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Abstract This paper studies a two-phase decomposition approach to solve
the personnel scheduling problem. The first phase creates a days off schedule,
indicating working days and days off for each employee. The second phase as-
signs shifts to the working days in the days off schedule. This decomposition is
motivated by the fact that personnel scheduling constraints are often divided
in two categories: one specifies constraints on working days and days off, while
the other specifies constraints on shift assignments. To assess the consequences
of the decomposition approach, we apply it to public benchmark instances, and
compare this to solving the personnel scheduling problem directly. In all steps
we use mathematical programming. We also study the extension that includes
night shifts in the first phase of the decomposition. We present a detailed re-
sults analysis, and analyze the effect of various instance parameters on the
decompositions’ results. In general, we observe that the decompositions sig-
nificantly reduce the computation time, and that they produce good solutions
for most instances.
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1 Introduction

Assigning personnel to work shifts is challenging, both in theory and practice.
In theory, the personnel scheduling problem is a well known hard combinatorial
optimization problem. In practice, constructing high-quality shift schedules is
often difficult and time consuming, due to the large number of working time
regulations and employee preferences such as shift and vacation requests.

In many practical situations, scheduling days off is a separate step in the
shift assignment process. For employees, it is preferable or even requisite, see
Nurmi et al (2011), to know their working days a long time ahead, so they can
plan their free time. The exact working hours, are not essential to know in the
long term. In addition, vacation requests can be taken into account long before
the actual shift planning, which may alert the planner for possible capacity
problems.

In this paper, we study a decomposition approach for the personnel schedul-
ing problem, that first solves the days off scheduling problem, which assigns
working days and days off to a set of employees, and secondly assigns specific
shifts, e.g., early or late, to working days in the days off schedule. This method
reduces the complexity of the personnel rostering problem by decomposing the
problem into subproblems that are easier to solve. Since a decomposition ap-
proach implies a possible loss of solution quality, we want to mitigate this effect
by solving the subproblems to optimality. To achieve this, we apply integer
linear programming (ILP) to the subproblems.

The contribution of this paper is that we investigate the days off decompo-
sition on 25 nurse rostering benchmark instances found at Curtois (2007). In
addition we study the effect of specifying the night shift during decomposition.
Our generic methods make clear what the potential and pitfalls of these de-
compositions are and make it possible to give a detailed analysis of the issues
that are important in this decomposition.

This paper is structured as follows. First, Section 2 discusses related lit-
erature, and after that Section 3 defines the personnel scheduling problem.
In Section 4, we present our decomposition approach, and Section 5 discusses
computational results. Section 6 presents the conclusions.

2 Literature review

There is a vast amount of literature on personnel scheduling, see the recent
review by den Bergh et al (2013), and the reviews by Ernst et al (2004),
Burke et al (2004) and Cheang et al (2003). Within personnel scheduling lit-
erature days off scheduling has received considerable attention. In this section
we review days off scheduling literature and indicate how the decomposition
approach as proposed in this paper contributes to existing literature.
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In literature there has been a particular focus on cyclic days off scheduling.
Alfares (1998, 2001); Baker (1974a); Bartholdi et al (1980); Bartholdi (1981);
Bechtold (1981); Rothstein (1973); Tibrewala et al (1972) propose algorithms
to determine weekly repeating days off schedules for which employees have in
each week 5 consecutive working days and 2 consecutive days off. The objective
is to determine the minimum size workforce or the minimum cost workforce.
These days off scheduling problems are polynomially solvable, since they can
be modeled as network flow problems, see Bartholdi et al (1980). Baker (1974b)
extends on this by including part-time workers, which may work less than 5
consecutive shifts and Alfares (2002) determines the minimum workforce in
the situation where in each 3-week period an employee has 14 consecutive
working days and 7 consecutive days off.

Baker and Magazine (1977); Brownell and Lowerre (1976); Hung (1991);
Lowerre (1977) determine the minimum workforce size for cyclic days off
scheduling with various days off policies and workforce demand being N on
weekdays and n during weekends. Emmons (1985) extends on this by implying
that an employee has at least A out of B weekends off, and Emmons and Fuh
(1997) include part-time workers who work less shifts than full-time workers.
Baker et al (1979) also include constraints on the number of working week-
ends, but assume staff requirements are the same each day, whereas Burns and
Carter (1985); Burns et al (1998); Pedrosa and Constantino (2001) allow staff
requirements to be different each day. Maier-Rothe and Wolfe (1973); Rosen-
bloom and Goertzen (1987) first determine a set of schedules, given a set of
constraints, which are afterwards assigned to employees. Emmons and Burns
(1991); Hung (1994); Narasimhan (1997) determine the minimum cost work-
force for hierarchical multi-skilled workforces. With hierarchical skills there
is an ordering of skills such that a higher skilled more expensive worker can
always do the work of a lower-skilled less-expensive worker.

Acyclic days off scheduling has also received considerable attention. Azmat
and Widmer (2004); Azmat et al (2004); Hung (1999) consider a scheduling
horizon of one year, with constraints on the number of shifts per week and
during the scheduling horizon. Morris and Showalter (1983); Alfares (2003)
consider constraints on the number of (consecutive) working days and days
off under the objective to minimize the workforce size, whereas Elshafei and
Alfares (2008) minimize the workforce cost, and Beaumont (1997); Miller et al
(1976) minimize the penalty implied by violations of scheduling criteria. Costa
et al (2006) study a feasibility problem under numerous days off scheduling
constraints.

In this paper we solve the personnel scheduling problem by first solving
the days off scheduling problem and then assigning shifts to employees on
their working days. This is also done by Baxter and Mosby (1988); Day and
Ryan (1997); Gértner et al (2001). Baxter and Mosby (1988) use heuristics
to solve the subproblems whereas we use ILP to get optimal solutions for the
subproblems. Day and Ryan (1997); Gértner et al (2001) solve the subprob-
lems by enumerating day off patterns and solving partitioning problems. Day
and Ryan (1997) solve the day off scheduling problem to optimality, however
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the shift assignment phase is not necessarily solved to optimality. Due to the
heuristic nature of their methods, Baxter and Mosby (1988); Day and Ryan
(1997) include a re-scheduling method in their approaches. Abdennadher and
Schlenker (1999) decompose the personnel scheduling problem to three phases:
day off assignment, night shifts assignment, and morning and evening shift as-
signment. Each phase is solved to optimality. Our approach integrates this
first and second phase. Unfortunately, Abdennadher and Schlenker (1999) do
not report any computational results. Parr and Thompson (2007) also decom-
pose the personnel scheduling problem in three phases. First, employees that
are going to work night shifts are determined, second the days off schedule is
generated, and third shifts are assigned to employees on working days. Parr
and Thompson (2007) compare two alternative local search methods to solve
these phases.

Bailey (1985); Bechtold and Brusco (1994) combine days off scheduling
with shift scheduling. Shift scheduling determines the set of shifts that should
be assigned to employees. Bailey (1985); Bechtold and Brusco (1994) start with
shift scheduling, then generate a days off schedule, and finally assign shifts to
employees on their working days.

3 Problem description

This section describes the personnel scheduling problem (see Section 3.1) and
then in Section 3.2 the set of benchmark instances to which we apply our
approach.

3.1 The personnel scheduling problem

The basic data in the personnel scheduling problem is given by:

— A time period consisting of a number of consecutive days, usually one or
multiple weeks.

— A set of employees with certain skills.

— A set of shift types. A shift type is a time interval which starts at a fixed
time during the day and in which a series of tasks is performed.

— A set of shifts. A shift is of one of the shift types with a given start day.

The objective of the personnel scheduling problem is to assign the set of shifts
to the set of employees, while respecting a number of constraints:

— Single shift per day. Each employee works at most one shift per day.

— Cover requirements. The problem instance describes per day a mini-
mum, maximum, or preferred number of shifts on a day.

— Employee constraints. Each employee’s shift assignment must satisfy a
specified set of labor rules. In addition, employee specific work agreements
and requests must be taken into account as well.
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We formulate the personnel scheduling problem as an ILP. Since the main
decision is to assign on each day a shift type to an employee, it is natural to
introduce the binary variables z.q4s representing this decision:

1 if shift type s on day d is assigned to employee e
Teds = (1)
0 otherwise

The constraint that an employee is assigned to at most one shift on each day
translates into:

erds <1 (Ve,d) (2)

Formulating all constraints appearing in the benchmark instances as linear
constraints is tedious but straightforward. The details of these formulations
are not described in this paper. However, to provide the reader insight in
these formulations, Section 4.2 discusses several constraints for the days off
scheduling problem.

3.2 The benchmark instances

The Employee Scheduling Benchmark instances, see Curtois (2007), were col-
lected over a period of several years by a number of researchers investigating
the personnel scheduling problem. They represent a diverse collection of chal-
lenging, real-world instances. Because they were drawn from many sources
they vary in dimensions such as the number of staff, shifts types, skills and
length of the planning period. More challengingly from a modeling and compu-
tational aspect however, they also vary in the number and types of constraints
present in each instance. This is due to their real-world nature and the fact
that each employer has different requirements often effected by national legis-
lation, union or industry specific working regulations. Each instance is often
further complicated by the presence of employee specific contracts such as
part-time or night shift workers. For detailed information we refer the reader
to Curtois (2007) where full details are available on each specific instance.

At this moment there are 27 instances available, of which 25 are used
in this research, see Table 1. Table 1 provides an overview of the instances’
dimensions and their best known objective function value (column ‘best’). The
best known solutions are known to be optimal in all cases except MER!. The
best solutions, found by different researchers and different techniques, are also
available at Curtois (2007). The instance Musa is not used in our research,
as it contains only 1 shift type, and HEDO1 was not included because it uses
conditional constraints, which we did not implement.

L For MER a lower bound of 7079 was established
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Table 1 The instances of the Employee Scheduling Benchmark Data Sets used for testing

shift
instance employees | types | days best
Azaiez, 13 2 28 0
BCDT-Sep 20 4 30 100
BCV-3.46.2 46 3 26 894
BCV-4.13.1 13 4 29 10
CHILD 41 5 42 149
ERMGH 41 4 48 779
ERRVH 51 8 48 2001
GPost 8 2 28 5
GPost-B 8 2 28 3
Tkegami-2Shift-1 28 3 30 0
Tkegami-3Shift-1 25 4 30 2
Tkegami-3Shift-1.1 25 4 30 3
Ikegami-3Shift-1.2 25 4 30 3
LLR 27 3 7 301
MER 54 12 48 7081
Millar-2Shift-1 8 2 14 0
Millar-2Shift-1.1 8 2 14 0
ORTECO01 16 4 31 270
ORTEC02 16 5 31 270
Ozkarahan 14 2 7 0
QMC-1 19 9 28 13
QMC-2 19 3 28 29
SINTEF 24 5 21 0
Valouxis-1 16 3 28 20
WHPP 30 3 14 5

4 Solution approach

This section outlines our solution approach to the personnel scheduling prob-
lem. We solve the personnel scheduling using a decomposition that first solves
a days off scheduling problem. In days off scheduling only days off and working
days are determined, so employees are not assigned to specific shifts. The idea
behind the decompositions is that the position of the stints, i.e., the consecu-
tive days with work for an employee, is dominant for the personnel scheduling
problem; once the working days are known, we hope that for each working
day a shift type may be chosen such that the remaining personnel scheduling
constraints are met.

In the decomposition, the days off schedule is used as input to assign em-
ployees to specific shifts. Of course, employees may only be assigned to shifts
on working days in the days off schedule. First, Section 4.1.1 outlines how
we formulate and solve the days off scheduling problem for the benchmark
instances described in Section 3.2. Section 4.1.2 describes an extension to our
decomposition that also includes night shifts in the days off scheduling prob-
lem.
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In order to apply these decompositions, the personnel scheduling instances
have to be reduced to days off scheduling instances, which is discussed in
Section 4.2.

4.1 Relations between the models
4.1.1 Days off scheduling

The basic decision in the days off scheduling problem is to decide for each day
in the schedule of an employee whether it is a working day. This is represented
by the variables y.q:

1 if employee e works on day d
Yed = . (3)
0 if employee e has a day off on day d

The basic relation with the personnel scheduling problem is:
Z Leds = Yed (Ve, d) (4)

The second phase in the decomposition is exactly the original personnel schedul-
ing problem with the additional relations of equation (4).

4.1.2 Night shift scheduling

Constraints on night shifts can lead to very specific constraints on the position
of stints, see also Glass and Knight (2010). An example is a required separation
of at least 2 days between two stints if the first stint ends with a night shift.
Hence, we also investigate an extension of the basic days off scheduling model
in which the working day (y.q = 1) is specialized to working a selected shift
type, which we call the night shift (N). For this, we introduce the binary
variable z.q4:

1 if employee e works shift type IV on day d
Zed = (5)
0 otherwise

In the days off scheduling problem, we add the following constraints:

Zed S Yed (vea d)a (6)
and for the personnel scheduling problem the next constraints are added:
TedN = Zed (ve7 d) (7)

Equation (6) expresses that an employee can only work a night shift on working
days. Equation (7) expresses that the choice for a night shift in the first phase
should be respected in the second phase.

We refer to the decomposition approaches as:
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(On, Off): Assigns working days and days off in the first phase.
(Day, Night, Off): Assigns working days, night shifts, and days off in
the first phase.

4.2 Modeling the constraints

From a higher level, we can say that we reduce the original personnel schedul-
ing problem to a personnel scheduling problem with 2 shift types (On, Off)
and 3 shift types (Day, Night, Off), respectively. Hence, to solve the first and
second phase of the decomposition we can use similar ILP formulations, where
the employee scheduling problem of the second phase should obey the deci-
sions of the first phase. Although the ILP models are similar, the reduction
in the first phase is not always straightforward. Our basic principle is to re-
formulate the constraints of the personnel scheduling instances to necessary
constraints for the days off scheduling problem; in this way we are able to
assess the consequences of the decomposition in a uniform way. The next sub-
sections describe how different types of constraints are handled in the days off
scheduling problems.

4.2.1 Requests and pre-assigned shifts

Employees may have pre-assigned shifts, requests for specific shift types on
specific days, or requests for days off. Work requests or shift on requests result
in working days in the days off scheduling problem. Shift off requests are ig-
nored, since the employee might work another shift on the same day. For the
implementation it is important to incorporate pre-assigned shifts and requests
in the possible matches of the pattern constraints, see Section 4.2.3. For exam-
ple, if there is a pre-assigned shift we can evaluate whether this shift matches
a certain pattern or not, even in the days off scheduling phase.

4.2.2 Cover requirements

Cover requirements express the minimum and maximum number of employees
that need to be available either per shift type or per time interval. In the latter
case, shift types assigned to the employees should be such that these limits
are respected.

In both cases the information can be more detailed expressing that the
employees counting for the requirement should have certain skills. Employ-
ees having certain skills can count for more than one cover requirement at
the same time. Therefore, we formulate a small ILP model to determine the
minimum and maximum number of available employees that satisfy the cover
requirements. These bounds are used in constraints in the days off scheduling
problem that express per day the bounds on the number of employees with
certain skills.
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4.2.8 Pattern constraints

Pattern constraints express a wide variety of constraints for individual sched-
ules. A pattern consists of a description of sequences of shifts that form a match
for the pattern. Moreover, the pattern contains information for which period
of the schedule the pattern needs to be considered, e.g., for the full schedul-
ing period or only the periods starting on Saturday. We illustrate this by an
example that is taken from the XML representation of the Azaiez instance:

<Match>
<Max>
<Count>4</Count>
<Weight>10000</Weight>
</Max>
<Pattern>
<StartDay>Saturday</StartDay>
<Shift>$</Shift>
</Pattern>
<Pattern>
<StartDay>Sunday</StartDay>
<Shift>$</Shift>
</Pattern>
<Match>

The first pattern is for Saturdays; each day that an employee has any
shift (‘$’) on a Saturday we have a match. Similarly, the second pattern is
for Sundays. Hence, the match counts the number of Saturdays and Sundays
on which a shift starts. In Azaiez we see that an employee should do at most
4 (Count) weekend shifts; violation of this constraint results in a penalty of
10000 (Weight) per extra shift. Pattern constraints seem complicated at first,
but they are able to model a wide variety of constraints that appear in practice.
They can model constraints on, e.g., the maximum number of shifts per week,
shift sequences, or the minimum number of consecutive shifts.

If a pattern concerns all shift types, we can use it in the days off schedule. We
implemented combining different pattern constraints to one days off pattern
constraint, but only for patterns of length 1. In the case of (Day, Night, Off),
we can also incorporate pattern constraints for the night shift as well. For
example, it is common that there are constraints on the total number of night
shifts and the length of night shift sequences. Moreover, night shifts are usually
at the end of a stint, which can pose some restrictions on its position, for
example that such stint should not end on Friday.

4.2.4 Workload requirements

Workload requirements describe the number of hours an employee should work
in the planning period. Clearly, these are difficult to use in the days off sched-
ule if different shift types have different lengths. Since we use only necessary
conditions, the best we can do is to calculate upper and lower bounds on the
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working days, and add those conditions as constraints to the ILP. For exam-
ple if employee e has a maximum workload of 120 hours, and shortest shift
contains 7 hours of work, then we add the constraint

- Yea < 120,
d

implying that the employee will have at most 17 working days.
In the personnel scheduling phase we have full information, so that we can
use the correct workload requirements.

5 Results

To evaluate our decomposition approach, we solve the ILP formulations of the
personnel scheduling instances in Table 1 using CPLEX 12.2 with the time
limit set to one hour on a Dell Optiplex 990 (64-bit, 3.4 GHz, 4 GB RAM,
8 cores). As the objective value is integer, we set the absolute gap to 0.999
without loosing the optimality guarantee. The ILP formulations of the two
phases of the decomposition are also solved using CPLEX, with the time limit
set to 30 minutes for each phase.

CPLEX finishes with 4 different statuses: status 101 and 102, indicating
that the optimal solution was found, status 107, indicating that the time limit
was reached without (guaranteed) optimal solution and status 109 indicating
that CPLEX ran out of memory?.

Table 2 and Table 3 present results for instances with 2 shift types and
instances with more than 2 shift types, respectively. To the instances with 2
shifts types only the (On, Off) approach is applied, since the (Day, Night, Off)
approach would be the original personnel scheduling problem. For 15 instances
the direct approach finds the optimal solution within one hour; these are the
solution values that are marked with * in the second column. Moreover, 12
instances are solved within one minute, see third column.

First, we analyze the results of the (On, Off) decomposition approache to
the instances with 2 shift types, and after that we analyze the results of our
decomposition approaches to the instances with more than 2 shift types.

Instances with 2 shift types

The fourth column in Table 2 gives the solution value of the (On, Off)-
decomposition, while column 5 states the time saving, i.e., 100 % minus the
percentage of the time needed to solve the decomposition divided by the time
needed to solve the direct approach. For example, the time saving of 96.4 % for
the GPost instance indicates that the decomposition is solved in 4.2 seconds
(3.6 % of 117 seconds).

2 see http://www-01.ibm.com/support/docview.wss?uid=swg21399943
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Table 2 Results on instances with 2 shift types

Direct (On, Off)

time % time
instance cost | (sec) cost saving
Azaiez 0* 7.4 6 76.7
GPost 5 117 4002 96.4
GPost-B 3* 428 2002 92.5
Millar-2Shift-1 0* 0.2 0* 66.2
Millar-2Shift-1.1 0* 0.2 0* 61.6
Ozkarahan 0* 0.2 800 90.4
Ozkarahan (skills) 0* 0.1 0* 87.2

We observe that the decomposition is solved faster than the direct ap-
proach. However, except for the Millar instances the results are not competi-
tive. The reasons are slightly different for each instance. The Azaiez instance
requires separate stints for day shifts and night shifts, information that can
not be incorporated in the (On, Off) decomposition. The GPost instances re-
quire that some specific stints end at specific days, for example (sub)stints
of night shifts should end on specific days, see Glass and Knight (2010). The
Ozkarahan instance contains skills in the cover requirements, which is modeled
by certain forbidden patterns for employees. If we remodel this using skills for
the employees then the decomposition finds the optimal solution, see the final
row in Table 2.

These two aspects, the special role of night shifts and the complication with
skills, reappear in the instances with more than two shift types. The special
role of night shifts motivated us to extend the (On, Off) approach to the (Day,
Night, Off) approach.

Instances with more than 2 shift types

For the instances with more than 2 shift types, the results of both decompo-
sition approaches are presented in Table 3. Again results are compared with
the direct approach. The first 5 columns in Table 3 are the same as the first
five columns in Table 2. Column 6 indicates the shift that is chosen as “night
shift”. For two instances (BCV-3.46.2 and QMC-1) choosing N as the night
shift did not give the best result. For these instances, we added extra rows
for the “night shift” choice that gave the best solution in the decomposition
approach. Instance BCV-4.13.1 does not have a night shift at all, and choosing
shift DH as the “night shift” leads to the optimal solution. Column 7 and 8
give the result of the (Day, Night, Off) decomposition and the time saving,
respectively.

For 9 instances, the direct approach finds an optimal solution, whereas the
decomposition finds optimal solutions for 3 instances. Note that in the cases
where the optimal solution is not in the direct approach, and the time listed
is less than 3600 seconds, the process ran out of memory. The decomposition
yields better solutions in 5 instances, and in 2 instances the solution quality is
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Table 3 Results on instances with more than 2 shift types

Direct (On, Off) (Day, Night, Off)

time % time || night % time
instance cost (sec) cost saving shift cost saving
BCDT-Sep 104539 | 3602 104229 99.9 N 2350 85.2
BCV-3.46.2 894* 535 1215 99.7 N 3430 82.8
BCV-3.46.2 L 2374 99.8
BCV-4.13.1 10* 1.9 17 65.9 DH 10* 54.2
CHILD 149* 47 5066 86.9 N 3847 89.9
ERMGH 779* 1.7 929 27.9 N 1116 -119.0
ERRVH 2204 385 12832 97.9 N 22796 91.3
Ikegami-2Sh-1 0* 27 4316 97.7 N 0* 23.1
Ikegami-3Sh-1 110 | 3601 807 90.8 N 3884 99.8
Ikegami-3Sh-1.1 6 | 3601 994 94.8 N 2728 90.8
Tkegami-3Sh-1.2 23 | 3602 994 90.8 N 1960 85.4
LLR 301* 1.2 312 80.2 N 308 92.6
MER 56561 628 122022 -187.0 N | 142133 -16.8
ORTECO01 3527 | 1365 2270 94.1 N 280 92.4
ORTEC02 2836 | 2385 1275 96.5 N 275 96.5
QMC-1 13* 3.2 29046 7.7 N 21070 38.8
QMC-1 O 177 86.9
QMC-2 29* 0.4 1045 30.8 N 33 -92.1
SINTEF 0* 1.6 12202 77.9 N 17 77.9
Valouxis-1 140 | 1461 20* 64.5 N 20* 93.9
WHPP 3008 155 16000 99.5 N 3001 7T

comparable (LLR and QMC-2). For 9 out of 19 instances the decomposition
approach gives satisfactory solutions. The time saving is in most cases sub-
stantial: in 11 of the instances the saving is 90 percent or more. However, for
3 instances the decomposition takes more time and yields worse solutions. In-
stance MER is the biggest instance. On this instance none of the models give a
satisfactory result. The direct model ends after 628 seconds (out of memory).
The decomposition models run longer without going out of memory, explaining
the fact that there is a negative time saving here.

In several instances (BCV-3.46.2, ERMGH, ERRVH, all Tkegami-3Sh in-
stances, and MER) the (On, Off)-approach yields better solutions than the
(Day, Night, Off)-decomposition. In the next section we explain this behavior.

5.1 Assessment of the decomposition approaches

In this section we investigate the quality of solutions produced by the decom-
positions approaches. Basically there are two orthogonal explanations for poor
quality solutions of the decomposition approach:

— The essence of the instance could be caught by days off schedul-
ing. Hence some information, hidden in a combination of factors, was not
taken into account in the implementation of the days off scheduling prob-
lem. A way to improve this is to reformulate certain constraints, or re-
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Table 4 Analysis of instances

instance aggr | shift cover | night | seq | run
BCDT-Sep \% X X
BCV-3.46.2 X DH X X
BCV-4.13.1 DH

CHILD X ET X
ERMGH X X
ERRVH X
Tkegami-3Shift-1 X O X X X
Ikegami-3Shift-1.1 X O X X X
Ikegami-3Shift-1.2 X O X X X
LLR

MER X
ORTECO01 X
ORTECO02 \% X
Ozkarahan X

QMC-1 O

QMC-2 X
SINTEF X
Valouxis-1 X

WHPP X X

formulate the instance, such that the solutions we are interested in, still
correspond to low costs. This is instance-dependent, and difficult to auto-
mate.

— The essence of the instance is lost in the days off schedule. The in-
stance may contain aspects that can not be handled in the days off schedule
and are of decisive importance. The night shift was such an aspect which
led to the (Day, Night, Off)-approach. Other aspects are shifts with spe-
cific requirements, cover requirements with skills, and strong preferences
for shift sequences.

Our findings are summarized in Table 4. The contents of the columns ‘aggr’,
‘shift’, ‘cover’, ‘night’, ‘seq’ and ‘run’ are addressed in Sections 5.2.1-5.2.6,
respectively.

5.2 Detailed analysis ot the results
5.2.1 Aggregate constraints

The ‘x’ in column ‘aggr’ of Table 4 indicates that a set of constraints in the
instance was taken together to an equivalent instance with one aggregated
constraint. Many instances contain a number of constraints expressing that
the night shift can not be followed by shift types E, or D, or L, etc. The
aggregated constraint expresses that the night shift can not be following by
the shift group consisting of the types E, D, L, etc. In our tests we used these
aggregated versions which are also available at Curtois (2007).
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5.2.2 Special shifts

Several special shifts appear in the instances, which usually complicate the
days off scheduling. There are two classes of these shifts:

— Absence shifts. These shifts will not contribute to the cover requirements,
but can count as work (in the Ikegami instances and ORTEC02) or not
(QMC-1 and BCDT-Sep). The cover requirements on day level (see Section
4.2.2) can be adjusted for these shifts. However, there might exist patterns
for all shifts, except the absence shifts, for example: “A night can only be
followed by a night shift or a special shift”. As a consequence we lose these
patterns in the first phase of days off scheduling, which for the example
will lead to scheduling night shifts in the middle of stints.

— Skilled shifts. The BCV instances and CHILD contain shifts that should
preferably be assigned to specific employees; information that can not be
included in the first phase of days off scheduling. Consequently we create
stints for these specific employees that don’t match these shifts. In BCV-
4.13.1 we see that the DH shift type gives the best result in the (Day,
Night, Off)-approach; remember that BCV-4.13.1 doesn’t contain a night
shift.

5.2.8 Cover requirements

Section 4.2.2 described how cover requirements in combination with skills or
time units are handled. Unfortunately this is not always the best approach.
In particular, the Tkegami instances contain complicated skilled cover require-
ments and in combination with the strong preferences on shift sequences the
results are unsatisfactory in these instances. Indeed the cover models we solve
to calculate the number of required employees might lead to the same group
of employees for all days, which unfortunately will not be feasible to schedule.
On the other hand, we introduced more skill details in the cover requirements
of the instance Ozkarahan, leading to a better result on that instance, see
Section 5. These covers are related to skills for disjoint groups of employees,
which explains why it works very well here.

5.2.4 The night shift (reprise)

One of the main conclusions of this study is that night shifts need special
attention. However, it is sometimes difficult to incorporate all effects of night
shifts. In particular, several instances allow the night shift to be followed by
some specific other shift (a leave shift, a late shift or another night shift), see
also 5.2.2. In such cases it might be better to ignore the night shift, and use
the (On, Off)-approach instead, like in BCV-3.46.2, ERRVH and the Tkegami-
3Shifts cases.
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5.2.5 Shift sequences

Usually there are patterns describing which shift sequences are preferable. In
some cases the violation of these preferences can not be avoided in the second
phase of the decomposition, for example (again) in the Ikegami-3Shifts cases.

5.2.6 Run aborted

As highlighted there are some instances where the (Day, Night, Off)-approach
stopped before reaching optimality. In these cases the run was aborted, due
to the time restriction or because of running out of memory. For the instance
MER none of the approaches finds a reasonable solution. Due to the mem-
ory requirements the direct approach ends after 628 seconds, explaining why
the decompositions take longer. In some other instances (ORTECO01 and OR-
TECO02) the solver almost reached optimality, or at least better solutions than
the direct approach (BCDT-Sep and WHPP).

6 Conclusions

We studied the effects of solving the personnel scheduling problem by decom-
position approaches. The first approach, (On, Off), is a two-phase decomposi-
tion approach that first assigns employees to working days and days off, and
secondly assigns employees to shifts on the working days. The second approach,
(Day, Night, Off), additionally includes night shifts in the first phase of the
decomposition. Both phases of the decomposition approaches are solved using
ILP, and evaluated using public personnel scheduling benchmark instances.
The results of the decomposition approaches are compared against solving an
ILP formulation of the personnel scheduling directly.

We see that the decomposition has a large impact on the solving time:
for most instances the solving time is reduced by more than 80% or 90%.
However, the solutions do not give such a clear answer. One can roughly say
that in 1/3 of the instances the (On, Off)-approach gives good results, in 1/3 of
the instances the (Day, Night, Off)-approach gives good results, and in 1/3 of
the instances this decomposition does not give competitive results. Especially
for the (Day, Night, Off )-approach we have to pay attention to problem specific
aspects.

We discussed several improvements for our implementations. Significant
improvements could be obtained by aggregating scheduling constraints and by
alternative modeling of skill-related constraints. This re-modeling enabled us
to effectively consider these constraints in the first phase of the decompositions
resulting in improved overall results. Moreover, in our approach we currently
use necessary constraints but including additional, stronger, constraints may
also improve the results.

Since the first phase usually has multiple optimal solutions, we analyzed
the effect different solutions of the first phase had on the outcome of the sec-
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ond phase. This had no significant positive or negative effect on the originally
obtained solutions. Hence, we conclude that the presented results are a repre-
sentative sample.

In view of the observation that CPLEX solves 15 instances to optimality
within one hour, it is in several cases easier to first generate the shift schedule,
and use this to publish the days off schedule, as suggested in Bailey (1985);
Bechtold and Brusco (1994). In general we can state that applying the days
off decomposition approach should be implemented with care. With a detailed
analysis of the instance (class) at hand, we can expect this approach to be
successful on most instances.
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