
Two Dimensional Optimal Mechanism Design
for a Sequencing Problem

Ruben Hoeksma and Marc Uetz

University of Twente, Dept. Applied Mathematics, P.O. Box 217, 7500AE Enschede,
The Netherlands, {r.p.hoeksma, m.uetz}@utwente.nl

Abstract. We consider optimal mechanism design for a sequencing prob-
lem with n jobs which require a compensation payment for waiting. The
jobs’ processing requirements as well as unit costs for waiting are pri-
vate data. Given public priors for this private data, we seek to find an
optimal mechanism, that is, a scheduling rule and incentive compatible
payments that minimize the total expected payments to the jobs. Here,
incentive compatible refers to a Bayes-Nash equilibrium. While the prob-
lem can be efficiently solved when jobs have single dimensional private
data along the lines of a seminal paper by Myerson, we here address
the problem with two dimensional private data. We show that the prob-
lem can be solved in polynomial time by linear programming techniques,
answering an open problem in [11]. Our implementation is randomized
and truthful in expectation. The main steps are a compactification of an
exponential size linear program, and a combinatorial algorithm to com-
pute from feasible interim schedules a convex combination of at most n
deterministic schedules. In addition, in computational experiments with
random instances, we generate some more theoretical insights.

1 Introduction & Contribution

In this paper, we address an optimal mechanism design problem for a sequenc-
ing problem introduced by Heydenreich et al. in [11]. While that paper mainly
addresses the version with single dimensional private data, we focus on the case
with two dimensional private data. Indeed, starting with the seminal paper by
Myerson [18], optimal mechanism design with single dimensional private data is
pretty well understood, also from an algorithmic point of view, e.g. [10], while
algorithmic results for optimal mechanism design with multi dimensional private
data have been obtained only recently, e.g. [1,2].

Our starting point is the open problem formulated in [11], who ‘leave it as
an open problem to identify (closed formulae for) optimal mechanisms for the
2-d case.’ Here, the ‘2-d case’ refers to the problem of computing a Bayes-Nash
optimal mechanism for the following sequencing problem on a single machine:
There are n jobs with two dimensional private data, namely a cost per unit time
wj and a processing time pj . Jobs need to be processed sequentially, and each job
requires a compensation for the disutility of waiting. With given priors on the
private data of jobs, the optimal mechanism seeks to minimize the total expected



payments made to the jobs, while being Bayes-Nash incentive compatible. This
problem is an abstraction of economic situations where clients queue for a single
scarce resource (e.g., a specialized operation theatre), while the information on
the urgency and duration to treat each client is private, yet known probabilisti-
cally. A concrete example are waiting lists for special medical treatments in the
Netherlands, see [12].

The main contribution of this paper is to answer the open problem in
[11], by giving an optimal mechanism and showing that it can be computed and
implemented in polynomial time. Our solution is based on linear programming
techniques, and results in an optimal randomized mechanism. In that sense, we
do not obtain analytic ‘closed formulae’ for the solution, and our results can
be seen in the tradition of ‘automated mechanism design’ as proposed e.g. by
Conitzer and Sandholm [3,15], in that the design of the mechanism itself is based
on (integer) linear programming.

The major technical contributions are twofold: The first is the compacti-
fication of an exponential size linear programming formulation of the mechanism
design problem, which is the crucial ingredient that allows a polynomial time
algorithm to compute payments and a so-called interim schedule. The second is
an algorithm that allows to compute, in polynomial time, the implementation
for the given interim schedule. To that end, we give a combinatorial O(n3 log n)
algorithm that computes, for any given point s in the single machine scheduling
polytope as defined by Queyranne [14], a representation of s as convex combina-
tion of≤ n vertices. This result generalizes a similar result for the permutahedron
by Yasutake et al. [22], but in contrast to that paper, our algorithm follows the
geometric construction as proposed by Grötschel et al. in [9, Thm. 6.5.11].

Finally, again in the flavor of automated mechanism design, we present com-
putational results based on the (integer) linear programming formulations.
These computations have the primary goal to test and validate hypotheses on
the structure of solutions. Our computations, based on randomly generated in-
stances, show that optimal mechanisms in the two dimensional setting do not
share several of the nice properties of the solutions to the single dimensional
problem: The scheduling rules of optimal Bayes-Nash incentive compatible mech-
anisms are not necessarily iia (a desirable property to be defined later), and nei-
ther do optimal Bayes-Nash mechanisms allow an implementation in dominate
strategies. This in contrast to the single dimensional problem which has these
properties [11,4].

We conclude this section with a brief discussion of our result in relation to
the recent results of Cai et al. [2], specifically the question if the problem that
we consider here fits into the general framework presented there. This is not
the case: In order to formulate the problem considered here in that context, we
can either represent a schedule as an assignment of n jobs to n slots, in which
case the problem has informational externalities because the utility of a job for
a given slot then depends on the types (specifically, processing times) of other
jobs. Or, we can represent a schedule as a vector of starting times, but then the
feasibility of such vector depends on the types (specifically, processing times) of



jobs. Either way, we leave the framework of [2], and we do not see a simple way
to fix this.

2 Definitions, Preliminary & Related Results

We consider a sequencing (or single machine scheduling) problem with n agents
denoted j ∈ N , each owning a job with weight wj and processing time pj . We
identify jobs with agents. The jobs need to be processed (sequenced) on a single
machine, with the interpretation that wj is job j’s individual cost for waiting
one unit of time, while pj is the time it requires to process job j. In a schedule
that yields a start time sj for job j, the cost for waiting is wjsj . The type of a
job j is the vector of weight and processing time, denoted tj = (wj , pj). Note
that the type is two dimensional. With tj being public, the total waiting cost is
well known to be minimized by sequencing the jobs in order of non increasing
ratios wj/pj , also known as Smith’s rule [20].

In the setting we consider here, weight and processing time are private to the
agent that owns the job. There is a public belief about this private information,
which is1

– the types that job j might have are Tj = {t1j , . . . , t
mj

j }, and

– the probability of job j having type tij is ϕj(t
i
j), i = 1 . . . ,mj .

By T = T1× . . .×Tn we denote the type space of all jobs, with t = (t1, . . . , tn) ∈
T . Define m :=

∑
j∈N mj , and note that m ≥ n. For a type tij ∈ Tj , we let wij and

pij be the corresponding weight and processing time, respectively. We sometimes

abuse notation by identifying i with tij , to avoid excessive notation. Moreover,
(tj , t−j) denotes a type vector where tj is the type of job j and t−j are the types
of all jobs except j, with t−j ∈ T−j :=

∏
k 6=j Tk. For given t ∈ T and K ⊆ N ,

we also define the shorthand notation ϕ(tK) :=
∏
k∈K ϕk(tk) for the product

distribution of the types of jobs in K, particularly ϕ(t−j) :=
∏
k 6=j ϕk(tk).

We assume, just like [11], that the mechanism designer needs to compen-
sate the jobs for waiting by a payment πj that the job receives. We seek to
compute and implement a (direct) mechanism, consisting of a scheduling rule
and a payment rule, assigning to any t ∈ T a permutation σ(t) of jobs which
yields a schedule sσ(t) of start times, together with compensation payments π(t).
In the mechanism design and auction literature, for obvious reasons, what is a
scheduling rule here is referred to as allocation rule. Clearly, jobs may have an
incentive to strategically misreport their true types in order to receive higher
compensation payments. The optimal mechanism that we seek, however, is one
that minimizes the total payments made to the jobs. Since reporting a processing
time smaller than the true processing time is verifiable while processing a job,
we assume, again like [11], that only larger than the true processing times can
be reported by any job.

1 Note that the discrete type space make the problem amendable for (I)LP techniques.



It is Myerson’s revelation principle [18] that makes this problem (and many
others [21]) amendable to optimization techniques: it asserts that it is no loss of
generality to restrict to truthful mechanisms, where each job maximizes utility
by reporting the type truthfully. In the considered setting with given priors on
private data, a mechanism is truthful, or more precisely Bayes-Nash incentive
compatible, if it fulfills the following, linear constraint

πij − wijEsij ≥ πi
′

j − wijEsi
′

j for all jobs j and types tij , t
i′

j ∈ Tj .

Here, Esij and πij are defined as expected start time and payment for job j when

he reports to be of type tij , where the expectation is taken over all (truthful)
reports of other jobs t−j ∈ T−j . Then, assuming utilities are quasi-linear, the
expected utility for job j with true type tij is πij−wijEsij for reporting truthfully,

while a false report ti
′

j yields expected utility πi
′

j − wijEsi
′

j . The scheduling rule
corresponding to a Bayes-Nash incentive compatible mechanism is called Bayes-
Nash implementable.

Moreover, in order to have the problem bounded, we make the standard
assumption that the expected utilities of truthful jobs are nonnegative, known
as individual rationality,

πij − wijEsij ≥ 0 .

It is interesting to ask if a scheduling (more generally, allocation) rule can
even be implemented in the stronger dominant strategy equilibrium; see [17]
for the case of auctions. That is the case if reporting the true type maximizes
the utility of a job not only in expectation but for any given report t−j of the

other jobs, that is, πj(t
i
j , t−j)−wijsj(tij , t−j) ≥ πj(ti

′

j , t−j)−wijsj(ti
′

j , t−j) for all

tij , t
i′

j ∈ Tj and all t−j ∈ T−j . The latter implies the former, but generally not
vice versa [16].

A mechanism is Bayes-Nash implementable if any only if the expected start
times Esij are monotonically increasing in the reported weight wij . The same
result holds for dominant strategy implementability, but then the start times
sj(t

i
j , t−j) need to be monotonically increasing in the reported weight wij , for

all t−j ∈ T−j . This is a standard result is single-dimensional mechanism design
[13], but it is also true for the 2-dimensional problem considered here [11]. The
problem to find an optimal mechanism for the 2-dimensional mechanism design
problem, however, was left open in [11].

For the single dimensional version of the problem, where only weights are
private information and processing times are known, the optimal mechanism
has a simple structure: It is Smith’s rule, but with respect to virtual instead
of the original weights wj ; see [11] for details. In particular, the optimal Bayes-
Nash incentive compatible mechanism can be computed and implemented in
polynomial time, and it can even be implemented (with the same expected cost)
in dominant strategies [4].



3 Problem Formulations & Linear Relaxation

Let us start by giving a natural, albeit exponential size ILP formulation for the
mechanism design problem at hand. Recall that sσj (t) denotes the start time of
job j if the permutation of jobs is σ under type vector t. We use the natural
variables

xσ(t) =

{
1 if for type vector t permutation σ is used ,

0 otherwise .

Then the formulation reads as follows.

min
∑
j∈N

∑
i∈Tj

ϕijπ
i
j (1)

πij ≥ wijEsij ∀j ∈ J, i ∈ Tj (2)

πij ≥ πi
′

j − wij(Esi
′

j − Esij) ∀j ∈ N, i ∈ Tj , i′ ∈ Tj
(3)

Esij =
∑

t−j∈T−j

ϕ(t−j)
∑
σ

xσ(tij , t−j)s
σ
j (tij , t−j) ∀j ∈ N, tij ∈ Tj (4)

∑
σ

xσ(t) = 1 ∀t ∈ T (5)

xσ(t) ∈ {0, 1} ∀σ ∈ Σ, t ∈ T (6)

Here we use the shorthand notation ϕij for ϕj(t
i
j), and Σ is the set of all permu-

tations of N . The objective (1) is the total expected payment. Constraints (2)
and (3) are the individual rationality and incentive compatibility constraints: (2)
requires the expected payment to at least match the expected cost of waiting
when the type is tij , and (3) makes sure that the expected utility is maximized

when reporting truthfully. Values Esij are also referred to as interim schedule,
and equations (4) are the feasibility constraints for interim schedules, expressing
the fact that the expected starting times in the interim schedule need to comply
with with the scheduling rule encoded by x. While the input size of the mecha-
nism design problem is O(m), this ILP formulation is colossal as the number of
variables xσ(t) is |T |n! with |T | =

∏
jmj .

Observe that, for given type vector t, the vectors sσ(t) are the vertices of the
well known single machine scheduling polytope Q(t) [5,14], only here we consider
start instead of completion times. In other words, sσ(t) are the start times of
permutation schedules. Recall from [14] that the polytope Q(t) is defined by

∑
j∈K

pj(t)sj(t) ≥
1

2

∑
j∈K

pj(t)

2

− 1

2

∑
j∈K

pj(t)
2 ∀K ⊆ N (7)

∑
j∈N

pj(t)sj(t) =
1

2

∑
j∈N

pj(t)

2

− 1

2

∑
j∈N

pj(t)
2
, (8)



where we use pj(t) to denote the processing time of job j in type profile t. The last
equality excludes schedules with idle time. Allowing randomization, any point of
Q(t) represents feasible expected start times. Note that the scheduling polytope
Q(t) is a polymatroid via variable transform to p(t)s(t). In this particular case,
both optimization and separation for Q(t) can be done in time O(n2) [6,14].

3.1 Linear Ordering Formulation

It turns out to be convenient for our purpose to consider another formulation,
namely using linear ordering variables dkj , with intended meaning

dkj(t) =

{
1 if for type vector t we use a schedule where job k precedes job j ,

0 otherwise .

Using linear ordering variables yields the following formulation of the optimal
mechanism design problem.

min
∑
j∈N

∑
i∈Tj

ϕijπ
i
j (9)

πij ≥ wijEsij ∀j, i (10)

πij ≥ πi
′

j − wij(Esi
′

j − Esij) ∀j, i, i′ (11)

Esij =
∑

t−j∈T−j

ϕ(t−j)sj(t
i
j , t−j) ∀j, i (12)

sj(t) =
∑
k∈N

dkj(t)pk(t) ∀j, t (13)

djj(t) = 0 ∀j, t (14)

dkj(t) + djk(t) = 1 ∀j, k, t j 6= k (15)

djk(t) ≥ 0 ∀j, k, t (16)

djk(t) + dkl(t) ≤ 1 + djl(t) ∀j, k, l, t (17)

djk(t) ∈ {0, 1} ∀j, k, t . (18)

Observe that, in contrast to the previous xσ formulation, the number of variables
djk(t) now equals n2 · |T |. However this formulation is in general exponential as
well, since the type space T can be exponential in m.

The vertices of Q(t) are exactly the solutions s(t) of (13)-(18), and moreover,
a vector of starting times s(t) satisfies (13)-(16) if and only if it satisfies (7) and
(8); see [19]. However, in the linear relaxation (13)-(16) the fractional variable
djk(t) does no longer have the intuitive interpretation of the relative order be-
tween jobs j and k, not even if we include (17): the linear ordering polytope (in
dimension ≥ 6) has more facets than only the constraints given here [7].

3.2 Relaxation & Compactification

The linear relaxation of the optimal mechanism design problem (9)-(18) is ob-
tained by dropping the last two sets of constraints (17) and (18). By moving



from the ILP formulation to its LP relaxation, we in fact move from deter-
ministic scheduling rules to randomized ones, which follows from our previous
discussion about the equivalence of (13)-(16) and (7) and (8). For convenience,
in what follows we also combine (12) and (13) into just one constraint. This gives
us the following formulation.

min
∑
j∈N

∑
i∈Tj

ϕijπ
i
j (19)

πij ≥ wijEsij ∀j, i (20)

πij ≥ πi
′

j − wij(Esi
′

j − Esij) ∀j, i, i′ (21)

Esij =
∑

t−j∈T−j

∑
k∈N

ϕ(t−j)dkj(t
i
j , t−j)pk(t−j) ∀j, i (22)

djj(t) = 0 ∀j, t (23)

dkj(t) + djk(t) = 1 ∀j, k, t, k 6= j (24)

dkj(t) ≥ 0 ∀j, k, t . (25)

Here, (22) is the combination of (12) and (13), and (17) and (18) are omitted.
We now focus on the projection to variables Esij , that is, vectors Es ∈ Rm

satisfying (22)-(25). These correspond to interim schedules in the linear relax-
ation. Let us refer to this projection as the relaxed interim scheduling polytope.
Notice that, even though it is a linear relaxation, (22)-(25) is still an exponen-
tial size formulation, as it depends on the size of T . The crucial insight is that,
in the linear relaxation, this exponential size formulation is actually not neces-
sary. Instead of using djk(t) where t ∈ T , we propose an LP compactification by
restricting to variables

djk(tj , tk) ,

where tj and tk are the types of jobs j and k, respectively. This reduces the
number of djk-variables to O(m2), yielding a polynomial size formulation. Doing
so, we obtain

Esij =
∑
k∈N

∑
tk∈Tk

ϕ(tk)dkj(t
i
j , tk)pk(tk) ∀j, i (26)

djj(tj , tj) = 0 ∀j, tj (27)

dkj(tk, tj) + djk(tj , tk) = 1 ∀j, k, tj , tk, k 6= j
(28)

dkj(tk, tj) ≥ 0 ∀j, k, tj , tk . (29)

The following lemma is the core insight of the results in this paper.

Lemma 1. The relaxed interim scheduling polytope defined by (22)-(25) can be
equivalently described by (26)-(29).

Proof. Let P be the projection of (22)-(25) to variables Esij , and P ′ be the

projection of (26)-(29) to variables Esij . It is obvious that if Es ∈ P ′, then



Es ∈ P , simply by letting dkj(t) = dkj(tk, tj), for all t 3 tk, tj . So all we need to
show is that, if Es ∈ P , then Es ∈ P ′. So let Es ∈ P with corresponding dkj(t).
Now define

dkj(tk, tj) =
∑
t3tk,tj

ϕ(t)

ϕ(tk)ϕ(tj)
dkj(t) ,

then the dkj(tk, tj) clearly satisfy (27)-(29). Moreover, we have for all j ∈ N and
i ∈ Tj ,

Esij =
∑

t−j∈T−j

∑
k∈N

ϕ(t−j)dkj(t
i
j , t−j)pk(t−j)

=
∑
k∈N

∑
t3tij

ϕ(t)

ϕ(tij)
dkj(t)pk(t)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk)
∑
t3tk,tij

ϕ(t)

ϕ(tij)ϕ(tk)
dkj(t)pk(tk)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk)dkj(tk, tj)pk(tk) ,

which is exactly the RHS of (26). ut

We conclude with the following theorem.

Theorem 1. Computing an optimal interim schedule together with optimal pay-
ments for the mechanism design problem can be done in time polynomial in the
input size of the problem.

Proof. The input size of the problem is Θ(m). The formulation (19)-(21) together
with (26)-(29) has O(m2) variables and O(m2) constraints. Hence, this linear
program can be solved in time polynomial in the input size. ut

Now that we can compute optimal interim schedules and payments, two ques-
tions remain: The first is the interpretation of the result of Theorem 1, because
it is a linear relaxation with a reduced number of variables. The second is the
actual implementation of the optimal mechanism, meaning that we have to link
the interim schedule Es to actual schedules s(t) for any given type profile t ∈ T .
The first question is answered in the sequel, the second in Section 4.

3.3 Discussion of the Result

Theorem 1 yields an optimal randomized solution to the mechanism design prob-
lem, in terms of expected payments and interim schedules. There is one striking
observation with respect to the compactification step of Lemma 1, however: It
seems that we are reducing the (number of) feasible mechanisms, because the
relative order of any two jobs j and k in djk(tj , tk) only depends on the types
of jobs j and k, while in djk(t) it may depend on the whole type vector t. This
property is in fact well known as iia-property ; see [11].



Definition 1 (iia). A scheduling rule is independent of irrelavent alternatives,
or iia, if the relative order of two jobs does not depend on anything but the types
of those two jobs, that is djk(t) = djk(tj , tk). We call a mechanism for which the
scheduling rule is iia, an iia-mechanism.

For the deterministic problem (9)-(18), restricting the variables as suggested by
the compactification indeed defines the set of iia-mechanisms. The optimal ran-
domized mechanism that follows from Theorem 1, however, is not necessarily an
iia-mechanism: The linear relaxation underlying Theorem 1 is based on a true
relaxation of the linear ordering polytope. As mentioned earlier, the variables
djk do not have the interpretation of relative orders of jobs in this relaxation.
Lemma 1 shows that the compactification is no loss of generality for this re-
laxation, but it is a loss of generality for the linear ordering polytope itself,
respectively for the deterministic optimal mechanism design problem (9)-(18);
see Thm. 3 in Section 5.

4 Implementation

We next show how to actually implement the interim schedule. For determin-
istic mechanisms, this requires to give, for any type profile t, a sequence σ(t),
respectively a corresponding schedule sσ(t). Here, since we consider randomized
mechanisms, we need to give for any t, a lottery (convex combination) over not
too many such schedules sσ(t), and such that this lottery complies with the
interim schedule Es as suggested by Theorem 1.

First, observe that for given solution Es and djk(tj , tk), and fixed type vector
t we can compute a corresponding vector of start times s(t) by

sj(t) =
∑
k∈N

dkj(tj , tk)pk(tk) .

Recall that this is simply a point in the scheduling polytope Q(t) defined in (7)
and (8), and the dimension of the scheduling polytope is n − 1. It follows from
Caratheodory’s Theorem that s(t) can be expressed as the convex combination
of at most n vertices of Q(t), that is, permutation schedules. In what follows,
we describe a combinatorial algorithm to compute this representation, where for
convenience, we drop the dependence on t.

Instead of adapting a recent algorithm by Yasuka et al. [22] which does the
job for the permutahedron, we here follow a geometric approach similar to the
one by Grötschel, Lovász and Schrijver in [9, Thm. 6.5.11]: Given some s ∈ Q,
pick a (random) vertex v of Q, and compute the point s′ ∈ Q where the half-line
through v and s leaves Q. This point lies on a facet of Q, and we can recurse
on that facet. However, we need a way to efficiently compute s′ and a facet on
which it lies. This can be done with an algorithm described by Fonlupt and Skoda
in O(n8) time [8]. Here, we improve on this result for the scheduling polytope
and give a simple algorithm that runs in O(n2logn) time. The total time for
computing the representation of s(t) as convex combination of ≤ n permutation
schedules will be O(n3 log n).



f i+1
∆i

vi si
si+1

Fig. 1. Illustration of one iteration of Algorithm 1.

Algorithm 1 (Decomposition Algorithm) For a given point si ∈ Q (in it-
eration i), order the jobs ascending in their start time sij and define vertex vi

corresponding to that permutation schedule. We aim to find a point si+1 ∈ Q
on a facet of Q such that si = λivi + (1 − λi)si+1, for some λi ∈ [0, 1]. Let
∆i = si − vi. Then δmax := maxδ≥0{vi + δ∆i ∈ Q}, so that si+1 = vi + δmax∆

i

and λi = (1− 1/δmax). If we now compute a facet f i+1 of Q containing si+1, we
recurse with si+1 ∈ f i+1, and terminate after n iterations.

The algorithm is illustrated in Figure 1. The following lemma is a consequence
of our choice of vertex vi; it shows that Algorithm 1 is well defined.

Lemma 2. Both vi ∈ f i and si ∈ f i (where f0 := Q ), hence si+1 ∈ f i.
We are left to show that, in any iteration, computing si+1 and f i+1 can be

done in time O(n2 log n). The crucial idea is that the set Ki+1 that defines facet
f i+1 can be computed from one of the O(n2) different orderings of the elements
of the vectors on the half-line L = {vi + δ∆i | δ ≥ 0}. There are no more than
O(n2) such orderings, because the relative order of any two elements xj an xk,
with x ∈ L, can change at most once while moving along L, by linearity.

Now imagine that the target point si+1 lies on a facet defined by set Ki+1 ⊆
N . Then, assuming for simplicity of notation that the ordering of elements of
si+1 is si+1

1 ≤ · · · ≤ si+1
n , the set Ki+1 appears as as one of the n nested sets

[k] := {1, . . . , k}, k = 1, . . . , n. This follows directly from the simple separation
algorithm for the scheduling polytope Q [14].

Since we do not know a priori which ordering the elements of si+1 have,
the simplest algorithm is to try them all, which works because we know that
there are no more than O(n2) such orders for all points of L. Each of them
gives n candidates for Ki+1, and computing their intersection with L yields si+1

as the intersection point closest to si. This argument directly yields a O(n4)
algorithm. With a more clever bookkeeping of the candidate sets, we end up
with the following lemma, where for further details we refer to the appendix.

Lemma 3. The computation of vector si+1 with si = λivi + (1 − λi)si+1, and
facet f i+1 3 si+1 of Q in Algorithm 1 can be done in time O(n2 log n).

We can now conclude.

Theorem 2. A point s ∈ Q can be decomposed into the convex combination of
at most n vertices (= permutation schedules) of Q in O(n3 log n) time.



5 Computational Results

We have implemented all models discussed in this paper; let us briefly comment
on these experiments. As already mentioned, the most straightforward ILP for-
mulation (1)-(6) for the deterministic mechanism design problem is colossal,
which is confirmed by large computation times. In comparison, the linear or-
dering formulation (9)-(18), even though exponential in size as well, yields an
average improvement in computation times of a factor 3-40 for small scale in-
stances, depending on the model considered. In particular, the latter allows to
drastically reduce the number of variables and constraints for iia-mechanisms,
while the former formulation doesn’t.

We end this short computational section by listing the following insights that
we could obtain through generating random instances, and comparing the cor-
responding optimal solutions for different models. More detailed computational
results are deferred to a full version of this paper.

Theorem 3. Optimal deterministic mechanisms for both Bayes-Nash and dom-
inant strategy implementations, in general do not satisfy the iia condition.2

Theorem 4. The optimal deterministic Bayes-Nash mechanism is generally not
implementable in dominant strategies.

Theorem 5. Randomized Bayes-Nash mechanisms perform better than deter-
ministic Bayes-Nash mechanisms in terms of total optimal payment.

Proof. These theorems follow from the examples given in the appendix. ut

6 Concluding Remarks

While we solve the optimal mechanism design problem, our solution is random-
ized, and truthful in expectation. The complexity to find an optimal determin-
istic mechanism remains open, is is not even clear if it is contained in NP. An
interesting future path to follow is to worst-case analyze the gaps between the
solutions of different models.

Acknowledgements. Thanks to Maurice Queyranne for pointing us to the
work [22], and to Jelle Duives for his contribution in the experiments. Also
thanks to Walter Kern, Marc Pfetsch, Rudolf Müller, and Gergely Czapó for
helpful discussions.

References

1. S. Alaei, H. Fu, N. Haghpanah, J. Hartline, and A. Malekian. Bayesian Optimal
Auctions via Multi- to Single-agent Reduction. In: Proc. 13th EC, 2012, p. 17

2. Y. Cai, C. Daskalakis and S.M. Weinberg. Optimal Multi-Dimensional Mechanism
Design: Reducing Revenue to Welfare Maximization. In: Proc. 53rd FOCS, 2012.

2 Note: The example given in [11] to prove the same theorem is flawed.



3. V. Conitzer and T. Sandholm. Complexity of mechanism design. In: Proc. 18th
Annual Conference on Uncertainty in Artificial Intelligence (UAI 2002), 103-110.

4. J. Duives, B. Heydenreich, D. Mishra, R. Müller, and M. Uetz. Optimal Mecha-
nisms for Single Machine Scheduling. Manuscript, 2012.

5. M.E. Dyer and L.A. Wolsey. Formulating the single machine sequencing problem
with release dates as a mixed integer program. Discrete Applied Mathematics 26,
1990, 255-270.

6. J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming 1,
1971, 127-136.

7. P.C. Fishburn. Induced binary probabilities and the linear ordering polytope: A
status report. Mathematical Social Sciences 23, 1992, 67-80.

8. J. Fonlupt and A. Skoda. Strongly polynomial algorithm for the intersection of a
line with a polymatroid. Research Trends in Combinatorial Optimization, 69-85,
2009, Springer.

9. M. Grötschel, L. Lovász and A. Schrijver. Geometric algorithms and combinatorial
optimization. Algorithms and combinatorics, 1988, Springer.

10. J.D. Hartline and A. Karlin. Profit Maximization in Mechanism Design. Chap.
13 in: N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani. Algorithmic Game
Theory, Cambridge University Press, 2007.

11. B. Heydenreich, D. Mishra, R. Müller, and M. Uetz. Optimal Mechanisms for
Single Machine Scheduling. In: Proc. WINE 2008, LNCS 5385, 2008, 414-425.

12. P. Kenis, (2006). Waiting lists in Dutch health care: An analysis from an organiza-
tion theoretical perspective. J. Health Organization and Mgmt. 20, 2006, 294-308.

13. N. Nisan. Introduction to Mechanism Design (for Computer Scientists). Chap.
9 in: N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani. Algorithmic Game
Theory, Cambridge University Press, 2007.

14. M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Pro-
gramming 58, 1993, 263-285.

15. T. Sandholm. Automated Mechanism Desgin: A New Application Area for Search
Algorithms. In: Proc. CP 2003, LNCS 2833, 2003, 19-36.

16. A. Gershkov, B. Moldovanu, and X. Shi. Bayesian and Dominant
Strategy Implementation Revisited. Manuscript, 2011. Retrieved from
http://pluto.huji.ac.il/˜alexg/.

17. A.M. Manelli and D.R. Vincent. Bayesian and Dominant Strategy Implementation
in the Independent Private Values Model. Econometrica 78, 2010, 1905-1938.

18. R.B. Myerson. Optimal Auction Design. Mathematics of Operations Research 6,
1981, 58-73.

19. M. Queyranne and A.S. Schulz Polyhedral Approaches to Machine Scheduling.
TU Berlin Technical Report 408/1994.

20. W. E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly 3, 1956, 59-66.

21. R. Vohra. Optimization and mechanism design. Mathematical Programming 134,
2012, 283-303.

22. S. Yasutake, K. Hatano, S. Kijima, E. Takimoto and M. Takeda. Online Linear
Optimization over Permutations. In: Proc. ISAAC 2011, LNCS 7074, 534-543.

A Instances

Instance 1 Four jobs with the following parameters:



Job 1: T1 = {6, 7, 10} × {2, 7} ,
P (w1 = 6) = .46, P (w1 = 7) = .48, P (w1 = 10) = .06 ,
P (p1 = 2) = .72, P (p1 = 7) = .28 ,

Job 2: T2 = {5, 8} × {4, 8} ,
P (w2 = 5) = .04, P (w2 = 8) = .96 ,
P (p2 = 4) = .86, P (p2 = 8) = .14 ,

Job 3: T3 = {3, 10} × {8, 10} ,
P (w3 = 3) = .75, P (w3 = 10) = .25 ,
P (p3 = 8) = .51, P (p3 = 10) = .49 ,

Job 4: T4 = {3, 8} × {1, 6} ,
P (w4 = 3) = .41, P (w4 = 8) = .59 ,
P (p4 = 1) = .63, P (p4 = 6) = .37 ,

where ϕj(w
i
j , p

i
j) = P (wj = wij) · P (pj = pij).

Instance 2 Three jobs with the following parameters:

Job 1: T1 = {(2, 1)}, ϕ1((2, 1)) = 1 ,
Job 2: T2 = {(9, 8)}, ϕ3((9, 8)) = 1 ,
Job 3: T3 = {1, 3, 5} × {5, 7} ,

ϕ3((1, 5)) = ϕ3((1, 7)) = ϕ3((3, 7)) = 0.24, ϕ3((3, 5)) = 0.02 ,
ϕ3((5, 5)) = 0.16, ϕ3((5, 7)) = 0.10 .

Using CPLEX, we found that Instance 1 with 4 agents has a Bayes-Nash
optimal iia mechanism with objective value equal to 128.5697. A Bayes-Nash
optimal mechanism not satisfying the iia condition has objective value equal to
128.5195. Dominant strategy optimal mechanisms yield objective value 128.6946,
for the iia mechanism, and objective value 128.6151 for the non-iia mechanism.
Instance 2 has a deterministic Bayes-Nash optimal mechanism with objective
value 45.0, while the randomized Bayes-Nash optimal mechanism has objective
value 44.74625. ut

B Line Intersection Algorithm

Given is s ∈ Q and v ∈ Q being a vertex with the same order of elements as s.
We want to compute s′ ∈ Q, the point where the half-line L = {v + δ∆ | δ ≥ 0}
leaves Q, as well as a facet f of Q with s′ ∈ f . Here, ∆ = (s− v).

Algorithm 2 (Line Intersection Algorithm) For every pair j, k, there is at
most one d ∈ R such that vj + d∆j = vk + d∆k. Let D = {d1, . . . , dγ} be the
set that contains all these values, sorted such that a ≤ b ⇔ da ≤ db. Note that
|D| ≤ n(n − 1)/2. Let γ′ be the minimum index such that dγ

′ ≥ 1. For h =

γ′, . . . , γ− 1 determine the ascending order, σh, of the values (v+ (d
h+dh+1

2 ∆)j,
j ∈ N . Observe that this order is the same for all points on the line segment
(v+dh∆, v+dh+1∆), by definition of the values dh. Also, let σγ be the ascending
order of the values (v + (dγ + 1)∆)j, and σγ

′−1 be the ascending order of the
values sj (which equals that of vj).



These are the O(n2) orders which encode all potential facets trough which
half-line L might leave Q: Each order σh induces the n− 1 inequalities,

∑
j∈[σh(k)]

pjxj ≥
1

2

 ∑
j∈[σh(k)]

pj

2

− 1

2

∑
j∈[σh(k)]

pj
2 k = 1, . . . , n− 1 , (30)

where as usual, [σh(k)] = {σh(1), . . . , σh(k)}. These n− 1 inequalities are suffi-
cient to decide if a given point x with that order of xj’s is contained in Q [14].

As computing the intersection of L with the facet that corresponds to any
such inequality takes O(n) time, an O(n4) time bound follows immediately, by
computing for all O(n3) candidate facets their intersection with L, and returning
the facet f and point s′ which is closest to s along L. (When embedding this line
intersection algorithm in Algorithm 1, in order to avoid trivialities, we of course
need to disregard from all candidate facets those computed in earlier iterations,
which are all fulfilled with equality.)

However, this estimation is too rough: If we consider the orders σh in the
order h = γ′, . . . , γ, which corresponds to the order in which they appear when
moving along L away from s, we observe that the orders σh and σh+1 differ only
by changing the relative order of one pair of elements (or multiple pairs, in case
that more than one pair of elements j, k yield the same value d). Note here that,
if the relative order of only two elements changes, only one new candidate set
(facet) is introduced by this new order. Now, since there are at most n(n− 1)/2
changes in the relative order, the total number of candidate sets (facets) that we
need to encounter is O(n2). If the difference between two orders σh and σh+1

consists of changing the relative order of multiple pairs of elements, this does not
affect the total number of candidates. In order to compute these candidate sets
(facets) incrementally, all we need to do is recall for each h = γ′, . . . , γ, which of
the elements have been reversed with respect to h−1. This information, however,
is available from the initial computation of the values D = {d1, . . . , dγ}.

Lemma 4. The computation of vector s′ with s = λv + (1 − λ)s′, and facet
f 3 s′ in Algorithm 1 can be done in time O(n2 log n).

Proof. Let us first argue that the algorithm is correct. Consider the point s′

on which half-line L leaves Q, then this happens on at least one facet induced
by some tight subset K ⊆ N in (7). Consider the ascending order of values s′j ,
assume it is s′1 ≤ · · · ≤ s′n for simplicity. Then, as subset K is tight for s′, K is
a prefix of that order, K = {1, . . . , |K|}. In the algorithm, however, we consider
as candidate sets all prefixes of all orders of the points on L, hence also K.

Next, concerning the computation time, observe that computation of D takes
O(n2 log n) time. Next, for any of the O(n2) candidate sets (facets) Ktemp, we
compute its intersection stemp with L in O(n) time, and next to Ktemp, we
store the parameter δtemp so that stemp = v + δtemp∆. Clearly, while passing
through the candidate sets, we only need to maintain the minimal δtemp and
corresponding Ktemp. From this a time bound of O(n3) follows.



Additionally, the time for computation of the intersections of the facets with
half-line L can be improved to be O(n2) in total, by computing them incremen-
tally. To illustrate this, let δ[σh(k)] be the intersection corresponding to the set

[σh(k)]. Then

∑
j∈[σh(k)]

pj
(
vj + δ[σh(k)]∆j

)
=

1

2

 ∑
j∈[σh(k)]

pj

2

− 1

2

∑
j∈[σh(k)]

pj
2

and

δ[σh(k)] =

(∑
j∈[σh(k)] pj

)2
−
∑
j∈[σh(k)] pj

2 − 2
∑
j∈[σh(k)] pjvj

2
∑
j∈[σh(k)] pj∆j

. (31)

Now let

P[σh(k)] =
∑

j∈[σh(k)]

pj ,

num([σh(k)]) = P[σh(k)]
2 −

∑
j∈[σh(k)]

pj
2 − 2

∑
j∈[σh(k)]

pjvj ,

the numerator of the right hand side of (31), and

den([σh(k)]) = 2
∑

j∈[σh(k)]

pj∆j ,

the denominator of the right hand side of (31). Now suppose [σh+1(k)] =
[σh(k)] ∪ {a} \ {b}. Then, from

P[σh+1(k)]
2 −

∑
j∈[σh+1(k)]

pj
2 =

(
P[σh(k)] + pa − pb

)2 − ∑
j∈[σh(k)]

pj
2 − pa2 + pb

2

= P[σh(k)]
2 + 2P[σh(k)](pa − pb)− 2papb + pa

2 + pb
2

−
∑

j∈[σh(k)]

pj
2 − pa2 + pb

2

= P[σh(k)]
2 + 2

(
P[σh(k)] − pb

)
(pa − pb)−

∑
j∈[σh(k)]

pj
2 ,

it follows that

δ[σh+1(k)] =
num([σh(k)]) + 2(P[σh(k)] + pb) (pa − pb)− 2(pava − pbvb)

den([σh(k)]) + 2 (pa∆a − pb∆b)
,

which can indeed be computed in constant time. So, if we keep track of P[σh(k)],

num([σh(k)]) and den([σh(k)]) for k = 1, . . . , n − 1 in each ordering h, we can
compute all the intersections in total time O(n2), and therefore, the total com-
putation time is dominated by the time to compute D, which is O(n2 log n).
ut


