Divergent Quiescent Transition Systems
(extended version)*

Willem G. J. Stokkink, Mark Timmer, and Mariélle I. A. Stoelinga

Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands
{w.g.j.stokkink, m.timmer, marielle}@utwente.nl

Abstract. Quiescence is a fundamental concept in modelling system
behaviour, as it explicitly represents the fact that no output is produced
in certain states. The notion of quiescence is also essential to model-based
testing: if a particular implementation under test does not provide any
output, then the test evaluation algorithm must decide whether or not
to allow this behaviour. To explicitly model quiescence in all its glory,
we introduce Divergent Quiescent Transition Systems (DQTSs).

DQTSs model quiescence using explicit d-labelled transitions, anal-
ogous to Suspension Automata (SAs) in the well-known ioco framework.
Whereas SAs have only been defined implicitly, DQTSs for the first time
provide a fully-formalised framework for quiescence. Also, while SAs are
restricted to convergent systems (i.e., without 7-cycles), we show how
quiescence can be treated naturally using a notion of fairness, allowing
systems exhibiting divergence to be modelled as well. We study composi-
tionality under the familiar automata-theoretical operations of determin-
isation, parallel composition and action hiding. We provide a non-trivial
algorithm for detecting divergent states, and discuss its complexity. Fi-
nally, we show how to use DQTSs in the context of model-based testing,
for the first time presenting a full-fledged theory that allows ioco to be
applied to divergent systems.

1 Introduction

Quiescence is a fundamental concept in modelling system behaviour. It explicitly
represents the fact that in certain states no output is provided. The absence of
outputs is often essential: an ATM, for instance, should deliver money only
once per transaction. This means that its state just after payment should be
quiescent: it should not produce any output until further input is given. On the
other hand, the state before payment should clearly not be quiescent. Hence,
quiescence may or may not be considered erroneous behaviour. Consequently,
the notion of quiescence is essential in model-based testing, where it is detected
by means of a timeout. If a particular implementation under test does not provide

* This research has been partially funded by NWO under grants 612.063.817 (SYRUP),
Dn 63-257 (ROCKS) and 12238 (ArRangeer), and by the EU under grant 318490
(SENSATION).

requestMoney?

returnCard! returnCard!

(a) A very basic ATM model. (b) An SA for the ATM model.

Fig. 1: Deriving a suspension automaton.!

any output, then the test evaluation algorithm must decide whether to produce
a pass verdict (allowing quiescence at this point) or a fail verdict (prohibiting
quiescence at this point).

Origins. The notion of quiescence was first introduced by Vaandrager [1] to
obtain a natural extension of blocking states: if a system is input-enabled (i.e.,
always ready to receive inputs), then no states are blocking, since each state has
outgoing input transitions. Quiescence models the fact that a state would be
blocking when considering only the internal and output actions. In the context
of model-based testing, Tretmans introduced repetitive quiescence [2,3]. This
notion emerged from the need to continue testing, even in a quiescent state: in
the ATM example above, we may need to test further behaviour arising from the
(quiescent) state sg. To accommodate this, Tretmans introduced the Suspension
Automaton (SA) as an auxiliary concept [4]. An SA is obtained from an Input-
Output Transition System (IOTS) by first adding a self-loop labelled by the
quiescence label § to each quiescent state and subsequently determinising the
model. For instance, the ATM automaton in Fig. 1a has quiescent states so and
s1; the corresponding SA is depicted in Fig. 1b.

Limitations of current treatments. While previous work [1-4] convincingly
argued the need for quiescence, no comprehensive theory of quiescence existed
thus far. A severe restriction is that SAs cannot cope with divergence (cycles
consisting of internal actions only), since this may introduce newly quiescent
states. The TGV framework [5] handles divergence by adding d-labelled self-
loops to such states. However, this treatment is in our opinion not satisfactory:
quiescence due to divergence, expressing that no output will ever be produced,
can in [5] be followed by an output action, which is counterintuitive. The cur-
rent paper shows that an appropriate theory for quiescence that can cope with
divergence is far from trivial.

Divergence does often occur in practice, e.g., due to action hiding. Therefore,
current model-based testing approaches are not able to adequately handle such
systems; in this paper, we fill this gap.

! Since we require systems to be input-enabled, these models are technically not cor-
rect. However, this could easily be fixed by adding self-loops to all states for each
missing input. We chose to omit these for clarity of presentation.

v transmit! nack! v transmit! T

odiboWliBo

ack! retransmit! ack! T

(a) Original specification. (b) Divergence after hiding.

Fig.2: A simple network protocol.

Ezxample 1.1. Consider the simplified network protocol shown in Figure 2a. It is
obtained as the parallel composition of a sending node (transmitting a message)
and a receiving node (sending positive and negative acknowledgements). If only
the initial transmission and success of this transmission are considered observable
behaviour, the other actions (needed for parallel composition, but irrelevant in
the final system) can be hidden, and the system shown in Figure 2b appears.
Here, divergence may occur in states s; and so (for instance, when retransmission
was implemented erroneously and never succeeds). So, observation of quiescence
is possible from these states, but simply adding d-loops does not work anymore.
After all, quiescence indicates the indefinite absence of outputs, and adding §-
loops to these states would allow outputs to occur after the d-transitions. Hence,
more sophisticated constructs are needed.

In addition to the divergence issue, quiescence was never treated as a first-
class citizen: SAs cannot be built from scratch, and, even though important
conformance relations such as ioco are defined in terms of them, SAs have been
defined as an auxiliary construct and have never been studied extensively in
isolation. In particular, their closure properties under standard operations like
parallel composition and action hiding have not been investigated much.

Our approach. This paper remediates the shortcomings of previous work by
introducing Divergent Quiescent Transition Systems (DQTSs). DQTSs repre-
sent quiescence explicitly using special d-transitions. We stipulate four well-
formedness rules that formalise when d-transitions may occur. For instance, no
d-transition may be followed by an output transition, since this would contradict
the meaning of quiescence. Key in our work is the treatment of divergence: a
divergent path leads to the observation of quiescence if and only if it is fair, i.e.,
models a reasonable execution. We use the notion of fairness from Input-Output
Automata (IOAs) [6], based on task partitions.

We show that well-formed DQTSs are closed under parallel composition,
determinisation and action hiding. In this way, they constitute a compositional
theory for quiescence. Additionally, we formally explain how to obtain a DQTS
from an existing IOA by a process called deltafication, and show that deltafication
is commutative with parallel composition and action hiding. The addition of
divergence (and correspondingly fairness) brought about a more involved process
of deltafication and action hiding (which may introduce divergence), requiring a
novel algorithm for detecting divergent states. We provide this algorithm, which

allows us to check well-formedness on a given DQTS as well. Finally, we redefine
the ioco conformance relation based on DQTSs, allowing it to be applied in the
presence of divergence and hence demonstrating the most important practical
benefit of our model for testing: a more general class of systems can be handled.

A preliminary version of this work, already providing a fully formalised frame-
work for dealing with quiescence as a first-class citizen, but not yet supporting
divergence, appeared as [7].

Overview of the paper. Sec. 2 introduces the DQTS model, and Sec. 3 presents
our well-formedness rules. Sec. 4 then provides operations and properties for
DQTSs. In Sec. 5 we describe an algorithm to determine divergent states, and
Sec. 6 discusses how to apply DQTSs in the ioco framework. Finally, conclusions
and future work are presented in Sec. 7. Proofs for all our results can be found
in Appendix A.

2 Divergent Quiescent Transition Systems

Preliminaries Given a set L, we use L* to denote the set of all finite sequences
0 = aias...a, over L. We write |o| = n for the length of o, and € for the
empty sequence. We let L“ denote the set of all infinite sequences over L, and
use L>° = L* U L¥. Given two sequences p € L* and v € L*, we denote the
concatenation of p and v by pv. The projection of an elementa € L on L' C L,
denoted a [L', is a if a € L’ and € otherwise. The projection of a sequence
o = ao’ is defined inductively by (ac’) | L’ = (a | L) - (¢/ | L), and the
projection of a set of sequences Z is defined as the sets of projections.

We use p(L) to denote the power set of L. A set P C (L) such that & ¢ P
is a partition of L if |JP = L and p # ¢ implies p N ¢ = & for all p,q € P.
Finally, we use the notation 3* for ‘there exist infinitely many’.

2.1 Basic Model and Definitions

Divergent Quiescent Transition Systems (DQTSs) are labelled transition sys-
tems that model quiescence, i.e., the absence of outputs or internal transitions,
via a special d-action. They are based on the well-known Input-Output Au-
tomata [8, 6]; in particular, their task partitions allow one to define fair paths.

Definition 2.1 (Divergent Quiescent Transition System). A Divergent
Quiescent Transition System (DQTS) is a tuple A = (S,S8° L', LO LH P, —),
where S is a set of states; S° C S is a non-empty set of initial states; L', L°
and LY are disjoint sets of input, output and internal labels, respectively; P is
a partition of L° U L¥; and — C S x LU {d} x S is the transition relation,
where L = L' U L° U LY. We assume 6 ¢ L.

Given a DQTS A, we denote its components by S 4, Sgla LYy, L9, LE, Pa,— 4.
We omit the subscript when it is clear from the context.

Example 2.1. The SA in Fig. 1b is a DQTS. O

Restrictions. We impose two important restrictions on DQTSs. (1) We require
each DQTS A to be input-enabled, i.e., always ready to accept any input. Thus,
we require that for each s € S and a € L!, there exists an s’ € S such that
(s,a,s") € —. (2) We require each DQTS to be well-formed. Well-formedness
requires technical preparation and is defined in Sec. 3.

Semantically, DQTSs assume progress. That is, DQTSs are not allowed to
remain idle forever when output or internal actions are enabled. Without this
assumption, each state would be potentially quiescent.

Actions. We use the terms label and action interchangeably. We often suffix a
question mark (?) to input labels and an exclamation mark (!) to output labels.
These are, however, not part of the label. A label without a suffix denotes an
internal label. Output and internal actions are called locally controlled, because
their occurrence is under the control of the DQTS. Thus, L*¢ = LO U L¥ de-
notes the set of all locally controlled actions. The special label ¢ is used to denote
the occurrence of quiescence (see Def. 2.10). The task partition P partitions the
locally controlled actions into blocks, allowing one to reason about fairness: an
execution is fair if every task partition that is enabled infinitely often, is also
given control infinitely often (see Sec. 2.2).
We use the standard notations for transitions.

Definition 2.2 (Transitional notations). Let A be a DQTS with s,s' € S,
a,a; € L, b,b; € L' U LO, and o € (L' U LO)*, then:

548 =def (5,0,8) €=
5% =qgof d87€8S.5% 5"
s 5 =qet P’ €S.s %"
SM)S/ —def 3507...757L€S.8250a—1>~~~ai>sn:5/
s= s =gef S=25 or Jai,...,ap, € L7 . 5 Qtng o

b
s =5 —qef 350,51 €5 .55 508 51 S

bi-e.-by b b
81:>s/:dcf 3307...,87165,8:30:1>...::>8n281
s = =qot d8"'€8.s5Z 5"

If s & we say that a is enabled in s. We use L(s) to denote the set of all actions
a € L that are enabled in state s € S, i.e., L(s) = {a € L|s 2% }. The notions
are lifted to infinite traces in the obvious way.

We use the following language notations for DQTSs and their behaviour.

Definition 2.3 (Language notations). Let A be a DQTS, then:

— A finite path in A is a sequence ™ = Sg a1 81 Az S ... S, such that s;_1 2 s;
for all 1 < i < n. Infinite paths are defined analogously. The set of all paths
in A is denoted paths(A).

— Given any path, we write first(w) = so. Also, we denote by states(w) the
set of states that occur on 7, and by w-states(w) the set of states that occur
infinitely often. That is, w-states(m) = { s € states(w) | 3°j . s; =s}.

(a) A (b) det(A)

Fig. 3: Visual representations of the DQTSs A and det(A).

— We define trace(n) = 7 | (L' U L°), and say that trace(r) is the trace of .
For every s € S, traces(s) is the set of all traces corresponding to paths that
start in s, i.e., traces(s) = {trace(w) | m € paths(A) A first(m) = s}. We
define traces(A) = |J,cgo traces(s), and say that two DQTSs B and C are
trace-equivalent, denoted B =, C, if traces(B) = traces(C).

— For a finite trace o and state s € S, reach(s,o) denotes the set of states in
A that can be reached from s via o, i.e., reach(s,0) ={s' € S| s = ¢ }.
For a set of states S" C S, we define reach(S’,0) = J,cg/ reach(s,o).

When needed, we add subscripts to indicate the DQTS these notions refer to.

Definition 2.4 (Determinism). A DQTS A is deterministic if s & s" and
s % 5" imply a ¢ LY and s' = 5", for all s,5',s" € S and a € L. Otherwise, A
is nondeterministic.

Each DQTS has a trace-equivalent deterministic DQTS [9,10]. Determini-
sation is carried out using the well-known subset construction procedure. This
construction yields a system in which every state has a unique target per action,
and internal transitions are not present anymore.

Definition 2.5 (Determinisation). The determinisation of « DQTS A = (.S,
SO LY LO LH P, —) is the DQTS det(A) = (T,{S°}, LY, L°, LH, P, —p), with
T=pS)\g and »>p ={(U,a,V)eTXLXT |V =reachs(U,a) NV #£2}.

Example 2.2. The DQTS A in Fig. 3a is nondeterministic; its determinisation
det(A) is shown in Fig. 3b. O

2.2 Fairness and Divergence

The notion of fairness also plays a crucial role in DQTSs. The reason for this is
that parallel composition may yield unreasonable divergences. For instance, if the
DQTS in Fig. 4 is the composition of a system consisting solely of an internal a-
loop and a system outputting a b precisely once, the progress assumption on the

¥
C——EDr

Fig. 4: Visual representation of a DQTS B.

second component tells us that at some point we should observe this b-output.
Therefore, we want to prohibit the divergent path m = spasgasg

The following definition stems from [8, 6, 11], and states that if a subcompo-
nent of the system infinitely often wants to execute some of its actions, it will
indeed infinitely often execute some. Note that finite paths are fair by default.

Definition 2.6 (Fair path). Let A be a DQTS and 7 = sgay 1 a2 82 ... a path
of A. Then, 7 is fair if, for every A € P such that 3%°j . L(s;) N A # @, we
have 3%j . a; € A. The set of all fair paths of a DQTS A is denoted fpaths(A),
and the set of corresponding traces is denoted ftraces(A).

Unfair paths are considered not to occur, so from now on we only consider

fpaths(A) and ftraces(A) for the behaviour of A.

Ezxample 2.3. Consider again the DQTS B in Fig. 4. The infinite path =7 =
Spaspasy ... would not be fair if Pg = {{a},{b}}, as the b-output is ignored
forever. It would however be fair if P = {{a,b}}. O

We can now formally define divergence: fair infinite internal behaviour.

Definition 2.7 (Divergent path). Let A be a DQTS and 7 € fpaths(A) a fair
infinite path. The path 7 is divergent if it contains only transitions labelled with
internal actions, i.e., a; € Lﬁ for every action a; on w. The set of all divergent
paths of A is denoted dpaths(A).

Ezample 2.4. Consider the DQTS A in Fig. 3a with L} = {b,¢}. The infinite
paths sobsaobsy ... and sabszcsygcsabss ... are both divergent. Note that
divergent traces are not preserved by determinisation. a

In contrast to SAs, we do allow divergent paths to occur in DQTSs. However,
we assume that each divergent path in a DQTS only contains a finite number
of states. This restriction serves to ensure that the deltafication of a DQTS,
discussed in Sec. 4.1, always results in a correct DQTS. Since DQTSs typically
contain a finite number of states, and even in infinite systems divergence often
results from internal loops, this restriction is not a severe one.

Definition 2.8 (State-finite path). Let A be a DQTS and let 7 € fpaths(.A)
be an infinite path. If |states(m)| < oo, then 7 is state-finite.

When the system is on a state-finite divergent path, it continuously loops
through a finite number of states on this path. We call these states divergent.

Definition 2.9 (Divergent state). Let A be a DQTS. A state s € S is di-
vergent, denoted d(s), if there is a (state-finite and fair) divergent path on
which s occurs infinitely often, i.e., if there is a path w € dpaths(A) such that
s € w-states(m). The set of all divergent states of A is denoted d(A).

Example 2.5. Consider the DQTS A in Fig. 3a. The path m; = s1bs2bss ...
is state-finite, fair and divergent. Since sy occurs infinitely often on 7y, it is
divergent; s1, on the other hand, is not. Whether s3 is divergent depends on
the task partition P. If P contains an element A such that {¢,d,e} C A, then
Mo = S3C84C82bss ... is fair and s3 is divergent; otherwise, it is not. a

2.3 Quiescence

Definition 2.10 (Quiescent state). Let A be a DQTS. A state s € S is
quiescent, denoted q(s), if it has no locally-controlled actions enabled. That is,
q(s) if s % for alla € L¥C. The set of all quiescent states of A is denoted q(A).

Example 2.6. States sg, s;5 and sg of the DQTS A in Fig. 3a are quiescent. 0O

Divergent paths in DQTSs may yield observations of quiescence in states that
are not necessarily quiescent. Consider the DQTS B in Fig. 4. State sy is not
quiescent, since it enables output b. Nevertheless, this output is never observed
on the divergent path m = sgasga Hence, quiescence might be observed
in a non-quiescent state (here, if 7 is fair). After observing quiescence due to a
divergent path, the system will reside in one of the divergent states on that path.

3 Well-formed DQTSs

To be meaningful, DQTSs have to adhere to four well-formedness rules that
formalize the semantics of quiescence. As indicated before, we assume all DQTSs
to do so.

Definition 3.1 (Well-formedness). 4 DQTS A is well-formed if it satisfies
the following rules for all s,s',s" € S and a € L':

Rule R1 (Quiescence should be observable): if ¢(s) or d(s), then s 2.
This rule requires that each quiescent or divergent state has an outgoing J-
transition, since in these states quiescence may be observed.

Rule R2 (Quiescent state after quiescence observation): if s 25 s/, then g(s’).
Since there is no notion of timing in DQTSs, there is no particular observation
duration associated with quiescence. Hence, the execution of a J-transition
represents that the system has not produced any outputs indefinitely; therefore,
enabling any outputs after a §-transition would clearly be erroneous.

Note that, even though the J-transition may be due to divergence, it would
not suffice to require ¢(s’) V d(s"). After all, d(s’) does not exclude output
actions from s’, and these should not be enabled directly after a d-transitions.

Rule R3 (No new behaviour after quiescence observation): if s 25 s, then
traces(s’) C traces(s).
There is no notion of timing in DQTSs. Hence, behaviour that is possible after
an observation of quiescence, must also be possible beforehand. Still, the obser-
vation of quiescence may indicate the outcome of an earlier nondeterministic
choice, thereby reducing possible behaviour. Hence, the potential inequality.

Rule R4 (Continued quiescence preserves behaviour): if s 9 s and s’ 2y s,

then traces(s”) = traces(s’).
Since quiescence represents the fact that no outputs are observed, and there
is no notion of timing in the DQTS model, there can be no difference between
observing quiescence once or multiple times in succession.

In [12], four similar, but more complex, rules for valid SAs are discussed.
However, these did not account for divergence.

Note that, by definition of divergent states, rule R1 does not require -
transitions from states that have outgoing divergent paths on which they occur
only finitely often. This simplifies the deltafication procedure, as will be made
clear in Example 4.1. Also note that a path of a DQTS may contain multiple
successive J-transitions. This corresponds to the practical testing scenario of
observing a time-out rather than an output more than once in a row [2, 3].

Since SAs are derived from IOTSs, and we assume that these IOTSs correctly
capture system behaviour, we find that SAs are ‘well-formed’ in the sense that
their observable behaviour (including quiescence) corresponds to that of realistic
specifications. Since we also desire this property to hold for well-formed DQTSs,
the above rules have been carefully crafted in such a way that well-formed DQTSs
and SAs are equivalent in terms of expressible observable behaviour. The follow-
ing theorem characterises this core motivation behind our design decisions: it
shows that every trace in a DQTS can be obtained by starting with a tradi-
tional IOTS and adding é-loops as for SAs, and vice versa. Hence, except for
divergences, their expressivity coincides.

Theorem 3.1. For every SA S there exists a well-formed DQTS D such that
S =i, D, and vice versa.

Verifying rule R1 requires identifying divergent states; in Sec. 5 we provide an
algorithm to do so. Rule R2 can be checked trivially, while R3 and R4 in practice
could be checked heuristically. For R3, verify whether s 25 s’ and s’ 2% s imply
s 2% s and for R4, verify whether s % s’ and s’ 2 s imply that s’ = s”.

4 Operations and Properties

4.1 Deltafication: from IOA to DQTS

Usually, specifications are modelled as IOAs (or IOTSs, which can easily be
converted to I0As by taking L = {7} and P = {L'C}). During testing,

however, we typically observe the outputs of the system generated in response
to inputs from the tester; thus, it is useful to be able to refer to the absence
of outputs explicitly. Hence, we need a way to convert an IOA to a well-formed
DQTS that captures all possible observations of it, including quiescence. This
conversion is called deltafication. It uses the notions of quiescence, divergence and
state-finiteness, which were defined for DQTSs, but can just as well be used for
IOAs (interpreting them as non-well-formed DQTSs without any d-transitions).
As for DQTSs, we require all IOAs to be input-enabled.

To satisfy rule R1, every state in which quiescence may be observed must
have an outgoing d-transition. When constructing SAs, d-labelled self-loops are
added to all quiescent states. This would not work for divergent states, however,
since divergent states have outgoing internal transitions and possibly even output
transitions (as in Fig. 4). So, a d-labelled self-loop would contradict rule R2.

Our solution is to introduce a new state qos, for every divergent state s,
which acts as its quiescence observation state. When quiescence is observed in s,
a d-transition will lead to gos,. To preserve the original behaviour, all inputs
that are enabled in s must still be enabled in gos,, and must lead to the same
states that the original input transitions led to. All these considerations together
lead to the following definition for the deltafication procedure for IOAs.

Definition 4.1 (Deltafication). Let A = (S, 5% L', LO, LY, P,— 4) be an
IOA with § ¢ L. The deltafication of A is 6(A) = (S5, 8%, L', LO, LH P, —5).
We define Ss = Sa U{ qos, | s € d(A) }, i.e., Ss contains a new state qos, ¢ Sa
for every divergent state s € Sy of A. The transition relation —5 is as follows:

—5=—a U {(s,0,9) |s€q(A)}
U {(s,0,q0s,) [sed(A)}U{(qos,,0,qos,) |5 € d(A)}
U {(qgos,,a?,s') |s€d(A) AN a? e L' N s, &'}

Thus, the deltafication of an IOA adds d-labelled self-loops to all quiescent
states. Furthermore, a new quiescence observation state gos, is introduced for
every divergent state s € S, alongside the required inputs and §-transitions.

Note that computing ¢(A) is trivial: simply identify all states without out-
going output or internal transition. Determining d(A) is more complex; an al-
gorithm to do so is provided in Sec. 5.

Ezample 4.1. See Fig. 5 for IOA A and its deltafication, given P4 = {{b,c}}.
Hence, s; and ss are divergent, and g9 and ¢; quiescence observation states. Note
that sg has an outgoing divergent path, while in accordance to rule R1 it is not
given an outgoing J-transition. The reason is that, when observing quiescence,
our progress assumption prescribes that the system can only reside in s; or ss.
Hence, quiescence cannot be observed from sg, and therefore also the a-transition
to s3 should not be possible anymore after observation of quiescence. This is now
taken care of by not having a direct d-transition from sg. Because of this, no
trace first having § and then having the b! output is present. O

As expected, deltafication indeed yields a well-formed DQTS.

10

(a) A

Fig.5: An IOA A and its deltafication 0(.A). Newly introduced states are grey.

Theorem 4.1. Given an IOA A with § ¢ L such that all divergent paths in A
are state-finite, 6(A) is a well-formed DQTS.

4.2 Operations on DQTSs

We introduce several standard operations on well-formed DQTSs. First, we de-
fine the well-known parallel composition operator. As usual, it requires every
locally controlled action to be under the control of at most one component [6].

Definition 4.2 (Compatibility). Two DQTSs A and B are compatible if
IQNLe =0, L8NLlg=0, and LINLs=02.

Definition 4.3 (Parallel composition). Given two well-formed compatible
DQTSs A and B, the parallel composition of A and B is the DQTS A | B,
with S = S4 X Sg, S?éll\B = 5?4 X Sl%’ L.IAHB = (L& U L%) \ (L?A U Lg),
LaHB = Lg U Lg, LEIIB = Li U Lg, PAHB = P, U Pg, and

—AIB = {((S,t),a,(s’,t'))GSA”BX((LAHLB)U{é}) XS.AHB|
s L8 Nt St}

U {((s,t),a,(s,t)) € Says X (La\Ls) x Sqp|sL 48}

U {((s,1),a,(s,t") € Says x (Ls\ La) X Says |t Hpt'}

— 7l (6] H —
We have L g5 = LAHB‘ ULAHB ULAHB =L4ULg.

Note that we require DQTSs to synchronise on §-transitions, as a parallel
composition of two DQTSs can only be quiescent when both components are.

It is often useful to hide certain output actions of a given well-formed DQTS,
treating them as internal actions. For example, actions used for synchronisa-
tion are often not needed anymore in the parallel composition. Action hiding
is slightly more complicated for DQTSs than for IOAs, as transforming output
actions to internal actions can lead to newly divergent states. Still, whereas in
SAs this was forbidden, in DQTSs it is allowed. Consequently, after hiding, new
quiescence observation states may have to be added for newly divergent states.

11

Definition 4.4 (Action hiding). Let A = (S4,S° LY, L°, L%, P,—4) be a
well-formed DQTS and H C L° a set of outputs, then hiding H in A yields the
DQTS A\H = (Sy,S°, L} LY, LY P, —g), with LY = L°\ H, LY = LF U
H, and Sy =SaU{qos,|s e d(A\H)\ d(A)}. Finally, —p is defined by

—g =—a U{(s,4 qos,) |s € d(A\H)\ d(A)}
U{(qoss,0,q0s,) [sed(A\H)\ d(A)}
U{(gosya?,s') |se€d(A\H)\ d(A) Aa?eL' A s, s}

So, similar to deltafication, quiescence observation states are added for all newly
divergent states, along with the required input transitions to preserve behaviour.

4.3 Properties of DQTSs

We present several important results regarding DQTSs. First, it turns out that
well-formed DQT'Ss are closed under all operations defined thus far.

Theorem 4.2. Well-formed DQTSs are closed under the operations of deter-
minisation, parallel composition, and action hiding, i.e., given two well-formed
and compatible DQTSs A and B, and a set of labels H C LY, we find that
det(A), A\ H, and A || B are also well-formed DQTSs.

Next, we investigate the commutativity of function composition of deltafica-
tion with the operations. We consider the function compositions of two opera-
tions to be commutative if the end results of applying both operations in either
order are trace equivalent. After all, trace-equivalent DQTSs behave in the same
way. (Note that this is not the case for IOAs or IOTSs, as trace-equivalent vari-
ants of such systems might have different quiescence behaviour.) We show that
parallel composition and action hiding can safely be swapped with deltafication,
but note that deltafication has to precede determinisation to get sensible results.
This is immediate, since determinisation does not preserve quiescence.

Proposition 4.1. Deltafication and determinisation do not commute, i.e., given
an IOA A such that 6 ¢ L, not necessarily det(6§(A)) =y d(det(A)).

Consequently, when transforming a nondeterministic IOA A to a determinis-
tic, well-formed DQTS, one should first derive §(.A) and afterwards determinise.

Deltafication does commute with action hiding and parallel composition. In
the following theorem we use \1 to denote basic action hiding for IOAs, and \p
to denote action hiding for DQTSs (conform Def. 4.4).

Theorem 4.3. Deltafication and action hiding commute: given an I0A A such
that § ¢ L and a set of labels H C LY, we have §(A\1 H) ~ 6(A)\p H.

Theorem 4.4. Deltafication and parallel composition commute: given two com-

patible I0As A, B, such that 6 ¢ Lo U Lg, we have 6(A || B) =y 6(A) || §(B).

The above results allow great modelling flexibility. After all, hiding and par-
allel composition are often already applied to the IOAs that describe a specifi-
cation. We now showed that after deltafication these then yield the same well-
formed DQTSs as in the case these operations are applied after deltafication.

12

) @
D7 () () ()

o ©7o G

a) A (b) SA(SCCh)

b!
(
Fig.6: An IOA A and the Streett automaton SA(SCC1).

5 Algorithm for detecting divergent states

We present an algorithm to detect divergent states in an IOA or DQTS. This
is vital for verifying conformance to well-formedness rule R1, and for deltafi-
cation, since additional states have to be added for all divergent states in the
original IOA. Recall from Def. 2.9 that a state s is divergent if there exists a
fair divergent path on which s occurs infinitely often. Consequently, we need to
find a fair cycle that starts at s and consists of only internal transitions. The
presence of ‘internal’ cycles can be determined using Tarjan’s well-known and
efficient strongly connected components (SCCs) algorithm [13].

One way to efficiently verify fairness is to utilise Streett automata [14], which
form a variation on Biichi automata [15]. The acceptance condition for a Streett
automaton depends on pairs of sets of states (E;, F;) (called Streett pairs), that
together form the acceptance component 2. An w-word is accepted with 2 =
{(E1, F1),...,(Ey, Fy)) }, if there exists a corresponding run that, for each j,
only visits a state from Fj infinitely often if it visits a state from Ej; infinitely
often. This acceptance condition corresponds nicely with our notion of fairness.

Given an internal cycle m = sga1 sy as ... a, so with a; € LY, let L(r) =
{ay,as,...,a,} be the set of actions executed on the path 7, and L“C(s;) be
the set of locally controlled actions enabled at a state s; € states(m). Because
we require every divergent path to be state-finite (see Def. 2.8), these sets can
always be calculated. If the cycle 7 is to be fair, then for every component A; € P
such that A; N LYC(s;) # @ for some s; € states(r), there must be an action
a; € A; such that a; € L(n). By introducing additional states that, when visited,
represent the fact that a particular locally controlled action is executed, we
translate this fairness condition to a nonemptiness check on a Streett automaton.

To clarify this construction, assume we wish to obtain the deltafication of
the IOA A shown in Fig. 6a given P = { Ay, As, As }, where A1 = {a, 7 }, A2 =
{b, 72}, and A3 = { ¢ }. First, we calculate the SCCs of A, while only considering
the internal transitions; in this case, there is only one: SCCy = { s¢, $1, 82 }. To
illustrate the conditions for an internal cycle to be fair, consider m = sg 71 $1 T2 Sp.
Since LYC(s0) N A; = {a, 71 } and LYC(s1) N Ay = {b, 7 }, it follows that for

13

to be fair, there must be actions a; € A; and a; € Ay such that a; € L(7) and
a; € L(m). This indeed is the case for 7, i.e., it is fair.

However, we do not know a priori that the fair path = exists. To find it,
consider Fig. 6b. There, we introduced intermediate ‘transition’ states (marked
grey) for every locally controlled transition in and leading out of SCC;. For
state sy to be visited infinitely often, it follows from LYC(sq) N A; # @ and
LYC(s0) N Ay = L¥C(s9) N A3 = @ that there must be actions a; € A; that are
executed infinitely often as well. Hence, one of the states a, 714, 715 of SA(SCC1)
must be visited infinitely often if sy is. For sp, in addition, actions from A,
must occur infinitely often. Finally, for sy similar reasoning applies. All this
yields 2 = { (El7 Fl), (Eg, FQ), (Eg, F‘g)7 (E4,F4), <E5, F5) }, where (El, Fl) =
({ a; Tia, T1b }a { 50 })’ (B, Fy) = ({ a; Tia, T1b }’ { 51 })’ (B3, F3) = ({ b, T2a; T2a }v
{51 }), (E47F4) = ({ b, T2a5 T2a }7 { S92 }) and (E5,F5) = ({ C}, { S92 }) As men-
tioned earlier, an accepting run in SA(SCC1) must satisfy all Streett pairs in 2.
Consequently, if such an accepting run exists, then it immediately follows that
a fair internal cycle exists in 4. Such a nonemptiness check can be carried out
efficiently using an optimised algorithm by Henzinger and Telle [16].

However, a fair internal cycle only gives us a subset of all divergent states. To
find all of them, we need to verify for every state if a fair internal cycle exists that
contains that particular state. Therefore, if we wish to check if, e.g., state sq is
divergent, we need to extend acceptance component {2 with an additional Streett
pair to obtain 2;, = 2 U {({s¢ }, SCC1) }. This way, we ensure that internal
cycles in SCC4 are only considered fair if they also contain state sy. Hence,
SA(SCC1) has an accepting run with acceptance component (2, if and only if
So is divergent. In a similar way, we can construct 2,, = 2 U ({ s1 },SCC1) and
25, =2 U ({s2},5CC,) to check whether s; and s, are divergent, respectively.

Based on the above, we give an algorithm (Fig. 7) to determine divergent
states. For clarity, we range over all states s and check nonemptiness using their
acceptance condition §2,. A trivial improvement would be to, when a fair cycle
is found, mark all its states as divergent and refrain from checking {2, for them.

Complezity. We discuss the worst-case time complexity of this algorithm given
a DQTS with n states, m transitions and k partitions.

First note that the size of the acceptance condition of the Streett automaton
for an SCC of n’ states and m/' transitions is worst-case in O(n'k +n'm')). After
all, each of the n’ states yields at most k Streett pairs (yielding the term n’k).
Moreover, all Streett pairs corresponding to a state, together contain at most all
states that represent transitions, of which there are m’ (yielding the term n’'m’).

The time complexity of construct_streett_automaton(C) is bounded by
the size of the acceptance condition, and hence is in O(n/(k +m')) (with n’ and
m’ taken from C). As the function is called once for each SCC of the system,
the total contribution of this function to the full algorithm is in O(n(k + m)).
Additionally, Tarjan is called once, adding O(n + m). Finally, in the worst-case
scenario, the Henzinger/Telle algorithm, which is in

O(mmin{/mlogn, k,n} + n(k + m) min{logn, k})

14

algorithm determine _divergent _states is
input: I0A A= (S,5° L', L° L% —)
output: d(A): a set containing all divergent states of A

d(A) =2

// Use a modified version of Tarjan's algorithm to determine SCC's(A)
SCCs(A) := the set of all SCCs of A that are connected with internal transitions

for each C € SCCs(A)
// Build the Streett automaton SA(C') corresponding to SCC C
(Ssa, —>sa, £2) := construct_streett automaton(C')

for each state s in C
// Add an additional Streett pair to ensure s is on any accepting cycle
2, :=02U({s}, Se)

// Use the algorithm by Henziger and Telle to check the emptiness of SA(C')
if SA(C) has an accepting run with acceptance component 2,
d(A) = d(A) U{s}
end for
end for

// Auxiliary function to construct the Streett automaton SA(C'), alongside acceptance
// component 2, for the given SCC C
function construct _streett automaton(C')

input: SCC C' = (Sscc, LI7 LO7 LH, P, —scc)

output: a Streett automaton SA(C) = (Ssa, —sa, 2)

Ssa = Sscc

—sAa = {2 :=1ts_map: =0

// First construct the Streett automaton

for each (s,a,t) € —scc such that s € Sscc and a €
// We need to insert a transition state for the transition (s, a,t)
let ¢5(s,q,e) & Ssa be a new state
Ssa := Ssa U {tS(S?CL’t) }

if t € Sscc then —ga := —sa U {(s,a, tS(s’mt)), (ts(s,a,t)7 a,t) }
else —sa ;= —sa U {(5, a, t8<sqa7t))}

LLC

let A € P be the component such that a € A
ts_map(A) :=ts_map(A4) U {ts(s,0,0) }
end for

// Now construct the acceptance component {2
for each s € Sscc
// Add a new Streett pair for every component whose actions are enabled in s
for each A € P such that s % 4 for some a € A
2:=02U{(ts_map(A),{s})}
end for
end for

return <SsA, —SA, .Q>
end function

Fig. 7: Algorithm for detecting divergent states.
15

as shown in [16], is called once for each state. Together, this yields

O(n(k+m) + (n+m) + n(mmin{y/mlogn, k,n} + n(k + m) min{logn, k}))

Under the reasonable assumption that k is bounded, and after simplification, we
find that the worst-case time complexity is in O(n?m).

6 DQTSs in a testing context

Our main motivation for introducing and studying the DQTS model was to en-
able a clean theoretical framework for model-based testing. Earlier, the TGV
framework [5] already defined ioco also in the presence of divergence. Although
this was an important first step, it is not completely satisfactory in the sense
that quiescence observations may be followed by output actions; this is coun-
terintuitive to our notion of quiescence. Now, we illustrate how DQTSs can be
incorporated in the ioco testing theory without having this problem.

The core of the ioco framework is its conformance relation, relating spec-
ifications to implementations if and only if the latter is ‘correct’ with respect
to the former. For ioco, this means that the implementation never provides an
unexpected output (including quiescence) when it is only fed inputs that are
allowed by the specification. Traditionally, this was formalised based on the SAs
corresponding to the implementation and the specification. Now, we can apply
well-formed DQTSs, as they already model the expected absence of outputs by
explicit §-transitions. In addition, since DQTSs support divergence, using them
as opposed to SAs also allows ioco to be applied in the presence of divergence.

Definition 6.1 (ioco). Let Ajppi, Aspec be well-formed DQTSs over the same
alphabet. Then, Aimpi Cioco Aspec if and only if

Vo € traces(Aspec) - 0ut a,,,,(0) C outa,,..(0),
where out 4(0) = {a € LO U {6} | 0a € traces(A)}.

Since all DQTSs are required to be input-enabled, it is easy to see that ioco-
conformance precisely corresponds to traditional trace inclusion over well-formed
DQTS:s.

This improved notion of ioco-correspondence can be used as before [4,17],
at each point in time during testing choosing to either try to provide an input,
observe the behaviour of the system or stop testing. As long as the trace obtained
this way (including the ¢ actions, which can now be the result of either quiescence
or divergence) is also a trace of the specification, the implementation is correct.

Note that the implementation and specification do not necessarily need to
have the same task partition. After all, these are only needed to establish fair
paths and hence divergences. This is used during deltafication, to determine
which states are divergent. Although this influences ioco conformance (since it
induces ¢ transitions), the conformance relation itself is not concerned with the
task partitions anymore.

16

7 Conclusions and Future Work

In this paper, we introduced Divergent Quiescent Transition Systems
(DQTSs) and investigated their properties. Also, we showed how to detect diver-
gent states in order to construct the deltafication of an IOA, and discussed its
complexity. Like SAs, DQTSs can be used to describe all possible observations
of a system, including the observation of quiescence, i.e., the absence of outputs.
Hence, DQTSs are especially useful to model specifications of reactive systems in
the context of model-based testing. DQTSs for the first time allow the modelling
of systems that exhibit divergence and explicit quiescence.

There are two advantages of using DQTSs rather than SAs for model-based
testing. First, DQTSs allow more systems to be modelled naturally, as conver-
gence is not required. Second, DQTSs are stand-alone entities whose properties
have been investigated thoroughly. Hence, DQTSs are a formal and comprehen-
sive theory to model and analyse quiescence, even in the presence of divergence.

We have shown that DQTSs are equally potent as SAs in terms of express-
ible observable behaviour, and that DQTSs can be used as a drop-in replacement
for SAs in the ioco framework. Furthermore, we have proven that well-formed
DQTSs exhibit desirable compositional properties. Consequently, composite sys-
tems can be represented as the parallel composition of smaller subcomponents.

Future Work. The action hiding operation for the DQTS model is quite complex,
as outlined in Def. 4.4. To improve this, it might be useful to investigate a
different strategy to mark quiescent and divergent states, e.g., using state labels.
Also, ioco-based model-based testing tools like TORX internally still use the
SA model to represent the specification of the system under test, and an SA-like
model to represent the actual test cases. Hence, such tools should be adapted to
utilise the improved ioco framework based on DQTSs. Work is currently already
underway to adapt the TORX tool. Finally, it would be interesting to see if our
notions could be phrased in a coalgebraic setting.

References

1. Vaandrager, F.W.: On the relationship between process algebra and input/output
automata (extended abstract). In: Proceedings of the 6th Annual Symposium on
Logic in Computer Science (LICS), IEEE Computer Society (1991) 387-398

2. Tretmans, J.: Test generation with inputs, outputs, and quiescence. In: Proceedings
of the 2nd International Workshop on Tools and Algorithms for Construction and
Analysis of Systems (TACAS). Volume 1055 of Lecture Notes in Computer Science.,
Springer (1996) 127-146

3. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools 17(3) (1996) 103-120

4. Tretmans, J.: Model based testing with labelled transition systems. In: For-
mal Methods and Testing. Volume 4949 of Lecture Notes in Computer Science.,
Springer (2008) 1-38

5. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. International Journal
on Software Tools for Technology Transfer 7(4) (2005) 297-315

17

12.

13.

14.

15.

16.

17.

Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI
Quarterly 2 (1989) 219-246

Stokkink, W.G.J., Timmer, M., Stoelinga, M.I.A.: Talking quiescence: a rigorous
theory that supports parallel composition, action hiding and determinisation. In:
Proceedings of the 7th Workshop on Model-Based Testing (MBT). Volume 80 of
EPTCS. (2012) 73-87

Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC), ACM (1987) 137-151

. Sudkamp, T.A.: Languages and machines. Pearson Addison Wesley (2006)
10.
11.

Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)

De Nicola, R., Segala, R.: A process algebraic view of input/output automata.
Theoretical Computer Science 138 (1995) 391-423

Willemse, T.: Heuristics for ioco-based test-based modelling. In: Proceedings of the
11th International Workshop on Formal Methods: Applications and Technology
(FMICS). Volume 4346 of Lecture Notes in Computer Science. Springer (2007)
132-147

Tarjan, R.E.: Depth-first search and linear graph algorithms (working paper). In:
Proceedings of the 12th Annual Symposium on Switching and Automata Theory
(SWAT), IEEE Computer Society (1971) 114-121

Latvala, T., Heljanko, K.: Coping with strong fairness. Fundamenta Informaticae
43(1-4) (2000) 175-193

Farwer, B.: w-automata. In: Proceedings of Automata, Logics, and Infinite Games.
Volume 2500 of Lecture Notes in Computer Science. Springer (2002) 3-21
Henzinger, M.R., Telle, J.A.: Faster algorithms for the nonemptiness of Streett
automata and for communication protocol pruning. In: Proceedings of the 5th
Scandinavian Workshop on Algorithm Theory (SWAT). Volume 1097 of Lecture
Notes in Computer Science., Springer (1996) 16-27

Timmer, M., Brinksma, E., Stoelinga, M.I.A.: Model-based testing. In: Software
and Systems Safety: Specification and Verification. Volume 30 of NATO Science
for Peace and Security Series D. I0S Press, Amsterdam (2011) 1-32

18

A Proofs

Lemma A.1. For every SA S there exists a well-formed DQTS D such that
S Rtr D

Proof. Let A = (S,8° LY, L° — 1) be an IOTS, and S the corresponding
SA. Hence, as defined in [2,3], S is the determinisation of the IOTS A" =
(8,8° L LO, —'4), where =/, is defined as follows:

=y =>4 U{(s,8,5) € Sx{d} xS]q(s)holdsin A}

Let B be the simplest IOA that is isomorphic, and therefore trace-equivalent,
to the IOTS A, ie., B = (5,8° LI LO LY P, — 4), where L¥ = {7} and
P = {L° U L"}. Since the IOTS A must be strictly convergent because it
otherwise cannot be converted to a SA [2, 3], it follows that B also cannot contain
divergent paths, and therefore no divergent states.

Now, observe that A’ was obtained from A by adding d-labelled self-loops to
all quiescent states. Applying the deltafication procedure for DQTSs (Def. 4.1)
to B will result in exactly the same §-transitions being added to the same states
in B, as a state in B is only quiescent when its isomorphic state in A is, and
vice versa. Furthermore, B does not contain any divergent states. Hence, A" and
0(B) are isomorphic, and consequently they are trace-equivalent. Furthermore,
by Thm. 4.1, §(B) is a well-formed DQTS. Since S is obtained by determinising
A’, we find that S is also trace-equivalent to §(B). O

Lemma A.2. For every well-formed DQTS D there exists an SA S such that
D oty S

Proof. Let D = (S,S8° L', L9, L% P, —p) be a well-formed DQTS. Without
loss of generality, we assume the following two properties of D:

1. D does not contain any path of the form s i>D t i>17 u with ¢,u € S and
t # u. This can be assumed, since rule R4 prescribes that in such a case the
traces of ¢t and u should coincide. Therefore, they can be merged to remove
the unwanted path fragment, without changing the traces of D.

2. D is deterministic. This can be assumed, since determinisation preserves
traces [10].

Note that the first assumption implies that there are no cycles in D consisting
solely of d-transitions, except for self-loops.

Since SAs cannot be built from scratch, but only arise implicitly by adding
d-transitions to IOTSs, as discussed above, we construct an IOTS A such that
the SA S obtained from A is trace-equivalent to the DQTS D. Now, let A =
(S,8% LY LO,— 1) be an IOTS, where — 4 is defined as follows:

—4 = {(s,a,t) e =>pla#d}
U {(s,1,t) eSx {7} x85]|(s,6,t) € =>p Ns#t}

19

Note that, by assumption (1), indeed —p C S x (L'U L® U {7}) x S, and
hence we have defined a proper IOTS. As earlier, the corresponding SA S is the
determinisation of the IOTS A’ = (5,5, L', L9, —/,), where —/, is defined by

=y =>4 U{(s,8,5) € Sx{d} xS]q(s)holds in A}

Since, as mentioned before, determinisation preserves traces, we will only
show that A’ is trace-equivalent to D. It then follows immediately that the
SA S is also trace-equivalent to D. Hence, we need to show that traces(D) =
traces(A’), i.e., that both traces(D) C traces(A’) and traces(A’) C traces(D).
We will first prove the former, then the latter.

1. First, we prove that traces(D) C traces(A’). Let o € traces(D). We must
prove that also o € traces(A’). If o € traces(D), there exists a path m =
80181 a2 82 ... Gy Sy in D such that trace(n) = o0, s, € S, a; € LU {4},
and sg € S°. By backwards induction on the length of 7, we show for every
suffix 7 = Sk ap41 Sk+1 - Gn Sp Of m that trace(n’) € tracesa (si). This
then implies that for o = trace(w) we have o € traces s (sp), and since
traces o/ (so) = traces(A’), we have then proven that o € traces(A’).

Base case. For k = n, we have ' = s, and hence trace(n’) = e. In this case,
we obviously have trace(n’) € tracesar(sy).

Inductive case. Assume trace(n”) € tracesa (sg+1) for the path n” =

Sk+1Ak+2 Sk+2 - - - Ap Sp. We now must show that trace(n’) € traces 4/ (sy) for

' = Sk Qg1 Skt1 k42 Sk12 - - - An Sn. Note that trace(n’) = agy1 - trace(n”),

since there are no internal transitions in D, which follows from the second

assumption made above on the structure of D. We make a case distinction
based on whether (a) a1 # 0, (b) ag+1 = § and s = sp11, and (¢) agr1 =0
and Sk 75 Sk+1-

(a) If apy1 # 0, then by definition of A and A" we have s, 241y \, 544
in A’. Hence, since n”’ € tracesa (sk+1), it immediately follows that
7' € traces ar (k).

(b) If ag+1 = and s = Sp41, then it follows from rule R2 that s, is quies-
cent in D. Furthermore, by the assumption that D is deterministic, there
cannot exist any other outgoing d-transitions from sy in D, and therefore
no 7-transitions are added to si in the construction of 4. Consequently,
sk is also quiescent in A, and hence we find that indeed sy, i>A, Sk4+1 in
A’ by definition of A’. Hence, since 7"’ € traces 4/ (sk+1), it immediately
follows that ©" € traces a(s).

(¢) If ag41 = 0 and si # Sg+1, then due to rule R2 we find that sg4q is
quiescent, and it follows from rule R1 that siy; must have an outgoing
d-transition. By the assumption that no path fragment of the form s i>D
t iﬁ) uwith t,u € S and t # u is present in D, this implies that spy1 i>D
Sk+1- It then follows by definition of A’ that no 7-transition is added to
Sk+1 in the construction of A, and therefore si11 is also quiescent in A.

20

Hence, we have sg41 1%4' Sk+1- Also, since sy, i>D Sk+1, we can conclude
by the definitions of A and A’ that s; T ,, sp41. Consequently, in A’
there exists a path sx s 4, Spy1 iﬁl/ Sg+1 and therefore a trace d from
Sk t0 Sg41 - Thus, since © € traces 4/ (sg41), it immediately follows that
7' € traces a(sy).s
2. Next, we prove that traces(A’) C traces(D). Let o € traces(A’). We must
prove that also o € traces(D). If o € traces(A’), there exists a path 7 =
S0a1 81a2 83 ... ap S, in A’ such that trace(r) =0, 8, € S, a; € LU{T1,d},
and so € S°. By backwards induction on the length of 7, we show for every
suffix 7' = sp ag41 Sk+1 - Gn Sp Of T that trace(n’) € tracesp(sy). This
then implies that for ¢ = trace(w) we have o € tracesp(so), and since
tracesp(sg) = traces(D), we have then proven that o € traces(D).

Base case. For k = n, we m’ = s, and hence trace(n’) = e. In this case, we
obviously have trace(n’) € tracesp(sy).

Inductive case. Assume trace(n”) € tracesp(sk+1) for the path 7" =
Sk+1 Qk+2 Sk+2 - - - Gp Sp. We now must show that trace(n’) € tracesp(sy) for
7' = Sk Qk11 Sk+1 Qk+2 Sk+2 - - - An Sp. Note that 7" = a1 - 7" if a4 # 7
and 7' = 7" if ap41 = 7. We make a case distinction based on whether (a)
ap+1 # 0 and agp1 # 7, (b) ary1 =6, (¢) a1 = 7 and s Doy Sp41, and
(d) ag+1 = 7 and sg &D Skl

(a) If apy1 # 0 and ap4q # 7, then we can conclude from the definitions
of A and A’ that s, 244 sp11. Hence, since n” € tracesp(sip41), it
immediately follows that 7’ € tracesp(sg)-

(b) If axy1 = 4, then it follows from the definitions of A and A’ that it
must have been added during the construction of A’ (and hence it fol-
lows that s = si), since s was quiescent in A. Therefore, sy is also
quiescent in D (since D cannot have more output transitions or inter-
nal transitions than A4), and consequently sy i>D sk by rule R1. Thus,
since 7 € tracesp(sg+1) and Spy1 = Sk, it immediately follows that
7' € tracesp(sk).

(¢) and (d). If ag41 = 7, then 7’ = 7. If this transition was added due to the
presence of the transition sy T Sky1, then, since 7”7 € tracesp(sp41),
it immediately follows that 7’ € tracesp(si).

Otherwise, if this transition was added due to the transition s i>D Sk41,
then from rule R3 it follows that tracesp(sgt1) C tracesp(sy). Thus,

since 7'’ € tracesp(sg41), this implies that 7’ € tracesp(sg). O

Theorem 3.1. For every SA S there exists a well-formed DQTS D such that
S =4, D, and vice versa.

Proof. Follows directly from Lemma A.1 and Lemma A.2. O

21

Theorem 4.1. Given an IOA A with 6 ¢ L such that all divergent paths in A
are state-finite, §(.A) is a well-formed DQTS.

Proof. Let A= (S,8° L', L° LY P, —) be an IOA with § ¢ L such that all
divergent paths in A are state-finite, and let §(A) = (S5, 8%, L, LO, LH P, —5)
be its deltafication, as defined in Def. 4.1. To show that §(A) is a well-formed
DQTS, we need to prove that §(.A) satisfies each of the rules R1, R2, R3 and R4.
In the following, we use tracess(s) to denote the set of all traces of §(.A) starting
in the state s € Ss.

1. To prove that §(A) satisfies rule R1, we must show that for all states s € Ss:
if g(s) or d(s), then s %,

Since s € S5 and ¢(s) or d(s) holds in §(.A), it follows from Def. 4.1 that the

following cases are possible: (a) s € S and ¢(s) holds in §(A); (b) s € S and

d(s) in 0(A); and (c) s € S5\ S (and ¢(s) holds in §(A)). Clearly, it is not

possible that s € S5\ S and d(s) holds in §(A).

(a) Assume s € S and ¢(s) holds in 6(A). Since deltafication does not hide or
remove any existing output or internal transitions, ¢(s) then also holds
in A. By Def. 4.1, we have (s,0,s) € —s after deltafication and therefore
55,

(b) Assume s € S and d(s) holds in §(.A). In other words, s occurs infinitely
often on a divergent path 7 in §(.A). Since deltafication does not hide
any existing output transitions, nor creates any new internal transitions,
the divergent path 7 must also be present in .A. Consequently, d(s) also
holds in A. By Def. 4.1, we have (s,0, qos,) € —s after deltafication,
where gos, is a new quiescence observation state for s. Thus, s LN 5

(c) Assume s € S5 \ S. Hence, s is a newly added quiescence observation
state for some divergent state, and by Def. 4.1 we have both ¢(s) and
505 5.

2. To prove that §(.A) satisfies rule R2, we must show that for all states s,s’ €

Ss:

if s 9, s', then ¢(s')

Since 5,5’ € S5 and s i>5 s’, it follows from Def. 4.1 that the following cases
are possible: (a) 5,5 € S; (b) s € S and s’ € S5\ S; and (c) 5,8 € S5\ S.
Clearly, it is not possible that s € S5\ S, s’ € S, and s i>5 s'.

(a) Assume s,s' € S and s %5 5. By Def. 4.1, we have s = s, and s (and
therefore also s’) is quiescent.

(b) Assume s € S, s’ € S5\ S, and s %, s'. From Def. 4.1, it follows that
s’ is the quiescence observation state for the divergent state s, and s’ is
quiescent.

(c) Assume s,s" € S5\ S and s % s'. From Def. 4.1, it follows that s’ is a
quiescence observation state, s = s, and s’ is quiescent.

22

3. To prove that §(A) satisfies rule R3, we must show that for all states s,s" €
Ss:
if s 9, s', then tracess(s’) C tracess(s)

Since s,s’ € S5 and s i>5 s’, it follows from Def. 4.1 that the following cases

are possible: (a) s,s' € S; (b) s € S and ¢’ € S5\ S; and (¢) s,s" € S5\ S.

Clearly, it is not possible that s € S5\ S, s’ € S, and s i>5 s'.

(a) Assume s,s’ € S and s 25 s’. By Def. 4.1, we have s = s’, and therefore
tracess(s") C tracess(s).

(b) Assume s € S, s’ € S5\ S and s %5 s'. From Def. 4.1, it follows
that s’ is a quiescence observation state for the divergent state s. Let
o € tracess(s"). We have to show that also o € tracess(s). There are two
cases to consider: either || =0 or |o| > 1. If |o| = 0, then 0 = ¢, and by
definition o € tracess(s). If |o| > 1, then, by Def. 4.1, 0 = a - o', where

either a = 6, or a € L'(s). In the first case we have s’ 2 s’ and s’ L ;.

Since also s %5 &', it directly follows that o € traces;s(s). In the second

case we have s’ %, s” and s” == 5 for some s” € S. By Def. 4.1, we

then must have s 2 , s, and therefore also s % ; s”. Hence, since we

have s” éé, we find o € traces;(s).
(c) Assume s,s" € S5\ S and 5 25 s'. From Def. 4.1, it follows that s is a
quiescence observation state and s = s’. Thus, tracess(s’) C tracess(s).
4. To prove that 6(.A) satisfies rule R4, we must show that for all states
s,s',8" € Ss:

if s 9, 5" and s’ 2, s, then tracess(s”) = tracess(s’)

Since s, s',s"” € S5, s %5 8" and s’ %5 s, it follows from Def. 4.1 that the
following cases are possible: (a) s,s’,s” € S; (b) s € S and ¢',s"” € S5\ S;
and (c) 8,8, 8" € S5\ S. All other permutations are not possible.
(a) Assume s,s',s” € S, s %5 s and 8’ %, s”. By Def. 4.1, we have
s =8 =", and therefore tracess(s’) = tracess(s").
b) Assume s € S, s',s" € S5\ S, s % s’ and s’ 2 s”. From Def. 4.1, it
é 6
follows that s’ is the quiescence observation state for the divergent state
s, and s’ = s”. Clearly then, tracess(s”) = tracess(s’).
c) Assume s,5',s" € S5\ S, s & s’ and s’ % s”. From Def. 4.1, it
1) &
follows that s is a quiescence observation state and s = s’ = s”. Thus,
tracess(s") = tracess(s'). O

Lemma A.3. Well-formed DQTSs are closed under determinisation, i.e., given
a well-formed DQTS A, det(A) is also a well-formed DQTS.

Proof. Let A = (S,8° L', LO LY P —4) be a well-formed DQTS and let
det(A) = (Sp,SY, LY, LO, LH, P, —p) be its determinisation, as defined in
Def. 2.5. To prove that well-formed DQTSs are closed under determinisation
we must show that det(A) is a well-formed DQTS, i.e., that it satisfies each of
the rules R1, R2, R3 and R4. In the following, we use tracesp(U) to denote the
set of all traces of det(A) starting in the state U € Sp.

23

1. To prove that det(A) satisfies rule R1, we must show that for all states
U € Sp:
if ¢(U) or d(U), then U %5

By Def. 2.5, there are no more internal transitions present after determin-
isation. Hence, there can be no U € Sp such that d(U) holds in det(A).
Instead, assume ¢(U) holds in det(A) for an U € Sp. This implies that
all states s € U are quiescent in A. From rule R1 it follows that for every
state s € U there exists another state s’ € S such that s i>A s'. There-
fore reach 4(U,0) # @. By Def. 2.5, we then have (U, d, reach 4(U, 0)) € —p.
Consequently, U i>D.

2. To prove that det(A) satisfies rule R2, we must show that for all states
U,V € Sp:

if U 2 V, then ¢(V)

Consider any transition U i>D V with U,V € Sp. If U i>D V', then, by
Def. 2.5, V = reach 4(U,d) and V # &. Hence, for every state s’ € V there
exists a state s € U such that s 2 4 8. Using rule R2 we can then conclude
that every s’ € V is quiescent in A, thus ¢(V') holds in det(.A).
3. To prove that det(A) satisfies rule R3, we must show that for all states
U,V € Sp:
if U 2 V, then tracesp(V) C tracesp(U)

Consider any transition U 2 V with U,V € Sp. Assume o € tracesp (V).
We must show that also o € tracesp(U). If ¢ € tracesp(V'), then there
clearly must exist a state s’ € V such that s’ = ,. Since U S V, it
follows from Def. 2.5 that V' = reach 4(U, §) and V # &. Hence, there must
exist a state s € U such that s 2y 4 8. Using rule R3 we can then conclude
that traces o(s") C traces 4(s), and therefore s = ,. Since s € U, it follows
that o € tracesp(U).

4. To prove that det(A) satisfies rule R4, we must show that for all states
UV, W € Sp:

if U S, Vand V 4 W, then tracesp(W) = tracesp(V)

Consider any pair of transitions U i>D V and V 1>D W, with U, V,W €
Sp. To prove that tracesp(W) = tracesp(V), we must show that both
tracesp(W) C tracesp(V) and traces(V) C tracesp(W). The former fol-
lows directly from rule R3, so all that’s left to prove is that tracesp(V) C
tracesp (W).

Assume o € tracesp(V). We must show that also o € tracesp(W). If o €
tracesp(V'), then there clearly must exist a state s’ € V such that s’ % ,.
Since U i>D V', it follows that there exists a state s € U such that s i&A s’
Furthermore, it follows from rule R2 that V is quiescent, and therefore all
states in V are quiescent, including s’. Since V i>D W, we have W =
reach(V,d) and W # &. We can then conclude, using rule R1, that there must
exist a state s” € W such that s’ i>A s”. Thus, we have s i>A s’ i>A s”.

24

From rule R4 it then follows that traces(s”) = traces(s’) and consequently
s = 4. Since s” € W, it follows that o € tracesp(W). O

Lemma A.4. Well-formed DQTSs are closed under parallel composition, i.e.,
given two compatible well-formed DQTSs A and B, A || B is also a well-formed
DQTS.

Proof. Given two well-formed DQTSs A = (Sa, 89, LY, L, LY, P4, —.4) and
B= (SB, SB,LIB,Lg,Lg,PB,—)lg) that are compatible, let the DQTS A | B =

SAHB, Al AHB’ AHB’ A\|B’PA||57_>AI\B> be their parallel composition, as
defined in bef 4.3. To prove that well-formed DQTSs are closed under parallel
composition we need to show that A || B is a well-formed DQTS, i.e., we need
to prove that A || B satisfies each of the rules R1, R2, R3 and R4.

1. To prove that A || B satisfies rule R1, we must show that for every state
(S, t) S S.AHB:

if q((s,1)) or d((s, 1)), then (s,) % 45

Let (s,t) € S 5. We will look at the cases for ¢((s,t)) and d((s,t)) sepa-
rately.
First, assume ¢((s,t)) holds in A || B. In this case, there is no a € L,CL)\HB U

LiHB such that (s, t) % A8 Since both A and B are input-enabled, it follows

from Def. 4.3 that there is no a € L?t U L% such that s 4 4and no a €
Lg U Lg such that ¢ <, ;. Hence, both s and t are quiescent, and by rule R1
we have s 2, , and t 2, ;. From Def. 4.3 it then follows that (s,t) i>A||B'
Now, assume d((s,t)) holds in A || B, i.e., there exists a divergent path
m € dpaths(A || B) such that (s,t) € w-states(w), i.e., the state (s,t) appears
infinitely often on an infinite fair path 7 that is also divergent. By Def. 4.3,
each step of path 7 is a transition by either A or B, since the sets of internal
transitions of A and B are disjoint, and they cannot synchronise on them.
We can therefore distinguish three cases: (a) A and B both carry out an
infinite number of internal transitions in the path 7; (b) A carries out a
finite number of internal transitions, and B an infinite number; and (c), B
carries out a finite number of internal transitions, and A an infinite number.
For each case, we will show that both s % 4 and t LN 5> and therefore, by
Def. 4.3, also (s, 1) gAHB'

(a) Assume both A4 and B carry out an infinite number of internal transitions
in the path 7. Now assume that A carries out all the even transitions
(i.e., the second, fourth, etc.) and B all the odd transitions (i.e., the first,
third, etc.) in path m. However, the following proof can also be adapted
for any other path 7. Hence, path 7 is defined as follows:

™ = (50>t0) b—1>_A||B (SO;tl) a_1>.A|\B (slatl) b_2>.AHB

(Sl,tg) a—z)A”B (827t2)...

25

where s; € Sa, t; € Sg, a; € LY and b; € Li. Since (s,t) € w-states(r),
it follows that 3°°%, j such that (s;,t;) = (s,t). Furthermore, by Def. 4.3,
the construction of path 7 implies the existence of two infinite paths 7 4
and 7 in respectively A and B, such that:

TA = S0 % 481 22 4 52 2 4 ...
5 = to Wygty Rty By

Clearly, both paths 74 and 7z are divergent, since a; € Li and b; € Lg.
Since the path 7 is fair with respect to the task partition Py g, it follows
immediately that both paths w4 and 7 are fair with respect to the
task partitions P4 and Pg, respectively. To see this, recall that we have
LY n Ll =2, L9 N LY = @ and both A and B are input-enabled.
Furthermore, by Def. 4.3, any locally controlled actions that are enabled
in all states s; € S4 and t; € Sp will also be enabled in (s;, j;) € S5
Hence, since Py = P4 U Pg, it follows that if either m4 or 75 was not
fair, then 7 could not be fair either. Consequently, w4 and 7z are both
divergent paths.

As mentioned before, we have that 3°°¢, j such that (s;,t;) is a state on
the path = and (s;,t;) = (s,t). From this, it immediately follows that
3°°¢ such that s; is a state on the path m4 and s; = s, and 3°°j such
that ¢; is a state on the path 73 and ¢; = t. Thus, s € w-states(m4) and
t € w-states(mg). Since w4 and 7 are divergent, it then follows that
d(s) holds in A and d(t) in B. By rule R1 we then must have s 2, , and
t 9.

Assume A carries out a finite number of internal transitions in path 7,
and B an infinite number. Since 7 is infinite and the number of internal
transitions of A is finite, this means that m can always be split into a
finite path 7’ and an infinite path 7" such that all internal transitions
carried out by A in 7 are on path 7/, and none are on path 7”. Thus,
the infinite path 7" only contains internal transitions of B. Note that =’
may consist of just a single state, in case A does not contribute to the
path 7 at all. For example, assume path 7 is defined as follows:

b b b b
™ = UQ a—1>A”B 3% _1>.A||B U2 a—2>A”B us _2>.A|\B Uy —3>AH3 Uus _4>.AHB

where u; € S48, a; € Lﬁ and b; € Lg. Hence, only internal transitions
of B are executed after state ug. Clearly then, a possible assignment for
7’ and 7" is the following:

/ b

T = uy & AB U1 21 AlB U2 g2, A|B U3
7 b b b

T = usg ’2>A|\B Uy ’3*A|\B Us .4>A|\B"'

Since A and B cannot synchronise on internal transitions, it follows that
path 7' is defined as follows:

= (SOatO) b_1>A\|B (SOatl) b—2>A”B (307t2) b_3>A”B (307t3) b—4>.,4|\8

26

where sg € Sa, t; € Sg, and b; € LY. Since path 7 is divergent, path 7"
is also divergent. Furthermore, if (s,t) € w-states(w), then also (s,t) €
w-states(r'"). We must show that s 2 , and t 2. We will do this by
proving that ¢(s) holds in A and d(¢) holds in B. The desired result then
follows directly from rule R1.

First, we will prove that ¢(s) holds in A. Since (s,t) € w-states(n”), it
follows from the above definition of 7’ that s = so. Let L% (so) denote
the set of all locally controlled actions of A that are enabled in the state
s0. To prove that ¢(s) holds in A, we must show that L% (so) = @. We
do this by assuming the opposite, i.e., L% (so) # @, and show that this
leads to a contradiction.

From the definition of 7" and Def. 4.3 it follows that L (s¢) C L(u) for
all states u € S5 on the path 7”. If L% (s0) # @, then, by Def. 2.6,
there is an A € P4 such that A N LY%(so) # @. Consequently, since
path 7" is fair, it must be the case that 3°°j such that a; is an action
executed on the path 7”7 and a; € A. However, only internal transitions
from B are executed on path 7 and by Def. 4.2 we have LY N L4 = 2.
Now, all that’s left to prove is that d(¢) holds in B. Since s = sg, 7’ is
defined as follows:

T = (5,t0) 25 5 (5:11) 25 45 (5:t2) 22 415 (5:3) 25 45 - -

where t; € Sg, and b; € Lg. Hence, by Def. 4.3, we have the following
infinite path 73 in B:

7T'B:tOb—lhfgtl b—2>3t2 b—3>3t3b—4>3~-~

Clearly, path 73 is divergent, since b; € L. Since the path 7" is fair with
respect to the task partition Py g, it follows immediately that 75 is also
fair with respect to the task partitioning Pg. To see this, recall that we
have LE NLY =g, L% N LY = @ and both A and B are input-enabled.
Furthermore, by Def. 4.3, any locally controlled actions that are enabled
in all states t; € Sp will also be enabled in (s,t;) € S4)3. Hence, since
Pg C Py, it follows that if 75 was not fair, then 7 could not be fair
either. Consequently, 73 is a divergent path.
Furthermore, as we observed earlier, we have (s,t) € w-states(n”). From
this, and the definition of 7, it follows that 3°°j such that ¢; is a state
on the path 75 and ¢; = ¢. Hence, t € w-states(mg). Since g is also
divergent, it then follows that d(¢) holds in B.

(c) Assume B carries out a finite number of internal transitions in path ,
and A an infinite number. The proof for this case is then symmetric to
the proof for the previous case.

2. To prove that A || B satisfies rule R2, we must show that for all pairs of
states (s,), (s',t") € Sy5:

lf (Sat) i>_AHB (S/vt/)a then q((slat/))

27

Consider any transition (s,t) i>A”B (s',t") with (s,t),(s',t") € Sq. From
Definition 4.3 it then follows that s 2, , s’ and t %, ¢'. By rule R2, both s’
and t' are quiescent. Thus, by Definition 4.3, ¢((s’,¢')) holds in A || B.

. To prove that A || B satisfies rule R3, we must show that for all pairs of
states (s,), (s',t") € Sy5:

if (s,t) i>AHB (s',t"), then traces 4 5((s',t")) C traces 45((s,1t))

Consider any transition (s,t) i>A|\B (s',t') with (s,),(s',t") € Sqp. As-
sume o € traces 4 g((s',t')). We have to show that also o € traces 5((s,t)).
Since (s,t) i>A|\B (s',t), it follows from Def. 4.3 that s 2 , s’ and t %,
t’. By rule R3, we then have tracesa(s’) C traces(s) and tracesg(t’) C
tracesp(t).

Additionally, note that o € traces 45((s’,t’)) implies that there is a path

™= (50, £0) “ 4y (51:81) 2B a5 - = 45 (15t 1) 25 45 (550 t)

for some n > |o|, where (sf,t;) = (s',t') and trace(n) = . Note that some
of the actions a; can be equal to 7, and that not all states s; and ¢; have to
be distinct.

We prove by induction on the length of the path 7 that (1) s’ 245 , s/, and
t' L5 . t!, where pa =0 | (LaU{d}) and pg =0 | (Lp U {d}), that
(2) s £%5 4 and t £55 5, and that (3) (s,t) = 45 (8m:tm) for every pair
(Sm, tm) € reach 4(s, pa) X reachp(t, pg). Note that the last part implies that
o € traces 45((s,t)), which is what we needed to show (the first two parts
are needed for the induction).

Base case. Let |7| =0, i.e., 7 is the empty path and (s},,t,,) = (s',¢'). This
implies that o = p4 = ps = €, and hence s’ 245 | s/ and t L5 t/ . Also,
s 24, and t £5 ; since € € tracesa(s) and € € tracesp(t). To see why
(s,t) éAHB (Smstm) for every (sm,tm) € reacha(s,pa) X reachp(t, pB),
note that since o = pa = pp = €, reacha(t, pa) and reachp(t, pp) contain
precisely all states that can be reached from s and ¢, respectively, by only
taking 7-transitions. By Def. 4.3, these 7-transitions (if any) can also be
executed in all possible interleavings starting from (s,t), since .4 and B do
not, synchronise on 7-transitions.

Inductive case. Let 7' be the path from (s{,t;) to (s),_1,t,_1), and let

’ ’
o' = trace(r’). Assume that (1) s’ £45 | s/, and ¢’ L& . ¢/, where p/y =

o' 1 (LaU{6}) and plg =o' | (Lg U {d}), that (2) s 24 , and t L&
and that (3) (s,t) %AHB (Sm, tm) for every pair (s, tn) € reach (s, p'y) %
reachp(t, pg). Let 0 = 0’ a = trace(w). Since o € traces 4 5((s’,t")), we have

a€ LapU{ed}. Welook at the cases a =¢, a € La\ Lp, a € L\ La,
and a € (La N Lg) U {J} separately.

28

— If a = ¢, then apparently an =7 and o = 0’'e = ¢’. By Def. 4.3, this im-
phes that either s/, , = s/, and tn 1 D ty,ort, =t and s, | Ty,

PB

sl,. Both cases imply that s 24 , s/, and t/ =5 t), since p; =

pi - (a1 (LaU{d}) =pi- (] (LA U {5})) = p; fori € {A,B}

and we assumed s’ £45 s/ and ¢’ L5 . ¢/ . Also, since p; = p;

and ¢’ = o, by the induction hypothesis we have s %A, t £ ., and
(8:t) = 45 (8m., tim) for every (sm,tm) € reacha(s, pa) X reachs(t, ps).
—Ifae€ La\Lpg,then a, =aand (s,,_;,t),_1) —>A\|B (s, 1) implies, by

Def. 4.3, that s, | % , s, and t;, | = t,. Since s p:A>A s _;and pg =

/
n?

Py - a, this implies that s’ £ , s
pB, we have t' £ o ¢/ . Since traces 4(s") C traces 4(s) and tracesp(t') C
tracesp(t), also s £& , and t L2 .. Clearly, reachp(t,pg) =
reachp(t, pjg), since pg = p. Furthermore, for every state

v € reacha(s,pa) there exists a state u € reacha(s,p/,) such that

and since ¢’ £25 .t/ | and pj; =

u = 4 v. Hence, since (s,1) %A”B (Sm, tm) for every pair (s, tm) €
reach (s, p'y) % reachp(t, pg), by Def. 4.3 also (s,1) éAHB (Sp,tyn) for
every pair (s, t,) € reach4(s,pa) X reachp(t, pg).
— If a € L\ L4, the proof is symmetrical to the previous case.
—IfaeLanLpora=34,then a, =aand (s,_1,t,_1) == 45 (Sh,th)

n»’n
implies, by Def. 4.3, that s}, _; % , s}, and t; 1 LA ;L Since s éA
si_y and pa = p/4 - a, this implies that s’ £ , s/; ¢/ L& o ¢ fol-
lows symmetrically. Since traces4(s’) C tracesa(s) and tmceslg(t’) C
tracesg(t), also s £45 , and t £ ;. Furthermore, for every state v €
reach 4(s, pa) there exists a state u € reach (s, p/y) such that u = , v
for reachp(t, pp) the same property (but With reachp(t, pjg) rather than
reach 4(s, p'4)) holds. Hence, since (s,t) :>A||B (Sm, tm) for every pair
(Smytm) € reacha(s, ply) x reachs(t, pig), by Def. 4.3 also (s,t) = 45
(Sn,tn) for every pair (sp,t,) € reach (s, pa) x reachg(t, pg).

4. To prove that A || B satisfies rule R4, we must show that for all pairs of
states (s,), (s',t'), (s",1") € S8

if (s,t) $A\|B (s',t") and (s,t) i>A”B (s",t"),
then traces 45((s',t")) = traces 4 5((s",t"))

Consider any pair of transitions (s, t) i>AHB (s',t') and (s',t') $A|\B (s”,t")

with (s,t), (s, 1), (s",t") € Suys. From Def. 4.3 it follows that s % , s,

s’ i>A st i>B t" and ¢ i>8 t”. By rule R4, we then have traces4(s') =

traces 4(s") and tracesg(t") = tracesp(t”). To prove that traces 4 5((s',t'))
traces 4 3((s”,t")), we must prove that both tracesyg((s',t"))

traces 4 3((s”,t")) and traces o 53((s”,t")) C traces 4 5((s',t')). The latter
follows directly from rule R3, so all that’s left to show is traces 45((s’,t")) C

(Nl

29

traces 43((s”,t")). The proof for this is similar to the proof for rule R3, but
using the fact that traces 4(s") = traces 4(s"”) and tracesp(t') = tracesg(t”),
instead of traces 4(s") C traces 4(s) and tracesg(t') C tracesg(t). O

Lemma A.5. Well-formed DQTSs are closed under action hiding, i.e., given a
well-formed DQTS A and a set of labels H C LY, A\ H is also a well-formed
DQTS.

Proof. Let A= (S,S° L', L° LY P — 4) be a well-formed DQTS and let H C
LO be a set of outputs. We then have A\ H = (S, S, LY, LY, LY P, —g), as
defined in Def. 4.4. To prove that well-formed DQTSs are closed under action
hiding we must show that A\ H is a well-formed DQTS, i.e., that it satisfies
each of the rules R1, R2, R3 and R4. In the following, we use tracesg(s) to
denote the set of all traces of A\ H starting in the state s € S.

1. To prove that A\ H satisfies rule R1, we must show that for all states s € Sp:
if g(s) or d(s), then s 2,

Since s € Sy and ¢(s) or d(s) holds, it follows from Def. 4.4 that only the
following cases are possible: (a) s € S and ¢(s) holds in A\ H; (b) s € S
and d(s) holds in A\ H; and (c¢) s € Sy \ S (and ¢(s) holds in A\ H).

(a) Assume s € S and ¢(s) holds in A\ H. Since hiding of actions effectively
relabels output-transitions to internal transitions, it follows that ¢(s)
must also hold in 4. By rule R1, we then have s 1%4- Since hiding does
not affect existing d-transitions, we then also have s 2y -

(b) Assume s € S and d(s) holds in A\ H. We can distinguish two cases:
either d(s) also holds in A, or it does not. In the first case, we have, by
rule R1, s 4 4 Since hiding does not affect existing J-transitions, we
then also have s 2, . If d(s) does not hold in A, then s has become
newly divergent in A\ H. By Def. 4.4, we then have s i>H.

(c) Assume s € Sy \ S. Hence, s is a newly added quiescence observation

state for some newly divergent state, and by Def. 4.4 we have s 2, S

2. To prove that A\ H satisfies rule R2, we must show that for all states s, s’ €
SH:
if s %, &, then ¢(s')

Since s,s' € Sy and s %, s/, it follows from Def. 4.4 that only the following
cases are possible: (a) 5,8’ € S; (b) s € S and s’ € Sy \ S; and (c) 8,5 €
Sy \S.

(a) Assume s,s' € S and s 9, s'. Since hiding of actions does not result
in the addition of new d-transitions between states that already existed
before the hiding operation took place, it follows that we also have s 2, A
s’. Rule R2 then implies that ¢(s’) holds in .4, and therefore, by Def. 4.4,
hiding will not introduce any new outgoing transitions for this state.
Consequently, ¢(s’) also holds in A\ H.

30

(b) Assume s € S, s’ € Sy \ S and s %, s'. From Def. 4.4, it follows that s’
is a newly created quiescence observation state for the newly divergent
state s, and s’ is quiescent.

(c) Assume s,s' € Sy \ S and s %, s'. From Def. 4.4, it follows that s’ is a
newly created quiescence observation state, s = s’, and s’ is quiescent.

. To prove that A\ H satisfies rule R3, we must show that for all states s, s’ €

SHI

if s 9, &', then tracesy(s') C tracesp(s)

Since s, s’ € Sy and s 2 g S, it follows from Def. 4.4 that only the following
cases are possible: (a) s,s' € S; (b) s € S and s € Sy \ S; and (c) 5,5 €
S\ S.

(a) Assume s,s' € S and s %, s'. Since hiding of actions does not re-
sult in the addition of new J-transitions between states that already
existed before the hiding operation took place, it follows that we also
have s 2, , s'. Rule R3 then implies that tracesa(s’) C tracesa(s).
From Rule R2 we can also conclude that ¢(s’) holds in A, and there-
fore, by Def. 4.4, hiding will not introduce any new outgoing transi-
tions for state s’. Consequently, it follows that traces (s") = traces a(s’).
Furthermore, by Def. 4.4, we have traces 4(s) C tracesy(s), since new
traces may be added by the hiding operation (when s is newly diver-
gent), but existing traces are preserved. From this, it directly follows
that tracesg(s") C tracesg(s).

(b) Assume s € S, s’ € Sy \ S and s %, s'. From Def. 4.4, it follows that
s’ is a newly added quiescence observation state for the newly divergent
state s. Let o € tracesp(s’). We have to show that also o € tracesy(s).
There are two cases to consider: either |o| = 0 or |o| > 1. If |o| = 0, then
o = ¢, and by definition o € tracesg(s). If |o| > 1, then, by Def. 4.4,
o = a - o', where either a = §, or a € L(s). In the first case we have

s’ i>H s’ and s’ £I>H Since also s i>H s’, it directly follows that

o € tracesp(s). In the second case we have s’ %, s” and s” ==, for
some s” € S. By Def. 4.4, we then must have s % , s”, and therefore
also s % ., s”. Hence, since we have s” Z= ,;, we find o € tracesp(s).
(c) Assume s,s' € Sy \ S and s %, s'. From Def. 4.4, it follows that s is a
quiescence observation state and s = s’. Thus, tracesg(s’") C tracesg(s).

. To prove that A\ H satisfies rule R4, we must show that for all states
s,s',s" € Sy:

if s %, s and s’ %, §”, then tracesy(s') = tracesp(s”)

Since s,s', 8" € Sg, s %, 8" and 8" %5, 8", it follows from Def. 4.4 that only

the following cases are possible: (a) s,s',s” € S; (b) s € Sand ¢/, 5" € Sg\S;

and (c) s,¢',8” € Sy \ S.

(a) Assume s,s',s"” € S, s %, s and s’ %, s”. It then follows from
Def. 4.4 that also s i>A s’ and s’ i>A s”; and therefore, by rule R4,

31

+Q§ ¥ fog
T
.'/ \. !a‘? b!! !a? .b‘,/\r, .”’ 5!_“:.

b!l la? .ly \i: t[s) U t(;) O U t{s) a? U

(a) A (b) det(A) (c) 6(A) (d) o(det(A)) (e) det(6(A))

Fig.8: The determinisation and deltafication of the IOA A do not commute.
Note that some a-labelled self-loops have been left out to reduce clutter.

traces o(s") = traces 4(s"). From Rule R2 we can also conclude that ¢(s’)
and ¢(s”) hold in A, and therefore, by Def. 4.4, hiding will not introduce
any new outgoing transitions for both states s’ and s”. Consequently, it
follows that tracesy(s') = traces 4(s') and tracesp(s”) = traces(s").
From this, it directly follows that tracesy(s’) = traces g (s”).

(b) Assume s € S, s',s” € Sy \ S, s %, 8" and s’ %5, s”. From Def. 4.4,
it follows that s’ is the newly added quiescence observation state for
the newly divergent state s, and s’ = s”. Clearly then, tracess(s”) =
tracess(s’).

(c) Assumes,s’,s” € Sy\S,s %, s and s’ %5, s”. From Def. 4.4, it follows
that s is a newly added quiescence observation state and s = s’ = s”.
Thus, tracess(s") = tracess(s'). O

Theorem 4.2. Well-formed DQTSs are closed under the operations of deter-
minisation, parallel composition, and action hiding, i.e., given two well-formed
and compatible DQTSs A and B, and a set of labels H C L9, we find that
det(A), A\ H, and A || B are also well-formed DQTSs.

Proof. Follows directly from Lemma A.3, Lemma A.4 and Lemma A.5.

Proposition 4.1. Deltafication and determinisation do not commute, i.e., given
an IOA A such that § ¢ L, not necessarily det(6(A)) =z, d(det(A)).

Proof. Consider the IOTS A, and its determinisation det(A) and deltafication
0(A), shown in Fig. 8. Clearly, the deltafication of the determinisation of A (i.e.,
0(det(A))), shown in Fig. 8d, results in an incorrect observation automaton, as
it does not model the fact that in the nondeterministic DQTS §(.A) quiescence
may be observed after an initial a input, as required by rule R1.

Contrary to the deltafication of the determinisation of A, the determinisation
of the deltafication of A (i.e., det(§(A))), which is shown in Fig. 8e, does preserve

32

the fact that quiescence may be observed after an initial a input. This should
not come as a surprise, since for any IOA A the determinisation det(.A) is trace
equivalent to the original automaton [10]. O

Theorem 4.3. Deltafication and action hiding commute: given an IOA A such
that 6 ¢ L and a set of labels H C L9, we have §(A\1 H) ~ 6(A)\p H.

Proof. Let A = (S,8° L' L°, LY P, —) be an IOA such that § ¢ L, and let
H C LO. Furthermore, let B = A\1H = (S,5° L' LY, LY P —p), and let
C = §(A) = (Se, SO LY LO, LH P —¢), as defined in Def. 4.1. Finally, let
D = §(A\1H) = (Sp, SO LY, LY, LY, P,—p), as defined in Def. 4.1, and let
E=0(A)\p H = (Se,S° L1, LY, LY, P, —¢), as defined in Def. 4.4. Note that
LY =LY =LY and LY = LY = LY since the same set of outputs H is being
hidden.

To prove that 6(A\1 H) =4 6(A)\p H, we show that traces(§(A\1 H)) =
traces(6(A)\p H). Hence, we need to show that traces(6(A\1H)) C
traces(6(A)\p H) and traces(6(A\1 H)) C traces(6(A)\p H), i.e., that
traces(D) C traces(E) and traces(E) C traces(D). We will only prove the former;
the proof for the latter is largely symmetrical and therefore omitted.

Let o € traces(D); we must show that also o € traces(£). Assume o =
ayas ... a, with a; € Lp. Since D = §(A\1 H), D was obtained from the IOA
B by applying deltafication. Consequently, the trace ¢ can either contain J-
transitions that were newly added by the deltafication procedure, or it contains
no J-transitions at all. We will look at both cases separately.

1. Assume the trace o does not contain any J-transitions. In this case, we
obviously have o € traces(B). Since B = A\1 H, it follows that there ex-
ists a trace p € traces(A) such that p | (Lg \ H) = o. Hence, p =
Bia1Ci1Byas Cy ... B, ay, Cn, with BZ,CZ € H*. Because C = 5(A), and
deltafication does not remove existing transitions, it then immediately fol-

lows that also p € traces(C). Consequently, there exists a path © = sq éc
to a—l>c Uo %C 51 %C t a—2>c U1 %C %C tn—1 %c Un—1 %C
s, in C with sg € S°, s;,t;,u; € Se, and B;,C; € H*. From Def. 4.4, it
then follows that there must be a path 7/ = sg =5, s1 =25, ... =25 s,
in &, since £ = C\p H. Thus, since trace(n’) = ajay ... a, = o, we find
o € traces(E).

2. Now, we look at the case that the deltafication of B did introduce new
0-transitions to the trace o. Assume, without loss of generality, that a;
with 1 < j < n is the only such J-transition in the trace o, i.e., o =
ai ... aj—10a41 ... ay. Note that by rule R2, aj41 cannot be an out-
put. Let ¢/ = a1 ... a;—1 and ¢’ = aj41 ... ay; thus, o = o’ do”. Since
o € traces(D), it follows there exist states s € S° and s',s”,s"” € Sp such

!
that s 2 s, s’ 2. 8", and s Z=, s”’. Hence, the new J-transition has

been created between states s’ and s”. Since D is the deltafication of B, from
Def. 4.1 we can conclude that in this case either ¢(s) holds in B and s’ = s”,

33

or d(s) holds in B and s” is the quiescence observation state of s’. In both

"

1 1"
cases, we find that since s Z=,, s’, then also s’ Z=, s"’. Hence, since

’ "
s == s and s’ Z= 5, s’’, and neither ¢’ nor ¢” contains d-transitions, we
! 17
also have s = 5 s’ and s’ Z= ;5 s"".

Since s éB s, s U:”>B " and B = A\1 H, it follows that there exist
traces p', p’" € traces(A) such that p' [(La\ H) =o', p" | (La\ H) =

o’ s éA s’ and s’ p:>A s"". Hence, p = B1a1C1 ... Bj_1a;-1Cj_1

and p” = Bjii1aj41Cjy1 ... Byay Cy, with B;,C; € H*. Note that, as
mentioned above, a;11 cannot be an output. Since deltafication does not
remove any existing transitions, and C = §(A), we also have s 2=, s’ and
We now have to consider two different cases, as mentioned above: either (a)

q(s") holds in B and s’ = s”, or (b) d(s’) holds in B and s” is the quiescence
observation state of s’ in D.

(a) Assume ¢(s’) holds in B and s’ = s”. In this case, it follows that ¢(s’)
must also hold in 4. During deltafication, a d-labelled self-loop is then
added to the state s’ in C, and we have s’ 2 , s’. Putting this all together

) B
""in C. Hence, 7 = s =%,

C Bj_1 a;j— Cj_1 Bt
to a—1>c (N :1>C e]:>C tj,g J—I)C uj,g J:>C S/ i)c S/ J:>C

yields the path m = s £, ' &, s’ L=, s

. C; B, Ch :
b UL L uy = 2 b1 S Upo =2 87 with t,u; €

Sc, and B;, C; € H*. From Def. 4.4, it then follows that there must be
a path 7/ = s %5 s é>c s U:”>c s in &, since € = C\p H, o/ =
aj ...aj_1, and ¢’ = ajy1 ... a,. Thus, since trace(n’) = o’ do” = o,
we have o € traces(E).

(b) Assume d(s’) holds in B and s” is the quiescence observation state of
s' in D. Since B = A\1 H, there are two possibilities: either d(s’) also
holds in A, or not. We will look at these cases separately.

First, assume d(s’) also holds in A. Since C is the deltafication of A, it
follows from Def. 4.1 that a quiescence observation state gos,, is added
for the state s’ in C, and we have s’ 2, ¢ 405 . Furthermore, for every a €
L'and t € S 4 such that s & 4 t, we have gos,, % t. Since the first label

in the trace p” cannot be an output, as mentioned above, it follows from

"

the fact that s £= . 5", that also gos, £=. s"’. Consequently, we find

that the path 7 = s éc s’ i>c qos p:/l>c s" exists in C. Hence, m =
s B1 to @ C1 Bj-1 t: aj—1) Cj1)
—c 0 ¢ U == -+ = lj—2 —¢ Uj—2 ——=(§ —¢
Bj+1 Caji1 - Cina Bn an Cn "

q0Sg === lj oo Uj == ... == ln—1 "o Up—1 == S
with ¢;,u; € Se, and B;,C; € H*. From Def. 4.4, it then follows that
there must be a path 7’ = s %5 s’ é>5 qosg ”:N>5 s"”" in &, since
€ =C\p H. Thus, since trace(n’) = ¢’ § " = o, we have o € traces(£).
Now, assume that d(s’) does not hold in A. In this case, the hiding of
the output set H has made the state s’ newly divergent in B. Hence, by

34

Def. 2.9, there must exist a fair infinite path @ = tg by t1 b ... in A with
t; € Sa, bj € L, such that b; € (L] U H) forall 1 <i < n, and s’ €
w-states(m). Note that for at least one b; we must have b; € H, otherwise
s’ would also be divergent in A. Clearly, 7 is also a fair infinite path of C,
since during deltafication the task partition P remains unchanged and no
new output transitions or internal transitions are created. Subsequently
hiding the output set H makes 7 a divergent path, since all actions on
path 7 are either internal actions, or actions from the set H. Hence,
since s’ € w-states(w), d(s') holds in & = C\p H, and is therefore newly
divergent. Consequently, by Def. 4.1, a new quiescence observation state
qos is created by the hiding operation for the state s, and we have
s' % ¢ qos,.

Because s £, s" and s’ £= ", we have s %5 s and s ég s,
since p' | (La\H) =0, p | (La\ H) = ¢”. Like in the previous
case, it follows from the facts that s’ AN ¢ s, qos, is the quiescence
observation state of s’, and ¢” does not start with an output, that also

" /
S

1" !’ 1"
qosy ==, s"'. Hence, 1/ = s ==, & i>5 qosy ==, " is a path in
E. As trace(r') = o' 6 0" = o, we have o € traces(£). O

Theorem 4.4. Deltafication and parallel composition commute: given two com-
patible IOAs A, B, such that § ¢ L4 U Lg, we have 6(A || B) =4, 6(A) || §(B).

Proof. Let A = (S, 8% LY, L9, LY Py, —4) and B =
(Sp,S%, Ly, LY, LY, Pg,—p5) be compatible I0As with 6 ¢ L4 U Lg.
Let 6(A || B) = (Sc,8¢ L¢, L&, L¢, Pe,—c) and 6(A) | d(B) =

(SD,S%7L%,L%,L%,PD,—>D>, as defined by Def. 4.1 and Def. 4.3. We have
S = 5% =59 xSg, and Le = Lp = L4 U Lg. To prove that (A || B) =4,
0(A) || 6(B), we will prove a stronger property: we will show that they are iso-
morphic. Clearly, two automata that are isomorphic are also trace equivalent.
Hence, we will show that there exists a bijection h: S¢ — Sp such that the
following holds:

1. for every state (sp,to) € SO there exists a state (ug,vy) € S% such that
h((so,t0)) = (ug,vo), and vice versa;

2. (s,t) &, (s',t') if and only if h((s,t)) &5 h((s', 1)), for all (s, t), (s',t') € S¢
and a € Le U {¢}.

First, we define the function h. By Def. 4.1, the deltafication procedure cre-
ates new quiescence observation states for divergent states. As a consequence,
we have S¢ O Sy x S and Sp O Sy X Si, but it is not necessarily the case that
Sc = Sp due to the presence of the quiescence observation states. Therefore, we

35

define the function h as follows:

b= {((s.). (s,1)) [(5.6) € S x S5}

U {(4050s0y (005, 405))) | @08(sy € Sc \ (S X Sg) A
sed(A) Nted(B)}

U {(qos(s4), (qos, 1)) | 40554y € Sc \ (Sa % 5p) A
sed(A) NteqB)}

U {(qoss.4), (s, q0s,)) | qos(s 1) € Sc \ (Sa x Sg) A

seq(A) A tedB)}

Hence, the function A maps all states in S 4 x S to themselves, as these states
exist in both Sez and Sp. All states that are in Sc¢ but not in S4 x Sp are
newly created quiescence observation states for divergent states in S4 X Sg. As
we have seen in the proof for Lemma A.4, when d((s,t)) holds for some state
(s,t) € A|| B, there are three possibilities for the component states s € S4 and
t € Sg: d(s) and d(¢) hold in A and B, respectively; d(s) and ¢(¢) hold in A
and B, respectively; or ¢(s) and d(¢) hold in A and B, respectively. In the first
case, we can simply map qos(, ;) to the composite state (gos,, gos;) in Sp, as
the deltafications of A and B will have created the quiescence observation states
gos, and qos, for the divergent states s and ¢. In the second case, however, ¢
is quiescent rather than divergent in . Hence, a quiescence observation state
will be created for the divergent state s, but not for ¢, since ¢ acts as its own
quiescence observation state. Consequently, we map qos(, ;y to the composite
state (qosg,t) in this case. The same principle applies for the third case.

We have to prove that h is indeed a bijection, i.e., that is it both injective and
surjective. First, we show that h is injective. Consider two states (s, t), (u,v) € S
such that (s,t) # (u,v). Clearly, if (s,t), (u,v) € Sa X Sp, then h((s,t)) =
(s,t) # (u,v) = h((u,v)). If (s,t) € Sa x S and (u,v) € Sc \ (Sa x Sp),
then (u,v) is a quiescence observation state, and is therefore mapped by h to
a state (z,y) € Sp, where either x or y, or both, are quiescence observation
states. Since (s,t) € S x S, it directly follows that h((s,?)) = (s,t) # (z,y) =
h((u,v)). A similar argument shows that if (u,v) € S4 x S and (s,t) € S¢ \
(Sa4 x Sp), then also h((s,t)) # h((u,v)). Now, assume (s,t),(u,v) € Sc \
(S4 x Sp). In this case, both (s,t) and (u,v) are quiescence observation states,
for some states (s',t') and (v',v') in S4 x Sp. Consequently, (s,t) is mapped
to either (qos,, qosy), (gosg,t'), or (s', qos,). Similarly, (u,v) is mapped to
either (qos,,, qos,), (qos,:,v"), or (v, qos,,). Since qos,, # qos,, if s’ # u', and
qosy # qos,, if t' # v, it immediately follows that h((s,t)) # h((u,v)).

Next, we show that h is also surjective. Let (u,v) be some state in Sp. We
have to show that there exists a state (s,t) € S¢ such that h((s,t)) = (u,v). If
(u,v) € Sa x Sp, then we can take (s,t) = (u,v), since h((u,v)) = (u,v) and
(u,v) € Sc. Assume (u,v) € Sp \ (Sa x Sg). Hence, (u,v) is either equal to
(qos,, q0s,:), (qos,,v"), or (v, qos,,), for states v’ € S4, v’ € Sp. For all these
cases, we have h((qos, /) = (u,v).

36

Now that we have a bijection h that maps all elements from S¢ to elements
of Sp, we need to prove that this bijection satisfies the two conditions outlined
above. Since S2 = S%, and Sg C S4 x Sp, clearly for all sy € 58 there exists a
to € S% such that h(sg) = to, namely to = so; and symmetrically for all o € S9.
To prove that (s,t) %, (s',t') if and only if h((s,t)) 25 h((s',t')), we must
show that if (s,t) %, (s',t'), then h((s,t)) &p h((s',t')), and if h((s,1)) &
h((s',t")), then (s,t) &, (s',t"). We will only prove the former case, the proof
for the latter case is largely symmetrical. We look at the cases (1) a € LY; (2)
a=4; (3)a€ LL;and (4) a € LY, separately.

1. Assume a € LY, ie., (s,t) 4. (s',t') for some a € LY. In this case,
we have (s,t),(s',t') € S4 x Sg, since, by Def. 4.1, quiescence observa-
tion states cannot have incoming or outgoing internal transitions. Conse-
quently, we must show that also (s,t) %, (s,t'), since h((s,t)) = (s,t) and
h((s',t")) = (s',t'). As deltafication does not affect nor introduce internal
transitions, (s,t) %, (s',t) implies, by Def. 4.3, either s % , s’ and t = t/,
ort % .t and s = s'. In both cases, these transitions will still exist after the
deltafication of A and B, respectively. Then, it follows directly from Def. 4.3
that also (s,t) &5 (',t).

2. Assume a = 6, i.e., (s,t) %, (s',#'). From Def. 4.1 we can conclude that there
are three possible cases: (a) (s,t),(s',t') € Sa x Sg; (b) (s,t) € Sax Sp and
(s',t') € Sc \ (Sa x Sg); or (¢), (s,t),(s',t') € Sc \ (S4 x Sg). We will look

at these cases separately.

(a) Assume (s,t),(s',t') € Sa x Sp. By Def. 4.1, the state (s,t) is quiescent
in A || B and we have (s,t) = (s',t'). Furthermore, we have h((s,t)) =
(s,t), and therefore also h((s,t")) = (s',¢'). Since A and B are input-
enabled, we can conclude from Def. 4.3 that both s and ¢ must also be
quiescent in A and B, respectively. Hence, after deltafication of A and
B, both s and ¢ will have ¢-labelled self-loops. Consequently, by Def. 4.3,
(5,8) S5 (8',1).

(b) Assume (s,t) € S4 x Sp and (s',t') € S¢ \ (Sa x Sg). In this case, by
Def. 4.1, the state (s',t") is the quiescence observation state for the state
(s,t), and the state (s,t) is divergent in A || B. Furthermore, we have
h((s,t)) = (s,t). The state that (s’,t') is mapped to by h depends on
whether the states s and ¢ are quiescent or divergent. As discussed above,
there are three cases to consider: (i) d(s) holds in A and d(¢) holds in
B; (ii) d(s) holds in A and ¢(¢) holds in B; and (iii), ¢(s) holds in A and
d(t) holds in B. We will look at each of those cases in turn.

i. Assume d(s) holds in A and d(¢) holds in B. In this case, we have
h(s',t') = (qos,, qos,). We must show that (s,t) 2, (gos,, qos,).
By Def. 4.1, we have s i)(;(A) qos, and ¢ i>5(8) qos,. It then follows

directly from Def. 4.3 that (s,t) 2, (gos,, gos,).
ii. Assume d(s) holds in A and ¢(t) holds in B. In this case, we have
h(s',t") = (gos,,t). We must show that (s,t) %, (qos,,t). By

37

Def. 4.1, we have s i>5(A) qos, and t 55(5) t. It then follows di-

rectly from Def. 4.3 that (s,t) %, (qos,).
iii. Assume ¢(s) holds in A and d(t) holds in B. The proof for this case
is symmetrical to the proof for the previous case.

(c) Finally, assume (s,t), (s',t") € S¢ \ (Sa x Sg). In this case, by Def. 4.1,
we have (s,t) = (s',t'), and the state (s,t) is the quiescence observation
state for some divergent state (s”,t”) in A || B. The state that (s,t) is
mapped to by h depends on whether the states s” and t” are quiescent
or divergent. Thus, as above, there are three cases to consider: (i) d(s”)
holds in A and d(¢") holds in B; (ii) d(s”) holds in A and ¢(¢”) holds in
B; and (iii) ¢(s”) holds in A and d(¢") holds in B. We will look at each
of those cases in turn.

i. Assume d(s”) holds in A and d(t”) holds in B. In this case, we
have h(s,t) = (qos,, qosy,). We must show that (gos,., qos,.) 2,
(qosgr, qos,n). By Def. 4.1, we have qosg, i>5(A) qosyn and
qoS i>5(5) qos:. It then follows directly from Def. 4.3 that

(qos g, qos,) i>D (qosgir, qOSy1).

ii. Assume d(s”) holds in A and ¢(¢"”) holds in B. In this case, we have
h(s,t) = (qosg,t"). We must show that (gos,.,t") 25 (qosg,t").
By Def. 4.1, we have gosg. i>5(A) qosg» and t” i>6(3) ' Tt then

follows directly from Def. 4.3 that (qgos.,t") 25 (qosg.,t").
iii. Assume ¢(s) holds in A and d(t) holds in B. The proof for this case
is symmetrical to the proof for the previous case.

3. Assume a € L}, ie., (s,t) %, (s',t') for some a € L. From Def. 4.1 we can
conclude that there are two possible cases: either (s,t), (s',t') € Sy x Sg, or
(s',t) € Sa x Sg and (s,t) € Sc \ (Sa x Sp). We will look at these cases
separately.

Assume (s,t),(s',t") € S4 x Sp. In this case, we have h((s,t)) = (s,t)
and h((s',t')) = (s',t'). Consequently, we must show that (s,t) %, (s',t').
As deltafication does not affect nor introduce input-labelled transitions, it
follows from Def. 4.3 that there are three possibilities:

(a) s & 4 s andt &5t

(b) s & 45, t=tand a ¢ Lg.

()t Byt s=5anda¢ La.

In all cases, these transitions will still exist after the deltafication of A and B.
Neither will L 4 nor Lg change. Thus, it follows directly from Definition 4.3
that also (s,t) % (s',t').

Now, assume (s',t') € S4 x Sp and (s,t) € Sc \ (S4 x Sg). In this case,
we have h((s',t")) = (s/,t'). By Def. 4.1, the state (s,t) is the quiescence
observation state of some divergent state (s”,t"), i.e., (s,t) = qos g 4). We
then also have (s”,t") %, (s/,t). The state that (s,t) is mapped to by h
depends on whether the states s” and t” are quiescent or divergent. Again,
there are three cases to consider: (a) d(s”) holds in A and d(¢”) holds in B;
(b) d(s”) holds in A and ¢(¢”) holds in B; and (c), ¢(s”) holds in A and
d(t") holds in B. We will look at each of those cases in turn.

38

(a) Assume d(s”) holds in A and d(¢”) holds in B. In this case, we have
h(s,t) = (qosgr, qos;,). We must show that (gos,., gos,n) 25 (s, t).
Since (s”,t") &, (¢',t'), it follows from Def. 4.3 that there are three
possibilities:

i s” & , s and t” %, t'. By Def. 4.1, we then have qos,. L 504)
s" and qos;r %55 t'. It then follows directly from Def. 4.3 that
(QOSS//, qost”) i>D (S/’ t/)'

ii. 8" & , s',t" =t"and a ¢ Lp. By Def. 4.1, we then have qgos L 5(A)
s'. Since a ¢ Lg, it follows from Def. 4.3 that (qos,., qos,,) %
(s',t').

iii. ¢ &, t', s” =5 and a ¢ L 4. The proof for this case is symmetrical
to the proof for the previous case.

(b) Assume d(s”) holds in A and ¢(¢”) holds in B. In this case, we have
h(s,t) = (qossn,t"). We must show that (gos,.,t") % (s/,t'). Since
(s",t") &, (s',1'), it follows from Def. 4.3 that there are three possibil-
ities:

i. 8" & 4 s and t"” &5 t'. By Def. 4.1, we then have gos,, L 5(4) s’
and t" % 5(8) t’. It then follows directly from Def. 4.3 that
(4053, 7) B3 (5, 1),

ii. s” % ,s',t" =t"and a ¢ Lg. By Def. 4.1, we then have gos, L504)
s'. Since a ¢ Lg, it follows from Def. 4.3 that (gos.,t") &, (s',t').

ii. " & .1, " =5 and a ¢ L. Since a ¢ L4, it follows from Def. 4.3
that (qos,n,t") & (s',1).

(¢) Assume ¢(s”) holds in A and d(¢”) holds in B. The proof for this case
is symmetrical to the proof for the previous case.

. Finally, assume a € LY, i.e., (s,t) %, (s, t') for some a € LS. Similar to the

case for a € LY, we have (s, t), (s',t') € SaxSp, since, by Def. 4.1, quiescence

observation states cannot have incoming or outgoing output transitions. As

a result, we must show that also (s,t) %, (s/,t'), since h((s,t)) = (s, t) and

h((s',t")) = (¢',t'). As deltafication does not affect nor introduce output-

labelled transitions, it follows from Def. 4.3 that there are four possibilities:

(a) s & , 8, t %zt anda€ LY, a€ L.

(b) s % 48, t %t anda€ LY, a e LY.

(c) s % 48, t=t"and a ¢ Lp.

(d) t &5t s=5"and a ¢ La.

In all four cases, these transitions will still exist after the deltafication of A

and B. Neither will L 4 or Lg change. Thus, it follows directly from Def. 4.3

that also (s,t) &, (s',1'). O

39

