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Abstract

In this paper we address the problem of tracking multiple targets based on raw measurements by means of

Particle filtering. Bayesian multitarget tracking, in the Random Finite Set framework, propagates the multitarget

posterior density recursively in time. Sequential Monte Carlo (SMC) approximations of the optimal filter are

computationally expensive and lead to high-variance estimates as the number of targets increases.

We propose a novel, efficient and reliable Labeled RFS based tracking algorithms suitable for, among others,

the TBD surveillance application. This algorithm uses the Interacting Population based MCMC-PF (IP-MCMC-

PF), first introduced in [6], as the core engine of a Multiple Cardinality Hypotheses Tracker (MCHT), where each

cardinality is treated independently. The proposed multi-target filter is built upon the concept of labeled Random

Finite Set (RFS) [40], [41], and formally incorporates the propagation and estimation of track labels within the

RFS filtering framework.

Simulation analyses demonstrate that the proposed Multiple Cardinality Hypotheses Particle Filter (MCHPF)

yields higher consistency, accuracy and reliability in multitarget tracking.

I. INTRODUCTION

Target tracking is an ever-growing research challenge arising in various disciplines ranging from

econometrics, image/signal processing to biomedical engineering [15], [23], [30]. The heart of the matter

lies in combining sensed data (uncertain and noisy observations) and a priori knowledge to provide a

reliable, accurate and timely estimate of an unknown quantity or outcome (often called state).

Early research in this area focused on the single-target tracking problem. This problem presupposes

that a single target is present, and this, throughout the whole process. As a result, the tracking problem

reduces to the on-line estimation of the state of this target, based on the observations. The single-target

tracking problem can be formulated and solved in a Bayesian setting by representing the target state

probabilistically and incorporating statistical models for the sensing action and the target state transition

[2], [3]. Research in multi-target tracking (MTT) has shown significant progress in recent years. Compared

to single-target tracking, the appealing MTT problem poses both additional challenges and opportunities.

To introduce the MTT problem, let us consider a simplified example: assume an air surveillance system

comprising a radar which collects the echo signal received after reflection from aircrafts in the field-

of-view (FoV), called targets. Imagine that multiple aircrafts are crossing the FoV of the radar and that

weather conditions have deteriorated such that some of the targets are not properly detected during the scan

and that false observations are reported. From a Bayesian perspective, the multi-target tracking problem

consists in inferring the number of targets, their identities and their individual kinematic properties, from

a sequence of noisy and cluttered measurements provided by one or more sensors.

More specifically, a multi-target tracking algorithm should be able to:

• track the behavior of all targets under surveillance,

• recognize new targets as they enter as well as identify when a target disappears,

• distinguish targets as separate entities.

This definition hides much of the complexity of the multi-target tracking and poses significant technical

challenges. For example, the algorithm does not know beforehand how many targets need to be tracked,

and thus should be ready, at any time instant, to deal with any number of new targets. In addition, targets



of interest may be temporally obscured, and the algorithm must be able to keep these targets in track even

when they cannot be viewed directly. Targets may also interact, altering each others’ behavior. Finally,

the observations given to an algorithm are not assigned to unique, identifiable targets beforehand, and

thus the way observations correspond to targets must be inferred as well.

The primary focus of this memo is to develop an effective and efficient multi-target tracking algorithm

dealing with an unknown and time-varying number of targets.

In many applications involving sensor data, the estimation is often performed on data that have been

preprocessed into point measurements. For example, in radar tracking, radar videos are converted to

detection plots. Compressing the information on the video into a finite set of points is efficient in

terms of memory as well as computational requirements. When combined with point measurement based

approaches, multi-target tracking can be very effective for a wide range of applications. However, this

approach may be undesirable for applications with low signal-to-noise ratio (SNR), since the information

loss incurred during the compression can be significant, and in such cases it can clearly be advantageous

to make use of all information contained in the video.

The Track-before-Detect (TBD) approach, which proposes to base the tracking on the raw measurements

instead of plots, was first investigated in [4], [13]. Since then a number of TBD techniques and applications

have been studied [8], [11], [14], [20], [29], [39]. Solutions using a Particle Filter (PF) based on raw

measurements have been proposed in the past ten years [9], [10], [26], [33]. PF approach is a Sequential

Monte Carlo (SMC) simulation-based method that approximately solves the full Bayes prediction and

update equations recursively using a cloud of stochastic samples [16], [18], [19]. The standard Particle

Filter approach resorts to a sequential version of the importance sampling and resampling procedure. The

main practical problem with this implementation is the need to perform importance sampling in very

high dimensional spaces if many targets are present. First, if too few particles are used, all but a few

importance weights will be near zero. Resampling will then lead to a loss of diversity among the particles,

the sample impoverishment problem. Second, it can be difficult to find an efficient importance density. A

poor selection will lead to a high-variance estimator. In particular, a naive choice of importance density

such as the prior density will typically lead to an algorithm whose efficiency decreases exponentially

with the number of targets for a fixed number of particles. To deal with multimodal posterior probability

density functions in large dimensional state spaces, such as in our application, where many (possibly

disappearing and reappearing) targets need to be tracked, Markov Chain Monte Carlo (MCMC) methods

can be efficiently used [16], [25], [37].

In this work, a novel, efficient and reliable Labeled RFS based tracking algorithms suitable for, among

others, the TBD surveillance application is proposed. This algorithm uses the Interacting Population

based MCMC-PF (IP-MCMC-PF), first introduced in [6], as the core engine of a Multiple Cardinality

Hypotheses Tracker (MCHT), where each cardinality is treated independently (up to a limiting factor

nmax). The proposed multi-target filter is built upon the concept of labeled Random Finite Set (RFS)

[40], [41], and formally incorporates the propagation and estimation of track labels within the RFS filtering

framework.

The paper is organized as follows. Section II recalls some definitions and results on labeled RFS

[40], [41], and discusses related work on Sequential MCMC methods. Section III adopts the Random

Finite Set (RFS) approach to describe and address the multitarget filtering and estimation problem in the

context of TBD tracking. Section IV reports the main novelty of this work, detailed in [5]. Here we give

insights for our approach, summarize the main aspects of the proposed algorithm, denoted as Multiple

Cardinality Hypotheses Particle Filter (MCHPF) and describe its SMC implementation. Section V collects

our simulations results. Finally, we report our conclusions and direction for future research in section VI.
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II. BACKGROUND

This section is organized as follows. In subsection II-A, we recall the concept of labeled RFS [40],

[41] and some properties. Subsection II-B reviews the relevant work on Sequential Markov chain Monte

Carlo (MCMC) methods. Specifically we detail the IP-MCMC-PF algorithm [6] and address the proposal

density design.

A. Labeled Random Finite Sets

In applications such as multi-target tracking, apart from the target state, the target identity is also

required, so that the target paths are consistently estimated. The targets should be distinctly identified

by a label. This can be achieved by appending a label ℓ ∈ L to each state x ∈ X where L denotes the

discrete space of distinct labels, and X is the state space. To address the uniqueness of labels the concept

of labeled RFS is required.

1) Labeled Random Finite Sets:

Definition II.1. For any Xℓ ⊂ X × L, let L : X × L → L be the projection L(Xℓ) , {ℓ : (x, ℓ) ∈
Xℓ for some x ∈ X}. A labeled RFS Xℓ with state space X and label space L is an RFS on X×L such

that each realization (x, ℓ) has distinct labels, i.e.

|L(Xℓ)| = |Xℓ|.

Note that the set integral of a function p mapping from the class of finite subsets of the space X× L,

denoted as F(X× L), to the real line, i.e. p : F(X× L)→ R, is defined by:
∫

p(Xℓ)δXℓ =
∞∑

n=0

1

n!

∫
∑

(ℓ1,...,ℓn)∈Ln

p({(x1, ℓ1), . . . , (xn, ℓn)})dx1 . . . dxn.

To evaluate set integrals involving labeled RFSs, the following Lemma II.1 is required (the proof is

given in [41]):

Lemma II.1. Let ∆(Xℓ) denote the distinct label indicator δ|Xℓ|(|L(Xℓ)|). Then for h : F(L)→ R and

g : X× L→ R, integrable on X,
∫

∆(Xℓ)h(L(Xℓ))g
XℓδXℓ =

∑

L⊆L

h(L)
[∫

g(x, ·)dx
]L

. (1)

where gXℓ =
∏

(x,ℓ)∈Xℓ

g(x, ℓ).

Example II.1. A labeled multi-Bernoulli RFS Xℓ with state space X, label space L and finite parameter

set
{(

r(θ), s(θ)
)

: θ ∈ Θ
}

, is a multi-Bernoulli RFS on X augmented with distinct labels corresponding to

the the successful (non-empty) Bernoulli components, i.e. if the Bernoulli component
(

r(θ), s(θ)
)

yields

a non-empty set, then the label of the corresponding state is given by α(θ), where α : Θ → L define a

one-to-one mapping [41]. The set of labeled states generated by the algorithm 1 has probability density

given by:

π(Xℓ) = ∆(Xℓ)1α(Θ) (L(Xℓ)) [Φ(Xℓ; ·)]
Θ , (2)

where ∆(·) is the distinct label indicator, L(Xℓ) the set of labels of Xℓ, and

Φ(Xℓ; θ) =
∑

(x,ℓ)∈Xℓ

δα(θ)(ℓ)r
(θ)s(θ)(x) + (1− 1L(Xℓ)(α(θ)))(1− r(θ)),

=

{

r(θ)s(θ)(x), if (x, α(θ)) ∈ Xℓ;

1− r(θ), if α(θ) 6∈ L(Xℓ).

3



The following algorithm 1 illustrates how a sample from such a labeled multi-Bernoulli RFS is generated:

Algorithm 1: Sampling a labeled multi-Bernoulli RFS

Initialize X = ∅.
for θ ∈ Θ do

Sample u ∼ U [0, 1].
if u ≤ r(θ) then

Sample x ∼ s(θ)(·).
Set X = X ∪ {(x, α(θ))}.

end

end

For instance, let us consider the probability density that the above procedure (algorithm 1) generates the

points (x1, ℓ1), . . . , (xn, ℓn) in that order:

π({(x1, ℓ1), . . . , (xn, ℓn)}) = δn(|{ℓ1, . . . , ℓn}|)
∏

θ∈Θ

(

1− r(θ)
) n∏

j=1

×1α(Θ)(ℓj)r
(α−1(ℓj))s(α−1(ℓj))(xj)

1− r(α−1(ℓj))
, (3)

where 1Y (X) = 1 if X ⊆ Y and 0 otherwise.

The products
∏

θ∈Θ

(

1− r(θ)
) n∏

j=1

×1α(Θ)(ℓj)r
(α−1(ℓj))

s
(α−1(ℓj))(xj)

1−r(α
−1(ℓj))

can be written as:

∏

θ∈Θ




∑

(xj ,ℓj)∈Xℓ

δα(θ)(ℓj)r
(θ)s(θ)(xj) +

(

1− 1L(Xℓ)(α(θ))
) (

1− r(θ)
)



 .

2) Generalized Labeled multi-Bernoulli RFS:

Definition II.2. A generalized labeled multi-Bernoulli RFS is a labeled RFS with state space X and label

space L distributed according to:

p(Xℓ) = ∆(Xℓ)
∑

c∈C

w(c)(L(Xℓ))
[

p(c)
]Xℓ

, (4)

where,

• ∆(Xℓ) is the distinct label indicator δ|Xℓ|(|L(Xℓ)|),
• C denotes a discrete index set,

• the weight w(c)(L(Xℓ)) only depends on the labels and satisfies:
∑

L⊆L

∑

c∈C

w(c)(L) = 1,

• the multi-target exponential
[

p(c)
]Xℓ

depends on the entire multi-target state and satisfies

∫

p(c)(x, ℓ)dx = 1.

Remark. A generalized labeled multi-Bernoulli can be interpreted as a mixture of multi-target exponentials

[41]. Each term in the mixture (4) consists of a weight w(c)(L(Xℓ)), and a multi-target exponential
[

p(c)
]Xℓ

that depends on the entire multi-target state.
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The cardinality distribution of a generalized labeled multi-Bernoulli RFS is given by:

ρ(n) =
∑

c∈C

∑

L∈F(L)

w(c)(L). (5)

Remark. It can be easily verified that (5) is indeed a probability distribution, and that the probability

density p in (4) integrates to 1. Hence the generalized labeled multi-Bernoulli RFSs cover labeled multi-

Bernoulli RFSs discussed above [41]. In particular the labeled multi-Bernoulli RFS described in (3) is a

special case of the generalized labeled multi-Bernoulli RFS with:

p(c)(x, ℓ) = s(ℓ)(x),

w(c)(L) =
nMBer∏

i=1

(

1− r(ℓi)
) n∏

j=1

1L(ℓj)r
(ℓj)

1− r(ℓj)
.

B. Sequential Markov Chain Monte Carlo

Several approaches combining SMC with MCMC methods have already been proposed in the literature.

For instance, MCMC kernels have been used to design efficient regularization steps in order to rejuvenate

degenerate particles in the SIR-PF [22]. Recently, sequential MCMC approaches were proposed in [1],

[25], [35]. These methods are distinct from the resample-move scheme [22] since an SMC algorithm is

used to design efficient high-dimensional proposal distributions for an MCMC sampler. In other words

the inefficient importance sampling step of the standard SIR-PF implementation is replaced by a more

efficient MCMC sampling step. These methods allow to design effective MCMC algorithms in complex

scenarios where standard strategies failed.

1) Sequential Markov Chain Monte Carlo:

Within the Bayesian estimation framework, we aim at computing the filtering PDF fk(Xk|z1:k) recur-

sively by

fk(Xk|z1:k) ∝
∫

ϑk(zk|Xk) Πk|k−1(Xk|Xk−1) fk−1(Xk−1|z1:k−1)δXk−1, (6)

where Πk|k−1(Xk|Xk−1) is the multi-target transition density and ϑk(zk|Xk) is the multi-target likelihood.

Let us represent the density fk−1(Xk−1|z1:k−1) by a set of unweighted particles,

fk−1(Xk−1|z1:k−1) ≈
1

N

N∑

i=1

δ
X

(i)
k−1

(Xk−1), (7)

where N is the number of particles and (i) the particle index. Then, by plugging this particle approximation

into eq.(6)

fk(Xk|z1:k) ≈
1

N
ϑk(zk|Xk)

N∑

i=1

Π(Xk|X
(i)
k−1). (8)

In [25] a Metropolis Hastings (M-H) algorithm is designed in a sequential setting in order to approximate

the filtering distribution eq.(6). This is achieved by using the approximate posterior eq.(8) as the target

distribution with a proposal distribution q(·|X
nM−H

k ). The acceptance ratio is then given by:

α = min

(

1,
fk(X

∗
k|z1:k)

fk(X
nM−H

k |z1:k)

q(X
nM−H

k |X∗
k)

q(X∗
k|X

nM−H

k )

)

(9)

= min

(

1,
p(X∗

k) ϑk(zk|X
∗
k)

p(X
nM−H

k ) ϑk(zk|X
nM−H

k )

q(X
nM−H

k |X∗
k)

q(X∗
k|X

nM−H

k )

)

. (10)

The desired approximation f̂k(Xk|z1:k) is obtained by storing every N th
thin accepted sample after the initial

burn-in iterations.

5



To avoid numerical integration of the predictive density at every MCMC iteration, an alternative algorithm

has been developed [35]. This algorithm, which considers the joint posterior distribution f(Xk,Xk−1|z1:k),
involves a joint M-H proposal step where both Xk and Xk−1 are updated jointly, as well as individual

refinement Metropolis-within-Gibbs steps where Xk and Xk−1 are updated individually. Furthermore, most

of the methodologies developed in the SMC setting can be directly reapplied here. This includes Rao-

Blackwellisation techniques to reduce the dimensionality of the target distributions [17], [27] or auxiliary

particle-type methods to build distributions biased toward "promising" regions of the space [24], [32].

2) Interacting Population based MCMC-PF:

In [6], an alternative algorithm well suited to deal with Multitarget tracking problems for a given

cardinality has been derived from the Marginalized MCMC-Based Particle [25] method. The proposed

algorithm, detailed in [6], denoted by IP-MCMC-PF, is based on parallel usage of multiple population-

based M-H samplers and incorporates an interaction procedure for producing improved proposals, thus

fully exploits the speed and the parallelism of modern computing architectures and resources. Finally, no-

tions from genetic algorithms and simulated annealing were considered as various sampling improvement

strategies.

In the described algorithm, a validation test was performed to check the convergence on the basis of

Gelman and Rubin [21] diagnostic. This approach consists, for each state parameter, of three steps: first

computing the variance of the samples from each chain (after discarding burn-in); second averaging these

within-chain variances; and third comparing this to the variances of all the chains mixed together via the

potential scale reduction factor [12], R̂. The parallel chains were considered well-mixed when R̂ is less or

equal than 1.1 for all parameters. Once the set of chains have reached approximate convergence, the M-H

sampling chains outputs all mixed together give the new set of particles {X(i)
k }

N
i=1 which approximates

the target distribution fk(Xk|z1:k).

III. LABELED MULTI-TARGET BAYES RECURSION

Let us consider the multi-target filtering in TBD context, and derive from the RFS formalism an

optimal Bayes filter that subsumes a number of popular multi-target Bayesian filtering approaches. For

the specific TBD surveillance application, the multi-target estimation problem can be formulated in a

Bayesian framework by modeling the hidden set of states Xk as labeled finite set. In this case computing

the posterior distribution of the labeled RFS of states given the raw measurement zk requires solving a

set integral only for the Chapman Kolmogorov equation. The multi-target likelihood is used directly to

update each target.

A. Labeled Multi-target Bayes Recursion

Each target is identified by a unique label ℓk = (k, j), with k the time of birth and j ∈ N an index to

distinguish targets born at the same time. Let us consider the following notations for the label spaces:

• Bk denotes the label space for targets born at time k, i.e.

Bk , {k} × N.

Thus a target born at time k has state xℓk ∈ X× Bk.

• L0:k denotes the label space for targets born up to and including time k and is constructed recursively

by:

L0:k , L0:k−1 ∪ {k} × N.

Thus the multi-target state Xℓ
k at time k is a finite subset of X× L0:k.

Note that L0:k−1 and Bk are disjoint.

6



Suppose that at time k there are nk target states {xℓk,1, . . . ,x
ℓ
k,nk
}, each taking values in the (labeled)

state space X × L. In the RFS formulation [28] the finite set of targets at time k is referred as the

multi-target state:

Xℓ
k = {xℓk,1, . . . ,x

ℓ
k,nk
} ∈ F(X× L),

where F(X× L) is the multi-target state space, i.e. the finite subsets of X× L. In TBD the multi-target

observation at time k is an array zk = [z1
k, . . . , z

m
k ] ∈ Z, where each zck ∈ C is the complex (I/Q) signal

in the radar cell indexed by c.

Let z1:k = {z1, . . . , zk} denote the set of measurements collected up to and including time k. Then,

the labeled multi-target Bayes recursion propagates the multi-target posterior density fk(.|z1:k) in time

according to the following update and prediction:

PREDICTION:

fk|k−1(X
ℓ
k|z1:k−1) =

∫

Πk|k−1(X
ℓ
k|X

ℓ
k−1) fk−1(X

ℓ
k−1|z1:k−1)δX

ℓ
k−1, (11)

UPDATE:

fk(X
ℓ
k|z1:k) =

ϑk(zk|X
ℓ
k) fk|k−1(X

ℓ
k|z1:k−1)

∫

ϑk(zk|Xℓ) fk|k−1(Xℓ|z1:k−1)δXℓ
, (12)

where the integrals above are set integrals, Πk|k−1(.|.) is the labeled RFS multi-target transition kernel,

from time k − 1 to k, and ϑk(.|.) denote the labeled RFS multi-target likelihood function at time k.

B. Multi-target Dynamic Model: Prediction

The following is a specification of the standard RFS multi-target dynamical model considered in this

memo. More general dynamical models are available within the RFS framework. However, these are not

falling into the scope of this memo.

fk−1(X
ℓ
k−1|z1:k−1)

prediction
−−−−−→ fk|k−1(X

ℓ
k|z1:k−1)

︸ ︷︷ ︸
∫

Πk|k−1(Xℓ
k
|Xℓ

k−1
) fk−1(Xℓ

k−1
|z1:k−1)δXℓ

k−1

Let Lk−1 denote the label space at time k− 1, Bk the label space for targets born at time k, Sk ⊆ Lk−1

the label space for targets surviving from time k − 1 to k and Lk the label space at time k such that

Lk−1∩Bk = ∅ and Lk = Sk∪Bk. The multi-target dynamical model is described by the Markov multi-target

transition kernel Πk|k−1(X
ℓ
k|X

ℓ
k−1) involving thinning of disappearing targets, Markov shifts of surviving

targets and superposition of new targets.

Given the multi-target state Xℓ
k−1 at time k − 1, each (xk−1, ℓk−1) ∈ Xℓ

k−1 either continues to exist

at time k with probability pS,k(xk−1, ℓk−1) and moves to a new state (xk, ℓk) with probability density

πk|k−1(xk|xk−1, ℓk−1) δℓk−1
(ℓk), or dies with probability qS,k(xk−1, ℓk−1) = 1− pS,k(xk−1, ℓk−1).

7



Thus, assuming that, conditional on Xℓ
k−1, the transition of the target kinematic states are mutually

independent, then the set Xℓ
S ⊂ Xℓ

k of surviving targets at time k is modeled by:

• a LABELED MULTI-BERNOULLI RFS Sk|k−1(xk−1, ℓk−1) with parameter set:

{r(xk−1,ℓk−1), s(xk−1,ℓk−1) : (xk−1, ℓk−1) ∈ Xℓ
k−1}

with r(xk−1,ℓk−1) = pS,k(xk−1, ℓk−1) and s(xk−1,ℓk−1)(·) = πk|k−1(·|xk−1, ℓk−1).
The labeling function α : Xℓ

k−1 → L0:k−1 is defined by α(xk−1, ℓk−1) = ℓk−1.

Remark. Note that the label of the target is preserved in the transition, only the kinematic part of state

changes.

Hence Xℓ
S , the set of surviving targets at time k, is distributed according to:

ΠS(X
ℓ
S|X

ℓ
k−1) = ∆(Xℓ

S) 1L(Xℓ
k−1

)(L(Xℓ
S))

[

Φk|k−1(X
ℓ
S; ·)

]Xℓ
k−1 , (13)

where,

Φk|k−1(X
ℓ
S;xk−1, ℓk−1) =

∑

(xk,ℓk)∈Xℓ
S

δℓk−1
(ℓk)pS,k(xk−1, ℓk−1)πk|k−1(xk|xk−1, ℓk−1)

+
(

1− 1L(Xℓ
S
)(ℓk−1)

)

qS,k(xk−1, ℓk−1)

=

{

pS,k(xk−1, ℓk−1)πk|k−1(xk|xk−1, ℓk−1), if (xk−1, ℓk−1) ∈ Xℓ
S;

qS,k(xk−1, ℓk−1), if ℓk−1 6∈ L(Xℓ
S).

In addition, the set Xℓ
B ⊂ Xℓ

k of new born targets, assumed independent of the surviving targets, can

be modeled by a labeled RFS with label space Bk. We consider the birth density to be of the following

form:

ΠB(Xℓ
B) = ∆(Xℓ

B) wB(L(Xℓ
B)) [ΦB,k(·)]

X
ℓ
B . (14)

This birth model (14) covers both:

1) LABELED POISSON RFS with intensity function ψk(.) = µb bk|k−1(.):

wB(L(Xℓ
B)) =

e−λλn

n!
with λ ,

∫

ψk(x)dx and n , |Xℓ
B|,

ΦB,k(x, ℓ) =
ψk(x)

∫

ψk(x)dx
.

Hence, the birth density is given by:

ΠB(Xℓ
B) = δBk(|Xℓ

B
|)(L(Xℓ

B))
e−
∫
ψk(x)dx

|Xℓ
B|!

∏

(x,l)∈Xℓ
B

ψk(x). (15)

2) LABELED MULTI-BERNOULLI RFS with the multi-Bernoulli parameters {pB,k(l), b
(l)
k|k−1(.)}l∈Bk

wB(L(Xℓ
B)) =

∏

l∈Bk

(1− pB,k(l))
∏

ℓ∈L(Xℓ
B

)

1Lk
(ℓ)pB,k(ℓ)

1− pB,k(ℓ)
,

ΦB,k(x, ℓ) = b
(ℓ)
k|k−1(x).

8



Hence, the birth density is given by:

ΠB(Xℓ
B) = δBk(|Xℓ

B
|)(L(Xℓ

B))
∏

l∈Bk

(1− pB,k(l))
∏

ℓ∈L(Xℓ
B

)

pB,k(ℓ)b
(ℓ)
k|k−1(x)

1− pB,k(ℓ)
. (16)

Thus, given a realization Xℓ
k−1 of the multi-target state at time k− 1, the multi-target state Xℓ

k at time

k is given by the superposition of the sets of surviving and new born targets Xℓ
k = Xℓ

S ∪Xℓ
B.

The LABELED RFS MULTI-TARGET TRANSITION KERNEL is the convolution:

Πk|k−1(X
ℓ
k|X

ℓ
k−1) =

∑

Xℓ
S
⊆Xℓ

k

ΠS(X
ℓ
S|X

ℓ
k−1) ΠB(Xℓ

k \Xℓ
S). (17)

The labeled RFS multi-target transition equation (17) incorporates target motion, birth and death.

Remark. Note that since the label space Bk of the birth targets and the label space L0:k−1 of the surviving

targets are mutually exclusive, the superposition of both sets of targets is indeed a labeled RFS.

Proposition III.1. If the prior distribution is a generalized labeled multi-Bernoulli RFS then under the

labeled RFS multi-target transition kernel (17), the predicted distribution is also a generalized labeled

multi-Bernoulli RFS:

Πk|k−1(X
ℓ
k|X

ℓ
k−1) = ∆(Xℓ

k)
∑

c∈C

w
(c)
k (L(Xℓ

k))
[

p
(c)
k (·)

]Xℓ
k
, (18)

where,

• the weight w
(c)
k (L(Xℓ

k)) is the product of the weight wB(L(Xℓ
B)) of the birth labels and the weight

w
(c)
S (L(Xℓ

S)) of the surviving labels, i.e.

w
(c)
k (L(Xℓ

k)) = wB(L(Xℓ
B))w

(c)
S (L(Xℓ

S)),

where,

w
(c)
S (LS) =

[

η
(c)
S (·)

]LS ∑

I⊆L(Xℓ
k−1

)

1I(LS)w
(c)
k−1(I)

[

q
(c)
S (·)

]I\LS

,

with,

q(c)
s (ℓ) =

∫

qS,k(xk−1, ℓ) p
(c)
k−1(x, ℓ)dx,

and

η
(c)
S (ℓ) =

∫ (∫

pS,k(xk−1, ℓ) πk|k−1(x|xk−1, ℓ) p
(c)
k−1(xk−1, ℓ)dxk−1

)

dx.

The survival set weight w
(c)
S (LS) involves a weighted sum of the prior weights w

(c)
k−1(·) over all label

sets that contains the surviving set LS .

• the predicted single-target density for a given label p
(c)
k (·, ℓ) is either the density ΦB,k(·, ℓ) of a newly

born target or the density of a surviving target computed from the prior density p
(c)
k−1(·, ℓ) via the

single-target prediction with transition πk|k−1(·|·, ℓ) weighted by the probability of survival pS,k(·, ℓ),
i.e.

p
(c)
k (x, ℓ) = 1L(Xℓ

S
)(ℓ)Φ

(c)
S,k(x, ℓ) + 1L(Xℓ

B
)(ℓ)ΦB,k(·, ℓ),

Φ
(c)
S,k(x, ℓ) =

∫

pS,k(y, ℓ) πk|k−1(x|y, ℓ) p
(c)
k−1(y, ℓ)dy

η
(c)
S (ℓ)

,

with the normalization constant η(c)
s (ℓ).
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C. Multi-target Observation Model: Update

The following is a specification of the RFS multi-target observation model in the TBD context. The

TBD approach defines a model for the raw measurement in terms of a multi-target state hypothesis. In this

study, the target return signals measured by the radar are assumed to fluctuate according to the Swerling

return amplitude fluctuation models [38]. These models are widely used as a means of estimating radar

detection performance [29], [36]. Here the Swerling fluctuation models are incorporated into the likelihood

function of the filter, to account for the target return fluctuations.

fk|k−1(X
ℓ
k|z1:k−1)

update
−−−→ fk(X

ℓ
k|z1:k)

︸ ︷︷ ︸

ϑk(zk|Xℓ
k
)fk|k−1(Xℓ

k
|z1:k−1)

∫
ϑk(zk|Xℓ

k
)fk|k−1(Xℓ

k
|z1:k−1)δXℓ

k

(19)

For the specific TBD surveillance application, the labeled multi-target likelihood, i.e. the probability

density of the observation zk conditioned on the labeled multi-target state Xℓ
k, is used directly to update

each target. Note that:

ϑk(zk|X
ℓ
k) = ϑk(zk|Xk). (20)

A given target xℓk,j ∈ Xℓ
k, at time k, illuminates a set of cells denoted by C(xℓk,j). For example, C(xℓk,j)

could be the set of cells whose centers fall within a certain distance from the position of the target. The

complex (I/Q) signal in each cell of the observation image at time k, zck, is assumed to be:

zck =

{ ∑

j:c∈C(xℓ
k,j

) h
c(xℓk,j) + wc

k, H1: if at least one target illuminates the cell c;

wc
k, H0: if there is no target;

(21)

where hc(xℓk,j), the contribution of a target with state xℓk,j to the signal in cell c, depends on the so-called

sensor point spread function (in this case pulse form), the target location and the complex target echo. wc
k

is the measurement noise in cell c with known statistics. The noise is assumed to be independent from

cell to cell and identically distributed according to the PDF ϕc.

Let the measurement likelihood in cell c in the presence of at least one target be denoted by φc(zck|X
ℓ
k),

and and the likelihood under the hypothesis of no targets be φc(zck). Since conditioned on the multi-target

state Xℓ
k, the values of the cells are independently distributed, the multi-target likelihood of the whole

observation zk is simply the product over the cells given by:

ϑk(zk|X
ℓ
k) =






∏

c∈C(x):x∈Xℓ
k

φc(zck|X
ℓ
k)















∏

c 6∈
⋃

x∈X
ℓ
k

C(x)

ϕc(zck)










. (22)
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Hence,

ϑk(zk|X
ℓ
k) = f(zk)

∏

x∈Xℓ
k

gzk
(x), (23)

where,

f(zk) =
m∏

c=1

ϕc(zck), (24)

gzk
(x) =

∏

c∈C(x):x∈Xℓ
k

L(zck|X
ℓ
k), (25)

with L(zck|X
ℓ
k), the likelihood ratio for cell c given by:

L(zck|X
ℓ
k) =

φc(zck|X
ℓ
k)

ϕc(zck)
. (26)

In many cases it is more convenient to deal with the likelihood ratio of the data, rather than the

measurement PDF.

Example III.1. Consider a radar system, located at the Cartesian origin, that collects, at discrete instants

k, a measurement zk. Assuming that the measurement zk = [z1
k . . . zmk ]T consists of the power signal

for all m range-Doppler-bearing cells. The power measurements per (range-Doppler-bearing) cell is given

by:

zck = |zcA,k|
2 k ∈ N,

where zcA,k represents the complex (I/Q) signal in cell c, i.e.

zcA,k =
∑

x∈Xk:c∈C(x)

A(x) hA(x) + wk,

where A(x) is the complex echo of the target of state x, hA(x) represents the point spread function for

a target of state x and wk is the measurement noise.

In particular, assume there is nk closely spaced targets, then the complex (I/Q) signal is given by:

zA,k =
nk∑

j=1

A(xk,j) hA(xk,j) + wk.

Here,

• A(xk,j), the complex echo of the target j, is modeled by:

A(xk,j) = Ā(xk,j) e
ιϕk + a

(j)
k ,

with Ā(xk,j) a known amplitude, ϕk an unknown phase, uniformly distributed on [0, 2π), and a
(j)
k a

zero-mean complex Gaussian variable with variance σ2

a
(j)
k

.

• hA(xk,j) = [hA(xk,j)
1 . . . hA(xk,j)

m]
T

represents the point spread function for the target of state

vector xk,j ,

• wk is a m-dimensional vector representing the measurement noise assumed to be a zero mean, white

complex Gaussian noise with variance σ2
wk

.

Under the assumption of a non-fluctuating target model (Swerling 0), the multi-target observation

likelihood φc(zc|X) is a non-central chi-squared distribution and reduces to an exponential distribution if

11



zc only contains clutter noise and thermal noise. In fact, in this case the complex echo of the target j is

modeled by:

A(x) = Ā(x)eiθ, θ ∈ [0, 2π) (27)

Let Σhc :=
∑

x∈X:c∈C(x)A(x)hA(x) for notational convenience, then the power signal for cell c is given

by:

zc = |Σhceiθ + wc|2

= (Σhc cos (θ) + ℜ(wc))2 + (Σhc sin (θ) + ℑ(wc))2

= U2
R + U2

I

where UR ∼ N (Σhc cos (θ), σ2
wc/2) and UI ∼ N (Σhc sin (θ), σ2

wc/2) are statistically independent normal

random variables. Then
√

U2
R + U2

I has a Ricean distribution, and reduces to a Rayleigh distribution when

Σhc = 0. Thus, the measurement likelihood is given by:

φc(zc|X) =
1

σ2
wc

exp

(

−
zc + Σh(i)

σ2
wc

)

I0

(√

4zcΣhc

σ2
wc

)

(28)

ϕc(zc) =
1

σ2
wc

exp

(

−
zc

σ2
wc

)

(29)

where I0(·) is the modified Bessel function of zero order defined by:

I0(y) :=
∞∑

j=0

(
y2

4

)j

j! Γ(j + 1)
.

IV. MULTIPLE CARDINALITY HYPOTHESES PARTICLE FILTER (MCHPF)

This section is organized as follows. In subsection IV-A, we give insights for our approach. Subsection

IV-B introduces the proposed Multiple Cardinality Hypotheses Tracker (MCHT) and describes its SMC

implementation.

A. Justifications behind the MCHT

The basic strategy is to propagate a time-varying number of hypothesized tracks, which are characterized

by an identity or a label. Note that care must be taken in the application of the multi-target Bayes recursion

to ensure distinctness of labels. To address the uniqueness of labels the proposed algorithm is built upon

the concept of labeled RFS [41], and formally incorporates the propagation and estimation of track labels

within the RFS filtering framework.

The basic idea is as follows. From a given configuration of targets at time k−1, possible configurations

at time k are proposed based on the dynamical and birth models. Then, the likelihood associated to each of

these scenarios given the measurement is computed. Finally, only the hypotheses with the most significant

probability are retained for the next step.

A three-level tree-based structure, that allows efficient and systematic management of all the possible

configurations of targets, is used. The first level, referred as "Cardinality", lists hypotheses on the number

of targets. Each of these cardinality hypotheses in turn gives rise to a series of combination of targets.

The second level, denoted as "Label component", expands explicitly the discrete label component of the

targets. Finally, the third level, called "Track", represents as particles sets the kinematic components of

the targets state. The proposed structure also leads to simple and efficient schemes for pruning of unlikely

components, and helps reduce the computational cost of the recursion.
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Fig. 1: Three-level tree-based structure.

The multi-target prediction and update steps are recursively applied to propagate the multi-target

posterior forward in time on component by component basis. The multi-target dynamical model involves

thinning, Markov shifts and superposition of new targets. The prediction for each existence probability is

essentially the previous posterior density integrated with the survival probability, and subsequently scaled

down by the previous existence probability. The prediction for each hypothesized track density is very

similar to the single-target Bayes prediction, except for the incorporation of the survival probability and

subsequent normalization.

Example IV.1. To better understand the MCHT algorithm, let us consider the following example:

1) First, suppose, at time k − 1, there are three target configurations:

• H1 A single target is present, with label ℓk−1,1 = (k − 2, 1).
• H2 A single target is present, with label ℓk−1,1 = (k − 1, 1).
• H3 Two targets are present, with labels ℓk−1,1 = (k− 2, 1) and ℓk−1,2 = (k− 1, 1) respectively.

A particle set represents the kinematic components of each target configuration.

2) Let us assume the birth process is a multi-Bernoulli density πΓ = {(pB,k(j), b
(j)
k )}

|Idk
|

j=1 where

b
(j)
k (x) = N (x;m(j)

γ , Pγ) with m(j)
γ the estimated state of the jth detection plot xk,dj

. In addition,

consider a single detection plot. Then, at time k, the possible target configurations can be inferred

from the dynamical and birth models.

Under H1 the new target configuration can be:

• H0 No target present.

• H1 A single target is present, with label ℓk,1 = (k − 2, 1).
• H2 A single target is present, with label ℓk,1 = (k, 1).
• H3 Two targets are present, with labels ℓk,1 = (k − 2, 1) and ℓk,2 = (k, 1) respectively.

Under H2 the new target configuration can be:

• H0 No target present.

• H1 A single target is present, with label ℓk,1 = (k − 1, 1).
• H2 A single target is present, with label ℓk,1 = (k, 1).
• H3 Two targets are present, with labels ℓk,1 = (k − 1, 1) and ℓk,2 = (k, 1) respectively.

Under H3 the new target configuration can be:

• H0 No target present.

• H1 A single target is present, with label ℓk,1 = (k − 2, 1).
• H2 A single target is present, with label ℓk,1 = (k − 1, 1).
• H3 A single target is present, with label ℓk,1 = (k, 1).
• H4 Two targets are present, with labels ℓk,1 = (k−2, 1) and ℓk,2 = (k−1, 1) respectively.

• H5 Two targets are present, with labels ℓk,1 = (k − 2, 1) and ℓk,2 = (k, 1) respectively.

• H6 Two targets are present, with labels ℓk,1 = (k − 1, 1) and ℓk,2 = (k, 1) respectively.
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• H7 Three targets are present, with labels ℓk,1 = (k − 2, 1), ℓk,2 = (k − 1, 1) and ℓk,3 =
(k, 1) respectively.

Going ahead in this way, for further steps, the tree of hypotheses grows exponentially. To ensure tractabil-

ity, the predicted and updated multi-target densities should be truncated by keeping only components with

the most significant probability.

B. Particle MCHT Implementation

The MCHT is implemented via the previously derived closed form solution. The (continuous) kinematic

component of the target state, and hence the individual target tracks, are represented as sets of particles

which are predicted and updated using the IP-MCMC-PF filter. The labels of the target state uniquely

identify target tracks. The multi-target prediction and update steps are then calculated on component by

component basis, using Murty’s algorithm [31] to calculate newly predicted and updated components

in descending order of probability of occurrence. For each existing component, the number of new

components calculated and stored in each forward propagation is set to be proportional to the weight

of the original component, subject to each cardinality retaining a minimum of Cmin terms. The resultant

posterior at each time step is then further truncated to a maximum of Ctot,max terms. Components with

weights below a predefined threshold are discarded. Let Tk−1 denote the three-level tree-based structure

containing Mk−1 hypothesized tracks with their probability of occurrence. Thus, the MCHPF can be

summarized as Algorithm 2.

Algorithm 2: MCHPF algorithm

input : Tk−1 and a new measurement, zk
output: Tk

1 - Generate M -best ranked hypotheses using Murty’s algorithm:

Set up a cost matrix defining the probability of occurrence at time k of new target configurations

(cardinality, and label component) given the previous hypothesized configurations, based on the

previous posterior density, the survival probability, the previous existence probability. Apply Murty’s

algorithm to find out the M -best ranked hypotheses Hm.

2 - Prediction Step:

for m← 1 to M do

for i← 1 to N do

Sample Xℓ
k,m from Xℓ

k−1,m according to the model evolution described by the hypothesis Hm

see eq.(17).
end

end

3 - Update Step:

Run M IP-MCMC-PF algorithms (as given in Algorithm 3 below) in parallel; one for each of the

M -best ranked hypothesized tracks

{Xℓ
k,m}

N
i=1 = IP-MCMC-PF

(

{Xℓ
k,m}

N
i=1, zk

)

.

Update the existence probabilities associated to each hypothesized tracks.

4 - Pruning Step:;

Discard the hypothesized tracks with existence probabilities below a threshold τP , that is, Mk

hypothesized tracks are kept at the next time step.
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Algorithm 3: IP-MCMC-PF algorithm

input : {X(i)
k }

N
i=1 and a new measurement, zk.

output: {X(i)
k }

N
i=1.

1 - Initialize the NMCMC M-H samplers:

Select a random subset {X(0)
s }

NMCMC

s=1 ⊂ {X(i)
k }

N
i=1.

Compute the associated joint log-likelihood ℓ(0)s = log ϑk(zk|X
(0)
s ). Store the seeds {X(0)

s ; ℓ(0)s }
NMCMC

s=1

in a cache.

2 - Apply random-walk M-H sampling procedure:

Run s = 1, . . . , NMCMC random-walk M-H samplers (Algorithm 4) in parallel

{X(l)
s ; ℓ(l)s }

NM-H

l=1 = RW-MCMC
(

{X(0)
s ; ℓ(0)s }, {X

(i)
k }

N
i=1

)

.

3 - Check convergence:

Compute R̂ [6].

if R̂ ≥ 1.1 then
Run the chains out longer to improve convergence to the stationary distribution and increase the

precision of inferences.
else

Mix all the NMCMC sets of simulations together to obtain {X(i)
k ; ℓ

(k)
k }

N
i=1.

end

Algorithm 4: Random Walk M-H sampling procedure

input : {X(0)
s ; ℓ(0)s } initial configuration and {X(i)

k }
N
i=1.

output: {X(l)
s ; ℓ(l)s }

NM-H

l=1 with NM-H := N/NMCMC.

for l← 1 to B +NM-H do
1 - Propose a new configuration X∗

s:

Randomly select a partition x
(i)
k−1,j out of {X(i)

k−1}
N
i=1.

Given x
(i)
k−1,j , draw x∗

s,j = x
(i)
k−1,j + ǫ, ǫ ∼ N (0, σ2

RW ).
Propose new configuration X∗

s, such that

X∗
s = {x(l−1)

s,1 , . . . ,x
(l−1)
s,j−1,x

∗
s,j,x

(l−1)
s,j+1, . . . ,x

(l−1)
s,nk
}.

Compute the joint log-likelihood ℓ∗s = ℓ(l−1)
s − pℓ

(l−1)
s,j + pℓ∗s,j .

2 - Accept/Reject:

Sample u ∼ U[0,1], U[0,1] a uniform distribution in [0, 1].

Calculate the M-H acceptance ratio: α = ℓ∗s

ℓ
(l−1)
s

.

if u ≤ min (1, α) then

Accept move: X(l)
s = X∗

s, ℓ(l)s = ℓ∗s,
else

Reject move: X(l)
s = X(l−1)

s , ℓ(l)s = ℓ(l−1)
s .

end

end

Discard B initial burn-in samples to allow the M-H sampler to converge to the stationary distribution.

Store the remaining samples {X(l)
s ; ℓ(l)s }

B+NM-H

l=B+1 → {X
(l)
s ; ℓ(l)s }

NM-H

l=1 .
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V. SIMULATION SETUP AND RESULTS

Demonstrations and numerical studies of the proposed implementations are now presented.

This scenario considers a nonlinear TBD problem in which a maximum of 10 targets are present at any

time. There are various target births and deaths throughout the scenario duration of Tmax = 50 seconds.

Targets are initialized at separate locations. The single target state xk,j comprises only the position and

velocity of the jth target, sk,j = [xk,j, ẋk,j, yk,j, ẏk,j], and a measure of the average target return amplitude,

Ik,j:
xk,j = [sk,j, Ik,j]

T . (30)

A nearly constant velocity (NCV) model is adopted to describe target position and velocity sk,j . This

model presumes that the target moves along a straight line with (nearly) constant speed. In addition the

fluctuation of the target return amplitude Ik,j is modeled as a random walk.

The model uncertainty is handled by the process noise vk,j , which is assumed to be standard white

Gaussian noise with covariance G. Under these assumptions, the dynamical model is linear Gaussian

given by:

xk,j = F xk−1,j + vk−1,j, (31)

with the transition matrix F :

F =






Fs 0 0
0 Fs 0
0 0 1




 , Fs =

[

1 ∆T

0 1

]

, (32)

and the process noise covariance G:

G =






σ2
vx
Gs 0 0

0 σ2
vy
Gs 0

0 0 σ2
i∆T




 , Gs =





∆3
T

3

∆2
T

2
∆2

T

2
∆T



 , (33)

with a fixed sampling period ∆T = 1 s and where the parameters σvx
= σvy

= 2 m.s−2 and σi = (2/3)
dB.m−2 denote the standard deviations of the process noise in object motion and amplitude, respectively.

Furthermore, target velocities are assumed bounded. This prior information is target dependent and will

be used for state initialization.

Remark. In general, the return amplitude will be a function of the target’s distance from the sensor (∝ 1
r4
k,j

,

where rk,j is the range to the target). For the purpose of this discussion, the return amplitude is assumed

approximately independent of the position of the target, for trajectories which are short in comparison to

the distance from the sensor to the target.

The true tracks on a 2-D plane are depicted in Figure 2.

TABLE I: Targets initial parameters

Target kb kd SNR |v| Target kb kd SNR |v|
� 1 1 11 8 10 � 11 14 28 13 8
� 2 1 13 12 10 � 12 18 30 9 30
� 3 1 14 10 19 � 13 18 33 8 15
� 4 1 13 13 17 � 14 18 32 9 10
� 5 1 13 11 20 � 15 19 31 8 17
� 6 1 20 11 24 � 16 20 35 11 7
� 7 2 16 8 15 � 17 21 36 13 20
� 8 4 17 12 9 � 18 21 31 11 11
� 9 4 19 9 20 � 19 22 39 14 9
� 10 11 29 11 27 � 20 33 51 13 26
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Fig. 2: True tracks on a 2-D plane for Scenario 5.

We compared the tracking accuracy and the track initiation/termination performances of the conventional

(a) IP-RJMCMC-PF ( [7]) and the (b) MCHPF (Algorithm 2) over 100 Monte-Carlo simulations. For these

comparisons, both algorithms are given the same initialization, so as to ensure a fair overall comparison.

The Radar parameters and the MCHPF settings used in simulation are reported in Table II.

TABLE II: Parameters used in simulation

Radar parameters

Beamwidth in bearing ∆b = 1 [degree]
Range-quant size ∆r = 10 [m]
Doppler-bin size ∆d = 2 [m.s−1]

MCHPF settings

Number of particles per track 500
Max. number of targets nmax = 15
Min. number of components per cardinality Cmin = 40
Max. number of components Ctot,max = 1000
Number of best-ranked hypotheses M = 500

The tracks produced by each algorithm over 100 Monte Carlo trials are shown in Figure 3.

(a) IP-RJMCMC-PF (b) MCHPF

Fig. 3: Estimated trajectories (i.e., particles-based conditional mean) over 100 Monte Carlo runs. Each filter uses N = 1000
particles. The proposed MCHPF provides better tracking performance than the IP-RJMCMC-PF filter.
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(a) (b) (c)

Fig. 4: Zoom on tracks produced by the IP-RJMCMC-PF filter.

(a) (b) (c)

Fig. 5: Zoom on tracks produced by the MCHPF filter.

Figure 6 compares the OSPA penalty [34] (p = 2, c = 100 m) for the two filters, further confirming that

the MCHPF filter generally outperforms the IP-RJMCMC-PF filter. Figure 7 shows the OSPA localization

and cardinality components.

Fig. 6: OSPA penalty (p = 2, c = 100 m)
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Fig. 7: OSPA localization and cardinality components

Preliminary results indicate that the proposed MCHPF filter performs remarkably well, and significantly

outperforms the IP-RJMCMC-PF filter in both localization and cardinality estimation. State estimation

is performed with the following procedure. A target is declared present if the estimated probability of

existence is greater than 0.5, otherwise no target is declared. If a target is declared, the state estimate is

given by the mean of the posterior state distribution, otherwise if no target is declared, there is no state

estimate.

Figure 8 reports the mean and standard deviation of the estimated cardinality distribution versus time

for both filters, further confirming that the MCHPF filter outperforms the IP-RJMCMC-PF filter.

(a) IP-RJMCMC-PF with N = 1000 particles. (b) MCHPF with N = 1000 particles.

Fig. 8: Cardinality statistics (mean and standard deviation) versus time. The MCHPF filter initiates and terminates tracks with

a very short delay.
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Finally Figure 9 shows the existence probability associated to each target versus time for the two filters.

Fig. 9: Existence probability associated to each target versus time.

VI. CONCLUSION

This work has addressed the Bayesian multi-target tracking (MTT) problem dealing with an unknown

and possibly time varying number of targets. MTT sets a major challenge for researchers in the broad

fields of estimation and information fusion. In this memo, we have designed a novel, efficient and

reliable tracking algorithm suitable for a Track-Before-Detect (TBD) radar surveillance application. The

so called Multiple Cardinality Hypotheses Particle Filter (MCHPF) algorithm is built upon the concepts of

generalized labeled multi-Bernoulli RFS and multi-target likelihood. In simulations, the proposed MCHPF

filter performs remarkably well, and outperforms the IP-RJMCMC-PF filter as well as the conventional

multi-target SIR-PF in terms of track accuracy and consistency. Given the wide range of applicability of

multi-target tracking and the great number of engineering problems related to the recursive estimation of

the state of multiple targets, many questions remain open. There are some important possible extensions to

the work discussed in this memo. They include, on one hand, generalizations of our algorithms to handle

more complex scenarios and, on the other hand, the development of solutions for problems dealing with

specific aspects of a tracking system.
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