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Quadratic maximization on the unit simplex:

structure, stability, genericity and application in biology

Georg Still ∗ Faizan Ahmed†

December 25, 2013

Abstract

The paper deals with the simple but important problem of maximizing a (nonconvex)

quadratic function on the unit simplex. This program is directly related to the concept of evo-

lutionarily stable strategies (ESS) in biology. We discuss this relation and study optimality

conditions, stability and generic properties of the problem. We also consider a vector iteration

algorithm to compute (local) maximizers. We compare the maximization on the unit simplex

with the easier problem of the maximization of a quadratic function on the unit ball.

1 Introduction

In the present paper we study the maximization of a (in general nonconvex) quadratic function on

the unit ball and the unit simplex:

PB : max
1

2
xTAx st. x ∈ Bm := {x ∈ Rm | xTx = 1}

PS : max
1

2
xTAx st. x ∈ ∆m := {x ∈ Rm | eTx = 1, x ≥ 0}

where A = (aij) is a symmetric m × m-matrix, e ∈ Rm denotes the vector with all one’s. Since

we do not assume A to be positive semidefinite, both programs are nonconvex problems. However

the global maximizer for PB is polynomially (approximately) computable whereas the (global)

maximization of PS is NP-hard. In the paper we will shortly compare both programs PB, PS , and

consider two similar vector iteration methods for computing a global solution of PB and a (local)

solution of PS . Then, we study PS in more detail. We present an application in evolutionary biology

and analyze the structure, stability and generic properties of PS .

The paper is organized as follows. In Section 2 we present two well-known vector iterations for

solving the programs, and discuss convergence and monotonicity properties. Section 3 shortly

introduces the concept of evolutionarily stable strategies (ESS) and studies the direct relation with

PS . We also present an example showing that the number of ESS’s (strict local maximizers) of PS

may grow exponentially with the dimension m of the problem. In Section 4 we recall the optimality

conditions for PS also in terms of the ESS model. In Section 5 we apply results from parametric

optimization to analyze the stability of the program PS wrt. small perturbations of the matrix A.

∗Corresponding author: University of Twente, Department of Mathematics, Email: g.j.still@utwente.nl
†University of Twente, Department of Mathematics, Email: f.ahmed@utwente.nl

g.j.still@utwente.nl
f.ahmed@utwente.nl
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Section 6 deals with genericity results concerning PS and PB .

We tried to present the topic in such a form that it might be interesting for both, scientists in biology

and in optimization.

Throughout the paper, for x ∈ Rm, ‖x‖ denotes the Euclidean norm and Nε(x) = {x ∈ Rm |
‖x − x‖ ≤ ε} is the ε-neighborhood of x ∈ Rm. Furthermore, Sm denotes the set of symmetric

(m×m)-matrices and for A ∈ Sm, by ‖A‖ we mean the Frobenius norm, ‖A‖ = (
∑

ij aij)
1/2.

2 Vector iteration for solving the problems

It is well-known that the global maximizers of PB are precisely the (normalized) eigenvectors cor-

responding to the largest eigenvalue λ1 of A. So, by replacing A by A+ αI , with α large enough,

we can assume wlog. that A is positive definite (in fact we can chose α > −λm where λm is the

smallest eigenvalue of A). Similarly by defining the matrix E := [e, . . . , e] ∈ Sm (all one’s) the

local maximizers of PS wrt. A and wrt. A + αE, (α ∈ R) coincide. Indeed, by noticing that

x ∈ ∆m satisfies xTEx = eTx = 1, we obtain for x, y ∈ ∆m:

xT (A+ αE)x ≥ yT (A+ αE)y ⇔ xTAx+ α ≥ yTAy + α ⇔ xTAx ≥ yTAy

So, in PS wlog. we can assume A > 0, i.e., aij > 0, ∀i, j. Let us now consider the following vector

iterations:

For PB : Starting with x0 ∈ Bm iterate

xk+1 =
Axk

‖Axk‖
, k = 0, 1, . . . (IterB)

For PS : Start with x0 ∈ ∆m and iterate for k = 0, 1, . . .,

xk+1 ∈ ∆m is defined by: [xk+1]i =
[xk]i · [Axk]i

xTkAxk
, i = 1, . . . ,m . (IterS)

Here, [xk]i denotes the ith component of xk ∈ Rm. The next theorem describes the convergence

and monotonicity properties of these iterations.

Theorem 1. [convergence and monotonicity results]

(1) Let A ∈ Sm be a positive definite matrix with eigenvalues λ1 > λ2 > . . . > 0 and eigenspace

S1 corresponding to the largest eigenvalue λ1. We assume that the starting vector x0 is not

orthogonal to S1. Then, for IterB the following holds.

(a) For the distance dist (xk, S1) := min{‖y − xk‖ | y ∈ S1 ∩Bm} between xk and S1,

dist (xk, S1) = O
(

λ2

λ1

)k
.

(b) The Rayleigh quotients xTkAxk satisfy the monotonicity property,

xTkAxk ≤ xTk+1Axk+1 .

(2) Let be given a matrix A ∈ Sm, A > 0. Then, also for IterS the monotonicity holds: xTkAxk ≤
xTk+1Axk+1.
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Proof: For the convergence rate in (1) we refer to [8, Sect. 7.3]. The monotonicity property (1)(b)

is proven in an unpublished note [9].

We add the proof: For x0 6= 0 we define aν := xT0 A
νx0 for ν = 1, . . . , 3 and note that these

numbers are positive (as inner product yT y, or quadratic form with positive definite A). We now

show

ρ0 ≤ ρ1 for ρ0 :=
xT0 Ax0

xT0 x0
=

a1
a0

and ρ1 :=
xT0 A

3x0

xT0 A
2x0

=
a3
a2

.

For the number Q1 := (a3x0 − a2Ax0)
TA(a3x0 − a2Ax0) ≥ 0 (A is positive definite) we obtain

0 ≤ Q1 = (a3Ax0 − a2A
2x0)

T (a3x0 − a2Ax0)

= a23a1 − 2a3a2a2 + a22a3 = a23a1 − a3a
2
2

and after division by a1a2a3 we find

a3
a2

−
a2
a1

≥ 0 or
a3
a2

≥
a2
a1

. (1)

Similarly,

0 ≤ (a2x0 − a1Ax0)
T (a2x0 − a1Ax0) = a22a0 − 2a2a

2
1 + a21a2 = a22a0 − a2a

2
1

and after division by a0a1a2 we find a2
a1

− a1
a0

≥ 0 or a2
a1

≥ a1
a0

. Together with (1) this yields a3
a2

≥ a1
a0

and so, ρ0 ≤ ρ1. The monotonicity in (2) has been shown in [12].

�

According to the preceding theorem (under mild assumptions), the iterate xk in IterB converges

linearly to the eigenspace S1, i.e., to the set of global maximizers of PB . For IterS it can only be

expected that xk converges to a local maximizer (or a fixed point of IterS). The global convergence

behavior is more complicated (see e.g., [3] for details).

3 Evolutionarily stable strategies in biology

In this section we discuss a model in evolutionary biology. We introduce the concept of an evolu-

tionarily stable strategy and deal with its direct relation with the program PS . We emphasize that in

our paper we restrict the discussion to symmetric matrices.

According to Maynard Smith [14] we consider a population of individuals which differ in m
distinct features (also called strategies or genes) as follows:

• For x = (x1, . . . , xm) ∈ ∆m, the component xi gives the percentage of the population with

feature i. So, x gives the strategy (state) of the whole population.

• We have given a symmetric fitness matrix A = (aij) > 0. The elements aij > 0 can be

seen as the fitness factor for feature i combined with feature j. A large value aij means that

a combination of features j and i in the population contributes largely (with factor aijxixj)
to the fitness of the population.

• The value xTAx then gives the (mean) fitness of a population with strategy x.
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In the model it is assumed that the fitness increases leading to

Definition A [ESS] Given a fitness matrix A ∈ Sm, the vector x ∈ ∆m is called evolutionarily

stable strategy (ESS) for A if there is some α > 0 such that

(

x+ ρ(y − x)
)T

A
(

x+ ρ(y − x)
)

< xTAx ∀x 6= y ∈ ∆m, 0 < ρ ≤ α. (2)

In words: any perturbation x + ρ(y − x) of the population with strategy x by a small group of

individuals with strategy y is not profitable.

By noticing that a neighborhood of x ∈ ∆m given by N1
α = {x + ρ(y − x) | y ∈ ∆m, 0 < ρ ≤

α}, α > 0 contains a (common) neighborhood

Nε(x) = {y ∈ ∆m | ‖y − x‖ ≤ ε}, ε > 0

and vice versa, with the standard definition for a (strict) local maximizer we directly conclude

Lemma 1. Let be given A ∈ Sm and x ∈ ∆m. Then, x is an ESS for A if and only if x is a strict

local maximizer of PS wrt. A.

In evolutionary biology commonly another (equivalent) definition for ESS is used. To obtain

this, we write (2) equivalently (after dividing by ρ > 0) as:

ρ(y − x)TA(y − x) + 2(y − x)TAx < 0 ∀x 6= y ∈ ∆m, 0 < ρ ≤ α .

This condition is obviously equivalent with

(y − x)TAx ≤ 0, and in case of equality we have (y − x)TA(y − x) < 0 ,

which can be re-written as

Definition B [definition of ESS in biology] A point x ∈ ∆m is called an ESS for A if we have:

(1) yTAx ≤ xTAx ∀y ∈ ∆m and

(2) if yTAx = xTAx holds for x 6= y ∈ ∆m then yTAy < yTAx.

We shortly discuss the interesting question of how much ESS (i.e., strict local maximizers) a matrix

A ∈ Sm may possess. It has been shown in [5] that the number of ESS of A ∈ Sm can grow

exponentially with m. As a concrete example (obtained by the construction in [5]) consider for

m = 3 · k, k ∈ N the matrix

A =











I C . . . C
C I . . . C
...

...
. . .

...

C . . . C I











∈ Sm with C :=





2 2 2
2 2 2
2 2 2





and I the (3 × 3)-unit matrix. It is not difficult to see that this matrix has 3k = (31/3)m different

ESS (isolated, global maximizers). More precisely, for any choice of an index set J = {i1, . . . , ik}
with ij ∈ {1, 2, 3} (3k possibilities), we define the coefficients of an vector x = x(J) ∈ ∆m as

follows:

xi =
1

k
if i = 3(j − 1) + ij , j = 1, . . . , k , and xi = 0, i otherwise.

Then each such x = x(J) yields an ESS with the same maximum value xTAx = 2 − 1
k . The fact

that the number of strict local maximizer of PS can grow exponentially with m “indicates” that the

problem is NP-hard. For a formal NP-hardness proof we refer to [13].
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4 Optimality conditions

In this section we present optimality conditions for PS in the context of optimization and evolution-

ary biology. Some of these results will be used in the stability analysis of Section 5.

In optimization, optimality conditions are usually given in terms of the Karush-Kuhn-Tucker

condition (KKT). To do so, we introduce the index set M := {i = 1, . . . ,m} and recall the

program PS with A ∈ Sm:

PS : max
1

2
xTAx st. x ∈ ∆m := {x ∈ Rm | eTx = 1, xi ≥ 0, ∀i ∈ M}

As usual, we define the active index set with respect to the constraints xi ≥ 0, I(x) := {i ∈ M |
xi = 0}. For a point x ∈ ∆m the KKT condition is said to hold if there exist Lagrange-multipliers

λ ∈ R and µi ≥ 0, i ∈ M , corresponding to the constraints eTx = 1 and xi ≥ 0, such that

Ax− λe+
∑

i∈M

µiei = 0, and µixi = 0, ∀i ∈ M . (3)

Here, ei, i ∈ M denote the standart basis vectors in Rm. Since for x ∈ ∆m in particular x 6= 0
holds, not all constraints eTx = 1, xi ≥ 0, i ∈ M , can be active simultaneously. Thus, the active

gradients e, ei, i ∈ I(x) are always linearly independent. So, the linear independency constraint

qualification (LICQ) is automatically fulfilled at any feasible point x ∈ ∆m.

Hence, according to standard results in optimization, for any local maximizer of PS the KKT

condition must hold with unique multipliers λ, µ (unique by LICQ) (see e.g., [7, Th. 21.7]).

Strict complementarity is said to hold at a solution (x, λ, µ) of (3) if we have:

µi > 0 for all i ∈ I(x) . (SC)

In the context of evolutionary biology, necessary optimality conditions are usually formulated in

terms of the following index sets. For a point x ∈ ∆m we define

R(x) := {i ∈ M | xi > 0} and S(x) := {i ∈ M | [Ax]i = max
j

[Ax]j} (4)

If we write the KKT conditions componentwise,

[Ax]i = λ− µi, µi = 0, i ∈ R(x), µi ≥ 0, i ∈ M \R(x), (5)

we see that λ = [Ax]i = maxj [Ax]j = xTAx, i ∈ R(x), holds. So the KKT condition implies

R(x) ⊂ S(x) and from (5) we conclude the converse. Moreover, obviously, the condition SC is

equivalent to R(x) = S(x). Note also, that for x ∈ ∆m the relation R(x) ⊂ S(x) implies with

λ := maxj [Ax]j (see (5) and Definition B(1)),

xTAx =
∑

i

xi[Ax]i =
∑

i

xiλ = λ =
∑

i

yiλ ≥ yTAx for any y ∈ ∆m .

Also the converse is true. Summarizing we obtain.

Lemma 2. Given A ∈ Sm, the following are equivalent necessary conditions for x ∈ ∆m to be a

local maximizer of PS:

the KKT condition (3) holds ⇔ R(x) ⊂ S(x) ⇔ xTAx ≥ yTAx, ∀y ∈ ∆m holds .

Moreover, x satisfies the KKT condition with SC iff R(x) = S(x).
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Since PS is not convex (in general, A may be indefinite) the KKT condition (cf. Lemma 2) need

not be sufficient for optimality and second order conditions are needed. To do so, as usual for a

KKT point x we have to consider the cone of “critical directions”,

Cx = {d ∈ Rm | dTAx ≥ 0, eTd = 0, eTi d ≥ 0, i ∈ I(x)} .

By using the KKT condition, this cone simplifies to

Cx = {d ∈ Rm | eTd = 0; eTi d = 0, if µi > 0; eTi d ≥ 0, if µi = 0, i ∈ I(x)} .

Note that the program PS has only linear constraints and a quadratic objective. Therefore, no higher

order effects can occur so that in the second order conditions there is no gap between the necessary

and sufficient part.

Lemma 3. Let A ∈ Sm. Then a point x ∈ ∆m is a strict local maximizer of PS if and only if the

KKT condition holds with second order condition:

dTAd < 0 ∀0 6= d ∈ Cx . (SOC)

The KKT point x is a local maximizer iff (the weak inequality) dTAd ≤ 0 ∀0 6= d ∈ Cx holds.

Moreover, for a strict local maximizer the following growth condition (maximizer of order 2) is

valid with some constants ε, c > 0,

xTAx ≥ xTAx+ c‖x− x‖2 ∀x ∈ ∆m, ‖x− x‖ ≤ ε. (6)

Proof: For the direction “⇐” of the optimality conditions see, .e.g, [7, Theorem 12.6]. An easy

modification of the proof yields (6), i.e., x is a so-called local maximizer of order two.

“⇒”: We only show the strict maximizer case. Suppose to the contrary there is some 0 6= d ∈ Cx

such that dTAd ≥ 0. Then for small λ > 0 the vectors x + λd are in ∆m and using the KKT

condition we find dTAx = λdT e+
∑

i∈I(x) µidi = 0 and then

(x+ λd)TA(x+ λd) = xTAx+ 2λdTAx+ λ2dTAd ≥ xTAx

contradicting the assumption that x is strict local maximizer. The weak case is similar.

�

In the stability analysis of the next section the following (extended) tangent space for a KKT point

x will play an important role:

T+
x = {d ∈ Rm | eTd = 0, eTi d = 0 if µi > 0, i ∈ I(x)}

= {d ∈ Rm | eTd = 0, di = 0, i ∈ M \ S(x)} (7)

We directly see that for an KKT point x we have:

Cx ⊂ T+
x and Cx = T+

x holds iff R(x) = S(x) . (8)

For later purposes we add a lemma.

Lemma 4. Let x ∈ ∆m be a local maximizer of PS wrt. A with R(x) = S(x). If x is not a

strict local maximizer we have det(AR(x)) = 0, where AR(x) denotes the principal submatrix of A
corresponding to the index set R(x).
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Proof: Recall that R(x) = S(x) implies Cx = T+
x = {d ∈ Rm | eTd = 0, di = 0, i ∈ M \R(x)}.

By Lemma 3 the KKT condition must hold with SOC, implying dTAx = 0 and dTAd ≤ 0 ∀d ∈
T+
x . Since x is a nonstrict maximizer there must exist 0 6= z ∈ T+

x such that zTAz = 0. By

defining R := R(x) and dR := (di, i ∈ R) we thus have a vector 0 6= zR ∈ R|R|, eTRzR such that

xRARzR = 0, zTRARzR = 0, and dTRARdR ≤ 0 ∀dR ∈ R|R| with eTRdR = 0 . (9)

So, for any δ > 0 in view of eTR(zR ± δdR) = 0, for all dR with eTRdR = 0, we find

(zR ± δdR)
TAR(zR ± δdR) = δ2dTRARdR ± 2δdTRARzR ≤ 0 .

By division by δ > 0 and letting δ ↓ 0 it follows dTRARzR = 0 for all eTRdR = 0. Consequently,

together with xRARzR = 0 and eTRxR = 1 the vector ARzR is perpendicular to a basis of R|R| and

thus ARzR = 0 must hold implying det(AR) = 0. XF �

5 Stability of an ESS

In this section we study the problem PS(A) in dependence of the matrix A ∈ Sm as a parameter:

PS(A) : max
1

2
xTAx st. x ∈ ∆m := {x ∈ Rm | eTx = 1, x ≥ 0}

Let be given a matrix A ∈ Sm and a strict local maximizer x of PS(A), i.e., an ESS wrt. A.

We wish to know what may happen with the ESS x if the matrix A is slightly perturbed. How

changes the ESS and may he possibly get lost? Such questions are studied in the field of Parametric

Optimization (see e.g., [6, 4]).

Our program PS(A) is especially easy, since the feasible set does not change. Only by using

simple continuity arguments it can easily be seen that for A ≈ A there must remain a local max-

imizer x(A) ≈ x (at least one). However, the strict local maximizer can change into a nonstrict

(nonunique) local maximizer, i.e., the ESS x is lost. Such stability results have been proven in [2,

Theorem 16] under the assumption R(x) = S(x).
By applying results from parametric optimization we can however give much preciser stability

results. We start with a general Lipschitz stability statement (see also [4, Prop. 4.36] for a more

general result).

Lemma 5. Let x be a strict local maximizer of PS(A). Then there exist numbers ε, δ, L > 0 such

that for any A ∈ N ε(A) there exists a local maximizer x(A) ∈ Nδ(x) (at least one) and for each

such local maximizer x(A) we have

‖x(A)− x‖ ≤ L‖A−A‖ .

Proof: We firstly show the existence of (at least) one local maximizer x(A) of A near x. By putting

q(A, x) := xTAx/2 and recalling that x is a strict local maximizer with max-value m := q(A, x),
by continuity, there exist numbers ε, α, δ > 0 such that: (1) q(A, x) ≥ m − α

2 ∀A ∈ Nε(A),
(2) q(A, x) ≤ m−2α ∀x ∈ ∆m, ‖x−x‖ = δ and (3) q(A, x) ≤ m−α ∀x ∈ ∆m, ‖x−x‖ = δ
and all A ∈ Nε(A). The existence of a local maximizer x(A) with ‖x(A)−x‖ < δ for A ∈ Nε(A)
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follows from (1) and (3). Since x is a strict local maximizer of order 2 (see (6)) with some c >
0, δ > 0 it holds:

q(A, x)− q(A, x) ≥ c‖x− x‖2 ∀x ∈ Nδ(x) ∩∆m . (10)

For a local maximizer x := x(A) ∈ Nδ(x) we find q(A, x)− q(A, x) ≤ 0 and then

q(A, x)− q(A, x) = [q(A, x)− q(A, x)]− [q(A, x)− q(A, x)] + [q(A, x)− q(A, x)]

≤ [q(A, x)− q(A, x)]− [q(A, x)− q(A, x)]

= ∇x

[

q(A, x+ τ(x− x))− q(A, x+ τ(x− x))
]T

(x− x)

with some 0 < τ < 1. In the last inequality we have applied the mean value theorem wrt. x for the

function q(A, x)− q(A, x) = 1
2x

T (A−A)x. By using ∇x[q(A, x)− q(A, x)] = (A−A)x we find

q(A, x)− q(A, x) ≤ max
z∈Nδ(x)

‖A−A‖‖z‖‖x− x‖

Letting γ := maxz∈Nδ(x) ‖z‖, with (10) we obtain c‖x − x‖2 ≤ γ‖A − A‖ · ‖x − x‖ and the

Lipschitz continuity result is valid with L := γ/c. �

We give an example where the ESS gets lost.

Example 1. The matrix A =





1 1 1
1 0 0
1 0 0



 has the strict local maximizer x = (1, 0, 0). It is

not difficult to see that for small α > 0 the perturbed matrix

Aα =





1− 2α 1− α 1− α
1− α 0 −α
1− α −α 0





has the nonstrict local maximizers xρ = (1− ρ)(1− α, α, 0) + ρ(1− α, 0, α), ρ ∈ [0, 1].
So, locally the ESS x is lost. Note that in this example we have R(x) = {1}, S(x) = {1, 2, 3}

and consequently, SC, i.e., R(x) = S(x), is not fulfilled.

Recall, that in the preceding (bad) example the condition SC is not fulfilled. The next theorem

shows that under SC strong stability holds. This result is a special case of a more general result

(stability of so-called nondegenerate local maximizers in nonlinear optimization). The result goes

back to Fiacco [6]. For completeness, we give a proof for our special program.

Theorem 2. Let x be an ESS (strict local maximizer) of A ∈ Sm with R(x) = S(x), i.e., the KKT

condition holds with SC and the (strong) second order condition SOC.

Then, there exist ε, δ > 0 and a C∞ (rational) function x : Nε(A) → Nδ(x), A → x(A)
with x(A) = x and for any A ∈ Nε(A) the vector x(A) is an ESS of A and it is the unique local

maximizer of A in Nδ(x).

Proof: Let us define I := I(x) and BI := [ei, i ∈ I]. By Lemma 3, x and corresponding

multipliers λ ∈ R, 0 ≤ µ ∈ RI (by SC, µ > 0) are solutions of the KKT equations, (see (3))

M(A)





x
−λ
µ



 =





0
1
0



 , where M(A) =





A e BI

eT 0 0
BT

I
0 0



 .
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By LICQ and SOC the matrix M(A) is nonsingular (see e.g., [7, Ex. 12.20]). So, by continuity

there is a neighborhood Nε(A), ε > 0 such that for all A ∈ Nε(A) the (rational) function





x(A)
−λ(A)
µ(A)



 =





A e BI

eT 0 0
BT

I
0 0





−1



0
1
0





is well-defined and satisfies µ(A) > 0 (recall µ(A) = µ > 0). Note, that by the condition BT
I
x = 0

we have I(x(A)) = I and thus R(x(A)) = S(x(A)), i.e., SC holds for x(A). So, the solutions

x(A) are (locally unique) KKT points of PS(A). To show that x(A) are ESS we have to show that

also the second order condition SOC holds. This can be done by standart continuity arguments as

in the proof of [7, Th.12.8].

�

In the case R(x) $ S(x), at an ESS x of A, the situation can be more complicated. In Example 1

we have seen that in this case, after a perturbation of A the ESS x may split into a whole set of

(non-unique) local maximizers (i.e., the ESS can completely be lost). The next theorem however

shows that locally the (unique) ESS behaves Lipschitz-stable if at the ESS x the stronger second

order condition (SSOC) holds on the extended tangent space Tx (cf., (7 )):

dTAd < 0 ∀0 6= d ∈ T+
x . (SSOC)

This follows by a result by Jittorntrum [10]. We again give the proof for our special case.

Theorem 3. Let x be an ESS of A ∈ Sm with R(x) $ S(x) such that the condition SSOC holds.

Then, there exist ε, δ > 0 and a Lipschitz-function x : Nε(A) → Nδ(x), A → x(A) with x(A) = x
and for any A ∈ Nε(A) the vector x(A) is an ESS of A and the unique local maximizer of A in

Nδ(x).

Proof: By continuity any local maximizer x = x(A) ≈ x must satisfy the KKT conditions with

R(x) ⊂ R(x) ⊂ S(x) (we must have [Ax]i = maxj [Ax]j for all i ∈ R(x) according to Lemma 2).

So, in view of I(x) = M \R(x) the maximizer x = x(A) must satisfy M \ S(x) ⊂ I(x) ⊂ I(x).
Consequently, x = x(A) must be a solution of one of the (finitely many) KKT systems:

FI :





A e BI

eT 0 0
BT

I 0 0









x
−λ
µ



 =





0
1
0



 , where M \ S(x) ⊂ I ⊂ I(x) , (11)

with corresponding multipliers λ = λ(A) ∈ R, µ = µ(A) ∈ RI
+, and BI := [ei, i ∈ I]. By

Lemma 5 the local solutions behave Lipschitz-continuous. So, we only have to show that under our

assumptions, for any A ∈ Nε(A) there exists a unique local maximizer x(A).
Suppose to the contrary that there is a sequence Aν → A, ν → ∞ such that Aν has two different

maximizers x1ν 6= x2ν near x. By the Lipschitz continuity result in Lemma 5 we have xρν → x, ρ =
1, 2, for ν → ∞. By choosing appropriate subsequences wlog. we can assume that I(x1ν) =: I1
and I(x2ν) =: I2 holds with, I1 6= I2 and M \ Sx) ⊂ I1, I2 ⊂ I(x). So, the local maximizers

xρν , ρ = 1, 2, are solutions of the corresponding KKT system

Aνx
ρ
ν = λρ

ν −BIρµ
ρ
ν = 0, eTxρν = 1, [xρν ]i = 0, i ∈ Iρ, ρ = 1, 2 , (12)
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with µρ
ν ≥ 0. Since either (x1ν)

TAνx
1
ν ≤ (x2ν)

TAνx
2
ν holds or the converse, by again choosing a

subsequence we can assume

0 ≤ (x2ν)
TAνx

2
ν − (x1ν)

TAνx
1
ν for all ν . (13)

Now, let us define dν := x2
ν−x1

ν

τν
with τν := ‖x2ν − x1ν‖. Wlog. we can assume that the sequence dν

converges, dν → d, ‖d‖ = 1. In view of eTdν = 0 and [x1ν ]i = 0, i ∈ I1 (see (12)) we find

[x2ν ]i − [x1ν ]i ≥ 0 and thus [dν ]i ≥ 0 ∀i ∈ I1 and also [dν ]i = 0, i ∈ M \ S(x) , (14)

in view of M \ S(x) ⊂ I1, I2. By taking the limit ν → ∞ yields for d and its components [d]i,

eTd = 0, [d]i = 0, i ∈ M \ S(x), [d]i ≥ 0, i ∈ I1 .

This implies d ∈ T+
x (see (7)) . In view of (13), and using −2(x2ν − x1ν)

TBI1µ
1
ν = −2

∑

i∈I1
[x2ν −

x1ν ]i[µ
1
ν ]i ≤ 0 (by (14)) as well as the KKT conditions for x1ν , we obtain

0 ≤ (x2ν)
TAνx

2
ν − (x1ν)

TAνx
1
ν

= 2(x2ν − x1ν)
TAνx

1
ν + (x2ν − x1ν)

TAν(x
2
ν − x1ν)

= −2(x2ν − x1ν)
TBI1µ

1
ν + (x2ν − x1ν)

TAν(x
2
ν − x1ν)

≤ (x2ν − x1ν)
TAν(x

2
ν − x1ν)

By dividing these relations by τ2ν > 0 and letting ν → ∞, it follows

0 ≤ dTAd with d ∈ T+
x , d 6= 0 ,

contradicting the condition SSOC. �

Note that the only difference with the result in Theorem 2 is that in Theorem 3, the function x(A)
(possibly) is only Lipschitz continuous. We also provide an example.

Example 2. [no SC, but second order condition on T+
x ] The matrix A :=





1 1 1
1 0 1
1 1 0





has an ESS x = (1, 0, 0) satisfying R(x) = {1} and S(x) = {1, 2, 3}. For this example we find

(see (7)) T+
x = {d ∈ Rm | eTd = d1 + d2 + d3 = 0} and then for any d ∈ T+

x , d 6= 0, in view of

d1 = −d2 − d3 ,

dTAd = dT (0, d1 + d3, d1 + d2)
T = −d22 − d23 < 0 .

So, SSOC is satisfied and by the preceding theorem, locally, the ESS x behaves Lipschitz-stable

after small perturbations of A.

6 Genericity results for local maximizers

In optimization it is well-known that generically (“for a generic subset of problem instances”) any

local maximizer x is a nondegenerate strict local maximizer, i.e., LICQ holds and the KKT condition

is fulfilled with SC and SOC (see [11, Theorem 7.1.5]). We refer the reader to the landmark book

[11] for genericity results in general nonlinear optimization.

We will formulate the genericity results specialized to our problem PS(A) and provide an easy

and independent proof of such a genericity statement. This proof only makes use of the following

basis result in differential geometry.
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Lemma 6. Let p : RK → R be a polynomial mapping, p 6= 0. Then, the set of zeros of p, p−1(0) =
{x ∈ RK | p(x) = 0}, has (Lebesgue) measure zero in RK .

Next we define what is meant by genericity. Note, that the set of problems PS(A), A ∈ Sm can

be identified with the set Q := Sm.

Definition 1. We say that a property is generic in the problem set Sm, if the property holds for a

(generic) subset Qr of Sm such that Qr is open and Sm \ Qr has (Lebesgue) measure zero. (So,

genericity implies density and stability of the set Qr of “nice” problem instances.)

The next theorem states that generically any local maximizer x of PS(A) is a nondegenerate

(strict) local maximizer, i.e. an ESS with R(x) = S(x).

Theorem 4. There is a generic subset Qr ⊂ Sm such that for any A ∈ Qr the following holds:

For any local maximizer x of PS(A) we have,

(1) R(x) = S(x), i.e., SC is fulfilled and (2) SOC is satisfied.

So, for any A ∈ Qr any local maximizer x of PS(A) is an ESS point with R(x) = S(x).

Proof: (1): For a local maximizer x of PS(A), by Lemma 2, the condition R(x) ⊂ S(x)
must be valid. Suppose now that this inclusion is strict i.e., R(x) 6= S(x). Then there exists some

j ∈ S(x) \ R(x). This means that with R := R(x) the point 0 < xR ∈ R|R| solves the system of

linear equations
(

AR

aj,R

)

x = m

(

eR
1

)

with m := max
j

[Ax]j , (15)

where aj,R := (ajl, l ∈ R). This implies that the determinant of the (|R|+1)×(|R|+1)-matrix
(

AR eR
aj,R 1

)

is zero.

Consider now the polynomial function p(AR, aj,R) := det
(

AR eR
aj,R 1

)

. Since p(IR, 0) = 1 this

polynomial is nonzero and according to Lemma 6 for almost all (AR, aj,R) ∈ R|R|·(|R|+1) the

relation p(AR, aj,R) 6= 0 holds, i.e., there is no solution of the equations (15). Moreover since the

function p(AR, aj,R) is continuous, the set of parameters (AR, aj,R) with p(AR, aj,R) 6= 0 is open.

Since there is only a finite selection of subsets R ⊂ M and elements j ∈ M \ R possible, also

the set of parameters A such that for all R, j, R ⊂ M, j ∈ M \R, the condition p(AR, aj,R) 6= 0
holds, is generic. So, by construction, the condition R(x) ( S(x) is generically excluded.

(2): Now suppose that for a local maximizer x of PS(A) (by the above analysis we can assume

R(x) = S(x)) the condition SOC is not fulfilled, i.e., x is not a strict local maximizer. In view of

Lemma 4

det(AR(x)) = 0 (16)

must be true. But, by defining the non-zero polynomial p(A) := det(AR(x)) and using Lemma 6

the condition (16) is excluded for almost all A. By noticing that also the condition det(AR(x)) 6= 0
is stable wrt. small perturbations of A the condition (16) is generically excluded.

�

A similar result is valid for the problem PB(A).

Theorem 5. There is a generic subset Rr ⊂ Sm such that for any A ∈ Rr all eigenvalues of A
are simple. In particular, generically, the problem PB(A) has a unique solution.
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Proof: The proof follows from a more general stratification result for matrices (cf., [1]). �

We conclude the paper with an observation. In Section 3 we have presented a matrix A ∈ Sm with

(3
1

3 )m strict local maximizers (exponential growth). Any of these ESS points x satisfies R(x) =
S(x). We now might expect that for a generic set of A ∈ Sm (see Def. 1), such a large number of

ESS is excluded. However this is not the case. By our stability result in Theorem 2 all these (3
1

3 )m

ESS are locally stable, i.e., (for fixed m) with some ε > 0, any matrix A ∈ Nε(A) has (3
1

3 )m ESS.
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