Cauchy
in the duality norm, and this w̃ is identified with the linear functional

v 7→ (w̃, v)V ′,V := v 7→ lim
k→∞

〈wk, v〉W (5.1)

on V . The space W is embedded into V ′ by identifying w ∈ W with the
Cauchy sequence (w,w,w, . . .).

Lemma 5.2. For a bounded Lipschitz domain with boundary ∂Ω, the space
H1/2(∂Ω) is dense in L2(∂Ω).

This result follows from [TW09, Cor. 13.6.11].

Definition 5.3. For a bounded Lipschitz domain with boundary ∂Ω, the
spaceH−1/2(∂Ω) is defined as the dual ofH1/2(∂Ω) with pivot space L2(∂Ω).2

If Ω is a bounded Lipschitz domain in R
n, then the outward unit normal

vector field is defined for almost all x ∈ ∂Ω using local coordinates, and
we can define a vector field ν in a neighbourhood of Ω that coincides with
the outward unit normal vector field for almost every x ∈ ∂Ω; see [TW09,
Def. 13.6.3] and the remarks following. According, to [TW09, p. 424–425],
ν ∈ L∞(∂Ω)n.

Theorem 5.4 ([GR86, Thms I.1.5, I.2.5, and I.2.6, Cor. I.2.8]). For a
bounded Lipschitz domain Ω the following hold:

2This definition is consistent with [TW09]; see p. 432. In [GR86, Def. I.1.4], H−1/2(∂Ω)
defined differently, using H

−1/2(Ω) and an atlas.
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1. The boundary trace mapping g 7→ g|∂Ω : C1(Ω) → C(∂Ω) has a unique
continuous extension γ0 that maps H1(Ω) onto H1/2(∂Ω). The space
H1

0 (Ω) in Definition 3.7 equals
{
g ∈ H1(Ω) | γ0g = 0

}
.

2. The normal trace mapping u 7→ ν · γ0u : H1(Ω)n → L2(∂Ω) has a
unique continuous extension γ⊥ that maps Hdiv(Ω) onto H−1/2(∂Ω).
Here the dot · denotes the inner product in R

n, p · q = q⊤p. Further-
more,

Hdiv
0 (Ω) =

{
f ∈ Hdiv(Ω) | γ⊥f = 0

}
.

We call γ0 the Dirichlet trace map and γ⊥ the normal trace map. The fol-
lowing “integration by parts” formula is the foundation for our main duality
result; see e.g. [Gri85, Thm 1.5.3.1] or [Neč12, Thm 3.1.1]:

Theorem 5.5. Let Ω be a bounded Lipschitz domain in R
n. For all f ∈

Hdiv(Ω) and g ∈ H1(Ω) it holds that

〈div f, g〉L2(Ω) + 〈f, grad g〉L2(Ω)n = (γ⊥f, γ0g)H−1/2(∂Ω),H1/2(∂Ω). (5.2)

6 Duality of the divergence and gradient opera-

tors

We will make use of the following general result:

Lemma 6.1. Let T be a closed linear operator from dom (T ) ⊂ X into Y ,
where X and Y are Hilbert spaces. Equip dom (T ) with the graph norm of
T , in order to make it a Hilbert space. Let R be a restriction of the operator
T . The following claims are true:

1. The closure of the operator R is R = T
∣∣
dom(R)

, where dom (R) is the

closure of dom (R) in the graph norm of T . In particular, R is a closed
operator if and only if dom (R) is a closed subspace of dom (T ).

2. Let γ be a linear operator from dom (T ) into a Hilbert space Z. If

γ dom (R) = γ dom (T ) and ker (γ) ⊂ dom (R) , (6.1)

then necessarily also dom (R) = dom (T ).

Proof. The following chain of equivalences, where G(R) =
[
I
R

]
dom (R) is

the graph of R, proves that R = T
∣∣
dom(R)

:

[
x
y

]
∈ G(R)

(i)
⇐⇒ ∃xk ∈ dom (R) : xk

X→ x, Rxk
Y→ y

(ii)
⇐⇒ ∃xk ∈ dom (R) : xk

X→ x, Txk
Y→ y

(iii)
⇐⇒ ∃xk ∈ dom (R) : xk

dom(T )
→ x, Tx = y

(iv)
⇐⇒ x ∈ dom (R), Tx = y,
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where we have used that (i): G(R) = G(R) by the definition of operator
closure, (ii): G(R) ⊂ G(T ), (iii): dom (T ) has the graph norm of T closed,
and (iv): dom (R) has the same norm as dom (T ).

Now it follows easily that R is closed if and only if dom (R) is closed in
dom (T ):

R = R =⇒ T
∣∣
dom(R)

= T
∣∣
dom(R) =⇒ dom (R) = dom (R),

and moreover, assuming dom (R) = dom (R), we obtain that

R = T
∣∣
dom(R)

= T
∣∣
dom(R)

= R.

Regarding assertion 2, it follows from R ⊂ T that dom (R) ⊂ dom (T ).
For the converse inclusion, choose x ∈ dom (T ) arbitrarily. By the first
assumption in (6.1), we can find an ξ ∈ dom (R) such that γx = γξ. Then
x − ξ ∈ ker (γ) ⊂ dom (R), by the second assumption in (6.1), so that
x = x− ξ + ξ ∈ dom (R).

We have the following general result:

Theorem 6.2. Let Ω be a bounded Lipschitz domain in R
n and let H1

0 (Ω) ⊂
G ⊂ H1(Ω). Setting

D :=
{
f ∈ Hdiv(Ω) | (γ⊥f, γ0g)H−1/2(∂Ω),H1/2(∂Ω) = 0 ∀g ∈ G

}
, (6.2)

we obtain the following:

1. The set D is a closed subspace of Hdiv(Ω) that contains Hdiv
0 (Ω), i.e.,

Hdiv
0 (Ω) ⊂ D ⊂ Hdiv(Ω).

2. When we identify L2(Ω) and L2(Ω)n with their own duals, and we
consider grad

∣∣
G
as an unbounded operator mapping the dense subspace

G of L2(Ω) into L2(Ω)n, we have grad
∣∣∗
G
= −div

∣∣
D
.

3. Let G be closed in H1(Ω). Then D = Hdiv(Ω) if and only if G =
H1

0 (Ω), and D = Hdiv
0 (Ω) if and only if G = H1(Ω).

Proof. We prove assertion 2 first. Since H1
0 (Ω) is dense in L

2(Ω), necessarily
also G which contains H1

0 (Ω) is dense. From (5.2) it immediately follows
that for all f ∈ D:

〈div f, g〉L2(Ω) + 〈f, grad g〉L2(Ω)n = 0 ∀g ∈ G, (6.3)

and hence −div
∣∣
D
⊂ grad

∣∣∗
G
. We now prove the converse inclusion.

Assume therefore that f ∈ dom
(
grad

∣∣∗
G

)
⊂ L2(Ω)n, i.e., that there exists

an h ∈ L2(Ω), such that

〈h, g〉L2(Ω) + 〈f, grad g〉L2(Ω)n = 0 ∀g ∈ G. (6.4)
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Since D(Ω) ⊂ H1
0 (Ω) ⊂ G, (6.4) holds in particular for all g ∈ D(Ω), and

thus by (2.3) it holds for all g ∈ D(Ω) that:

0 = (h, g)D′(Ω),D(Ω) +
(
f, grad g

)
D′(Ω)n,D(Ω)n

= (h, g)D′(Ω),D(Ω) +
n∑

k=1

(
fk,

∂g

∂xk

)

D′(Ω),D(Ω)

= (h, g)D′(Ω),D(Ω) −
n∑

k=1

(
∂fk
∂xk

, g

)

D′(Ω),D(Ω)

= (h− divf, g)D′(Ω),D(Ω).

Hence, in the sense of distributions, div f = h ∈ L2(Ω), which implies that
f ∈ Hdiv(Ω).

We have now proved that the existence of an h ∈ L2(Ω), such that
(6.4) holds, implies (6.3), and combining this with the integration by parts
formula (5.2), we obtain that

(γ⊥f, γ0g)H−1/2(∂Ω),H1/2(∂Ω) = 0 ∀g ∈ G,

i.e., that f ∈ D. From (6.4), we moreover have h = −grad
∣∣∗
G
f . Summa-

rizing, we have shown that (6.4) implies that −grad
∣∣∗
G
f = h = div f , hence

grad
∣∣∗
G
⊂ −div

∣∣
D
. We are finished proving assertion 2.

Next we show how assertion 3 is a consequence of Theorem 5.4, assertion
2 of Lemma 6.1, and (6.2). It follows from (6.2) and Theorem 5.4 that
Hdiv

0 (Ω) ⊂ D ⊂ Hdiv(Ω). Indeed, trivially D ⊂ Hdiv(Ω) by (6.2), and
moreover by Theorem 5.4 and (6.2):

f ∈ Hdiv
0 (Ω) =⇒ f ∈ Hdiv(Ω), γ⊥f = 0 =⇒ f ∈ D.

We prove the equivalence G = H1
0 (Ω) ⇐⇒ D = Hdiv(Ω). In Lemma 6.1,

take T := grad
∣∣
G

and R := grad
∣∣
H1

0
(Ω)

. Moreover, set γ := γ0, which by

Theorem 5.4 has kernel H1
0 (Ω) ⊂ G, where the inclusion is by assumption.

Now Lemma 6.1 and Theorem 5.4 give

G = H1
0 (Ω) ⇐⇒ γ0G = γ0H

1
0 (Ω) =

{
0 ∈ H1/2(∂Ω)

}
.

Next one uses Lemma 6.1 to obtain that

D = Hdiv(Ω) ⇐⇒ γ⊥D = γ⊥H
div(Ω) = H−1/2(∂Ω) (6.5)

by taking T := div, defined on Hdiv(Ω), and R := div
∣∣
D
, with γ := γ⊥,

ker (γ⊥) = Hdiv
0 (Ω) ⊂ D. (The last equality on the right-hand side of (6.5)

holds by Theorem 5.4.) The argument is completed by showing that

γ0G = {0} ⇐⇒ γ⊥D = H−1/2(∂Ω).
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Assume first that γ0G = {0}. Then D = Hdiv(Ω) by (6.2), and The-
orem 5.4 gives that γ⊥D = H−1/2(∂Ω). Conversely, assume that γ⊥D =
H−1/2(∂Ω). Then (6.2) yields that γ0G = {0}, which by Theorem 5.4 im-
plies that G ⊂ ker (γ0) = H1

0 (Ω). Combining this with the assumption that
H1

0 (Ω) ⊂ G, we obtain G = H1
0 (Ω), which by Theorem 5.4 implies that

γ0G = {0}.
The equivalence D = Hdiv

0 (Ω) ⇐⇒ G = H1(Ω) is proved similarly.
The proof of assertion 1 is now short: We established in the proof of

assertion 3 that Hdiv
0 (Ω) ⊂ D ⊂ Hdiv(Ω). Moreover, since grad

∣∣∗
G
= −div

∣∣
D

is a closed operator, we obtain from assertion 1 of Lemma 6.1 that D is
closed in the norm of Hdiv(Ω).
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[Gri85] Pièrre Grisvard, Elliptic problems in nonsmooth domains, Mono-
graphs and Studies in Mathematics, vol. 24, Pitman (Advanced
Publishing Program), Boston, MA, 1985.

[KZ12a] Mikael Kurula and Hans Zwart, Existence proofs for PDEs using
a Cayley transform and feedback theory, submitted, 2012.

[KZ12b] , On bounded Lipschitz domains, the divergence is minus
the adjoint of the gradient, manuscript, 2012.
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Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks],
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