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Abstract. Many important systems such as concurrent heap-manipulating programs, commu-
nication networks, or distributed algorithms, are hard to verify due to their inherent dynamics
and unboundedness. Graphs are an intuitive representation for the states of these systems, where
transitions can be conveniently described by graph transformation rules.
We present a framework for the abstraction of graphs supporting abstract graph transformation.
The abstraction method naturally generalises previous approaches to abstract graph transforma-
tion. The set of possible abstract graphs is finite. This has the pleasant consequence of generating
a finite transition system for any start graph and any finite set of transformation rules. Moreover,
abstraction preserves a simple logic for expressing properties on graph nodes. The precision of
the abstraction can be adjusted according to the properties expressed in this logic that are to
be verified.

? The main purpose of this amended version is to correct typos, errors and omissions from previous versions of
this technical report. We also tried to make the text more clear by rewriting some sentences and adding new
figures. There is one major change in terminology: In the previous version of the report the term shaping
was used to denote a morphism between a graph and a shape, and the term abstraction morphism to denote
a morphism between two shapes. The usage of these terms were usually misleading and led to confusion.
Therefore we swapped their definitions. In the current version of this report we use the term abstraction
morphism to denote a morphism between a graph and a shape and we write shape morphism to indicate a
morphism between two shapes.
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1 Introduction

Graphs are an important form of representation for the state of a system. Interesting proper-
ties of a given state have natural graph-theoretic counterparts. Also, their inherent graphical
representation makes them the “lingua franca” of software engineering; they are good to convey
ideas back and forth between different communities such as formal verification and specifica-
tion, software engineering, and even end-users. If we add the concept of graph transformation
for modelling transitions between system states, we form a framework that allows people to
talk about both the states of a system and how it evolves over time.

This paper presents work carried out in the context of the groove project that seeks to
develop such a framework for software verification: states of a software system are represented
by graphs and statements of a programming language are given by the semantics of graph
transformation rules. As an example, Figure 1 depicts a possible graph representation of a
linked-list. Adding a new element to the list consists of creating a new node labelled Cell
with an associated Object-node, and inserting it in the desired place in the list. Removing an
element from the list and many other list operations can also be seen as graph transformations.

1.1 Graph Transformations for System Analysis

A graph transformation rule p : L→ R is given by its name p and a pair of graphs 〈L,R〉, of-
ten called left-hand side and right-hand side, respectively. Performing a graph transformation
on a graph G using rule p can be seen as finding a sub-graph of G that is isomorphic to L
and replacing it with R. Systems and system behaviour can be modelled by graphs and graph
transformations. Let G0 be a graph representing an initial state of a system (e.g., the list on
Figure 1) and let P be a set of transformation rules encoding all possible operations of the
system (e.g., operations on lists). We can explore all accessible configurations and evolutions
of the system given by G0 and P. This is done by applying all possible transformations from
P to the start graph G0 and repeating it iteratively to all graphs resulting from these trans-
formations. This gives rise to a labelled transition system whose states are graphs and whose
transitions are applications of graph transformation rules. One can then verify properties, e.g.,
temporal properties, using the generated transition system. The groove tool [10] allows to
construct (finite portions of) such transition systems and to verify temporal properties using
CTL and LTL logic.

Problems do arise when approaching this task. One such problem is the possible infinite
behaviour of a system which, in most cases, makes it impossible to generate its entire state
space. Another problem is memory space: even for a finite state space, each state can be
quite big to represent if one does it naively. A usual way to circumvent these two problems is
abstraction. In Section 8 we describe several related approaches that exist.

1.2 Contributions

In previous work some of the authors proposed abstraction techniques in which graph nodes
with similar incoming and outgoing edges [9] or similar direct neighbours [2] are summarised
into a single one. Such abstract graphs are sometimes called shapes [14,9] and we borrow the
same vocabulary here. The number of possible such shapes is bounded. This, combined with a
suitable notion of graph transformations for abstract graphs [11], guarantees a finite number
of states for a transition system.
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Fig. 1. Graph representation of a list with four elements. Each Cell contains a pointer to the
Object stored into it via a val-edge, and possibly a pointer to the next cell via a next-edge.

As a first contribution of the paper we introduce a family of neighbourhood shapes as a
part of a general abstraction mechanism that subsumes previous works. For the abstraction,
nodes are grouped if they have similar neighbourhood up to some “radius” i, parameter of the
abstraction. This allows us to have abstractions with different precisions. Additionally, the
number of possible neighbourhood shapes is bounded. Moreover, we define graph transforma-
tions for our neighbourhood shapes, which allows us to over-approximate system behaviour
while keeping a finite state space.

Our second contribution is a logic that goes hand-in-hand with our abstraction method.
That is, given a formula describing a property we are interested in, our abstraction method
guarantees that a) if the formula holds for the original graph, then it holds for the abstracted
graph (we call this property preservation); and b) if the formula holds for the abstracted graph,
then it holds for the original one too (we call this reflection).

Finally, all these ingredients can be combined to define a fully automatic method which,
given an initial graph, a set of graph transformation rules and a set of logic properties on the
reachable graphs we are interested in, constructs a finite abstract labelled transition system
on which these properties can be verified.

This report is structured as follows. Section 2 introduces graphs and graph transforma-
tions. Section 3 defines the general abstraction mechanism as well as neighbourhood shapes.
In Section 4 we define canonical shapes, which are a family of shapes including neighbourhood
shapes that enjoy the good property of having a unique representation. Then in Section 5 and
Section 6 we define transformations on shapes and describe how they can be used for approx-
imating system behaviour into finite labelled transition systems. In Section 7 we introduce
a modal logic that is preserved and reflected by the neighbourhood abstraction mechanism.
Section 8 describes some related work. Finally, we conclude in Section 9.

2 Graphs and Graph Transformations

We are interested in finite graphs whose edges and nodes are labelled from a finite set of
labels Lab. Formally, we do not associate labels with the nodes of the graph, we use instead
special edges whose target is a particular object ⊥ not in the set of nodes of the graph. This
in particular allows us to have nodes with multiple labels, which shows to be very useful
when modelling with graphs. Moreover, we allow multiple edges, i.e., a graph can have several
different edges with the same source and target nodes and the same label.

Definition 1 (Graph). A graph G is a tuple 〈NG, EG, srcG, tgtG, labG〉 where

– NG is a finite set of nodes;
– EG is a finite set of edges disjoint from NG;
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– srcG : EG → NG and tgtG : EG → NG∪{⊥} with ⊥ 6∈ (NG∪EG) are mappings associating
with each edge its source and target nodes, respectively; and

– labG : EG → Lab is a labelling map for the edges of the graph. J

The mapping labG is extended on nodes to designate the set of labels of a node, i.e., labG(v) =
{a ∈ Lab | ∃e ∈ EG : srcG(e) = v, tgtG(e) = ⊥, labG(e) = a}.1 We denote as v�a

G and
v�a

G the set of a-outgoing edges and a-incoming edges of the node v, respectively. That is,
v�a

G = {e ∈ EG | srcG(e) = v, labG(e) = a} and symmetrically for v�a
G. For a set of nodes

V , V�a
G (resp. V�a

G) is the extension of �a
G (resp. �a

G) on sets. Finally, for X,Y sets of
nodes or nodes, we denote X ��a

G Y the set of edges labelled a and going from X to Y ,
i.e., X ��a

G Y = X �a
G ∩ Y�a

G. When graph G is clear from the context, we may omit the
subscript G in NG, EG, srcG, tgtG, labG, �a

G, �
a
G, and ��a

G .

Definition 2 (Graph Morphism). If G and H are graphs, a graph morphism f : G → H
is a function from NG ∪ EG ∪ {⊥} to NH ∪ EH ∪ {⊥} such that

– f preserves ⊥, i.e., f(⊥) = ⊥, f−1(⊥) = {⊥};
– f maps nodes to nodes and edges to edges, i.e., f(NG) ⊆ NH , f(EG) ⊆ EH ;
– f is compatible with source and target mappings, i.e., srcH ◦ f = f ◦ srcG, and tgtH ◦ f =
f ◦ tgtG; and

– f preserves labels, i.e., labH ◦ f = labG. J

A morphism f is called injective (resp. surjective, resp. bijective) if it defines an injective (resp.
surjective, resp. bijective) map. A bijective morphism is also called an isomorphism.

For the sake of clarity, in the sequel of the paper we ignore the node ⊥ and simply talk
about node labels. It is easy to see that all the proofs can be adapted to this formal definition
using the ⊥ node.

Background on Graph Transformations

Let us start with some notations for functions. For a set A, we denote idA the identity function
on A. For two functions f, g, we denote f ∪ g their union, that is, f ∪ g is the function whose
domain is the union of the domains of f and g and whose co-domain is the union of the
co-domains of f and g. The union of functions is defined only if for any x belonging both to
the domains of f and g, f and g agree on their value for x.

Definition 3 (Transformation Rule). A graph transformation rule P is a pair of graphs
〈L,R〉, called left-hand side and right-hand side respectively. A transformation rule can be seen
as the single graph L ∪R. In this case we distinguish the following sets:

– Ndel
P = NL rNR and Edel

P = EL r ER are the elements to be deleted;
– Nnew

P = NR rNL and Enew
P = ER r EL are the elements to be created;

– Nuse
P = NL ∩NR and Euse

P = EL ∩ ER are the elements that remain unchanged. J

The subscript P is omitted when clear from the context.

1 Note that labG(e) is a label for an edge e, and labG(v) is a set of labels for a node v.
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Fig. 2. Example of a transformation rule P = 〈L,R〉 and its application to a graph G via
matchingm : L→ G. Rule morphism p is indicated by dotted lines. For the sake of readability,
the matching m : L → G is indicated by highlighting its image m(L) in G. The host graph
G represents a list with two elements with some additional object in the environment. The
application of the rule results in adding a new element at the head of the list.

Definition 4 (Graph Transformation). Let G be a graph and P = 〈L,R〉 be a transforma-
tion rule such that G and P are disjoint. A matching m for P into G is an injective morphism
m : L → G satisfying the so called dangling edges application condition: for any edge e of G,
if src(e) ∈ m(Ndel) or tgt(e) ∈ m(Ndel), then e ∈ m(Edel).

If m is a matching for P into G, then the transformation of G according to P and m is
the graph H defined as follows (with m′ : P → G the morphism m ∪ idNnew∪Enew):

– NH = (NG rm(Ndel)) ∪Nnew;
– EH = (EG rm(Edel)) ∪ Enew;
– srcH = srcG ∪m′ ◦ srcP restricted to EH ;
– tgtH = tgtG ∪m′ ◦ tgtP restricted to EH ; and
– labH = labG ∪ labP restricted to EH .

We write G P,m−→ H to designate that m is a matching for P in G and H is the graph
resulting from the transformation. J

The dangling edges application condition is standard in the so called double push-out
approach for graph transformation. It ensures that performing a transformation does not
introduce dangling edges (edges without source or target node).

Figure 2 depicts a transformation rule that adds an element to the head of a list. An
example application of this rule is also shown.

3 Graph Abstraction

In this section, abstract graphs are called shapes. The name “shape” comes from work in shape
analysis [14], where abstract graphs are used to represent pointer structures. Any node and
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any edge of a given shape may represent several nodes/edges of some concrete graph. We
want it to carry information on the number of summarised nodes/edges. To define interesting
abstractions, it seems necessary that this multiplicity information to be approximate: think
for instance about abstracting a list independently of its length. In Section 3.1 we introduce
the notion of multiplicity for handling approximate information on cardinals of sets. Then, in
Section 3.2 we define the shapes that we consider, as well as the abstraction mechanism which
is essentially a morphism from a graph to a shape that satisfies some extra conditions.

Shapes may be more or less abstract. In particular, a shape may be abstracted to another
shape. This yields a relation between shapes, which we define in Section 3.3. In the same
section, we also define isomorphism of shapes and show that isomorphic shapes represent the
same sets of concrete graphs.

Finally, in Section 3.4, we define a particular family of shapes called neighbourhood shapes.
Neighbourhood shapes have several interesting properties that are studied in the rest of the
paper.

3.1 Multiplicities

Amultiplicity is an approximation of the cardinal of a (finite) set. Intuitively, all sets containing
strictly more than µ elements, for some fixed natural µ, are considered to have the same
cardinal. This notion of multiplicity was also used in [9].

Definition 5 (Multiplicity). For a natural number µ > 0, let Mµ be the set {0, 1, 2, . . . , µ, ω}
where ω is distinct from all natural numbers. The multiplicity with precision µ is the function
associating with each finite set U the value |U |µ in Mµ defined by:

|U |µ =

{
|U | if |U | ≤ µ,
ω otherwise.

The value |U |µ is called the µ-multiplicity of U , or simply the multiplicity of U if µ is clear
from the context. Elements of Mµ are called multiplicities. We use M+

µ to denote the set
Mµ r {0}. J

We extend the usual ordering ≥ over elements of Mµ by defining ω ≥ λ for any λ in Mµ. Sum
can also be extended over multiplicities on the expected way: let I be a finite index set and
let (λi)i∈I be elements of Mµ. Then

∑µ
i∈I λi, the µ-sum of the (λi)i∈I , is

∣∣⋃
i∈I Ai

∣∣
µ
where the

(Ai)i∈I are pairwise disjoint sets such that |Ai|µ = λi for any i in I.
In the sequel of the paper, we consider two naturals ν, µ. Whenever their value is not spec-

ified, they may have any positive value. The ν-multiplicity is used for giving the multiplicity
of sets of nodes, and µ-multiplicity for giving the multiplicity of sets of edges. In particular,
these two numbers are parameters of graph abstractions.

3.2 Shapes and Abstraction Morphisms

A shape is a graph together with a node multiplicity function that indicates, for each node of
the shape, how many concrete nodes it summarises. Moreover, the set of nodes is partitioned
into groups. Edges with same source node, and ending into nodes of the same group (or,
respectively, edges with the same target node, and starting in nodes of the same group)

9



(a) µ = 1, ν = 1 (b) µ = 1, ν = 3 (c) µ = 1, ν = 1

Fig. 3. Examples of shapes.

cannot be distinguished. Only the number of such edges is indicated by the edge multiplicity
functions of the shape.

We start by giving a flavour of what a shape is, in the following example.

Example 6 (Shape). Figure 3 depicts three shapes as well as values for µ and ν for these shapes.
With each node of each shape is associated a multiplicity from M+

ν , indicating the number of
concrete graph nodes it represents; this is called the node multiplicity. The dotted rectangles
are delimiting groups of nodes. By definition, this grouping can be arbitrary; in practise it
would be defined by some common characteristic (e.g., nodes with same label, nodes with
similar neighbourhood, etc). All edges have associated multiplicity information (from Mµ)
in their end points. Sometimes, this multiplicity is shared by several edges, indicated by the
grey arc relating them. These are the so-called outgoing edges multiplicity, when associated
to source of the edge, and incoming edges multiplicity when associated to the target. An edge
multiplicity intuitively indicates how many of the depicted edges should exist in a concrete
graph. One can notice that edges related in one of their end points all have their other end
point in the same group of nodes, and all have the same label. Actually, this is the condition
for relating edges. To be more precise, according to the formal definition, edge multiplicities
are associated with a triple composed of a node, a label and a group of nodes. This is presented
in Definition 7.

Let us now explain how one should interpret these example shapes.

(a). The shape on Figure 3(a) represents a set of bipartite concrete graphs in which a-nodes
are connected to b-nodes by c-edges. Each of these graphs has at least two (here ω on
nodes or edges stands for “two or more”, as ν = µ = 1) a-nodes and at least three (ω plus
one) b-nodes. Moreover, every a-node has at least two (i.e., ω) outgoing c-edges going to
b-nodes. All b-nodes except one have only one incoming edge; the remaining b-node has
at least two incoming edges. See Figure 4(a) for some example concrete graphs.

(b). The shape on Figure 3(b) represents a set of concrete graphs having three a-nodes con-
nected to each other and forming cycles of b-edges. See Figure 4(b) for some example
concrete graphs.

(c). The shape on Figure 3(c) represents a set of list-like concrete graphs having Cell-nodes
connected by next-edges. Each of these graphs has at least one acyclic connected component
of length four or more with several (possibly zero) cyclic connected components of arbitrary
length. See Figure 4(c) for some example concrete graphs. J

Before giving the formal definition of a shape, let us fix some notations. Let A be a set and
∼⊆ A×A be an equivalence relation over A. For x ∈ A, we denote [x]∼ the equivalence class
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Fig. 4. Example concrete graphs that can be abstracted to the shapes on Figure 3.

of x induced by ∼, i.e., [x]∼ = {y ∈ A | y ∼ x}. We denote A/∼ the set of equivalence classes
in A, i.e., A /∼= {[x]∼ | x ∈ A}. Moreover, if ∼ and ∼′ are two equivalence relations over
A, we write ∼⊆∼′ whenever for all x, y ∈ A, x ∼ y implies x ∼′ y. Note that if ∼⊆∼′, then
any equivalence class for ∼ is included into the equivalence class for ∼′, that is, for all x ∈ A,
[x]∼ ⊆ [x]∼′ . This means in particular that any equivalence class for ∼′ can be obtained as an
union of equivalence classes for ∼.

Formally, a shape is defined as follows:

Definition 7 (Shape). A shape S is a structure 〈GS ,'S ,multnS ,multoS ,multiS〉 where

– GS = 〈NS , ES , srcS , tgtS , labS〉 is a graph;
– 'S ⊆ NS ×NS is an equivalence relation on NS called the grouping relation of S;
– multnS : NS →M+

ν is a node multiplicity function;
– multoS : NS × Lab×NS /'S→Mµ is an outgoing edge multiplicity function; and
– multiS : NS × Lab×NS /'S→Mµ is an incoming edge multiplicity function.

Moreover, for any node v ∈ NS, any label a ∈ Lab and any equivalence class of nodes C ∈
NS /'S, we require that multoS(v, a, C) = 0 if, and only if, v ��a

GS
C = ∅, and multiS(v, a, C) =

0 if, and only if, C ��a
GS

v = ∅. J

As already mentioned, a shape is a representation of a set of concrete graphs. In this sense,
it is an abstract graph. The fact that some concrete graph is abstracted to a given shape is
determined by the presence of the so called abstraction morphism, which is a morphism from
the graph to the shape that complies to some additional constraints. We say then that the
graph is a concretisation of the shape.

Definition 8 (Abstraction Morphism, Concretisation). Let G be a graph and S be a
shape. An abstraction morphism of G into S is a graph morphism s : G → GS such that the
following conditions are met:

11



Fig. 5. Example of a shape for a list. All edge multiplicities are equal to one and are omitted.

– for all w ∈ NS, multnS(w) =
∣∣s−1(w)∣∣

ν
;

– for all w ∈ NS, for all a ∈ Lab, for all C ∈ NS /'S, and for all v ∈ s−1(w),

multoS(w, a, C) =
∣∣v ��a

G (s−1(C))
∣∣
µ

and
multiS(w, a, C) =

∣∣(s−1(C)) ��a
G v
∣∣
µ
.

J

If G is a graph and S is a shape such that there exists an abstraction morphism s : G→ S,
then we say that G is a concretisation of S. The set of concretisations of a shape S is denoted
concr(S).

Example 9. The list structure from Figure 1 is a concretisation for the shape shown in Figure 5.
The corresponding morphism maps the List-node of the graph to the List-node of the shape,
the right-most Cell-node and the right-most Object-node from the graph are mapped to the
corresponding right-most nodes from the shape. The remaining Cell-nodes and Object-nodes
from the graph are mapped to the left-hand side such nodes of the shape. J

Note that an abstraction morphism is always surjective; this follows from the requirement
for the multnS function together with the fact that multnS maps to non-null multiplicities,
by definition of shapes. The requirements on outgoing (resp. incoming) edge multiplicities
guarantee in particular that two different nodes v, v′ from a graph G can be mapped to
the same node w of a shape S only if v, v′ have the same outgoing (resp. incoming) edges
multiplicities with respect to a label and group of nodes.

Construction of Shapes. In Definitions 7 and 8, a shape S is a graph-like structure defined
independently on any of its concretisations. A graph G can be abstracted to a shape S if there
exists a morphism from G to the graph part of S satisfying some conditions. In particular,
these definitions do not give a hint on how to construct shapes. In the following, we present
an alternative, constructive way of defining a shape by providing a graph and two equivalence
relations on its nodes.

Let G be a graph and ∼, ≡ ⊆ NG × NG be two equivalence relations on the nodes of G
satisfying the following conditions:

(C1) ≡ ⊆ ∼, that is, if v ≡ v′, then v ∼ v′;

12



(C2) for any v, v′ nodes of G, for any ∼-equivalence class of nodes C ∈ NG /∼ and for any label
a, if v ≡ v′, then

|v ��a
G C|µ =

∣∣v′ ��a
G C

∣∣
µ

and
|C ��a

G v|µ =
∣∣C ��a

G v
′∣∣
µ

Let the equivalence relation ≡ be extended on edges of G in the following way: e ≡ e′ if
srcG(e) ≡ srcG(e

′), tgtG(e) ≡ tgtG(e
′) and labG(e) = labG(e

′).
Consider now the graph GS = 〈NS , ES , srcS , tgtS , labS〉 defined by:

– nodes of GS are ≡-equivalence classes of nodes of G, i.e., NS = NG /≡;
– edges of GS are ≡-equivalence classes of edges of G, i.e., ES = EG /≡; and
– for any edge [e]≡ in ES , srcS([e]≡) = [srcG(e)]≡, tgtS([e]≡) = [tgtG(e)]≡ and labS([e]≡) =

labG(e). Note that, due to the definition of ≡ on edges, the particular choice of e for [e]≡
is not important.

Consider finally the mapping s : NG ∪EG → NS ∪ES defined by: s(v) = [v]≡ and s(e) = [e]≡
for any v in NG and any e in EG. The next lemma follows easily from the definitions, so we
present it without proof.
Lemma 10. 1. The mapping s, canonically extended to ⊥, defines a surjective graph mor-

phism from G into GS; by abuse of notation we denote this morphism s as well.
2. Let

– ∼S⊆ NS × NS be the equivalence relation on nodes of GS defined by [v]≡ ∼S [v′]≡ if
v ∼ v′ for all v, v′ nodes of G. Due to Condition (C1), ∼S is well defined;

– multnS : NS →M+
ν be the mapping defined by multnS(w) =

∣∣s−1(w)∣∣
ν
for all w in NS;

– multoS ,multiS : NS × Lab×NS /∼S→Mµ be the mappings defined by

multoS([v]≡ , a, C) =
∣∣v ��a

G s
−1(C)

∣∣
µ

multiS([v]≡ , a, C) =
∣∣s−1(C) ��a

G v
∣∣
µ

for all v ∈ NG, a ∈ Lab and C ∈ NS /∼S. Due to Condition (C2), multoS and multiS
are well-defined.

Then S = 〈GS ,∼S ,multnS ,multoS ,multiS〉 is a shape and s is an abstraction morphism. J

It follows from this lemma that, given a graph G and two equivalence relations on the nodes
of G satisfying Condition (C1) and Condition (C2), one can define a shape S such that there
exists an abstraction morphism s : G→ S. Note that not all shapes can be defined this way,
for two reasons.2 First, shapes defined as in Lemma 10 necessarily have concretisations, and
there exist shapes without concretisations. Second, shapes defined as in Lemma 10 cannot have
parallel edges (i.e., edges with the same source and target node, and the same label), whereas
shapes may have such parallel edges. Nevertheless, it is the case that any shape admitting
concretisations and without parallel edges can be defined3 by a graph G and two equivalence
relations, as explained.

For a graph G and equivalence relations ∼ and ≡ satisfying Condition (C1) and Con-
dition (C2), we define shape(G,∼,≡) as the shape described by Lemma 10 and we call
absMorph(G,∼,≡) the corresponding abstraction morphism.
2 Actually, there is a third reason which has to do with representation, and that is ignored here. The shapes
defined as in Lemma 10 come with their representation: nodes are equivalence classes of nodes of some graph,
edges are equivalence classes of edges of some graph, and so on. Thus, two isomorphic, but not equal, graphs
would define two different shapes, although intuitively we would consider these two shapes as equivalent.
This “equivalence” of shapes is called shape isomorphism and is defined in Section 3.3.

3 Up to isomorphism; see also Footnote 2.
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3.3 Shape Morphism and Isomorphism of Shapes

Just like graphs can be abstracted to shapes, shapes can be abstracted (embedded) into (more
abstract) shapes. In this section we describe this relation, defined by the presence of the so
called shape morphism between shapes. Then we show that these morphisms are composable.
We also use shape morphisms to define the notion of isomorphism between shapes, with the
interesting property that isomorphic shapes have the same concretisations. As we will see,
these properties allow us to define a partial order on shapes.

Definition 11 (Shape Morphism). Let S and T be two shapes. A shape morphism between
them is a graph morphism f : S → T that complies to the following axioms:

1. for all v, v′ ∈ NS: v 'S v′ implies f(v) 'T f(v′);
2. for all w ∈ NT : multnT (w) =

(∑ν
v∈f−1(w)multnS(v)

)
;

3. for all w ∈ NT , all a ∈ Lab, all C ∈ NT /'T , and all v ∈ f−1(w), it holds

multoT (w, a, C) =

µ∑
D ∈ (f−1(C))/'S

multoS(v, a, D)

and

multiT (w, a, C) =

µ∑
D ∈ (f−1(C))/'S

multiS(v, a, D).

When such a morphism exists, we say that S is a sub shape of T , and we denote it S v T .J

Let us first argue that these axioms are well defined. In the third axiom we are summing up the
multoS(v, a, D) and multiS(v, a, D) for all D ∈ (f−1(C)) /'S . It is then necessary that all the
triples (v, a, D) belong to the domain of multiS , that is, it is necessary that any such D belongs
to NS /'S . This is indeed the case due to the first axiom. Let us now make a comparison
between abstraction and shape morphisms. The second condition for the shape morphism
corresponds to the first condition for the abstraction morphism, but we are summing up node
multiplicities instead of simply counting nodes. The third condition on the shape morphism
is very close to the second condition for the abstraction morphism, but we are taking into
account outgoing and incoming edge multiplicities instead of simply counting edges.

Proposition 12 (Shape Morphisms are Composable). Let S, T and U be shapes, f be
a shape morphism between S and T and g another such morphism between T and U . Then
g ◦ f (the function composition of f and g) is a shape morphism between S and U . J

Proof. See Appendix A. ut

Let us point out that an abstraction and a shape morphism can also be composed, resulting
into an abstraction morphism. The next proposition is presented without proof, but it is not
difficult to see that is follows from Proposition 12 and the definition of abstraction morphism.

Proposition 13 (Abstraction and Shape Morphisms). Let G be a graph and S and T
be shapes such that there exist an abstraction morphism s : G → S and a shape morphism
f : S → T . Then, f ◦ s : G→ T is an abstraction morphism. J

Shapes that are the sub-shapes of one another are called isomorphic.
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Definition 14 (Isomorphism of Shapes). Two shapes S and T are isomorphic if there
exists an isomorphism f : GS → GT such that f and f−1 are shape morphisms. In this case,
f is called a shape isomorphism. J

It is easy to see from the definitions that if f : S → T is a shape isomorphism, then the
grouping relation 'T is such that f(v) 'T f(w) if, and only if, v 'S w; the node multiplicity
function multnT is such that multnT (f(v)) = multnS(v), and analogously for the edge multiplicity
functions.

Lemma 15 (Isomorphism and Concretisations). If two shapes S and T are isomorphic,
then they have the same concretisations. J

Proof. Immediately follows from the definitions and Proposition 13. ut

The inverse is not true. Consider for instance two shapes S and T as follows: S has a single
node of multiplicity two and no edges. T has two nodes, each of multiplicity one, and no edges.
S and T both have a unique concretisation (up to graph isomorphism) which is the graph with
two nodes and no edges, but S and T are clearly not isomorphic. Another example are shapes
without concretisations, which may have very different underlying graph structures.

Partial order relation over shapes Two shapes are considered equivalent if they have the
same concretisations; we denote this equivalence relation =concr. That is, for all shapes S, T ,
S =concr T if, and only if, concr(S) = concr(T ).

Lemma 16 (Partial Order). The sub-shape relation v defines a partial order between shapes
with respect to the equivalence relation =concr. J

Proof. v is clearly reflexive; it is antisymmetric for the equivalence relation =concr, by defini-
tion of isomorphism of shapes and by Lemma 15. Finally, v is transitive by Proposition 12. ut

It is also easy to see that the v relation is compatible with the subset relation on concreti-
sations, in the sense that S v T implies that concr(S) ⊆ concr(T ). This is an immediate
consequence of Propositions 12 and 13. This partial order could be a first step towards a link
between our abstraction mechanism and abstract interpretation (see, e.g., [6]). However, it
does not allow us to define immediately a Galois connection between graphs and shapes, but
between sets of graphs and sets of shapes, as the sub-shape relation is in connection with the
subset relation on graphs.

3.4 Neighbourhood Shapes

Neighbourhood shapes are a special family of shapes that have several interesting properties,
established on the rest of the paper. For the moment, let us only point out the possibility
to parametrise the precision of abstraction offered by neighbourhood shapes. Precision of
(general) shapes, that we considered up to now, can already be parametrised by the two
multiplicities µ and ν. In a neighbourhood shape, each (abstract) node represents concrete
graph nodes that have similar neighbourhood, up to some “radius” i. This i is also a parameter
of the precision of neighbourhood shapes.

Neighbourhood abstraction (i.e., abstracting into a neighbourhood shape) is always defined
for graphs. That is, for any values of the parameters µ, ν and i, and for any graph G, there
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Fig. 6. Level one neighbourhood shape of a list. All edge multiplicities are equal to one and
are omitted.

exists a neighbourhood shape with the corresponding precision that is a shape for G. This
does not hold for shape morphisms: some shapes can be embedded into a neighbourhood shape
with a given precision, but for other shapes this is not possible.

Hereafter, we define neighbourhood abstraction for graphs and shapes, describing the con-
ditions for existence of the latter. For both, we first define the so-called neighbourhood equiva-
lence over nodes and edges of a graph (resp. shape) on which the neighbourhood abstraction
is based.

Neighbourhood Shape of a Graph

Definition 17 (Neighbourhood Equivalence). Let G be a graph. For each natural i, the
i neighbourhood equivalence relation ≡i between nodes of G is recursively defined as:

– v ≡0 v
′ if labG(v) = labG(v

′);
– v ≡i+1 v

′ if v ≡i v′, and |v ��a
G C|µ = |v′ ��a

G C|µ, and |C ��a
G v|µ = |C ��a

G v
′|µ for all

label a in Lab and for all set of nodes C ∈ N / ≡i.

The i-neighbourhood equivalence relation is extended to edges of G by e ≡i e′ if labG(e) =
labG(e

′), srcG(e) ≡i srcG(e′), and tgtG(e) ≡i tgtG(e′). J

We can now define the family of neighbourhood abstraction morphisms. Two nodes are
mapped to the same shape node if they are neighbourhood equivalent up to some radius. The
grouping relation is also given by neighbourhood equivalence, but using a smaller radius.

Definition 18 (Neighbourhood Shape of a Graph, Neighbourhood Abstraction
Morphism of a Graph). For any natural i ≥ 1, the level i neighbourhood shape of G
is defined by shape(G,≡i−1,≡i) and the level i neighbourhood abstraction morphism of G by
absMorph(G,≡i−1,≡i). J

Figures 6 and 7 show respectively the level one and level two neighbourhood shapes of the
list from Figure 1, for µ = 1 and ν = 1. Defining the corresponding abstraction morphisms is
left to the reader.

The neighbourhood shape of a graph cannot be dissociated from the graph because of its
representation: nodes and edges of the shape are sets of nodes and sets of edges of the graph.
This situation is not very convenient: we would like to be able to talk about neighbourhood
shapes of graphs to designate their properties and not some particular representation, that
is, to designate their isomorphism class. Thus, we overload the terms neighbourhood shape
and neighbourhood abstraction morphism in the following way. In the sequel, we use the term
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Fig. 7. Level two neighbourhood shape of a list. All edge multiplicities are equal to one and
are omitted.

neighbourhood shape of graph G to designate the isomorphism class of the actual neighbour-
hood shape of G in the sense of Definition 18, and we use the term neighbourhood abstraction
morphism of graph G for morphisms s : G→ S such that s = f ◦ s′, where s′ : G→ S′ is the
actual neighbourhood shape of G and f : S′ → S is a shape isomorphism.

Neighbourhood Shape of a Shape

Definition 19 (Neighbourhood Equivalence for Shapes). Let S be a shape defined by
the tuple S = 〈GS ,'S ,multnS ,multoS ,multiS〉. For any i ≥ 0, the binary relation ∼i over nodes
of S is defined as:

– w ∼0 w
′ if labS(w) = labS(w

′);
– w ∼i+1 w

′ if w ∼i w′, 'S⊆∼i and for all C ∈ NS /∼i, and for all labels a,

µ∑
K∈NS/'S | K⊆C

multoS(w, a,K) =

µ∑
K∈NS/'S | K⊆C

multoS(w
′, a,K)

and analogously for the incoming edges multiplicity function.

The relation ∼i is extended to edges of S by: e ∼i e′ if srcS(e) ∼i srcS(e′), tgtS(e) ∼i tgtS(e′)
and labS(e) = labS(e

′). J

The requirement 'S⊆∼i intuitively says that the grouping relation 'S should be “finer”, in
the sense of grouping less nodes than the ∼i relation that we are trying to define. Note that
the requirement 'S⊆∼i is necessary, as it ensures that any K ∈ NS /'S is a subset of some
C ∈ NS /∼i. If this requirement is not fulfilled, then the sums in the definition above are not
defined. In this case, the relations ∼j for any j > i are empty.

Lemma 20. Let S be a shape and i ≥ 1. If the relation ∼i over the nodes of S is not empty,
then ∼i is an equivalence relation. J

Proof. By definition of ∼i, ∼i is empty if and only if 'S 6⊆∼i−1. Now, if 'S⊆∼i−1, then it is
easy to see that ∼i is symmetric, reflexive and transitive. ut

Definition 21 (Neighbourhood Shape of a Shape, Neighbourhood Shape Mor-
phism of a Shape). Let S be a shape and i ≥ 1. If the relation ∼i over the nodes of
S is not empty, let T be the shape defined as:

– nodes of T are [v]∼i , for any v node of NS;
– edges of T are [e]∼i , for any e edge of ES;
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– for any edge e′ = [e]∼i in ET (for e ∈ ES), srcT (e′) = [srcS(e)]∼i , tgtT (e
′) = [tgtS(e)]∼i

and labT (e
′) = labS(e). By definition of ∼i these are well defined;

– 'T=∼i−1;
– for any w ∈ NT ,

multnT (w) =
ν∑

v∈NS | [v]∼i=w

multnS(v);

– for any w ∈ NT , any label a, any C ∈ NT /'T , and some v ∈ NS such that [v]∼i = w,

multoT (w, a, C) =

µ∑
K∈NS/' | K⊆C

multoS(v, a,K)

and similarly for incoming edges multiplicities.

Then T is called the level i neighbourhood shape of S. J

Note that the edge multiplicity functions are well defined by definition of ∼i. Also note that
in the last item of the definition we may pick any v in the equivalence class [v]∼i = w because
all multiplicities sums for elements of the same class are equal. This was checked when ∼i was
built.

We conclude the section with two properties of neighbourhood shapes and neighbourhood
shape morphism that are used in Section 6.

Lemma 22 (Composition of neighbourhood morphisms). Let G be a graph, S, T be
shapes, s : G→ S, t : G→ T be abstraction morphisms, and β : T → S be a shape morphism
such that s = β ◦ t.

1. If s is the neighbourhood abstraction morphism of G, then β is the neighbourhood shape
morphism of T .

2. If β is the neighbourhood shape morphism of T , then s is the neighbourhood abstraction
morphism of G.

S

T

G

t

s
β

J

Proof. See Appendix B. ut

Lemma 23 (Common concretisation implies isomorphism). If any two neighbourhood
shapes have a common concretisation, then they are isomorphic. J

Proof. The proof of the lemma uses the canonical representation of neighbourhood shapes,
defined in Section 4. Thus, we give it in Appendix C. ut
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4 Canonical Shapes

Canonical shapes are a special class of shapes that includes neighbourhood shapes. More
precisely, this class is composed of neighbourhood shapes, and of shapes that do not admit
concretisations. Canonical shapes have a so called “canonical” representation which is a rep-
resentation of isomorphism classes of such shapes. This in particular allows us to define a
normalised representation of (isomorphism classes of) neighbourhood shapes. Moreover, for
each shaping precision (i.e., values for µ, ν and the neighbourhood radius i), the number of
canonical shapes is finite. Additionally, it is decidable whether a shape is (isomorphic to a)
canonical shape, and in this case its canonical representation can be computed. All these prop-
erties make canonical shapes a good over-approximation of the set of neighbourhood shapes.

4.1 Canonical Names

In this section, we introduce the notion of a canonical name. Each equivalence class with
respect to a neighbourhood equivalence is uniquely identified by such a name. For example,
each equivalence class with respect to ≡0 contains only nodes having the same labels and
is identified by this set of labels. It becomes the canonical name of this equivalence class.
Each equivalence relation ≡i comes with a set NCani of canonical names. A neighbourhood
shape can be viewed as a graph whose nodes and edges are canonical names. The notion of a
canonical name occurs frequently in literature, for example in [15].

Definition 24 (Canonical Name). The set of level i canonical node names, NCani, is
defined inductively for i ≥ 0:

NCan0 = 2Lab

NCani+1 = NCani × (NCani × Lab→Mµ)× (NCani × Lab→Mµ).

The set ECani of level i canonical edge names is ECani = NCani × Lab× NCani. J

Let G be a graph. The mapping nameiG maps nodes and edges of G to their level i canonical
name as follows. For node v of G, name0G(v) = labG(v), and namei+1

G (v) = 〈nameiG(v), out, in〉
where for each canonical name C in NCani and for each label a in Lab (NC stands for the set
of nodes v′ such that nameiG(v

′) = C),

out(C, a) = |v ��a
G NC |µ in(C, a) = |NC ��a

G v|µ .

For edge e of G, nameiG(e) = 〈nameiG(src(e)), lab(e), nameiG(tgt(e))〉.

Example 25. Consider the level zero canonical node name C0 = {c, d} and the level one
canonical node name C1 = 〈{a},0, in〉, where 0 indicates the constant function associating 0
to all elements of its domain, and in(C0, b) = 1, and in(C ′, x) = 0 for all C ′ 6= C0 and all
x 6= b. C0 is the class of nodes labelled c and d. C1 is the class of nodes labelled a that have
one incoming b-edge from a node labelled c and d and no more adjacent nodes. J

Note that the number of level i canonical names is exponentially growing in i. However,
for any i, this number is bounded in terms of the number of node labels and µ.
Note 26. For any i ≥ 0, the sets of level i node and edge canonical names are finite. J

The number of different canonical names is growing super-exponentially in i, that is, |NCani| ≥
im = mm···

m︸ ︷︷ ︸
i

, where m = µ+2. Nevertheless, we believe that in practical cases the number of

used different canonical names would not reach this upper bound.
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4.2 Canonical Representation of Neighbourhood Shapes

There is a quite clear relation between canonical names and the neighbourhood equivalence
relation: two nodes (resp. edges) in a graph are i-neighbourhood equivalent if, and only if,
they have the same level i canonical names. Next lemma easily follows from the definitions
thus we present it without proof.

Lemma 27. For any i ≥ 0, any graph G, any two nodes v, v′ of G and any two edges e, e′

of G, v ≡i v′ if, and only if, nameiG(v) = nameiG(v
′), and e ≡i e′ if, and only if, nameiG(e) =

nameiG(e
′). J

In what follows we show that this correspondence gives rise to a canonical representation
of neighbourhood shapes. We first introduce the actual representation, and then show that it
is canonical, in the sense of uniqueness (up to shape isomorphism).

LetG be a graph. Consider the triple CG = 〈namei(NG), namei(EG),mult〉, where namei(NG)
and namei(EG) are the sets of node and edge level i canonical names of the graph G, re-
spectively, and mult : namei(NG) → M+

ν is the function defined for all C ∈ namei(NG) by
mult(C) =

∣∣{v ∈ NG | nameiG(v) = C}
∣∣
ν
. We show that CG is a canonical representation of

the isomorphism class of the level i neighbourhood shape of G. This provides us with a rep-
resentation of neighbourhood shapes that is independent of the graphs they were computed
from.

Lemma 28 (Canonical Representation). Let G,H be graphs, and let i ≥ 1. The level i
neighbourhood shapes of G and H are isomorphic if, and only if, CG and CH are equal. J

By CG and CH are equal, we mean component-wise equality, that is, equality of the sets of
node and edge canonical names and equality of the node multiplicity functions that define
them.

Proof. The proof is given in Appendix D since it uses results that are introduced later, namely
the relation between neighbourhood shape morphisms and the modal logic defined in Section 7.

ut

Thus, by Lemma 28 we know that any isomorphism class of level i neighbourhood shapes
has a canonical representation of the form 〈N , E ,mult〉, where N ⊆ NCani, E ⊆ ECani,
and mult : N → ν. Then the question arises what is the relationship between triples from
〈N , E ,mult〉 and neighbourhood shapes. This is shown in the next section.

4.3 Canonical Shapes

We denote CSi∗ the set of triples 2NCan
i×2ECani×(NCani ⇀M+

ν ) such that for any 〈N , E ,mult〉 ∈
CSi∗, dom(mult) = N . We will see that some elements of CSi∗ define shapes. It is decidable to
check, for a given C ∈ CSi∗, whether it defines a shape. Moreover, some elements of CSi∗ define
neighbourhood shapes, but we believe that it is not decidable to know whether an element of
CSi∗ defines a neighbourhood shape. However, we give a syntactic definition of a subset of CSi∗
which contains all neighbourhood shapes.

From Canonical Names to Shapes. Let 〈N , E ,mult〉 ∈ CSi∗, and consider the structure
S = 〈〈N , E , src, tgt, lab〉,',multn,multo,multi〉, where src, tgt : E → NCani, lab : E → Lab, '
is an equivalence relation in N , multn : N →M+

ν , and multo,multi : N × Lab ×N /'→Mµ

defined as:
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– for any e = 〈C, a, C ′〉 in E , srcS(e) = C, tgtS(e) = C ′ and labS(e) = a;
– ' is the smallest equivalence relation such that C ' C ′ if C and C ′ have the same

first component. Remind that C and C ′ are level i node canonical names and their first
component is a level i− 1 canonical name;

– multn = mult;
– for all C ∈ NS , a ∈ Lab, and K ∈ NCani−1, multo(C, a,K) = outC(K, a), where outC is

the function in the second component of C (remind that C is a level i canonical name and
outC : NCani−1 × Lab→ µ);

– for all C ∈ NS , a ∈ Lab, and K ∈ NCani−1, multi(C, a,K) = inC(K, a), where inC is the
function in the third component of C.

The following lemma identifies the conditions on 〈N , E ,mult〉 under which S is a shape.

Lemma 29. If

1. E ⊆ N × Lab×N , and
2. for all C ∈ N , all K in NCani−1 and any label a, outC(K, a) = 0 if, and only if,
{〈C, a, C ′〉 ∈ E | π1(C ′) = K} = ∅ (where π1(C ′) denotes the first component of C ′),
and similarly for inC .

then S is a shape. J

Proof. The first condition ensures that 〈N , E , src, tgt, lab〉 is a graph, and the second condition
ensures that the edge multiplicity functions of S are consistent with its graph structure, i.e.,
an edge multiplicity is positive if, and only if, there is indeed a number of edges in the graph
that corresponds to the multiplicity value. ut

For C ∈ CSi∗ satisfying the condition from Lemma 29, we denote SC the corresponding
shape.

We have now a characterisation of elements of CSi∗ that define shapes. In what follows we
give some characteristics of elements of CSi∗ that represent neighbourhood shapes.

Definition 30 (Canonical Shape). A level i canonical shape is a shape of the form SC, for
C ∈ CSi∗, and such that SC is (isomorphic to) its own level i neighbourhood shape. J

We denote CSi the set of level i canonical shapes. Canonical shapes are usually represented
as elements of CSi∗, i.e., triples composed of a set of node canonical names, a set of edge
canonical names, and a multiplicity function. This is called their canonical representation.

Lemma 31 (Relationship between Neighbourhood Shapes and Canonical Shapes).
The following two are equivalent, for all level i canonical shape C:

1. The shape SC is isomorphic to the neighbourhood shape of some graph G.
2. The shape SC admits concretisations. J

Proof. The implication 1 ⇒ 2 is immediate from the definitions. For the implication 2 ⇒ 1,
let β : SC → SC be the level i neighbourhood shape morphism of SC . By hypothesis, we know
that there exists a graph G and an abstraction morphism s : G→ SC . Then, by Proposition 13
we know that β ◦ s is an abstraction morphism, and by Lemma 22 we deduce that β ◦ s is the
level i neighbourhood abstraction morphism of G. ut
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That is, shapes that can be obtained by neighbourhood abstraction are exactly canonical
shapes that admit concretisations, up to isomorphism. In the following, we are interested at
the set CSi as a superset of the set of level i neighbourhood shapes.

The decidability of checking if a canonical shape is a neighbourhood shape is not known.
Note that, according to Lemma 31, it requires the decision on whether a canonical shape
admits concretisations.

Conjecture 32. It is not decidable whether a shape admits concretisations. J

Even if this conjecture is confirmed, it still does not answer the previous question of decidability
whether a canonical shape admits concretisations. Our intuition is that the conjecture also
holds for canonical shapes.

Remark 33 (On Isomorphism of Canonical Shapes). We do not know whether two canonical
shapes can be isomorphic without having the same node and edge sets. However, if it could
happen, say C and C′ are isomorphic but do not have the same node and edge sets, then
necessarily C and C′ are not neighbourhood shapes (i.e., do not have concretisations). Indeed,
by Lemma 15, two shapes are isomorphic if, and only if, they have the same concretisations
and, by definition, the canonical representation of a neighbourhood shape is unique for its
entire isomorphism class. J

5 Shape Transformations

In this section we define transformations of shapes. We also establish how transformations of
shapes are related to transformations of their concretisations. Finally, we discuss on properties
of transformations of neighbourhood shapes.

5.1 Transformations of Shapes

Definition 34 (Pre-matching). Let L be a graph and S be a shape. A pre-matching p of L
into S is a graph morphism p : L→ GS such that:

1. for all node w in p(L), multnS(w) ≥
∣∣p−1(w)∣∣

ν
,

2. for all label a ∈ Lab, node v ∈ NL, and edge e ∈ p(v)�a
S; it holds (with w = tgtS(e))

multoS(p(v), a, [w]'S ) ≥
∣∣v ��a

L p
−1(w)

∣∣
µ

3. for all label a ∈ Lab, node v ∈ NL, and edge e ∈ p(v)�a
S; it holds (with w = srcS(e))

multiS(p(v), a, [w]'S ) ≥
∣∣p−1(w) ��a

L v
∣∣
µ
.

A pre-matching p is called concrete if p is an injective morphism and additionally satisfies
the following properties:

4. for all node v in p(NL), multnS(v) = 1;
5. for all node v in p(NL), the equivalence class [v]'S is the singleton set {v}.
6. for all nodes v, w in p(NL) and for all label a ∈ Lab, multoS(v, a, {w}) =

∣∣∣v ��a
GS

w
∣∣∣
µ
=

multiS(w, a, {v}). J
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As shown in the next lemma, the existence of a concrete pre-matching p : L → S guarantees
the existence of a matching m : L → G for some graph G that is a concretisation of S. A
concrete pre-matching p is a pre-matching whose image can be considered as a concrete “sub-
graph” of the shape. That is, nodes in the image of p are concrete nodes, i.e., with multiplicity
one. Let us explain in more detail what the conditions on edges and edge multiplicities are
meant for. First, Conditions 2 and 3 guarantee that the actual number of edges can indeed
exist in some concretisation, so that an injective morphism from L into this concretisation can
be constructed. Injectiveness of p guarantees that there are at least as many edges present
from v to w in GS as there are edges from p−1(v) to p−1(w) in L (this for all labels). Fi-
nally, Condition 6 guarantees that the actual number of edges present from v to w in GS
is the same that what is required by edge multiplicities. This of course is underspecified if
multo(v, a, {w}) = ω, in which case any number of edges greater or equal to µ + 1 is correct
as soon as this number is greater or equal to (p−1(v)) ��a

L (p−1(w)) so that it guarantees
injectiveness. This underspecified number of edges plays a role in the definition of a concrete
shape transformation.

Lemma 35. If c : L → S is a concrete pre-matching from the graph L to the shape S, then
for any graph G that is a concretisation of S with abstraction morphism s : G → S, there
exists an injective graph morphism m : L→ G such that c = s ◦m. J

Proof. Let G be a concretisation of S with corresponding abstraction morphism s : G → S.
Note first that for any node or edge x ∈ NL ∪ EL, s−1(c(x)) is a singleton set. This fact is
easily shown using that c is a concrete pre-matching and that s is an abstraction morphism.
Consider now the mapping m : NL ∪ EL → NG ∪ EG defined by m(x) = y where y is the
unique element of s−1(c(x)). Thus, c = s ◦m. The fact that m is a morphism follows from the
fact that s and c are morphisms, and injectiveness of m follows from injectiveness of c and
the fact that s is a function. ut

Definition 36 (Concrete Shape Transformation). Let P = 〈L,R〉 be a transformation
rule and S be a shape disjoint from L and R, and let c be a concrete pre-matching from L into
S satisfying the following dangling edges condition: for all edge e of S, if srcS(e) ∈ c(Ndel) or
tgtS(e) ∈ c(Ndel), then e ∈ c(Edel). Then the transformation of S according to P and c is the
shape T defined by:

– the graph part of T , is the graph GT such that GS
P,c−→ GT ;

– the grouping relation 'T is defined by

• for all v ∈ NS ∩NT , [v]'T = [v]'S ;
• for all v ∈ Nnew, [v]'T = {v};

– the node-multiplicity function of T is given by: for all v ∈ NT ,

multnT (v) =

{
multnS(v) if v ∈ NS ∩NT

1 if v ∈ Nnew;

– let Nconcr = c(Nuse)∪Nnew and Nabstr = NT rc(Nuse); thus Nconcr and Nabstr are disjoint,
NT = Nconcr ∪ Nabstr and NS ∩ NT = Nabstr ∪ c(Nuse). Then, for all v ∈ NT , a ∈ Lab,
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C ∈ NT /'T , the outgoing edge multiplicity function of T is given by:

multoT (v, a, C) =



∣∣∣v ��a
GT

C
∣∣∣
µ

if v ∈ Nconcr and C ⊆ Nconcr,

multoS(v, a, C) if v ∈ Nabstr and C ⊆ Nabstr,

multoS(v, a, C) if v ∈ Nabstr and C ⊆ c(Nuse)

or v ∈ c(Nuse) and C ⊆ Nabstr,

0 otherwise;

– for all v ∈ NT , a ∈ Lab, C ∈ NT /'T , the incoming edge multiplicity function of T is given
by:

multiT (v, a, C) =



∣∣∣C ��a
GT

v
∣∣∣
µ

if v ∈ Nconcr and C ⊆ Nconcr,

multiS(v, a, C) if v ∈ Nabstr and C ⊆ Nabstr,

multiS(v, a, C) if v ∈ Nabstr and C ⊆ c(Nuse)

or v ∈ c(Nuse) and C ⊆ Nabstr,

0 otherwise.

We write S P,c−→ T to denote the concrete shape transformation. J

In Definition 36 we make some explicit assumptions on the sets C used in the definitions
of the edge multiplicity functions of T . Let us show that these assumptions hold and thus that
T is well defined.

The first assumption is that for all C ∈ NT /'T we have C ⊆ Nconcr or C ⊆ Nabstr, or C ⊆
c(Nuse). Let us show that for all v node of T , [v]'T is a subset of one of the sets Nabstr, Nnew

or c(Nuse). It is sufficient to show, by definition, that Nconcr = Nnew∪ c(Nuse). If v ∈ c(Nuse),
by hypothesis of c being a concrete pre-shaping, we know that [v]'S = {v}, and by definition
of 'T , [v]'T = [v]'S . If v ∈ Nnew, then, by definition of 'T we know that [v]'T = {v}.
Finally, if v ∈ Nabstr, by definition of 'T we have [v]'T = [v]'S ⊆ NS . Moreover, as stated
previously, we know that v /'S w for all w ∈ c(Nnew), thus [v]'T ⊆ NS ∩ c(Nnew) = Nabstr.

The second assumption we make is that whenever C ⊆ Nabstr or C ⊆ c(Nuse), C is also a
set in NS /'S (as it is used as argument of the edge multiplicity functions of S). This is the
case due to the definition of 'T , and using the fact that NS ∩NT = Nabstr ∪ c(Nuse).

Another point to be clarified in Definition 36 is the definition of the value of multoT (v, a, C)
when v ∈ Nconcr and C = {w} ⊆ Nconcr (the same for incoming edges multiplicity). This value
is defined as the number of edges actually present in the shape (up to µ), and not as some
computation involving edge multiplicity functions of S, as one may expect. This in particular
means that the shape T is not uniquely defined, and depends on the representation of the graph
part of S. However, this non determinism is intended, and guarantees correctness of concrete
shape transformation with respect to the corresponding graph transformations when deletion
of edges is involved. Consider nodes v, w in c(Nuse) and label a with multoS(v, a, {w}) =
multiS(v, a, {w}) = ω, and suppose that rule P specifies the deletion of k a-labelled edges
between these nodes. Then T has ω− k a-labelled edges from v to w, and of course this is not
uniquely specified, as there may be several multiplicities λ ∈Mµ such that λ+ k = ω.

Definition 37 (Abstract Shape Transformation). Let P = 〈L,R〉 be a transformation
rule, S be a shape and f : L→ S be a pre-matching. We say that S abstractly transforms into
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T according to P and f , and we write S
(P,f)
 T , whenever there exists a shape S′, a shape

morphism β : S′ → S and a concrete pre-matching c : L → S′ such that f = β ◦ c, and there

exists a shape morphism β′ : T ′ → T , where T ′ is the shape such that S′
(P,c)−→ T ′.

L S′ S

T ′ T

c β

β′
(P, c) (P, f)

f

J

5.2 Properties of Shape Transformations

In this section we consider a fixed natural i ≥ 1. When we use the terms neighbourhood
shape and neighbourhood shape morphism, we mean level i neighbourhood shape and level i
neighbourhood shape morphism.

Theorem 38 (A concrete transformation is captured by some abstract one). Let
P = 〈L,R〉 be a transformation rule, G,H be graphs and m : L→ G be a matching such that

G
(P,m)−→ H. For any shape S and abstraction morphism s : G→ S such that s◦m is a concrete

pre-matching, there exists an abstraction morphism t : H → T , where T is the shape such that

S
(P,s◦m)−→ T .

L G S

H T

m s

t

(P,m) (P, s ◦m)

J

Proof. Consider the morphism t : H → T defined by t(x) = s(x) for all x node or edge of G,
and t(x) = x for all x in Nnew ∪ Enew. (It is immediate to see from the definitions of graph
transformation and concrete shape transformation that t is indeed a morphism). We show
that t is an abstraction morphism. As in the definition of a concrete shape transformation,
we distinguish the sets of nodes Nconcr and Nabstr in T , and let H ′ be the full4 sub-graph of
H with nodes NG rm(L). By definition, t coincides with s on H ′ and t maps nodes of H ′

to nodes in Nabstr and edges of H ′ to edges whose two ends are in Nabstr. Also, since H ′ is a
full sub-graph of G, the multiplicity functions of T satisfy the requirements of an abstraction
morphism when their domain is restricted to Nabstr. For the node multiplicity function for
nodes w ∈ Nconcr, we know from the definition that multnT (w) = multnS(w) = 1 and that
t−1(w) is a singleton set. For the edge multiplicity function multoT (w, a, C) (we consider only
multoT , by symmetry the same holds for multiT ), we distinguish two cases: (i) w and C are not
both in Nconcr, and (ii) w and C are both in Nconcr. For (i), once again pre-images of w and
C coincide for t and s, and also the value of multoT and multoS . For (ii), remind that C is a
singleton set, multoT (w, a, C) is the actual number of edges in the graph GT (up to µ), and by
definition t is an isomorphism in this concrete part. ut
4 By full sub-graph we mean a sub-graph defined by a subset of the nodes and all connecting edges.
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Theorem 39 (A concrete transformation is captured by canonical abstract trans-
formation). Let P = 〈L,R〉 be a transformation rule, G,H be graphs and m : L → G be

a matching such that G
(P,m)−→ H. Let S be the neighbourhood shape of G with corresponding

neighbourhood abstraction morphism s : G → S, and let T be the neighbourhood shape of H

with corresponding neighbourhood abstraction morphism t : H → T . Then S
(P,f)
 T for some

pre-matching f . J

Proof. By definition of abstract shape transformation, we need to show that there exist a pre-
matching f : L→ S, a shape S′, a shape morphism β : S′ → S, and a concrete pre-matching
c : L→ S′ such that f = β ◦c, and there exists a shape morphism β′ : T ′ → T , where T ′ is the

shape such that S′
(P,c)−→ T ′. Take S′ the trivial shape of G, T ′ the trivial shape of H, β = s,

β′ = t, c = m and f = s ◦m. Then the required conditions are satisfied by hypothesis. ut

Theorem 40 (Concrete shape transformation vs. graph transformation). Let P =
〈L,R〉 be a production rule, S be a shape and c : L→ S be a concrete pre-matching satisfying
the dangling edge condition. For any graph G concretisation of S with abstraction morphism
s : G→ S, there exists a matching m : L→ G such that c = s ◦m and if H is the graph such
that G P,m−→ H, then there exists an abstraction morphism t : H → T , where T is the shape
obtained by S P,c−→ T . J

Proof. The injective morphism m : L → G exists due to Lemma 35. We can define m(v) =
s−1 ◦ c(v), because s is injective on the image of c. (As a proof assume v1, v2 ∈ NG s.t. s(v1) =
s(v2) for some v ∈ VL with c(v) = s(v1). By definition of a shape, we obtain multnS(s(v1)) = 1
and thus

∣∣s−1(v1)∣∣ = 1 and v1 = v2.)

Let H be such that G P,m−→ H. Define the mapping t : H → T defined by

t(v) =

{
v if v ∈ Nnew

s(v) otherwise

and analogously on EH . Mapping t is well-defined, because, by the definition of transformation,
NH = (NG\m(Ndel))∪Nnew, and s is defined on NG. We need to show, that t is an abstraction
morphism, that is:

1. t is a morphism from H to T ;
2. for all v ∈ NT it holds that multnT (v) =

∣∣t−1(v)∣∣
ν
;

3. for all w ∈ NT , for all a ∈ Lab, for all C ∈ NT /'T , and for all v ∈ t−1(w),

multoT (w, a, C) =
∣∣v ��a

H (t−1(C))
∣∣
µ

and analogously for incoming edges multiplicities.

ad 1. First, we show that t(NH) ⊆ NT . Assume t(v) = v′ ∈ t(NH). There are two cases. If
v′ ∈ Nnew, then v′ = v ∈ Nnew ⊆ NT . Otherwise, v′ = s(v) for v ∈ NG \ s−1(c(Ndel)) (?).
Assume v′ 6∈ NT but v′ ∈ s(NG). As v′ is not new, it must be the case, due to the definition
of NT = (NS \ c(Ndel)∪Nnew), that v′ ∈ c(Ndel). Hence, v ∈ s−1(c(Ndel)), contradicting (?).
The case for edges is similar.
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As a next step, we prove that t(srcH(e)) = srcT (t(e)) for an arbitrary edge e ∈ EH . First,
assume srcH(e) ∈ Nnew implying e ∈ Enew. We compute

t(srcH(e)) = srcH(e) (Def. of t)
= srcS(e) (Def. transformation and srcH(e) is new)
= srcT (e) (Def. shape transformation)
= srcT (t(e)) (Def. of t)

In the second case, we have srcH(e) 6∈ Nnew, that is t(srcH(e)) = s(srcH(e)) yielding another
two cases depending on whether or not e ∈ Enew. If e is not new, we have

s(srcH(e) = s(srcG(e))
= srcS(s(e)) (s morphism)
= srcT (s(e)) (Def. transformation)
= srcT (t(e)) (Def. of t)

If e is new, we have instead
s(srcH(e)) = s(srcG(e))

= srcS(s(e))
= srcT (s(e))
= srcT (t(e))

The cases for edges, target and label mappings are similar.

ad 2. Let v ∈ NT be arbitrary. If v ∈ Nnew, then there is only {v} = t−1(v) and multnT (v) = 1
by definition of abstract transformations. Assume v 6∈ Nnew. As s is an abstraction morphism,
we know that

∣∣s−1(v)∣∣
ν
= multnS(v) = multnT (v), and it suffices to show that s−1(v) = t−1(v),

which is straightforward from the definition of t.

ad 3. This result follows immediately from the definition of 'T . By definition of multoT , we
can either employ the fact that s is an abstraction morphism or, in case of new edges, none of
them are equivalent to either themselves or anything existing before, so all new multiplicities
are in fact 1, as defined. This reasoning holds both for source and target multiplicities. ut

Corollary 41 (Transformation of canonical shapes). Let P = 〈L,R〉 be a transformation

rule, S, T be canonical shapes and f : L→ S be a pre-matching such that S
(P,f)
 T . Let S′, T ′

be the shapes, c : L → S′ the concrete pre-matching and β : S′ → S and β′ : T ′ → T the

shape morphisms that witness S
(P,f)
 T . Then for any concretisation G of S′ with abstraction

morphism s : G→ S′, there exist a matching m : L→ G and a graph H such that G
(P,m)−→ H

and T is (isomorphic to) the neighbourhood shape of H. J

Proof. The matching m exists by Theorem 40. By the same theorem, we know that there
exists an abstraction morphism t : H → T ′. Thus, β′ ◦ t is an abstraction morphism from H
to T . We can conclude then that T is a neighbourhood shape (as it has H as concretisation).
By Lemma 23, β′ ◦ t is the neighbourhood abstraction morphism of H. ut
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5.3 Using Shape Transformations

We have seen in the previous section several properties of concrete graph transformations with
respect to shape transformations and abstraction morphisms. In this section we informally
describe how these results can be used for over-approximating a concrete labelled transition
system by an abstract one.

Consider a graph production system 〈G0,P〉, where G0 is the start graph and P is a set of
graph transformation rules. As briefly described in the introduction, this production system
gives rise to a labelled transition system (LTS for short) S, on which states are graphs, with
start state G0, and transitions are applications of graph transformation rules. That is, any
state G of the LTS is a graph that can be derived from G0 by a final number of applications
of graph transformations starting from G0. If rule P = 〈L,R〉 is applicable in graph G with
matching m : L → G yielding the graph H, then H is a state in the LTS and there exists
a transition from G to H labelled by (P,m). A path starting in state G1 in the LTS S is a
sequence of graph transformation rules P1, . . . , Pk such that there exists a sequence of graphs
G1, . . . , Gk and a sequence of matchings mi : Li → Gi, for all 1 ≤ i ≤ k − 1, such that
Gi

Pi,mi−→ Gi+1.
Consider now some fixed positive naturals i, µ, ν defining the precision of the neighbour-

hood abstraction. Define the LTS S ′ whose states are canonical shapes and whose transitions
are abstract shape transformations with:

– states of S ′ are the neighbourhood shapes of states of S, in their canonical representation,
and initial state is S0, the neighbourhood shape of G0;

– transitions of S ′ are the transitions S
P,f
 T such that there exists a transition G P,m−→ H

in S, where s : G→ S and t : H → T are the neighbourhood abstraction morphisms of G
and H, respectively, and f = s ◦m.

By Theorem 39 we know that transitions in the LTS S ′ indeed correspond to abstract
graph transformations. Note also that the LTS S ′ is finite, as there are only a finite number
of canonical shapes for fixed i, µ and ν. Additionally, every path in S starting in state G is
also a path in S ′ starting in the neighbourhood shape of G. Remark that the inverse does not
hold, as every state of S ′ may be the neighbourhood shape of several different states in S.
Therefore, S ′ is a finite over-approximation of S with respect to paths and can be used for
verifying, e.g., temporal properties on S.

Unfortunately, the LTS S ′ cannot be constructed without constructing S, which may be
infinite. However, we can construct another LTS, denote it S ′′, that is computable and still a
finite over-approximation of S. The idea is to start from the canonical shape S0 and construct
iteratively all possible abstract transformations. For a fixed state S, the construction of its
outgoing transitions in S ′′ can be done in three steps:

Materialisation: in order to enumerate and construct all possible abstract transformations of
a canonical shape S, we first have to find and construct witnesses for these transformations
(according to Definition 37), i.e., find all rules P = 〈L,R〉 and all pre-matchings f : L→ S
such that there exists a shape S′ less abstract than S with shape morphism β : S′ → S
and a concrete pre-matching c : L → S′ with f = β ◦ c. Such shapes S′ are called
materialisations of S. Constructing the materialisations is described in Section 6.1 and
Section 6.2;
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Transformation: once we have computed all possible materialisations of the shape S w.r.t.
the graph production system 〈G0,P〉, we can perform the actual transformations as con-
crete shape transformations;

Normalisation: applying a concrete shape transformation on some materialisation of canon-
ical shape S does not necessarily result in a canonical shape. That is, the resulting graph
may not be a state of S ′′ and therefore the result of the transformation has to be abstracted
to a neighbourhood shape. This is called normalisation and is described in Section 6.3.

6 Materialisation and Normalisation

We define in this section the set of materialisations of a canonical shape S w.r.t. some pre-
matching of a transformation rule. This set of materialisations is finite. In Section 6.2 we
briefly describe an algorithm that allows us to construct the set of materialisations and we
give some examples.

6.1 Definition of the Set of Materialisations

Let us first give a formal definition of what we call a materialisation. In the sequel we consider
fixed naturals i, µ, ν defining the precision of a neighbourhood abstraction.

Definition 42 (Materialisation). Given a level i canonical shape S and a rule P = 〈L,R〉
with pre-matching f : L→ S, a materialisation of S according to f is a shape S′ such that

– S is more abstract than S′, i.e., there exists a shape morphism β : S′ → S;
– there exists a concrete pre-matching c : L→ S′ such that f = β ◦ c;
– let T ′ be the shape resulting of the transformation of S′ with P, c. Then the level i neigh-

bourhood abstraction morphism of T ′ exists. J

For any canonical shape S, rule P = 〈L,R〉 and pre-matching f : L → S, we want to
construct the set of materialisations M(S, P, f) that covers all possible transformations of
some concretisation of S. That is, for any graph G, concretisation of S, there exists a shape
S′ in M(S, P, f) such that S′ is a shape for G. This set is defined as follows (the first two
points coincide with the definition of a materialisation).

Definition 43 (Set of Materialisations M(S, P, f)). For a given level i canonical shape
S and a rule P = 〈L,R〉 with pre-matching f : L→ S, the set M(S, P, f) is composed of the
shapes S′ that satisfy the following (up to shape isomorphism)

– S is more abstract than S′, i.e., there exists a shape morphism β : S′ → S;
– there exists a concrete pre-matching c : L→ S′ such that f = β ◦ c;
– let S′′ be the shape obtained from S′ as follows: to every node v in c(L) of S′ is given an

additional, fresh label lv. Then shape S′′ is a canonical shape. J

Elements of the set M(S, P, f) are indeed materialisations. The point on which we have
to argue is that after transformation, a shape S′ inM(S, P, f) admits a level i neighbourhood
shape.

Lemma 44. Let S′ be a shape inM(S, P, f). Then the shape T ′ resulting from the transfor-
mation of S′ by P, c admits a level i neighbourhood shape. J

29



Proof. (Sketch) Let S′′ be the shape that witnesses the fact that S′ is a materialisation of S;
that is, S′′ is the same as S′ except that it has fresh labels on the nodes in c(L). Consider
also the rule P ′′ = 〈L′′, R′′〉 obtained from P by adding fresh labels to all nodes in a way that
c : L′′ → S′′ is a concrete matching. That is, fresh labels for L′′ and c(L) in S′′ coincide. Then
rule P ′′ can be applied to S′′ with matching c, thus obtaining the graph T ′′. It is not difficult
to see that shape T ′ is like T ′′ from which the fresh labels have been removed. Then one can
show that:

1. if T ′′ admits a level i neighbourhood shape, then also does T ′. This is shown in a more
general way for a shape T ′ obtained from a shape T ′′ be removing some unique labels. The
proof of this result is quite technical and is given in Appendix F;

2. for all j ≤ i, ∼j is defined in T ′′ and moreover for all node v ∈ T ′′ ∩ S′′, [v]∼j in S′′ is
included into [v]∼j in T ′′, whenever this former exists (i.e., whenever v 6∈ Nnew).

These two points allow us to conclude that T ′ admits a level i neighbourhood shape. In what
follows we sketch a proof for the latter statement. Let us first point out that if ∼j is defined
on T ′′, then [v]∼j = {v} in T

′′ and in S′′ for all node v in c(L′′)∪Nnew because v has a unique
label, and also [v]'T ′′

= {v} by definition. Thus, we only have to care about nodes v not in
c(L′′)∪Nnew. Moreover, by definition the grouping relations of S′′ and T ′′ coincide on all nodes
in NS′′ , the fact that ∼j is defined is not a problem as long as [v]∼j−1

in S′′ is included into
[v]∼j−1

in T ′′. So let us simply suppose that ∼j is defined and argue that if v ∼j v′ in S′′, then
v ∼j v′ in T ′′. Remark that the unique labels in c(L′′) influence the equivalence classes for ∼j
of the nodes that are in the j-neighbourhood of c(L′′). In other words, if v ∼j v′ in S′′, then
either v and v′ are both far away from c(L′′), or are both at the same distance from all nodes
in c(L′′). In the first case, it is clear that they are also far away from the nodes c(L′′)∪Nnew in
T ′′ so they remain ∼j-equivalent in T ′′. In the second case, intuitively v and v′ are connected
exactly in the same way to all the nodes c(L′′), this is because of the uniqueness of labels of
these latter. Now if, e.g., v is in the j-neighbourhood of some of the newly added nodes from
Nnew, and thus “influenced” by this new node for its ∼j equivalence class, then v′ is influenced
in exactly the same way because nodes in Nnew are only connected to nodes in c(L′′), and
because of uniqueness of labels. ut

Remark that the set M(S, P, f) is finite. Indeed, it is a set of canonical shapes over the
initial set of labels augmented with the fresh labels lv, for v in c(L), and the number of different
such canonical shapes is finite.

Lemma 45 (Completeness of the Set of Materialisations). Let S be a neighbourhood
shape. For any concretisation G of S with corresponding neighbourhood abstraction morphism
s : G → S, for a rule P = 〈L,R〉, and for any match m : L → G, there exist a pre-matching
f : L→ S and a shape S′ inM(S, P, f) such that f = s ◦m and H abstracts to T ′, where H
and T ′ are the graph and the shape such that G P,m−→ H and S′ P,f−→ T ′. J

Proof. It is immediate to see that ifm : L→ G is a matching, then there exists a pre-matching
f : L → S such that f = s ◦ m. This holds for all abstraction morphisms s : G → S, and
not only for neighbourhood abstraction morphisms. Consider now the setM′(S, P, f) as the
set of all shapes S′ defined by the first two conditions for M(S, P, f). That is, M′(S, P, f)
is a possibly infinite over-set of M(S, P, f). In particular, any graph G, concretisation of S,
is in M′(S, P, f) as its trivial shape. In other words, M′(S, P, f) is complete in the sense
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of the lemma. It is then enough to show that for all shape G in M′(S, P, f), there exists a
shape S′ in M(S, P, f) such that S′ is more abstract than G. This corresponds to showing
that the third condition in the definition ofM(S, P, f) does not remove too much graphs and
shapes from the setM′(S, P, f). This is indeed the case because this third condition ensures
that materialisations are neither too abstract nor too concrete, but correspond to the level of
abstraction of a neighbourhood shape morphism. ut

Proposition 46 (Minimality of the Set of Materialisations). For any concretisation G
of S with abstraction morphism s : G → S, and any match m : L → P such that f = s ◦m,
there exists a unique shape S′ inM(S, P, f) such that G can be abstracted to S′ with abstraction
morphism s : G→ S′, and such that c = s ◦m, where c : L→ S′ is the concrete pre-matching
extracted from f . J

Proof. Let S1 and S2 be two shapes in M(S, P, f) which both satisfy the conditions of the
proposition, with abstraction morphisms s1 : G → S1 and s2 : G → S2, and with concrete
pre-matchings c1 : L → S1 and c2 : L → S2. Consider now the canonical shapes S′1 and S′2
that witness the fact that S1 and S2 are materialisations (according to the third condition in
the definition ofM(S, P, f).) Consider also the graph G′ obtained from G by adding the fresh
label lv to the node m(v), this for all v node of L. Then it is easy to see that s1 : G′ → S′1 and
s2 : G′ → S′2 are abstraction morphisms. Moreover, as S1 and S2 are canonical shapes, then
necessarily s1 and s2 are canonical morphisms. As each graph has a unique neighbourhood
shape, necessarily S′1 and S′2 are the same canonical shape. By definition of S′1 and S′2 it
immediately follows that S1 and S2 are the same shape, since elements of M(S, P, f) are
unique up to isomorphism, by definition. ut

6.2 Effective Construction of M

In order to effectively construct an abstract labelled transition system, one needs to be able
to effectively construct the set of materialisations M(S, P, f) for a canonical shape S and a
pre-matching f : L → S for rule P = 〈L,R〉. We give here an algorithm for constructing the
set of materialisations.

Intuitively, a materialisation is composed of an abstract part and a materialised part. The
abstract part is the initial shape S or sub-graphs of it. The materialised part is composed of a
concrete copy of f(L) and its neighbourhood of radius i, where i is the level of neighbourhood
shape morphism. The main idea of the algorithm is to “extract” a concrete copy of f(L) from
S, remap the matching f into this concrete part yielding a concrete pre-matching c, and then
modify the obtained structure until it becomes a correct materialisation. Remind that the
structure is a materialisation if one can attach fresh names to the nodes in c(L) and obtain a
neighbourhood shape. This intuitively means that in radius i from the concrete part c(L), two
nodes of any concrete graph may be grouped together only if they are connected in exactly
the same way to all nodes from c(L) (up to edge multiplicities).

The algorithm starts from the shape S and iteratively constructs structures that are a
kind of pre-materialisations and refines these until they become correct materialisations. This
is done by iterating over the following steps:

extract and connect for the first iteration, “extract” a concrete copy of f(L) from the shape,
remap f into this concrete copy yielding a concrete pre-matching c(L) and associate fresh
labels to the nodes in c(L). This copy becomes the materialised part that will be widened by
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adding new nodes to it during the next iterations. For the second and next iterations, “pull”
along the edges that connect the materialised part and the abstract part for extracting
new nodes. These nodes become part of the materialised part. Any of these extractions is
accompanied by connecting all newly extracted nodes with the abstract part in all possible
ways and updating node and edge multiplicities;

update grouping relation the grouping relation is updated so that any node that is at
distance less than i− 1 from the concrete part c(L) becomes alone in its equivalence class
for the grouping relation. This is necessary because the fresh labels in c(L) influence the
∼i−1 equivalence relation for these nodes, which should be equal to the grouping relation
(in a neighbourhood shape);

choose nodes and edges as the previous step acts on the grouping relation by splitting
groups, edges that previously had all their start (or end) points in the same group may
not be grouped anymore, but still they have an associated common edge multiplicity.
The algorithm splits these multiplicity functions in all possible ways so that edges in the
materialised part have correct edges multiplicities. This is not done for edges in the abstract
part (as it is not always possible).

6.3 Normalisation

Applying a shape transformation to a materialised shape does not yield a canonical shape. The
role of normalisation is to construct the neighbourhood shape of such unnormalised shapes.
Let S′ be a materialisation in M(S, P, f), and T ′ be the shape resulting from the concrete

shape transformation S′
(P,c)−→ T ′, where c is the concrete pre-matching corresponding to f . By

definition, we know that T ′ admits a level i neighbourhood shape, denote it T .

6.4 Back to the Construction of the Abstract Labelled Transition System

Now all the ingredients for constructing an abstract labelled transition system S ′′ (ALTS) are
given. Consider the neighbourhood shape S0 and set of transformation rules P. Initially, S0 is
the unique state of the ALTS, and there are no transitions. For any state S in the ALTS, and
for any rule P = 〈L,R〉, we compute all pre-matchings f : L → S. For any pre-matching f ,
the set of materialisationsM(S, P, f) is computed. For all materialisations S′ inM(S, P, f),

the actual concrete shape transformation is performed S′
(P,c)−→ T ′, where c is the concrete pre-

matching c : L→ S′ deduced from f . Finally, the neighbourhood shape T of T ′ is computed.
If T is not a state of the ALTS, then it is added as a state. Then a transition from S to T
with label P, f is added to the ALTS.

Note that the ALTS is non deterministic (a state may have several outgoing transitions
with the same label), whereas a concrete LTS is always deterministic. This is because one state
can have several materialisations for a fixed rule and a fixed pre-matching. In the concrete
case, a rule with a matching uniquely define an application of a graph transformation and its
result.

The ALTS S ′′ constructed this way is an over-approximation of all (concrete) LTS S with
start graph G0 and set of rules P, for all graphs G0 with neighbourhood shape S0, in the
following sense:

For any path G1
P1,m1−→ G2

P2,m2−→ · · · Pn−1,mn−1−→ Gn in S, where Gi are states of S,
Pi = 〈Li, Ri〉 are transformation rules and for all 1 ≤ i ≤ n − 1, mi : Li → Gi are

32



matchings, there exists a unique path S1
P1,f1−→ S2

P2,f2−→ · · · Pn−1,mn−1−→ Sn in S ′′, where for
all i, Si is the neighbourhood shape of Gi with corresponding abstraction morphisms
si : Gi → Si, and fi = si ◦mi.

To show that this property indeed holds, we need to show the following.

1. For any concrete transition G P,m−→ H, there exists an abstract transition S
P,f
 T , where S

and T are the neighbourhood shapes of G and H, respectively, and f = s◦m for s : G→ S
the neighbourhood abstraction of G. This is ensured by Theorem 39.

2. This abstract transition is indeed computed and added as a transition of S ′′. That is, show
that a witness for this abstract transformation exists in the setM(S, P, f). This is ensured
by the completeness of the set of materialisations (Lemma 45) and by the composition of
neighbourhood morphisms for graphs and shapes (Lemma 22). By completeness of the set
of materialisations we know that there exists a shape S′ inM(S, P, f) that is an abstraction
for G, and that can be transformed to simulate the actual transformation of G; let the
shape resulting from the transformation be T ′. By composition of neighbourhood shape
morphisms, we know that the normalisation of T ′ yields the neighbourhood shape of H.

3. Uniqueness of the path S1
P1,f1−→ S2

P2,f2−→ · · · Pn−1,mn−1−→ Sn is ensured by uniqueness of
neighbourhood shapes.

7 A Modal Logic for Graphs and Shapes

In this section we define a modal logic with forward and backward modalities and counting
that can be interpreted on graphs and on shapes. We show that this logic is preserved and
reflected by abstraction and shape morphisms.

Before presenting a formal definition of syntax and semantics of this logic, let us give a
flavour of the logic with some examples.

Example 47. Consider the graph depicted on Figure 1, representing a list structure. Here are
some properties that one could want to express for such structure:

1. any cell has an associated value that is some object, i.e., any Cell-node has an outgoing
val-edge leading to an Object-node. This can be expressed by the following formula:

Cell→ 〉val〉1 ·Object.

The 〉val〉1 operator is a forward existential modality, indicating the existence of an outgoing
val edge. With the modality is associated a multiplicity, here 1, which is interpreted as “at
least one” outgoing val-edge;

2. analogously, any object is the value associated to some cell, i.e., any Object-node has an
incoming val-edge coming from a Cell-node. This is expressed by the formula

Object→ 〈val〈1 ·Cell.

Here, 〈val〈1 is a backward modality and indicates the existence of at least one incoming
val-edge;

3. we can go further and express that objects are not shared between different list cells, i.e.,
every Object-node has exactly one incoming val-edge coming from a Cell-node:

Object→ ( 〈val〈1 ·Cell ∧ ¬〈val〈2 ·Cell ).

Here, ¬ is the negation operator and ∧ is conjunction. J
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7.1 Syntax of the Logic

Consider a finite set of atomic propositions P. A L(P) logic formula φ is defined by the
following syntax:

φ ::= tt | p | ¬φ | φ ∨ φ | φ ∧ φ | 〉a〉λ ·φ | 〈a〈λ ·φ

where a is a label in Lab, p ∈ P and λ is an element of Mµ; tt stands for the true formula,
〉a〉λ·φ and 〈a〈λ·φ are forward and backward existential modalities, respectively, and ¬, ∨ and
∧ are the usual logical operators5.

In Example 47, we used labels as atomic propositions, i.e., the formulae in this example
are L(Lab) formulae.

The nesting depth d(φ) of a logic formula φ measures the maximal number of nested
modalities. It is defined recursively on the structure of φ as : d(p) = d(tt) = 0, d(〉a〉λ ·φ) =
d(〈a〈λ ·φ) = 1 + d(φ), d(¬φ) = d(φ), d(φ ∨ φ′) = d(φ ∧ φ′) = max (d(φ), d(φ′)) for any a in
Lab. We denote Li(P) the set of logic formulae with nesting depth at most i.

7.2 Satisfaction on Graphs and Shapes

Logic formulae are interpreted in graph nodes. Let G be a graph and γ : NG → 2P be a
valuation function that associates a set of atomic propositions with any node of G. For a
graph G, a node v in NG, a valuation γ, and a formula φ, the satisfaction relation G, v, γ |= φ
is defined recursively on the structure of φ by:

– G, v, γ |= tt;
– G, v, γ |= p if p ∈ γ(v);
– G, v, γ |= ¬φ if G,n, γ 6|= φ;
– G, v, γ |= φ ∨ φ′ if G, v, γ |= φ or G, v, γ |= φ′;
– G, v, γ |= φ ∧ φ′ if G, v, γ |= φ and G, v, γ |= φ′;
– G, v, γ |= 〉a〉λ ·φ if |{e ∈ v�a | G, tgt(e), γ |= φ}|µ ≥ λ;
– G, v, γ |= 〈a〈λ ·φ if |{e ∈ v�a | G, src(e), γ |= φ}|µ ≥ λ.

If G, v, γ |= φ, we say that φ holds in node v. We sometimes omit γ if it is clear from the
context. Intuitively, a formula of the form 〉a〉λ·φ holds in a node v if the –µ-bounded– number
of a-labelled edges (e) connecting it to some node v′ (srcG(e) = v and tgtG(e) = v′) in which φ
holds is at least λ. Analogously, 〈a〈λ·φ holds in v if the number of a-labelled edges connecting
some v′ to v is at least λ.

Back to Example 47 with the definition of satisfaction of the logic in mind, one can notice
that in this example the valuation γ is not specified. As we pointed out, the formulae in this
example are in L(P). A natural valuation for this logic is the one that associates to each node
the set of its labels; i.e., γ(v) = labG(v) for all v in NG, and for any graph G.

The satisfaction relation is defined for a shape almost in the same manner as it is defined
for a graph. The differences are in the way it is defined for a modality formula:

– S, v, γ |= 〉a〉λ ·φ if λ ≤
∑µ

C∈X multoS(v, a, C) where

X = {C ∈ NS /'S | ∀w ∈ C. S,w, γ |= φ} ;
5 We explicitly add here the redundant operators tt and ∧ because later we will be interested in the logic
without negation, which in this case can simply be defined as a syntactical fragment.
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– S, v, γ |= 〈a〈λ ·φ if λ ≤
∑µ

C∈X multiS(v, a, C) where:

X = {C ∈ NS /'S | ∀w ∈ C. S,w, γ |= φ} .

In the case of shapes, formulae are interpreted a bit differently. We no longer count individual
a-labelled edges going out of (resp. coming into) a node, but instead sum-up the outgoing
(resp. incoming) edge multiplicities associated to that node and to a group of nodes C such
that all nodes in C satisfy the formula φ.

Example 48. Back to our list example, the formula Cell → 〈Next〈1 ·(List ∨ Cell) holds on all
nodes of the shape on Figure 5. J

7.3 Preservation by Abstraction Morphism

Let s : G→ S be an abstraction morphism from graph G to shape S. We say that s preserves
a property p if whenever p holds in node v of G, it also holds in node s(v) of S. Inversely, we
say that s reflects p if whenever p holds in node s(v) of S, it also holds in node v of G. One
can also talk about preservation and reflection by a shape morphism α : S → T .

Preservation and reflection are very important characteristics. If an abstraction preserves
a set of properties, these properties can be verified on the abstract level. If an abstraction
reflects a set of properties, then for any characterisation of a shape, the properties also hold
for concretisations of the shape. If both preservation and reflection hold, verifying a property
on a graph is equivalent to verifying it on the abstract level.

As shown in the next section, neighbourhood abstraction preserves and reflects all prop-
erties defined by logic formulae of the corresponding depth. We start in this section with a
more general result about preservation and reflection by abstraction, identifying the necessary
conditions for it to hold.

In Definition 49 we define what we mean by preservation and reflection of a property, in
the most general case. In Proposition 50 we show the result for preservation and reflection for
shape morphisms, and in Proposition 52 for abstraction morphisms.

Definition 49. Let P be a set of atomic propositions, S, T be shapes, γS : NS → 2P and
γT : NT → 2P be valuations, and let R be a set of properties such that the satisfaction
relations S, v, γS |= p and T,w, γT |= p are defined for any nodes v ∈ NS, w ∈ NT and for
any property p ∈ R. We say that α : S → T preserves R under γS , γT if for any p ∈ R and
for any v ∈ NS we have S, v, γS |= p implies T, α(v), γT |= p. We say that α reflects R under
γS , γT if for any p ∈ R and for any v ∈ NT we have T, v, γT |= p implies S,w, γS |= p for any
w ∈ α−1(v). J

In the following we show how, under some conditions on the relationship between α, 'T
and γT , the satisfaction of logic formulae of depth one is preserved and/or reflected by α. For
a shape T and a valuation γ : NT → 2P we say that 'T is compatible with γ if for any two
nodes v, w of T , if v 'T w, then γ(v) = γ(w). The negation free fragment of L1(P) is the set
of L1(P) formulae that do not use the negation operator (¬).

Proposition 50 (Preservation and Reflection). Let P be a set of atomic propositions,
S, T be shapes, γS : NS → 2P and γT : NT → 2P be valuation functions such that 'T is
compatible with γT , and let α : S → T be a shape morphism.
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(preservation) If α preserves P under γS , γT , then α preserves the negation free fragment
of L1(P) under γS , γT .

(reflection) If α reflects P under γS , γT , then α reflects the negation free fragment of L1(P)
under γS , γT .

(preservation and reflection) 6 If α preserves and reflects P under γS , γT , then α preserves
and reflects L1(P) (possibly with negation) under γS , γT . J

Proof. See Appendix E. ut

This preservation and reflection result can easily be extended to abstraction morphisms
(i.e., for S being a graph and α an abstraction morphism in the previous proposition). One
can define preservation and reflection on the same way for abstraction morphisms as for
shape morphisms, as well as the notion of a grouping relation compatible with an abstraction
morphism. We only enunciate the result without explicitly giving the definitions.

Proposition 51. Let P be a set of atomic propositions, G be a graph, S be a shape and
s : G→ S be an abstraction morphism compatible with P. J

(preservation) If s preserves P, then s preserves any negation-freeM(P) formula φ.
(reflection) If s reflects P, then s reflects any negation-freeM(P) formula φ.
(preservation and reflection) If s preserves and reflects P, then s preserves and reflects

anyM(P) formula φ. J

Proof. It is easy to show for the trivial morphism tG. Then the result follows from the com-
position of shape morphisms and Proposition 50. ut

7.4 Preservation and Reflection for Neighbourhood Shaping

The neighbourhood abstraction enjoys the good properties of preservation and reflection of
L(Lab) formulae with the appropriate depth.

Proposition 52 (Preservation and Reflection). Let G be a graph and S be a shape ob-
tained by the level i neighbourhood abstraction of G, for some i ≥ 1, with corresponding
abstraction morphism s : G→ S. Then s preserves and reflects Li(Lab). J

Proof. (Sketch) The proof goes by induction on i, using Proposition 50 and the fact that
Li+1(Lab) is equivalent to L1(R) where R is the a set properties defined by Li(Lab). ut

Thus, for any property φ of L(Lab) to be verified on a graph G, one can use the level
i neighbourhood shape of G for verifying φ, where i is the nesting depth of the formula φ.
This means that the neighbourhood abstraction provides a graph abstraction mechanism that
is parametrised by the properties we want to verify, and that guarantees preservation and
reflection of these properties.
6 Preservation for formulae with negation may seem contradictory with the Morphism Preservation Theorem
for finite structures [13]. This theorem states that a first-order formula is preserved by a morphism if, and
only if, it is equivalent to an existential positive formula. Some modal logic formulae cannot be expressed
in first-order logic without negation (e.g., ¬〉a〉λ ·tt.) However, in our case, shapes contain information on
interpretation of such negated formulae, by means of the multiplicity functions, which explains this apparent
contradiction.
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Example 53. Denote G the graph on Figure 1 and S its level one neighbourhood shape (Fig-
ure 6), and let s : G → S be the corresponding neighbourhood abstraction morphism. Let φ
be the formula of nesting depth two 〉next〉1 ·〉next〉1 ·tt (which intuitively expresses that there
is a next-path of length two starting from the node). We have that S,w3 |= φ, but G, v4 6|= φ,
and s(v4) = w3. That is, φ is not reflected by s. Consider now T the level two neighbourhood
shape of G, depicted on Figure 7; the corresponding morphism t : G → T is not difficult to
define. One can easily check that the formula φ is reflected by t. J

7.5 Relationship between the Logic and Neighbourhood Shaping

The modal logic that we presented in this section is tightly related to the neighbourhood
equivalence relation and canonical names. We already stated in Lemma 27 that two nodes of a
graph are neighbourhood equivalent if, and only if, they have the same canonical name. Here
we enhance this characterisation with the logic: two nodes are i-neighbourhood equivalent if,
and only if, they satisfy the same logic formulae of depth i.

Lemma 54. Two nodes v, v′ of a graph G are i-neighbourhood equivalent if, and only if, the
same Li(Lab) formulae hold in v and in v′. J

Proof. See Appendix G. ut

The following relationship between canonical names and logic formulae is also easy to see:
to any canonical name corresponds a logic formula that holds exactly in the nodes having this
name.

Lemma 55. For any i ≥ 1 and any level i canonical node name C, there exists an Li(Lab)
formula φC such that for any graph G and any node v of G, namei(G)(v) = C if, and only if,
G, v |= φC . J

Proof. (Idea) The formula φC can be effectively constructed by induction on i. ut

8 Related Work

Abstract Graph Transformations. In [9] one of the authors defined a notion of abstract graphs
in which abstract graph nodes may summarise an unbounded number of concrete graph nodes.
These abstractions are only used for deterministic simple graphs. With the abstract graph are
associated constraints on the multiplicities of incoming and outgoing edges for the nodes in
a concrete instance. In the same paper are also introduced canonical abstract graphs whose
size is bounded and that roughly corresponds to the level one neighbourhood abstraction in
the present work. In [11] these canonical abstract graphs are used for transformations.

In [2] are introduced the so called Partner Graph Grammars, suitable formalism for dy-
namic communication systems. They come with an abstraction mechanism on graphs and
an adequate notion of abstract graph transformations. Preservation and reflection are shown
for first-order logic without equality and an interesting subclass of abstraction morphisms.
Moreover, a CTL-based logic on labelled transition systems is shown to be invariant under
abstraction.
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Shape Analysis and 3-Valued Logic. The work of Sagiv et al. on shape analysis [14,15] has
resulted in different abstraction mechanisms allowing to finitely abstract structures of un-
bounded size. In [15] is presented an abstraction framework that can be parametrised by
the properties to be preserved; the framework is implemented in the TVLA tool [8,16]. In
this work, the authors use logical structures to represent memory states of programs; abstract
structures are 3-valued logical structures. Properties on these structures are defined using first-
order logic with transitive closure (FO+TC). Dynamics of systems are encoded by updating
the sets of predicates associated to the (abstract or concrete) structure. As graphs are logical
structures and our modal logic can be encoded into first-order logic, the abstraction mecha-
nism proposed in [15] is more general than ours. Concerning preservation of logical properties,
Sagiv’s “embedding theorem” states that any information extracted from an abstract struc-
ture via a FO+TC formula φ is a conservative approximation of the information extracted
from the concrete structure via φ. In this sense, our preservation and reflection result is more
general than the embedding theorem, but holds for a modal logic and abstraction mechanism
that are weaker than FO+TC and abstraction using abstraction predicates. We believe that
the benefits of our approach come from the possibility of full automation. A set of graph
transformation rules that is given as concrete semantics can be used as it is for the abstract
semantics. Moreover, we guarantee to preserve the precision defined by depth i logic formulae,
where i is the level of abstraction. In TVLA, it may be necessary to define “by-hand” some
update-predicates in order to guarantee the required precision. Complexity issues apart, our
framework should be easy to integrate into a graph transformation tool such as groove [7].

Abstract Regular Model Checking. In regular model checking (see e.g., [5,1]), states of programs
are represented as words or trees on finite alphabets, and dynamics are modelled as word
or tree transduction. Initial states of a system are represented by a regular (word or tree)
automaton Init, and bad configurations by a regular automaton Bad. Checking whether a bad
configuration is reached consists in testing whether the set τ∗(Lang(Init))∩Lang(Bad) is empty,
where τ is the transduction, and τ∗ designates a repetition of this transduction. In general
the problem is not decidable, as τ∗(Lang(Init)) may not be computable in a finite number
of steps. Abstract regular (word or tree) model checking [4,3] proposes a method for over-
approximating the set of reachable states τ∗(Lang(Init)) by a set of the form Lang(τ∗α(Init)),
where α is an appropriate abstraction function for automatons, and τα is intuitively the (tree
or word) transducer τ lifted to automatons. That is, τα allows to apply transformations on
sets of trees or words, and a parallel may be made with transformation of abstract graphs
which actually aims to over-approximate transformations of the set of their concretisations.

Logic Based Approaches. Not so closely related but still relevant are several methods for
modelling program states – or the memory heap – by relational structures, and operations
by instructions modifying these relational structures; these can be qualified as logic-based
approaches. For example, in [17] is introduced a fragment of first-order logic with transitive
closure for expressing properties on linked data structures, represented as graphs. The logic
allows to specify pre-conditions and post-conditions, and to verify loop invariants. Program
operations are directly expressed in the logic. We can also cite separation logic (see [12] for
an introduction) which has been a very active field of research for the last years.
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9 Conclusion and Further Directions

We presented a general mechanism for graph abstraction. We also defined graph transforma-
tions for abstract graphs that allow us to approximate behaviour of systems defined as graphs
and graph transformations. As the number of possible different abstract graphs is finite, this
approximation is finite. The construction of an abstract labelled transition system can be fully
automatised. Our abstraction mechanism can be parametrised in several ways, thus obtaining
different levels of precision. In particular, this can be parametrised in order to preserve and
reflect properties on graphs expressed in a modal logic that we also present in this paper.
That is, the abstraction guarantees that a (finite) set of properties hold in a graph if, and only
if, they hold in its abstraction, and this also holds for all abstract graphs obtained by graph
transformations starting from some initial start graph. This gives a parametrisable and fully
automatised framework for verifying properties on systems described by graphs and graph
transformations.

Our abstraction mechanism possess however some drawbacks which cause poor efficiency.
This is related in the precision of the abstraction.

Precision. Our abstraction mechanism is not very precise, in the sense that concretisations of
the same abstract graph may be very different in their shape and structure (see for example the
list-like shape on Figure 3(c) and its concretisations on Figure 4(c)). Obviously, abstraction
always leads to loss of precision. However, one could hope that the abstraction method is
precise enough for interesting examples such as list and list manipulations.

Complexity. The insufficient precision is closely related to performance issues. Performing
graph transformations on abstract graphs requires the so called materialisation step, which
consists in locally concretising the abstract graph in order to extract a copy of the left-hand
side of the graph transformation rule on which the actual transformation can be performed.
In our abstraction mechanism, the materialisation part may lead to a very large number of
materialisations. Each of this materialisations potentially results into a different application
of the transformation rule, and a different result graph. This affects the performance of our
algorithm, as we have to explore many different abstract transformations, and many of them
may never occur in a concrete labelled transition system. Moreover, as we do not have a
procedure for deciding whether an abstract graph admits concretisations (see Conjecture 32),
the abstract labelled transition system may contain states that do not correspond to any
concrete graph.

In order to improve our mechanism for abstract transformations, we need to improve the
precision of the abstraction. This could be done in several ways.

One possible direction to be explored is restricting the graphs on which we apply the
method. For instance, deterministic graphs were shown to be a good model for software systems
and the memory heap and in our method we can expect that this restriction would decrease
the number of possible abstract graphs.

Another improvement would be to increase the precision of the abstraction mechanism.
However, one has to be careful with adapting the abstraction mechanism especially if the result
of preservation of logic formulae is to be kept. The difficulty comes from the fact that whatever
properties one decides to preserve (and make them parameters of the abstraction mechanism),
these properties should be possible to update on abstract graphs after a graph transformation.
We have several examples of such properties that give an interesting improvement of the
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precision, but cannot be updated after transformation. Cyclicity and connectivity are such
examples. That is, if a cyclicity or connectivity property is associated to some node or a set
of nodes, then after performing an abstract graph transformation we cannot tell whether it
still holds. However, the information on existence of cycles of small size may be integrated by
using, for instance, hybrid logic.

A third possibility is to restrict the graph transformations that we allow. This is related
to our second direction on improving precision. Actually, the abstract transformation mecha-
nism and the abstraction mechanism are closely related, in the sense that properties used for
abstraction should be possible to update, or at least conservatively update, after the graph
transformation.
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A Proof of Proposition 12

Proposition 12. Let S, T and U be shapes, f be a shape morphism between S and T and g
another such morphism between T and U . Then g ◦ f (the function composition of f and g)
is a shape morphism between S and U . J

Proof. The first two axioms of Definition 11 are not difficultly seen to be met for g ◦ f . For
the third one, we only consider the property on the outgoing edges multiplicity function; the
one for incoming edges multiplicity follows by symmetry.

Consider a node w in NU , a label a and a class of group-equivalent nodes C ∈ NU /'U .
Let also v′ ∈ NT be a node such that f(v) = v′ and g(v′) = w. Then, by g being a shape
morphism, we know that

multoU (w, a, C) =

µ∑
D′ ∈ (g−1(C))/'T

multoT (v
′, a, D′).

On the other hand, by f being a shape morphism and by definition of v′, the right-hand side
of this equality can be expanded, giving the following

multoU (w, a, C) =

µ∑
D′ ∈ (g−1(C))/'T

µ∑
D ∈ (f−1(D′))/'S

multoS(v, a, D).

Now, given that any D′ in the inner sum is mapped to one and only one D (this is a basic
consequence of f being a – total – function), we can combine the two sums into one:

multoU (w, a, C) =

µ∑
D ∈ (f−1(g−1(C)))/'S

multoS(v, a, D),

which asserts that g ◦ f is a shape morphism between S and U . ut

B Proof of Lemma 22

Lemma 22. Let G be a graph, S, T be shapes, s : G→ S, t : G→ T be abstraction morphisms,
and β : T → S be a shape morphism such that s = β ◦ t.

1. If s is the neighbourhood abstraction morphism of G, then β is the neighbourhood shape
morphism of T .

2. If β is the neighbourhood shape morphism of T , then s is the neighbourhood abstraction
morphism of G.

S

T

G

t

s
β

J
For Statement 1, the proof goes as follows (see also Figure 8):

– We first show that the neighbourhood shape morphism of T exists, let it be the morphism
β′ : T → T ′,
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Fig. 8. Proof of Statement 1.

– We then define that there exists a morphism f : T ′ → S which is a shape isomorphism
and such that β = f ◦ β′.

For Statement 2, we show that there exists a morphism f : S′ → S such that s = f ◦ s′,
where s′ : G→ S′ is the abstraction morphism of graph G. See also Figure 9.

Fig. 9. Proof of Statement 2.

In the following we consider a fixed i for the abstraction radius.

B.1 Proof of Statement 1

The neighbourhood shape morphism of T exists. To show that the neighbourhood
shape morphism of T exists, it is enough to show that ∼i is defined. By definition, ∼i is
defined if ∼i−1 is defined and 'T⊆∼i−1. This is shown in the following lemma.

Lemma 56. Let G be a graph, S, T be shapes, s : G→ S, t : G→ T be abstraction morphisms,
and β : T → S be a shape morphism such that s = β ◦ t. If s is the neighbourhood abstraction
morphism of G, then ∼i−1 is defined on the nodes of T , and 'T⊆∼i−1. J

Lemma 56 is shown in Section B.3. The proof of this lemma allows us to establish the following
corollary. This corollary is used later on for the proof of Statement 1, and also for the proof
of Statement 2. The proof of Corollary 57 is also shown in Section B.3.

Corollary 57. Let G be a graph, S, T be shapes, s : G → S, t : G → T be abstraction
morphisms, and β : T → S be a shape morphism such that s = β ◦ t. If at least one of these
conditions is verified:

1. s is the neighbourhood abstraction morphism of G,
2. β is the neighbourhood shape morphism of T ,

then for any 0 ≤ j ≤ i, and for all v, v′ ∈ NG and all e, e′ ∈ EG,

v ≡j v′ ⇔ t(v) ∼j t(v′) and e ≡j e′ ⇔ t(e) ∼j t(e′).

J
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The abstraction isomorphism f exists. We show here that there exists a morphism
f : T ′ → S which is a shape isomorphism and such that β = f ◦ β′ (see Figure 8). Remind
that that β′ : T → T ′ is the neighbourhood shape morphism of T . We start by defining a
mapping f from nodes and edges T ′ to nodes and edges of S, and we show that this mapping
is a morphism, it is bijective and f and f−1 are shape morphisms.

Define a mapping f such that β = f ◦ β′. Remind that the abstraction morphism t and the
shape morphism β′ are surjective. Thus, any node (resp. edge) of T ′ can be written as t(β′(x))
for some node (resp. edge) x of G. Then f is defined by: for any t(β′(x)) node or edge of T ′,
f(t(β′(x))) = s(x). Then β = f ◦ β′ by definition of f and using s = β ◦ t.

Show that f is a morphism. The fact that f , defined as previously, is a morphism is not very
difficult to deduce using that t, β, β′ are morphisms.

Show that f is a bijection. Showing that f is a surjection is easily done using the definition
of f and the fact that s is a surjection. Let us show that f is an injection, that is, for any
t(β′(v)), t(β′(v′)) nodes of T ′, if t(β′(v)) 6= t(β′(v′)), then s(v) 6= s(v′). Now, t(β′(v)) 6=
t(β′(v′)) if, and only if, by definition, t(v) 6∼i t(v′) and, using Corollary 57, if, and only if,
v 6≡i v′, which is equivalent to s(v) 6= s(v′) by definition of the neighbourhood abstraction
morphism s. The same reasoning can be applied to edges.

Show that f and f−1 are shape morphisms. This is not difficult to show using the following
facts:

1. for all nodes w,w′ of T ′, w 'T ′ w′ if, and only if, f(w) 'S f(w′). This follows from the fact
that 'T ′=∼i and 'S=≡i, and using the dependence and characteristics of the abstraction
and shape morphisms s, t, β, β′, f ;

2. for all node or edge x of S, s−1(x) = (t ◦β′ ◦ f)−1(x). This fact together with the previous
one ensure equality of the multiplicity functions of S and T ′.

B.2 Proof of Statement 2

We start by defining f first as a mapping, then showing that it is indeed a morphism, a
bijection, and that f and f−1 are shape morphisms.

Define a mapping f such that s = f ◦ s′. Remind that s′ : G → S′ is the neighbourhood
abstraction morphism of G. As s′ is an abstraction morphism, it is surjective, thus any node
(resp. edge) of S′ can be written as s′(x) for x a node (resp. edge) of G. Then f is defined by:
for any x ∈ NG ∪ EG, f(s′(x)) = s(x). Thus, s = f ◦ s′ by definition.

Show that f is a morphism. Showing that f is a morphism is not difficult using that s′ and s
are morphisms.

Show that f is a bijection. The morphism f is surjective as s′ and s are surjective. For injection,
we have to show that for all nodes v, v′ of G, if s′(v) 6= s′(v′), then s(v) 6= s(v′) (and the same
for edges, but it easily follows). As s′ is the neighbourhood abstraction morphism of G, we
know that s′(v) 6= s′(v′) if, and only if, v 6≡i v′. On the other hand, as s = β ◦ t and β is the
neighbourhood shape morphism of T , we have that s(v) 6= s(v′) if, and only if, t(v) 6∼i v′.
Now, by Corollary 57 we know that v 6≡i v′ if, and only if, t(v) 6∼i v′, which shows that f in
injective.
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Show that f and f−1 are shape morphisms. As for Statement 1, it is not difficult to show
using the results that have already been established.

B.3 Proofs of Lemma 56 and Corollary 57

Let us first show Lemma 56, then we argue how its proof is used for deducing Corollary 57.

Proof of Lemma 56

Lemma 56. Let G be a graph, S, T be a shapes, s : G → S, t : G → T be abstraction
morphisms, and β : T → S be a shape morphism such that s = β ◦ t. If s is the neighbourhood
abstraction morphism of G, then ∼i−1 is defined on the nodes of T , and 'T⊆∼i−1. J

We show by induction on 0 ≤ j ≤ i− 1 that

IHA(j): ∼j is defined,
IHB(j): assuming that IHA(j), 'T⊆∼j ,
IHC(j): assuming IHA(j) and IHB(j), ∀w ∈ NG, t([w]≡j ) = [t(w)]∼j .

We start with the following intermediate result.

Fact 58 For any k ≤ i, it holds that

∀v, v′ ∈ NG, t(v) 'T t(v′) implies v ≡k v′

J

Proof. The proof of this fact goes as follows.

t(v) 'T t(v′) =⇒ (β is a shape morphism)
β(t(v)) 'S β(t(v′)) ⇐⇒ (s = β ◦ t)
s(v) 'S s(v′) ⇐⇒ (s is the level i neighbourhood abstraction morphism of G)
v ≡i v =⇒ (holds for any j ≥ i)
v ≡j v′

ut

Going back to the proof of the lemma, using Fact 58 and definition of ⊆ for equivalence
relations, we can see that for IHB(j) it is enough to show the following

∀v, v′ ∈ NG, v ≡j v′ implies t(v) ∼j t(v′) (1)

Base case. For the base case, j = 0. For IHA(0), ∼0 is always defined.
For IHB(0), we have to show (1). It is the case that for any nodes v, v′ ∈ NG, t(v) ∼0 t(v

′)
if, and only if, v ≡0 v

′; this is because ∼0 and ≡0 only take into account labels for grouping
nodes and labels are preserved and reflected by the abstraction morphism. The same argument
lets us conclude that IHC(0) also holds.
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General case. Assume that the induction hypotheses IHA(k), IHB(k) and IHC(k) hold for
any k < j. Let us show that they hold for j.

For IHA(j), by definition ∼j is defined if ∼j−1 is defined and 'T⊆∼j−1, thus IHA(j) follows
from IHA(j − 1) and IHB(j − 1).

For IHB(j), we first establish two intermediary results in Fact 59 and Fact 60.

Fact 59 ∀v, u ∈ NG, ∀a ∈ Lab, it holds that

µ∑
K∈NT/'T |K⊆[t(u)]∼j−1

multoT (t(v), a,K) =
∣∣∣v ��a

G [u]≡j−1

∣∣∣
µ
.

J

Proof. By definition, multoT (t(v), a,K) is equal to
∣∣v ��a

G (t−1(K))
∣∣
µ
(for all v, a,K). Note now

that the K ∈ NT /'T summed-up above form a partition of the set [t(u)]∼j−1
; this comes

from the fact that 'T⊆∼j−1 (IHB(j − 1)). Then, by definition of set multiplicity function,

µ∑
K∈NT/'T |K⊆[t(u)]∼j−1

multoT (t(v), a,K) =
∣∣∣v ��a

G (t−1([t(u)]∼j−1
))
∣∣∣
µ

and it holds for all v, u ∈ NG, and all label a. Now by IHC(j − 1), [t(u)]∼j−1
= t([u]≡j−1

),
therefore t−1([t(u)]∼j−1

) = t−1(t([u]≡j−1
)) = [u]≡j−1

. ut

Fact 60 It holds that
∀v, v′ ∈ NG, v ≡j v′ ⇐⇒ t(v) ∼j t(v′)

J

Proof. By definition of the neighbourhood equivalence relations on graphs and shapes,

v ≡j v′ ⇐⇒ ∀u ∈ NG, ∀a ∈ Lab,
∣∣∣v ��a

G [u]≡j−1

∣∣∣
µ
=
∣∣∣v′ ��a

G [u]≡j−1

∣∣∣
µ

and

t(v) ∼j t(v′) ⇐⇒ ∼j−1 is defined and ∀u ∈ NG, ∀a ∈ Lab,
µ∑

K∈NT/'T |K⊆[t(u)]∼j−1

multoT (t(v), a,K) =

µ∑
K∈NT/'T |K⊆[t(u)]∼j−1

multoT (t(v
′), a,K).

The statement of Fact 60 immediately follows from these definitions and Fact 59. ut

Back to the proof of IHB(j), we have to show (1). This immediately follows from Fact 58
and Fact 60.

Finally, for IHC(j), we have to show that ∀w ∈ NG, t([w]≡j ) = [t(w)]∼j . By definition, t([w]≡j )
is the set (∀u ∈ NG, ∀a ∈ Lab){

t(w′)

∣∣∣∣∣∣∣w′ ��a
G [u]≡j−1

∣∣∣
µ
=
∣∣∣w ��a

G [u]≡j−1

∣∣∣
µ

}
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and [t(w)]∼j is the set (∀u ∈ NG,∀a ∈ Lab)t(w′)
∣∣∣∣∣∣∣

µ∑
K∈NT/'T |K⊆[t(u)]∼j−1

multoT (t(w
′), a,K) =

µ∑
K∈NT/'T |K⊆[t(u)]∼j−1

multoT (t(w), a,K)


According to Fact 59, these two sets are equal. This finishes the proof for IHC(j), and thus
the proof of Lemma 56.

Proof of Corollary 57

Corollary 57. Let G be a graph, S, T be shapes, s : G → S, t : G → T be abstraction
morphisms, and β : T → S be a shape morphism such that s = β ◦ t. If at least one of these
conditions is verified:

1. s is the neighbourhood abstraction morphism of G,
2. β is the neighbourhood shape morphism of T ,

then for any 0 ≤ j ≤ i, and for all v, v′ ∈ NG and all e, e′ ∈ EG,

v ≡j v′ ⇔ t(v) ∼j t(v′) and e ≡j e′ ⇔ t(e) ∼j t(e′).

J

We only show the corollary for nodes, the statement for edges easily follows from the
definitions. One can notice that the statement of this corollary is very similar to what has
been shown in Fact 60. However, there are some small differences either in the hypotheses, or
in what has been proved. We show how the proof of Fact 60 can be completed for showing the
corollary.

The first difference is that Fact 60 is shown for j < i. However, the proof of Fact 60 can
be extended for j = i. Figure 10 illustrates what needs to be shown for Fact 60 with j = i.
That is, for showing Fact 60 with j = i, we use Fact 59 with j = i; the proof of Fact 59 for
j = i uses IHB(i − 1) and IHC(i − 1). Thus, it is enough to show that IHC(0) and IHB(j)
for all 0 ≤ j ≤ i − 1 hold. (Here IHC() and IHB() denote the induction hypotheses used for
proving Lemma 56).

Fact 59
j = i

IHC(i− 1) Fact 59
j = i− 1

· · · Fact 59
j = 1

IHC(0)

IHB(i− 1) IHB(i− 2) IHB(1)

Fact 60
j = i

Fig. 10. Proof dependence for Fact 60.

Now, if condition 1 of the corollary holds, it corresponds exactly to the hypotheses of
Lemma 56. Thus IHC(0) and IHB(j) for all 0 ≤ j ≤ i− 1 can be shown. If condition 2 of the
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corollary holds, IHB(j) holds for all 0 ≤ j ≤ i − 1. Remind that IHB(j) states that 'T⊆∼j ,
and this is the case because the neighbourhood shape morphism β of T exists. Moreover, it is
immediate that ∀w ∈ NG, t([w]≡0

) = [t(w)]∼0
(that is, IHC(0)) holds under condition 2.

C Proof of Lemma 23

Lemma 23. If any two neighbourhood shapes have a common concretisation, then they are
isomorphic. J

Proof. (Sketch) We show that any abstraction morphism to a neighbourhood shape is a neigh-
bourhood abstraction morphism. That is, if G is a graph, s : G→ S is its neighbourhood ab-
straction morphism and t : G→ T is some arbitrary morphism with T being a neighbourhood
shape (i.e., there exists a graph H with neighbourhood abstraction morphism t′ : H → T ),
then T and S are isomorphic. We consider that S and T are given with their canonical repre-

sentation (see Section 4.2), and we show that S and T have the same canonical representation.
By Lemma 28, this implies that S and T are isomorphic. Let v be a node of G. Remind that
s(v) and t(v) are canonical names. If we show that s(v) = t(v) (as a canonical name), then it
would imply that the set of node canonical names of S and T are the same (remind that the
morphisms s and t are surjective). The same is similarly shown for edges.

A level i canonical name is of the form 〈C, out, in〉, where out and in are multiplicity
functions, and C is a level i− 1 canonical name. Of course, C has as first component a level
i − 2 canonical name, and so on. Thus, a level i canonical name contains a level j canonical
name for any 0 ≤ j ≤ i. In the following we call it its level j component.

We show that (for any v ∈ NG):

– for all 0 ≤ j ≤ i, the level j components of t(v) and s(v) (considered as node canonical
names) are the same,

– s(v) and t(v) have the same out and in multiplicity functions.

The proof of these two statements goes by a simple induction on j that we omit here. ut

D Proof of Lemma 28

Lemma 28. Let G,H be graphs, and let i ≥ 1. The level i neighbourhood shapes of G and H
are isomorphic if, and only if, CG and CH are equal.

Proof. For the right-to-left direction, we show that CG defines uniquely a shape S which is
isomorphic to the level i neighbourhood shape of G. Let S = 〈GS ,'S ,multnS ,multoS ,multiS〉 be
the shape defined by:

– NS = N , ES = E and for any e = 〈C, a, C ′〉 in E , srcS(e) = C, tgtS(e) = C ′ and
labS(e) = a;
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– 'S is the smallest equivalence relation such that C 'S C ′ if C and C ′ have the same first
component. Remind that C and C ′ are level i canonical names and their first component
is a level i− 1 canonical name;

– multnS = mult;
– for all C ∈ NS , a ∈ Lab, and K ∈ NCani−1, multoS(C, a,K) = outC(K, a), where outC is

the function second component of C (remind that C is a level i canonical name);
– for all C ∈ NS , a ∈ Lab, and K ∈ NCani−1, multoS(C, a,K) = inC(K, a), where inC is the

function third component of C (remind that C is a level i canonical name).

Note that S is indeed a shape. We do not show this here, but a similar construction is intro-
duced and shown correct in Section 4.3.

Let us now show that S is isomorphic to the level i neighbourhood shape of G. Consider
T , the level i neighbourhood shape of G, and consider the function f = (fn, fe), fn : NS →
NT , fe : ES → ET defined by:

– fn(C) = {v ∈ NG | nameiG(v) = C};
– fe(C) = {e ∈ EG | nameiG(e) = C}.

Using Lemma 27, fn and fe are bijections, and it is not difficult to see that f is a graph
morphism, thus a graph isomorphism. Showing that f is a shape morphism is quite technical,
but not difficult, and only uses definitions of S, of T , of shape morphism and of neighbourhood
shape morphism. This concludes the proof of the right-to-left direction.

Now, for the left-to-right direction, let S be the level i neighbourhood shape of G with
neighbourhood abstraction morphism s : G → S, and let T be the level i neighbourhood
shape of H with neighbourhood abstraction morphism t : H → T . Suppose that S and T are
isomorphic with isomorphism f : S → T . We use the modal logic to prove that CG and CH
are equal. We use the following results of the modal logic.

(1) Neighbourhood abstraction morphism preserves and reflects logic formulae (Proposition 52).
(2) For any graph G, any two nodes v, w of G, v, w are level i neighbourhood equivalent if,

and only if, v, w have the same level i canonical names, if, and only if, v, w satisfy the
same depth i logic formulae (Lemma 27 and Lemma 54).

(3) For any level i canonical name C, there exists a representative formula φC such that in
any graph G, any node v of G, nameiG(v) = C if, and only if, G, v |= φC (Lemma 55).

(4) By (1), (2) and (3), we can deduce that for any graph G and i ≥ 1, if S is the level i
neighbourhood shape of G with corresponding abstraction morphism s : G → S, and if
C = nameiG(v) for some v node of G, then S, s(v) |= φC .

Let CG = 〈NG, EG,multG〉 and CH = 〈NH , EH ,multH〉. Remark first that the modal logic
cannot distinguish isomorphic structures, and this holds both for graph and shapes.This means
that (?) if v is a node of S, then for any level i logic formula φ, S, v |= φ if, and only if,
T, f(v) |= φ. Now, let C ∈ NG, and let v be a node of G s.t. nameiG(v) = C. Then, by
(3), G, v |= φC , and by (4), S, s(v) |= φC . Now, by (?) we deduce that T, f(s(v)) |= φC . By
preservation and reflection of the logic (by (1)), we have that for any w ∈ t−1(f(s(v))) node
of H, H,w |= φC . By (3), we deduce that C is the level i canonical name of w ∈ NH , thus
C ∈ NH . That is, we just showed that NG ⊆ NH . Symmetrically we can show that NH ⊆ NG,
and thus NG = NH .

It is not difficult to prove that also EG = EH , and the same for the multiplicity functions.
ut

48



E Proof of Proposition 50

Proposition 50. Let P be a set of atomic propositions, S, T be shapes, γS : NS → 2P and
γT : NT → 2P be valuation functions such that 'T is compatible with γT , and let α : S → T
be a shape morphism.

(preservation): If α preserves P under γS , γT , then α preserves the negation free fragment of
L1(P) under γS , γT .

(reflection): If α reflects P under γS , γT , then α reflects the negation free fragment of L1(P)
under γS , γT .

(preservation and reflection): If α preserves and reflects P under γS , γT , then α preserves and
reflects L1(P) (possibly with negation) under γS , γT . J

The rest of the section is devoted to the proof of this proposition.
LetM(P) be the set of logic formulae defined by the symbol φ in the following syntax:

φ ::= tt | 〉a〉λ ·ψ | 〈a〈λ ·ψ | φ ∨ φ | φ ∧ φ | ¬φ
ψ ::= p | ψ ∨ ψ | ψ ∧ ψ | ¬ψ | tt

The set of propositions defined by ψ above is denoted Bool(P). It is not difficult to see that
φ defines a grammar for L1(P), thusM(P) is exactly the logic L1(P). We use this grammar
in the proof for an induction on the structure of a L1(P) formula.

Let us state Proposition 50 using the previous notations. Let P be a set of atomic propo-
sitions and S, T be shapes, γS : NS → 2P and γS : NS → 2P be valuations such that 'T is
compatible with γT , and α : S → T be a shape morphism. If α preserves P, then for any node
v in NS and for anyM(P) formula φ without negation

(preservation) S, v, γS |= φ implies T, α(v), γT |= φ

If α reflects P, then for any node v in NS and for anyM(P) formula φ without negation

(reflection) T, α(v), γT |= φ implies S, v, γS |= φ

If moreover α preserves and reflects P, then for any node v it NS , and for anyM(P) formula
φ (possibly with negation), both (preservation) and (reflection) hold.

For brevity, we omit the valuations γS and γT , as they are fixed for each of the shapes.

We first show some preliminary lemmas.

Lemma 61 (α preserves / reflects Bool(P)). If α preserves P, then α preserves Bool(P),
that is, for any Bool(P) formula ψ without negation and for any node v in NS, if S, v |= ψ,
then T, α(v) |= ψ.

If α reflects P, then α reflects Bool(P) without negation, that is, for any Bool(P) formula
ψ without negation and for any node v in NS, if T, α(v) |= ψ, then S, v |= ψ.

If α preserves and reflects P, then α preserves and reflects Bool(P), that is, for any
Bool(P) formula ψ and for any node v in NS, S, v |= ψ, if, and only if, T, α(v) |= ψ. J

Proof. The proof is an easy induction on the structure of ψ that we will omit. ut

Lemma 62 ('T is compatible with Bool(P)). If 'T is compatible with γT , for any two
nodes v, w in NT and for any formula ψ in Bool(P) if v 'T w, then T, v, γT |= ψ if, and only
if, T,w, γT |= ψ. J
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Proof. By induction on the structure of ψ; the base case for ψ = p uses the fact that 'T is
compatible with P. ut

We call this property 'T is compatible with Bool(P), in the sense that two 'T -equivalent
nodes satisfy the same Bool(P) formulae.

Let us now go to the proof of Proposition 50. Consider a node v in NS fixed from now on.
We first show preservation.

E.1 Preservation

Assume that α preserves P, and let φ be aM(P) formula without negation s.t. S, v |= φ. We
show that T, α(v) |= φ and the proof goes by induction on the structure of φ. For the base
case, either φ = tt, and then the proposition is trivial, or φ is in Bool(P) without negation,
in which case the proposition follows from Lemma 61. For the induction step, if φ = φ1 ∨ φ2
or φ = φ1 ∧ φ2, then, by definition of satisfaction and by induction hypothesis, preservation
property easily follow. Let us now show the preservation for φ = 〉a〉λ·ψ for some ψ in Bool(P)
without negation. By definition, S, v |= 〉a〉λ ·ψ if, and only if,

µ∑
D∈X

multoS(v, a, D) ≥ λ

and T, α(v) |= 〉a〉λ ·ψ if, and only if,

µ∑
C∈Y

multoT (α(v), a, C) ≥ λ

where X and Y are the sets

X = {D ∈ NS /'S | ∀w ∈ D. S,w |= ψ}
Y = {C ∈ NT /'T | ∀w ∈ C. T,w |= ψ} .

By definition of abstraction,
∑µ

C∈Y multoT (α(v), a, C) is equal to

µ∑
C∈Y

µ∑
D ∈ (α−1(C))/'S

multoS(v, a, D) (2)

Now, for any two different C1 and C2 group-equivalent classes in Y , the sets of nodes α−1(C1)
and α−1(C2) are different (as α is functional on NS). Then, by associativity of µ-sum, the
sum in (2) is equal to

µ∑
D ∈ (α−1(

⋃
C∈Y C))/'S

multoS(v, a, D). (3)

Consider now the set of nodes

Y ′ = {w ∈ NT | T,w |= ψ}.

As 'T is compatible with Bool(P) (Lemma 62) and ψ is a formula in Bool(P), we have that
if two nodes w,w′ are in some C ∈ NT /'T , then T,w |= ψ if, and only if, T,w′ |= ψ. We
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deduce that if Y ′ contains some node w of the group-equivalence class C, then C ⊆ Y ′. Thus,
Y = Y ′ /'T , or, equivalently,

⋃
C∈Y C = Y ′. Now, α being a morphism, α−1(Y ′) is the set of

nodes X ′:
X ′ = {w ∈ NS | T, α(w) |= ψ}.

Therefore, the sum in (3) is equivalent to
µ∑

D ∈ X′/'S

multoS(v, a, D). (4)

Now, by preservation of Bool(P), we have that D ∈ X implies that D is in the set{
D′ ∈ NS /'S

∣∣∀w ∈ D′.T, α(w) |= ψ
}

and it is easy to see that then D ∈ X ′ /'S . That is, the sum in (4) has more components
than the sum

∑µ
D∈X multoS(v, a, D), which by hypothesis we know being greater than λ. As

the sum in (4) is equivalent to
∑µ

C∈Y multoT (α(v), a, C), we conclude that the latter is greater
than λ, thus ψ is preserved.

E.2 Reflection

Assume that α reflects P, and let φ be a M(P) formula without negation s.t. T, α(v) |= φ.
We show that S, v |= φ and the proof goes by induction on the structure of φ. For the cases
φ = tt, φ in Bool(P), φ = φ1 ∨ φ2 and φ = φ1 ∧ φ2, the proof goes as for preservation.

For φ being a modality formula, the proof is close to the proof of preservation. However,
there is a particular point on which one has to pay attention, due to the asymmetry in the
hypotheses of the proposition, namely, we have a hypothesis for compatibility of 'T with γT ,
but there is no similar hypothesis for 'S and γS . Therefore, we briefly remind the steps of the
proof that are common with the proof for preservation, and then do the remaining part.

Let φ = 〉a〉λ·ψ for some ψ in Bool(P) without negation. The relation that we have to show
is
∑µ

D∈X multoS(v, a, D) ≥ λ using that
∑µ

C∈Y multoT (α(v), a, C) ≥ λ, where the sets X and Y
are as for preservation. As for preservation, we can establish that

∑µ
C∈Y multoT (α(v), a, C) is

equal to the sum in (4). It is then enough to show that

(?) if D ∈ X ′ /'S , then D ∈ X.

Consider the set X ′′

X ′′ = {w ∈ NS | S,w |= ψ and T, α(w) |= ψ}.

By reflection of Bool(P), and ψ being a Bool(P) formula, we deduce that D ∈ X ′ /'S implies
D ∈ X ′′ /'S . Using the definition of X, one can see that then for (?) it is enough to show

(??) if D ∈ X ′′ /'S , then D ∈ NS /'S .

It remains to show that the set X ′′ contains only entire classes of nodes for 'S . That is
where the condition T, α(w) |= ψ in the definition of X ′′, which may seem redundant, is
used to compensate the asymmetry of the hypotheses pointed out before. Let us show that if
w 'S w′, and S,w |= ψ, and T, α(w) |= ψ, then S,w′ |= ψ, which is sufficient for (??).

From α being a shape morphism, we know that w 'S w′ implies α(w) 'T α(w′). By
compatibility of 'T with Bool(P) (Lemma 62), it follows that T, α(w) |= ψ if, and only if,
T, α(w′) |= ψ. By hypothesis, T, α(w) |= ψ, then also T, α(w′) |= ψ. Finally, by reflection of
ψ, we deduce that S,w′ |= ψ.
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E.3 Preservation and reflection

We finally show preservation and reflection in presence of the additional hypothesis that α
preserves and reflects P. The proof is very similar as for the previous cases, and goes by
induction on the structure of φ. More precisely, we show that for any formula φ, S, v |= φ
if, and only if, T, α(v) |= φ. For the base case, if φ is tt it is trivial, and if φ is a formula
from Bool(P), the result follows from Lemma 61. For the induction, if φ is a forward or
backward modality formula, the proof goes on the same way that the proof for preservation
and reflection. For φ = φ1 ∨ φ2, the result is an immediate consequence of the definition of
satisfaction. The only remaining case is φ = ¬φ′, for which we use that preservation of the
negated formula ¬φ′ is equivalent to reflection of the sub-formula φ′. That is, S, v |= ¬φ if,
and only if, S, v 6|= φ if, and only if, by induction hypothesis, T, α(v) 6|= φ if, and only if,
T, α(v) |= ¬φ.

F Proof of Lemma 44

The result of the following lemma is used without proof in Lemma 44.

Lemma 63. Let U ′′ be a shape that admits a level i neighbourhood shape morphism, and let
the shape U ′ be obtained from U ′′ by removing some unique node labels. Then U ′ also admits a
level i neighbourhood shape morphism. Moreover, for all node v in NU ′ and for all 1 ≤ j ≤ i,
[v]∼j in U ′′ is included into [v]∼j in U ′. J

Proof. We denote N the set of nodes of U ′ and U ′′, and we denote [v]Uj the equivalence class
of the node v for the equivalence relation ∼j in the shape U , where U may be one of U ′ or
U ′′. We show, by induction on j for j ∈ 1..i, that

IH (j) ∼j is defined on U ′ and for all v in N , [v]U
′′

∼j ⊆ [v]U
′

∼j

For the base case, IH (0) immediately follows from definitions of ∼0 and the shapes U ′ and
U ′′.

For the induction step, let j > 0. Remind that ∼j is defined in U ′ if 'U ′⊆∼j−1, or,
equivalently, for all node v, [v]'U′ ⊆ [v]U

′

∼j−1
. By definition of U ′′ we know that [v]'U′ = [v]'U′′

.

As U ′′ admits a level i neighbourhood shape morphism, we have [v]'U′′
⊆ [v]U

′

∼j−1
, and by

IH (j − 1), [v]U
′′

∼j−1
⊆ [v]U

′

∼j−1
.

Next we have to show that [v]U
′′

∼j ⊆ [v]U
′

∼j . Suppose v ∼j v
′ in U ′′ and let us show that also

v ∼j v′ in U ′. By definition, this latter holds if, and only if, for all C ∈ N / ∼j−1, and for all
label a,

µ∑
K∈N/'U′ | K⊆C

multoU ′(w, a,K) =

µ∑
K∈N/'U′ | K⊆C

multoU ′(w
′, a,K)

and analogously for incoming edges multiplicity function. By IH (j−1), the set C is the union
of disjoint sets C1, . . . , Cn that are all equivalence classes for ∼j−1 in U ′′, i.e.,

µ∑
K∈N/'U′ | K⊆C

multoU ′(w, a,K) =

µ∑
l∈1..n

µ∑
K∈N/'U′′ | K⊆Cl

multoU ′′(w, a,K)
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and the same for w′. This is well defined because the shapes U ′ and U ′′ have the same nodes
and edges, the same multiplicities, and the same grouping relation. As ∼j is defined on U ′′,
for any Cl the equality

µ∑
K∈N/'U′′ | K⊆Cl

multoU ′′(w, a,K) =

µ∑
K∈N/'U′′ | K⊆Cl

multoU ′′(w
′, a,K)

holds, thus the equality of the whole sum holds. ut

Consider now the shape T ′′ as described in the sketch of the proof. We have to show that
T ′′ admits a level i neighbourhood shape morphism. That is, it is enough to show that ∼j is
defined in T ′′ for all j ∈ 1..i (∼0 being always defined). We show that for all v ∈ NS′′ , [v]∼j
in T ′′ is equal to [v]∼j in S′′. This is enough as 'T ′′ and 'S′′ coincide on nodes in NS′′ , thus
'S′′⊆∼j in S′′ would imply 'T ′′⊆∼j in T ′′, and nodes in Nnew have also singleton classes for
the equivalence relations 'T ′′ and ∼j (the latter because they contain fresh labels).

The proof that [v]∼j in T ′′ is equal to [v]∼j in S′′ is quite technical, but does not use any
difficult idea. We rather present it in an intuitive way. Suppose that v ∼j v′ in S′′. Then

1. either v and v′ are both at distance j or less from some node in c(L′′) ∪ Nnew and their
equivalence class is influenced by one or more of the fresh labels,

2. or v and v′ are both far away from c(L′′) ∪Nnew.

Remark now that if a node w is at distance d from c(L′′) in S′′, then it is at distance at least d
from c(L′′)∪Nnew in T ′′. So, such a node may join the equivalence class of some other nodes.

G Proof of Lemma 54

Lemma 54. Two nodes v, v′ of a graph G are i-neighbourhood equivalent if, and only if, the
same Li(Lab) formulae hold in v and in v′. J

The proof goes by induction on i. For brevity, we write v |= φ instead of G, v, γ |= φ as
the graph G and the valuation γ are fixed.

For the base case. We have i = 0. For the ⇒ direction, assume that v ≡0 v′. Then, by
definition, lab(v) = lab(v′). Let φ be a L0 formula; by an easy induction on the structure of φ
one can show that v |= φ if, and only if, v′ |= φ. For the⇐ direction, assume that it is not the
case that v ≡0 v

′. Then we easily deduce that there is formula φ which holds in one of v, v′

but not in the other; it is sufficient to take φ = a where a is a label in lab(v)∪ lab(v′) but not
in lab(v) ∩ lab(v′) and we know by assumption that this label exists.

For the induction. We have i > 0. For the ⇒ direction, assume that v ≡i v′. We show that
for any Li formula φ, v |= φ if, and only if, v′ |= φ and the proof goes by induction on the
structure of φ. The only interesting cases are for φ being 〉a〉λ ·φ′ and 〈a〈λ ·φ′. Let us show it
for 〉a〉λ·φ′, the other case is symmetrical. So, let φ be the formula 〉a〉λ·φ′. Then, by definition
of the satisfaction relation, v |= φ if, and only if,

∣∣v �a ∩Sφ′�a
∣∣
µ
≥ λ and v′ |= φ if, and only

if,
∣∣v′ �a ∩Sφ′�a

∣∣
µ
≥ λ, where Sφ′ denotes the set of nodes of G in which φ′ holds. We show
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that
∣∣v �a ∩Sφ′�a

∣∣
µ
=
∣∣v′ �a ∩Sφ′�a

∣∣
µ
, which allows us to conclude that v |= φ if, and only

if, v′ |= φ.
Let N /≡i−1 denote the set of equivalence classes of nodes of G induced by the ≡i−1

equivalence relation. Let, for any C in N /≡i−1, FC denote the set of Li−1 formulae that hold
in the nodes in C : FC = {ψ ∈ Li−1 | ∀v ∈ C : v |= ψ}. Then, as φ′ is an Li−1 formula and
using the induction hypothesis on i, it is easy to see that Sφ′ is the set

⋃
C∈N/≡i−1 |φ′∈FC C�

a.
In this case, by distributivity of the multiplicity function over set union, we deduce that∣∣v �a ∩Sφ′�a

∣∣
µ
=
∑µ

C∈N/≡i−1 |φ′∈FC |v �
a ∩C�a|µ. Now, by assumption we have that v ≡i

v′, so by definition of the ≡i equivalence relation we have that for any C in N /≡i−1,
|v �a ∩C�a|µ = |v′ �a ∩C�a|µ. Thus,

∣∣v �a ∩Sφ′�a
∣∣
µ
=
∑µ

C∈N/≡i−1
|v′ �a ∩C�a|µ and this

last quantity is equal to |v′ �a ∩C�a|µ.
For the ⇐ direction,
Assume v 6≡i+1 v

′. If this is the case, we know that there exist a label a ∈ Lab and an
equivalence class C ∈ NG /≡i for which either ov = |v �a ∩C�a|µ 6= |v′ �a ∩C�a|µ = ov′ or
iv = |v �a ∩C�a|µ 6= |v′ �a ∩C�a|µ = iv′ . For the moment, let us assume that there exists a
formula ψ ∈ Li that only one such C satisfies. Let φ be:

〉a〉max(ov ,ov′ ) ·ψ if ov 6= ov′

〈a〈max(iv ,iv′ ) ·ψ otherwise

As a) no other ≡i-equivalence class satisfies ψ, and b) all nodes in C satisfy ψ (by inductive
hypothesis); we can deduce that C is exactly the set of nodes that satisfies ψ. Thereby, φ is
satisfied by only one of v or v′. To show that such a ψ exists, consider the following: for each
C ′ ∈ NG /≡i, s.t. C ′ 6= C, we can find a ψC′ ∈ Li s.t. C |= ψ and C ′ 6|= ψ7, also due to the
induction hypothesis. So we can take ψ to be ψ =

∧
C′∈NG/≡i | C′ 6=C ψC′

7 Slight abuse of notation.
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