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Abstract

Although the theoretical behavior of one-dimensional random walks in ran-

dom environments is well understood, the actual evaluation of various charac-

teristics of such processes has received relatively little attention. This paper

develops new methodology for the exact computation of the drift in such mod-

els. Focusing on random walks in dependent random environments, including

k-dependent and moving average environments, we show how the drift can be

characterized and found using Perron-Frobenius theory. We compare random

walks in various dependent environments and show that their drift behavior

can differ significantly.
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1 Introduction

Random walks in random environments (RWREs) are well-known mathematical
models for motion through disorganized (random) media. They generalize ordinary
random walks, usually on the d-dimensional lattice Zd, via a two-stage random pro-
cedure. First, the environment is generated according to some probability distribu-
tion (e.g., on a set U Z, where U is the set of all possible environment states at any
position). Second, the walker performs an ordinary random walk {Xn, n = 0, 1, . . .}
in which the transition probabilities at any state are determined by the environment
at that state. RWREs exhibit interesting and unusual behavior that is not seen in
ordinary random walks. For example, the walk can tend to infinity almost surely,
while the speed (also called drift) is 0; that is, P(limn→∞ Xn = ∞) = 1, while
limn→∞ Xn/n = 0. The reason for such surprising behavior is that RWREs can
spend a long time in (rare) regions from which it is difficult to escape — in effect,
the walker becomes “trapped” for a long time.

Since the late 1960s a vast body of knowledge has been built up on the behav-
ior of RWREs. Early applications can be found in Chernov [4] and Temkin [16];
see also Kozlov [9] and references therein. Recent applications to charge transport
in designed materials are given in Brereton et al. [3] and Stenzel et al. [14]. The
mathematical framework for RWREs was laid by Solomon [13], who proved con-
ditions for recurrence/transience for one-dimensional RWREs and also derived law
of large number properties for such processes. Kesten et al. [8] were the first to
establish central limit-type scaling laws for transient RWREs, and Sinai [12] proved
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such results for the recurrent case, showing remarkable “sub-diffusive” behavior.
Large deviations for these processes were obtained in Greven and Den Hollander
[6]. The main focus in these papers was on one-dimensional random walks in inde-
pendent environments. Markovian environments were investigated in Dolgopyat [5]
and Mayer-Wolf et al. [10]. Alili [1] showed that in the one-dimensional case much
of the theory for independent environments could be generalized to the case where
the environment process is stationary and ergodic. Overviews of the current state
of the art, with a focus on higher-dimensional RWREs, can be found, for example,
in Hughes [7], Sznitman [15], Zeitouni [17, 18], and Révész [11].

Although from a theoretical perspective the behavior of one-dimensional RWREs
is well understood, from an applied and computational point of view significant gaps
in our understanding remain. For example, exact drift computations and compar-
isons (as opposed to comparisons using simulation) between dependent random
environments seem to be entirely missing from the literature. The reason is that
such exact computations are not trivial and require additional insights.

The contribution of this paper is twofold. First, we provide new methodology
and explicit expressions for the computation of the drift of one-dimensional random
walks in various dependent environments, focusing on so-called ‘swap models’. In
particular, our approach is based on Perron–Frobenius theory, which allows easy
computation of the drift as well as various cutoff points for transient/recurrent
behavior. Second, we compare the drift behaviour between various dependent envi-
ronments, including moving average and k-dependent environments. We show that
the behavior can deviate considerably from that in the (known) independent case.

The rest of the paper is organized as follows. In Section 2 we formulate the
model for a one-dimensional RWRE in a stationary and ergodic environment and
review some of the key results from [1]. We then formulate special cases for the
environment: the iid, the Markovian, the k-dependent, and the moving average
environment. In Section 3 we derive explicit (computable) expressions for the drift
for each of these models, using a novel construction involving an auxiliary Markov
chain. Conclusions and directions for future research are given in Section 4.

2 Model and preliminaries

In this section we review some key results on one-dimensional RWREs and introduce
the class of “swap-models” that we will study in more detail.

2.1 General theory

Consider a stochastic process {Xn, n = 0, 1, 2, . . .} with state space Z, and a stochas-
tic “Underlying” environment U taking values in some set U Z, where U is the set
of possible environment states for each site in Z. We assume that U is stationary
(under P) as well as ergodic (under the natural shift operator on Z). The evolution
of {Xn} depends on the realization of U, which is random but fixed over time. For
any realization u of U the process {Xn} behaves as a simple random walk with
transition probabilities

P(Xn+1 = i+ 1 |Xn = i,U = u) = αi(u)

P(Xn+1 = i− 1 |Xn = i,U = u) = βi(u) = 1− αi(u).
(2.1)

The theoretical behavior of {Xn} is well understood, as set out in the seminal
work of Solomon [13]. In particular, Theorems 2.1 and 2.2 below completely de-
scribe the transience/recurrence behavior and the Law of Large Numbers behavior
of {Xn}. We follow the notation of Alili [1] and first give the key quantities that
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appear in these theorems. Define

σi = σi(u) =
βi(u)

αi(u)
, i ∈ Z , (2.2)

and let
S = 1 + σ1 + σ1 σ2 + σ1 σ2 σ3 + · · · (2.3)

and

F = 1 +
1

σ−1
+

1

σ−1 σ−2
+

1

σ−1 σ−2 σ−3
+ · · · (2.4)

Theorem 2.1. (Theorem 2.1 in [1])

1. If E[lnσ0] < 0, then almost surely lim
n→∞

Xn = ∞ .

2. If E[lnσ0] > 0, then almost surely lim
n→∞

Xn = −∞ .

3. If E[lnσ0] = 0, then almost surely lim inf
n→∞

Xn = −∞ and lim sup
n→∞

Xn = ∞ .

Theorem 2.2. (Theorem 4.1 in [1])

1. If E[S] < ∞, then almost surely lim
n→∞

Xn

n
=

1

E[(1 + σ0)S]
=

1

2E[S]− 1
.

2. If E[F ] < ∞, then almost surely lim
n→∞

Xn

n
=

−1

E[(1 + σ−1
0 )F ]

=
−1

2E[F ]− 1
.

3. If E[S] = ∞ and E[F ] = ∞, then almost surely lim
n→∞

Xn

n
= 0.

Note that we have added the second equalities in statements 1. and 2. of Theo-
rem 2.2. These follow directly from the stationarity of U. In particular, if θ denotes
the shift operator on Z, then

E[σ0σ1 · · ·σn−1] = E

[
β0(U)β1(U) · · ·βn−1(U)

α0(U)α1(U) · · ·αn−1(U)

]

= E

[
β1(θU)β2(θU) · · ·βn(θU)

α1(θU)α2(θU) · · ·αn(θU)

]

(apply θU
d
= U) = E

[
β1(U)β2(U) · · ·βn(U)

α1(U)α2(U) · · ·αn(U)

]

= E[σ1σ2 · · ·σn],

from which it follows that E[(1 + σ0)S] = 2E[S]− 1.
We will call limn→∞ Xn/n the drift of the process {Xn}, and denote it by V .

Note that, as mentioned in the introduction, it is possible for the chain to be
transient with drift 0 (namely when E[lnσ0] 6= 0, E[S] = ∞ and E[F ] = ∞).

2.2 Swap model

We next focus on what we will call swap models, as studied by Sinai [12]. Here,
U = {−1, 1}; that is, we assume that all elements Ui of the process U take value
either −1 or +1. We assume that the transition probabilities in state i only depends
on Ui, and not on other elements of U, as follows. When Ui = −1, the transition
probabilities of {Xn} from state i to states i+1 and i−1 are swapped with respect
to the values they have when Ui = +1. Thus, for some fixed value p in (0, 1) we
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let αi(u) = p (and βi(u) = 1 − p) if ui = 1, and αi(u) = 1 − p (and βi(u) = p) if
ui = −1. Thus, (2.1) becomes

P(Xn+1 = i+ 1 |Xn = i,U = u) =

{
p if ui = 1

1− p if ui = −1

and

P(Xn+1 = i− 1 |Xn = i,U = u) =

{
1− p if ui = 1

p if ui = −1 .

Next, we need to choose a dependence structure for U. The standard case [12]
simply assumes that the {Ui} are iid (independent and identically distributed):

Iid environment. Let the {Ui} be iid with

P(Ui = 1) = α, P(Ui = −1) = 1− α

for some 0 < α < 1. In this case the model has two parameters: α and p.

This can be extended to a more general model using the following dependence
assumption.

Assumption 2.1. Let U be generated by a stationary and ergodic Markov chain
{Yi, i ∈ Z} taking values in a finite set {1, . . . ,m}. In particular, we let Ui = g(Yi),
where g : {0, . . . ,m} → {−1, 1} is a given function.

Despite its simplicity, this formalism covers a number of interesting dependence
structures on U, discussed next.

Markov environment. Let Ui = Yi, where {Yi} is a stationary discrete-time
Markov chain on {−1, 1}, with one-step transition matrix P given by

P =

[
1− a a
b 1− b

]
,

for some a, b ∈ (0, 1). The {Ui} form a dependent Markovian environment depend-
ing on a and b.

k-dependent environment. Let k > 1 be a fixed integer. Our goal is to obtain a
generalization of the Markovian environment in which the conditional distribution
of Ui given all other variables is the same as the conditional distribution of Ui given
only Ui−k, . . . , Ui−1 (or, equivalently, given Ui+1, . . . , Ui+k). To this end we define
a k-dimensional Markov chain {Yi, i ∈ Z} on {−1, 1}k as follows. From any state
(ui−k, . . . , ui−1) in {−1, 1}k, {Yi} has two possible one-step transitions, given by

(ui−k, . . . , ui−1) → (ui−k+1, . . . , ui−1, ui), uj ∈ {−1, 1},

with corresponding probabilities 1−a(ui−k,...,ui−2), a(ui−k,...,ui−2), b(ui−k,...,ui−2), and
1 − b(ui−k,...,ui−2), for (ui−1, ui) equal to (−1,−1), (−1, 1), (1,−1), and (1, 1), re-
spectively. Now let Ui denote the last component of Yi. Then {Ui, i ∈ Z} is a
k-dependent environment, and Yi = (Ui−k+1, . . . , Ui).

Note the correspondence in notation with the (1-dependent) Markov environ-
ment: a indicates transition probabilities from Ui−1 = −1 to Ui = +1, and b from
Ui−1 = +1 to Ui = −1, where in both cases the subindex denotes the dependence
on Ui−k, . . . , Ui−2.

Moving average environment. Consider a “moving average” environment, which
is built up in two phases as follows. First, start with an iid environment {Ûi} as

in the iid case, with P(Ûi = 1) = α. Let Yi = (Ûi, Ûi+1, Ûi+2). Hence, {Yi} is
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a Markov process with states 1 = (−1,−1,−1), 2 = (−1,−1, 1), . . . , 8 = (1, 1, 1)
(lexicographical order). The corresponding transition matrix clearly is given by

P =




1− α α 0 0 0 0 0 0
0 0 1− α α 0 0 0 0
0 0 0 0 1− α α 0 0
0 0 0 0 0 0 1− α α

1− α α 0 0 0 0 0 0
0 0 1− α α 0 0 0 0
0 0 0 0 1− α α 0 0
0 0 0 0 0 0 1− α α




. (2.5)

Now define Ui = g(Yi), where g(Yi) = 1 if at least two of the three random variables

Ûi, Ûi+1 and Ûi+2 are 1, and g(Yi) = −1 otherwise. Thus,

(g(1), . . . , g(8)) = (−1,−1,−1, 1,−1, 1, 1, 1) , (2.6)

and we see that each Ui is obtained by taking the moving average of Ûi, Ûi+1 and

Ûi+2, as illustrated in Figure 2.2.

Figure 1: Moving average environment.

3 Evaluating the drift

As a starting point for the analysis, we begin in Section 3.1 with the solution for
the iid environment, based on first principles. As mentioned earlier, this model
was studied by Sinai [12]. Then, in Section 3.2 we give the general solution ap-
proach for the Markov-based swap model, followed by sections with results on the
transience/recurrence and on the drift for the random environments mentioned in
Section 2.2: the Markov environment, the 2-dependent environment, and the mov-
ing average environment (all based on Section 3.2).

3.1 Iid environment

As a warm-up we consider the iid case first, with P(Ui = 1) = α = 1− P(Ui = −1).
Here,

E[lnσ0] = E[U0] lnσ = (1− 2α) ln
1− p

p
.

Hence, by Theorem 2.1, we have the following findings, consistent with intuition.
Xn → +∞ a.s. if and only if either α > 1/2 and p > 1/2, or α < 1/2 and p < 1/2;
Xn → −∞ a.s. if and only if either α > 1/2 and p < 1/2, or α < 1/2 and p > 1/2;
and {Xn} is recurrent a.s. if and only if either α = 1/2, or p = 1/2, or both.

Moving on to Theorem 2.2, we define σ = (1− p)/p, so that we have

E[S] =
∞∑

n=0

E

[
σ
∑

n

i=1 Ui

]
=

∞∑

n=0

(
E[σU1 ]

)n
=

∞∑

n=0

(σ−1(1− α) + σα)n, (3.1)

which is finite if and only if σ−1(1− α) + σα < 1; that is, E[S] < ∞ if and only if
either α > 1/2 and p ∈ (1/2, α), or α < 1/2 and p ∈ (α, 1/2). Similarly (replace σ
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by σ−1 and p by 1− p), E[F ] =
∑∞

n=0(σ(1−α) + σ−1α)n < ∞ if and only if either
α > 1/2 and p ∈ (1− α, 1/2), or α < 1/2 and p ∈ (1/2, 1− α).

Clearly the cases with respect to E[S] and E[F ] do not entirely cover the cases
we concluded to be transient above. E.g., when α > 1/2 and p ∈ [α, 1], the process
tends to +∞, but the drift is zero. We summarize these findings in the following
proposition.

Proposition 3.1. We distinguish between transient cases with and without drift,
and the recurrent case as follows.

1a. If either α > 1/2 and p ∈ (1/2, α) or α < 1/2 and p ∈ (α, 1/2), then almost
surely lim

n→∞
Xn = ∞ and

V = (2p− 1)
α− p

α(1− p) + (1− α)p
> 0 . (3.2)

1b. If either α > 1/2 and p ∈ (1− α, 1/2) or α < 1/2 and p ∈ (1/2, 1− α), then
almost surely lim

n→∞
Xn = −∞ and

V = −(1− 2p)
α− (1− p)

αp+ (1− α)(1− p)
< 0 . (3.3)

2a. If either α > 1/2 and p ∈ [α, 1] or α < 1/2 and p ∈ [0, α], then almost surely
lim
n→∞

Xn = ∞ , but V = 0.

2b. If either α > 1/2 and p ∈ [0, 1−α] or α < 1/2 and p ∈ [1−α, 1], then almost
surely lim

n→∞
Xn = −∞ , but V = 0.

3. Otherwise (when α = 1/2 or p = 1/2 or both), {Xn} is recurrent and V = 0.

Proof. Immediate from the above; (3.2) follows from (3.1) by using σ = (1− p)/p;
and similar for (3.3).

We illustrate the drift as a function of α and p in Figure 2.

1

10

V = 0
X → −∞

V = 0
X → ∞

V > 0
X → ∞

V > 0
X → −∞

V = 0
X → −∞

V = 0
X → ∞

V < 0
X → ∞

V < 0
X → −∞

↑

p

α →1
2

1
2

Figure 2: Graphical representation of Proposition 3.1. Solid lines, where the process
is recurrent, divide the remaining parameter space in four quadrants. In quadrants
I and III, {Xn} moves to the right; in quadrants II and IV, {Xn} moves to the left.
In gray areas (including dashed boundaries and boundaries at p = 0, 1), the drift is
zero. In white areas (including boundaries at α = 0, 1), the drift is nonzero.
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3.2 General solution for swap models

Due to the choice of notation for the states in U = {−1, 1}, we can, for any swap
model, write σi (defined in (2.2)) as:

σi =
p

1− p
I(Ui = −1) +

1− p

p
I(Ui = 1) = σUi ,

where σ = (1− p)/p. Consequently, for the key quantity in Theorem 2.1 we find:

E[lnσ0] = E[U0 lnσ] = lnσ E[U0], (3.4)

the sign of which (and hence the a.s. limit of Xn) only depends on whether p is less
than or greater than 1/2, and on whether E[U0] is positive or negative. This holds
regardless of the dependence structure between the {Ui} (even when Assumption 2.1
is not satisfied).

Furthermore, for the key quantities in Theorem 2.2 we have:

E[S] =

∞∑

n=0

E

[
σ
∑

n

i=1 Ui

]
and E[F ] =

∞∑

n=0

E

[
σ−

∑

n

i=1 U−i

]
. (3.5)

In what follows we will focus on E[S], since analogous results for E[F ] follow by
replacing σ with σ−1 and p with 1 − p. This follows from the stationarity of U,
which implies that for any n the product σ−1σ−2 · · ·σ−n has the same distribution
as σ1σ2 · · ·σn (apply a shift over n+ 1 positions).

Consider now the RWRE swap model with a random environment generated by
a Markov chain {Yi, i ∈ Z}, as specified in Assumption 2.1. Thus,

E[S] =
∞∑

n=0

E

[
σ
∑

n

i=1 Ui

]
=

∞∑

n=0

E

[
σ
∑

n

i=1 g(Yi)
]
.

Define
G(n)

y (σ) = E

[
σ
∑

n

i=1 g(Yi) |Y0 = y
]
, y = 1, . . . ,m

and let P = (Py,y′) be the one-step transition matrix of {Yi}. Then, by conditioning
on Y1,

G(n+1)
y (σ) = E

[
σ
∑

n+1
i=1 g(Yi) |Y0 = y

]
= E

[
σ
∑

n+1
i=2 g(Yi)σg(Y1) |Y0 = y

]

=
m∑

y′=1

Py,y′σg(y′)G
(n)
y′ (σ) .

In matrix notation, with G(n)(σ) = (G
(n)
1 (σ), . . . , G

(n)
m (σ))⊤, we can write this as

G(n+1)(σ) = PDG(n)(σ),

where
D = diag(σg(1), . . . , σg(m)) .

It follows, also using G
(0)
y (σ) = 1, that

G(n)(σ) = (PD)nG(0)(σ) = (PD)n1,

where 1 = (1, 1)⊤, and hence

E[S] =

∞∑

n=0

πG(n)(σ) = π

∞∑

n=0

(PD)n1,

7



where π denotes the stationary distribution vector for {Yi}. The matrix series∑∞

n=0(PD)n converges if and only if Sp(PD) < 1, where Sp(·) denotes the spectral
radius, and in that case the limit is (I−PD)−1, which leads to an explicit expression
for E[S]. We summarize these findings in the following theorem.

Theorem 3.1. For E[lnσ0] of Theorem 2.1 we have

E[lnσ0] = lnσ E[U0]. (3.6)

Thus, the a.s. limit of Xn only depends on whether p is less than or larger than 1/2,
and on whether E[U0] is positive or negative, regardless of the dependence structure
between the {Ui}.

For E[S] of Theorem 2.2 we have, with matrices P and D as defined above

E[S] =

{
π(I − PD)−11 if Sp(PD) < 1

∞ else.
(3.7)

Based on the above, the following subsections will give results on the tran-
sience/recurrence and on the drift for the random environments mentioned in Sec-
tion 2.2. As will turn out, it is not trivial to determine when Sp(PD) < 1.

3.3 Markov environment

The quantity E[lnσ0] in Theorem 2.1, which determines whether Xn will diverge to
+∞ or −∞, or is recurrent, is given by

E[lnσ0] =
b

a+ b
lnσ−1 +

a

a+ b
lnσ =

a− b

a+ b
ln

1− p

p
.

Hence, Xn → +∞ a.s. if and only if either a > b and p > 1/2, or a < b and p < 1/2;
Xn → −∞ a.s. if and only if either a > b and p < 1/2, or a < b and p > 1/2; and
{Xn} is recurrent a.s. if and only if either a = b, or p = 1/2, or both.

Next we study E[S] to find the drift. In the context of Section 3.2 the processes
{Ui} and {Yi} are identical and the function g is the identity on the state space
U = {−1, 1}. Thus, the matrix D is given by D = diag(σ−1, σ), and since P is as
in Section 2.2, the matrix PD is given by

PD =

[
(1− a)σ−1 aσ

bσ−1 (1− b)σ

]
,

for which we have the following.

Lemma 3.1. The matrix series
∑∞

n=0(PD)n converges to

(I − PD)−1 =
1

det(I − PD)

[
1− (1− b)σ aσ

bσ−1 1− (1− a)σ−1

]
, (3.8)

with det(I − PD) = 2− a− b−
(
1−a
σ

+ (1− b)σ
)
, iff σ lies between 1 and 1−a

1−b
.

Note that the condition that σ lies between 1 and 1−a
1−b

can either mean 1 < σ <
1−a
1−b

(when a < b), or 1−a
1−b

< σ < 1 (when a > b).

Proof. The series
∑∞

n=0(PD)n converges if and only if Sp(PD) < 1, where Sp(·)
denotes the spectral radius maxi |λi | . The eigenvalues λ1, λ2 follow from

|λI − PD | = λ2 −Aλ+ (1− a− b) = 0, where A = (1− a)σ−1 + (1− b)σ.

8



The discriminant of this quadratic equation is

A2 − 4(1− a)(1− b) + 4ab =

(
1− a

σ
− (1− b)σ

)2

+ 4ab > 0,

so the spectral radius is given by the largest eigenvalue,

Sp(PD) =
A+

√
A2 − 4(1− a− b)

2
.

Clearly Sp(PD) < 1 if and only if
√
A2 − 4(1− a− b) < 2 − A, or equivalently

A < 2− a− b. Substituting the definition of A and multiplying by σ this leads to

(1− b)σ2 − (2− a− b)σ + (1− a) < 0,

or equivalently,
(σ − 1)

(
(1− b)σ − (1− a)

)
< 0.

Since the coefficient of σ2 in the above is 1 − b > 0, the statement of the lemma
now follows immediately.

This leads to the following proposition.

Proposition 3.2. We distinguish between transient cases with and without drift,
and the recurrent case as follows.

1a. If either a > b and p ∈
(
1
2 ,

1−b
(1−a)+(1−b)

)
or a < b and p ∈

(
1−b

(1−a)+(1−b) ,
1
2

)
,

then almost surely lim
n→∞

Xn = ∞ and

V = (2p− 1)
(1− b)(1− p)− (1− a)p(

b+ a−b
a+b

)
(1− p) +

(
a− a−b

a+b

)
p
> 0 . (3.9)

1b. If either a > b and p ∈
(

1−a
(1−a)+(1−b) ,

1
2

)
or a < b and p ∈

(
1
2 ,

1−a
(1−a)+(1−b)

)
,

then almost surely lim
n→∞

Xn = −∞ and

V = −(1− 2p)
(1− b)p− (1− a)(1− p)(

b+ a−b
a+b

)
p+

(
a− a−b

a+b

)
(1− p)

< 0 . (3.10)

2a. If either a > b and p ∈
[

1−b
(1−a)+(1−b) , 1

]
or a < b and p ∈

[
0, 1−b

(1−a)+(1−b)

]
,

then almost surely lim
n→∞

Xn = ∞ , but V = 0.

2b. If either a > b and p ∈
[
0, 1−a

(1−a)+(1−b)

]
or a < b and p ∈

[
1−a

(1−a)+(1−b) , 1
]
,

then almost surely lim
n→∞

Xn = −∞ , but V = 0.

3. Otherwise (when a = b or p = 1/2 or both), {Xn} is recurrent and V = 0.

Proof. Substitution of (3.8) and π = 1
a+b

(b, a) in (3.7) leads to

V −1 = 2E[S]− 1

=
2

(a+ b) det(I − PD)
(b, a)

[
1− (1− b)σ aσ

bσ−1 1− (1− a)σ

](
1
1

)
− 1

=
2

det(I − PD)

(a+ b)− (1− a− b)(bσ + aσ−1)

a+ b
− 1

=
1 + σ

1− σ

(
b+ a−b

a+b

)
σ +

(
a− a−b

a+b

)

(1− b)σ − (1− a)

=
1

2p− 1

(
b+ a−b

a+b

)
(1− p) +

(
a− a−b

a+b

)
p

(1− b)(1− p)− (1− a)p
.
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When σ lies between 1 and 1−a
1−b

, i.e. when p = (1 + σ)−1 lies between 1/2 and
(1 − b)/((1 − a) + (1 − b)), it follows by Lemma 3.1 that the process has positive
drift, given by the reciprocal of the above. This proves (3.9). The proof of (3.10)
follows from replacing σ by σ−1 and p by 1−p, and adding a minus sign. The other
statements follow immediately.

When we take a + b = 1 we obtain the iid case of the previous section, with
α = a/(a + b). Indeed, the proposition then becomes identical to Proposition 3.1.
In the following subsection we make a comparison between the Markov case and
the iid case.

3.3.1 Comparison with the iid environment

To study the impact of the (Markovian) dependence, we reformulate the expression
for the drift in Proposition 3.2. Note that the role of α in the iid case is played by
P (U0 = 1) = a/(a + b) in the Markov case. Furthermore, we can show that the
correlation coefficient between two consecutive Ui’s satisfies

̺ ≡ ̺(U0, U1) =
Cov(U0, U1)

Var(U0)
=

a+b−4ab
a+b

−
(

a−b
a+b

)2

1−
(

a−b
a+b

)2 = 1− a− b.

So ̺ depends on a and b only through their sum a + b, with extreme values 1 (for
a = b = 0; i.e., Ui ≡ U0) and −1 (for a = b = 1; that is, U2i ≡ U0 and U2i+1 ≡ −U0).
The intermediate case a + b = 1 leads to ̺ = 0 and corresponds to the iid case,
as we have seen before. To express V in terms of α and ̺ we solve the system of
equations a

a+b
= α and 1− a− b = ̺, leading to the solution

a = (1− ̺)α

b = (1− ̺)(1− α).

Substitution in the expression for V (here in case of positive drift only, see (3.9))
and rewriting yields

V = (2p− 1)
α− p+ ̺(1− α− p)(

α(1− p) + (1− α)p
)
(1 + ̺)− ̺

.

This enables us not only to immediately recognize the result (3.2) for the iid case
(take ̺ = 0), but also to study the dependence of the drift V on ̺. Note that due
to the restriction that a and b are probabilities, it must hold that ̺ > max{1 −
1/α, 1− 1/(1− α)}.

Figures 3 and 4 illustrate various aspects of the difference between iid and
Markov cases. Clearly, compared to the iid case (for the same value of α), the
Markov case with positive correlation coefficient has lower drift, but also a lower
‘cutoff value’ of p at which the drift becomes zero. For negative correlation coef-
ficients we see a higher cutoff value, but not all values of α are possible (since we
should have a < 1). Furthermore, for weak correlations the drift (if it exists) tends
to be larger than for strong correlations (both positive and negative), depending
on p and α. Note that Figure 4 seems to suggest there are two cutoff values in
terms of the correlation coefficient. However, it should be realized that drift curves
corresponding to some α are no longer drawn for negative correlations since the
particular value of α cannot be attained. E.g., when ̺ is close to −1, then a and b
are both close to 1, hence α can only be close to 1/2.

10



Figure 3: Drift for ̺ = 0 (blue, dashed), ̺ = 0.3 (red,solid), and ̺ = −0.3 (green,
dotdashed) as a function of p. From highest to lowest curves for α = 1, 0.95, . . . , 0.55
(for ̺ = 0 and ̺ = 0.3), and for α = 0.75, 0.70, . . . , 0.55 (for ̺ = −0.3).

Figure 4: Drift for p = 0.7 (blue, dashed) and p = 0.9 (red, solid) as a function of
the correlation coefficient ̺, for α = 1, 0.95, . . . , 0.55 (from highest to lowest curves).
The values at ̺ = 0 give the drift for the independent case. Note that ̺ must be
greater than or equal to 1/α.

3.4 2-dependent environment

In this section we treat the k-dependent environment for k = 2. For this case we
have the transition probabilities

Pui−2ui−1,ui
= P(Ui = ui |Ui−2 = ui−2, Ui−1 = ui−1), uj ∈ {−1, 1},
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so that the one-step transition matrix of the Markov chain {Yi, i ∈ Z} with Yi =
(Ui−1, Ui) is given by

P =




P−1−1,−1 P−1−1,+1 0 0
0 0 P−1+1,−1 P−1+1,+1

P+1−1,−1 P+1−1,+1 0 0
0 0 P+1+1,−1 P+1+1,+1


 =




1− a− a− 0 0
0 0 b− 1− b−

1− a+ a+ 0 0
0 0 b+ 1− b+


 .

Thus, the model has five parameters, a−, a+, b−, b+, and p. Also note that the
special case a− = a+(= a) and b− = b+(= b) corresponds to the (1-dependent)
Markovian case in Section 3.3.

We first note that the stationary distribution (row) vector π is given by

π =

(
2 +

1− a+
a−

+
1− b−
b+

)−1(
1− a+
a−

, 1, 1,
1− b−
b+

)
, (3.11)

so assuming stationarity we have P(U0 = 1) = π−1,1 + π1,1 and P(U0 = −1) =

π−1,−1+π1,−1. It follows that P(U0 = 1) > P(U0 = −1) if and only if a−

1−a+
> b+

1−b−
.

This is important to determine the sign of E[lnσ0], which satisfies (with σ = 1−p
p

as before),
E[lnσ0] =

(
2P(U0 = 1)− 1

)
lnσ.

Hence, Xn → +∞ a.s. if and only if either a−

1−a+
> b+

1−b−
and p > 1/2, or a−

1−a+
<

b+
1−b−

and p < 1/2; Xn → −∞ a.s. if and only if either a−

1−a+
> b+

1−b−
and p < 1/2,

or a−

1−a+
< b+

1−b−
and p > 1/2; and {Xn} is recurrent a.s. if and only if either

a−

1−a+
= b+

1−b−
, or p = 1/2, or both.

Next we consider the drift. As before we have when E[S] < ∞ that V −1 =
2E[S] − 1. So in view of (3.7) we need to consider the matrix PD where D =
diag(σ−1, σ, σ−1, σ), so

PD =




(1− a−)σ
−1 a−σ 0 0

0 0 b−σ
−1 (1− b−)σ

(1− a+)σ
−1 a+σ 0 0

0 0 b+σ
−1 (1− b+)σ




and hence

V −1 = 2π

(
∞∑

n=0

(PD)n

)
1 − 1

= 2π(I − PD)−1 1 − 1

if Sp(PD) < 1. Unfortunately, the eigenvalues of PD are now the roots of a 4-degree
polynomial, which are hard to find explicitly. However, using Perron–Frobenius
theory and the implicit function theorem it is possible to prove the following lemma,
which has the same structure as in the Markovian case.

Lemma 3.2. The matrix series
∑∞

n=0(PD)n converges to (I − PD)−1, which is































1 − a+b
−

− σ + σB a
−

σ((b+ − 1)σ + 1) a
−

(−σb
−

+ b
−

+ b+σ) −a
−

(b
−

− 1)σ2

(a+−1)(b
−

(σ−1)−b+σ)

σ2

(a
−

+σ−1)((b+−1)σ+1)

σ
−

(a
−

+σ−1)(b
−

(σ−1)−b+σ)

σ2 −(b
−

− 1)(a
−

+ σ − 1)

−

(a+−1)((b+−1)σ+1)

σ
(a

−
+ a+(σ − 1))((b+ − 1)σ + 1)

(a
−

+σ−1)((b+−1)σ+1)

σ
−(b

−
− 1)(a

−
+ a+(σ − 1))σ

b+−a+b+

σ2

b+(a
−

+a+(σ−1))

σ

b+(a
−

+σ−1)

σ2

1−A+σ−a+b
−

σ

σ































divided by det(I − PD) = −σ−1(σ − 1)
(
(1 − B)σ − (1 − A)

)
, iff σ lies between 1

and 1−A
1−B

. Here, A = a− + a+b− − a−b− and B = b+ + a+b− − a+b+.
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Proof. To find out for which values of σ we have Sp(PD) < 1, first we denote the
(possibly complex) eigenvalues of PD by λi(σ), i = 0, 1, 2, 3, as continuous functions
of σ. Since PD is a nonnegative irreducible matrix for any σ > 0, we can apply
Perron–Frobenius to claim that there is always a unique eigenvalue with largest
absolute value (the other |λi| being strictly smaller), and that this eigenvalue is
real and positive (so in fact it always equals Sp(PD)). When σ = 1 the matrix is
stochastic and we know this eigenvalue to be 1, and denote it by λ0(1).

Now, moving σ from 1 to any other positive value, λ0(σ) must continue to play
the role of the Perron–Frobenius eigenvalue; i.e., none of the other λi(σ) can at
some point take over this role. If this were not true, then the continuity of the
λi(σ) would imply that one value σ̂ exists where (say) λ1 ‘overtakes’ λ0, meaning
that |λ1(σ̂)| = |λ0(σ̂)|, which is in contradiction with the earlier Perron–Frobenius
statement.

Thus, it remains to find out when λ0(σ) < 1, which can be established using
the implicit function theorem, since λ0 is implicitly defined as a function of σ
by f(σ, λ0) = 0, with f(σ, λ) = det(λI − PD) together with λ0(1) = 1. Using
det(D) = 1, we find that

f(σ, λ) =det((λD−1 − P )D) = det(λD−1 − P ) =

= σ[λ(a+b− − a+b+) + λ3(b+ − 1)]

+ σ−1[λ(a+b− − a−b−) + λ3(a− − 1)]

+ λ4 + (1− a− − b+ + a−b+ − a+b−)λ
2 + a−b− − a−b+ − a+b− + a+b+.

Setting λ = 1 in this expression gives det(I − PD) as given in the lemma, with
two roots for σ. Thus, there is only an eigenvalue 1 when σ = 1, which we already
called λ0(1), or when σ = 1−A

1−B
. In the latter case this must be λ0(

1−A
1−B

), i.e., it

cannot be λi(
1−A
1−B

) for some i 6= 0, again due to continuity. As a result we have

either λ0(σ) > 1 or λ0(σ) < 1 when σ lies between 1 and 1−A
1−B

. Whether 1−A
1−B

< 1

or 1−A
1−B

> 1 depends on the parameters:

1−A

1−B
> 1 ⇔

a−
1− a+

<
b+

1− b−
, (3.12)

where we used that 1 − B = 1 − b+ − a+b− + a+b+ > (1 − b+)(1 − a+) > 0. Now
we apply the implicit function theorem:

dλ0(σ)

dσ

∣∣∣
σ=1

= −
∂f(σ,λ0)

∂σ

∂f(σ,λ0)
∂λ0

∣∣∣∣∣
σ=1,λ0=1

(3.13)

= −
b+(1− a+)− a−(1− b−)

a−(1− b− + b+) + b+(1− a+ + a−)
(3.14)

=

a−

1−a+
− b+

1−b−

a−

1−a+

(
1 + b+

1−b−

)
+ b+

1−b−

(
1 + a−

1−a+

) , (3.15)

which due to (3.12) is < 0 iff 1−A
1−B

> 1 and is > 0 iff 1−A
1−B

< 1, so that indeed

Sp(PD) = λ0(σ) < 1 if and only if σ lies between 1 and 1−A
1−B

.

Note that for the case a−

1−a+
= b+

1−b−
the series never converges, as there is no

drift, P(U0 = 1) = P(U0 = −1). This corresponds to a = b in the Markovian case
and α = 1/2 in the iid case.

We conclude that if σ lies between 1 and 1−A
1−B

, or equivalently, if p lies between

1/2 and 1−B
1−A+1−B

, the drift is given by V = (2π(I − PD)−1 1 − 1)−1, where π is
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given in (3.11) and (I − PD)−1 follows from Lemma 3.2. Using computer algebra,
this can be shown to equal

V = (2p− 1)
d p(1− p)

(
(1−B)(1− p)− (1−A)p

)
∑3

i=0 ci p
i

(3.16)

where

d = a−(b− − b+ − 1) + b+(a+ − a− − 1)

c0 = 2a−b+(b− − b+)

c1 = −c0(2 + a+ + a−) + (B −A)(1−B)

c2 = −c0 − c1 − c3

c3 = (B −A)(2−A−B).

Including the transience/recurrence result from the first part of this section, and
including the cases with negative drift, we obtain the following analogon to Propo-
sitions 3.1 and 3.2.

Proposition 3.3. We distinguish between transient cases with and without drift,
and the recurrent case in the same way as for the Markov environment in Proposi-
tion 3.2. In particular, all statements (1a.), . . . , (3) in Proposition 3.2 also hold for
the 2-dependent environment if we replace a and b by A and B respectively, (3.9)
by (3.16), and (3.10) by minus the same expression (3.16) but with p replaced by
1− p.

3.4.1 Comparison with the Markov environment

To facilitate a comparison between the drifts for the two-dependent and Markov en-
vironments it is convenient to write the probability distribution vector of (U0, U1, U2)
as πR, where π is the distribution vector of (U0, U1), see (3.11), and

R =




1− a− a− 0 0 0 0 0 0
0 0 b− 1− b− 0 0 0 0
0 0 0 0 1− a+ a+ 0 0
0 0 0 0 0 0 b+ 1− b+


 .

Thus, πR = c
(

(1−a+)(1−a−)
a−

, 1− a+, b−, 1− b−, 1− a+, a+, 1− b−,
(1−b−)(1−b+)

b+

)
,

where c =
(
2 + 1−a+

a−

+ 1−b−
b+

)−1

. If we also define

M0 =




1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1




,M01 =




1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1




,M02 =




1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1




,

then the probability distribution vector of U0, (U0, U1), and (U0, U2) are respectively
given by

πRM0 = c

(

1− a+

a
−

+ 1,
1− b

−

b+
+ 1

)

,

πRM01 = π = c

(

1− a+

a
−

, 1, 1,
1− b

−

b+

)

,

πRM02 = c

(

(1− a+)(1− a
−
)

a
−

+ b
−
, 2− a+ − b

−
, 2− a+ − b

−
, a+ +

(1− b
−
)(1− b+)

b+

)

.
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Various characteristics of the distribution of (U0, U1, U2) are now easily found. In
particular, the probability P(U0 = 1) is

α =
a−(1− b− + b+)

a−(1− b− + b+) + b+(1− a+ + a−)
,

the correlation coefficient between U0 and U1 is

̺01 = 1−
a−

a− + 1− a+
−

b+
b+ + 1− b−

,

the correlation coefficient between U0 and U2 is

̺02 = 1− (2− a+ − b−)

(
a−

a− + 1− a+
+

b+
b+ + 1− b−

)

= 1− (2− a+ − b−)(1− ̺01),

and E[U0U1U2] is

e012 =
4a−b+(b− − a+) + a−(1− b− + b+)− b+(1− a+ + a−)

a−(1− b− + b+) + b+(1− a+ + a−)
.

The original parameters can be expressed in terms of α, ̺01, ̺02, and e012 as follows:

a− = −
2α(2α(̺02 − 1)− 2̺02 + 1) + e012 + 1

8(α− 1)(α(̺01 − 1) + 1)

b− =
2α(α(4̺01 − 2(̺02 + 1))− 4̺01 + 2̺02 + 1) + e012 + 1

8(α− 1)α(̺01 − 1)

a+ = −
2α(2α(−2̺01 + ̺02 + 1) + 4̺01 − 2̺02 − 3) + e012 + 1

8(α− 1)α(̺01 − 1)

b+ =
2α(−2α(̺02 − 1) + 2̺02 − 3) + e012 + 1

8α(α(̺01 − 1)− ̺01)
.

Note that due to the restriction that a−, a+, b−, and b+ are probabilities, (α, ̺01,
̺02, e012) can only take values in a strict subset of [0, 1]× [−1, 1]3.

An illustration of the different behavior that can be achieved for two-dependent
environments (as opposed to Markovian environments) is given in Figure 5. Here,
α = 0.95 and ̺1 = 0.3. The drift for the corresponding Markovian case is indicated
in the figure. The cutoff value is here approximately 0.75. By varying ̺2 and e012
one can achieve a considerable increase in the drift. It is not difficult to verify that
the smallest possible value for ̺2 is here (α − 1)/α = −1/19, in which case e012
can only take the value 3 + 2α(−5 − 4α(−1 + ̺1) + 4̺1) = 417/500. This gives
a maximal cutoff value of 1. The corresponding drift curve is indicated by the
“maximal” label in Figure 5. For ̺2 = 0, the parameter e012 can at most vary from
−1+2α(−1+α(2−4̺1)+4̺1) = 103/123 = 0.824 to 7+2α(−9+α(6−4̺1)+4̺1) =
211/250 = 0.844. The solid red curves show the evolution of the drift between these
extremes. The dashed blue curve corresponds to the drift for the independent case
with α = 0.95.
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Figure 5: Drift for α = 0.95 and ̺1 = 0.3 for various ̺2 and e012. The solid red
curves show the drift for ̺2 = 0 and e012 varying from 0.824 to 0.844. The smallest
dashed blue curve corresponds to the Markov case. The “maximal” dotdashed
orange curve corresponds to the case ̺2 = −1/19 and e012 = 417/500. The middle
dashed blue line gives the independent case.

3.5 Moving average environment

Recall that the environment is given by Ui = g(Yi) where the Markov process {Yi}

is given by Yi = (Ûi, Ûi+1, Ûi+2). The sequence {Ûi} is iid with P(Ûi = 1) = α =

1 − P(Ûi = −1). Thus, {Yi} has states 1 = (−1,−1,−1), 2 = (−1,−1, 1), . . . , 8 =
(1, 1, 1) (in lexicographical order) and transition matrix P given by (2.5). The
deterministic function g is given by (2.6); see also Figure 2.2.

The almost sure behavior of {Xn} again depends only on E[U0] which equals
−4α3+6α2− 1 = (2α− 1)(−2α2+2α+1). Since −2α2+2α+1 > 0 for 0 6 α 6 1,

the sign of E[U0] is the same as the sign of E[Û0] = 2α − 1, so the almost sure
behavior is precisely the same as in the iid case; we will not repeat it here (but see
Proposition 3.4).

To study the drift, we need the stationary vector of {Yi}, which is given by

π =
{
(1− α)3, (1− α)2α, (1− α)2α, (1− α)α2,

(1− α)2α, (1− α)α2, (1− α)α2, α3
}
,

(3.17)

and the convergence behavior of
∑

(PD)n, with D = diag(σ−1, σ−1, σ−1, σ, σ−1,
σ, σ, σ). This is given in the following lemma.

Lemma 3.3. The matrix series
∑∞

n=0(PD)n converges to (I − PD)−1 iff σ lies
between 1 and σcutoff , which is the unique root 6= 1 of

det(I − PD) =−
α(1− α)2

σ3
+

α2(1− α)2

σ2
−

(1− α)(1− α+ α2)

σ
+ 1

− 2α2(1− α)2 − α2(1− α)σ3 + α2(1− α)2σ2 − α(1− α+ α2)σ.

(3.18)

Proof. The proof is similar to that of Lemma 3.2; we only give an outline, leaving
details for the reader to verify. Again, denote the possibly complex eigenvalues of
PD by λi(σ), i = 0, . . . , 7 and use Perron-Frobenius theory to conclude that for any
σ > 0 we have Sp(PD) = λ0(σ), say, with λ0(1) = 1.
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To find out when λ0(σ) < 1 we again use the implicit function theorem on
f(σ, λ0) = 0, with f(σ, λ) = det(λI − PD). Setting λ = 1 gives (3.18). It can
be shown that f(σ, 1) is zero at σ = 1, that f(σ, 1) → ∞ for σ ↓ 0, and that
(∂2/∂σ2)f(σ, 1) < 0 for all σ > 0 (for the latter, consider 0 < σ < 1 and σ > 1
separately). Thus we can conclude that f(σ, 1) has precisely two roots for σ > 0,
at σ = 1 and at σ = σcutoff .

As a result we have either λ0(σ) > 1 or λ0(σ) < 1 when σ lies between 1
and σcutoff . For the location of σcutoff it is helpful to know that (∂/∂σ)f(σ, 1)

∣∣
σ=1

=

(2α − 1)(2α2 − 2α − 1), which is positive for 0 < α < 1/2 and negative for 1/2 <
α < 1. Thus we have σcutoff > 1 iff α < 1/2. Also (∂/∂λ)f(1, 1) = 1 so that the
implicit function theorem gives (d/dσ)λ0(σ)

∣∣
σ=1

= −(2α−1)(2α2−2α−1), so that
indeed λ0(σ) < 1 iff σ lies between 1 and σcutoff .

The cutoff value for p is now easily found as (1+σcutoff)
−1, which can be numerically

evaluated. The values are plotted in Figure 6.

Figure 6: Relation between cutoff value for p, and α. The solid red curve is for the
moving average process. For comparison, the dashed blue line is the iid case (see
also Figure 2).

When p lies between 1/2 and pcutoff , the drift is given by V = (2π(I−PD)−1 1 −
1)−1, where π is given in (3.17) and (I − PD)−1 follows from Lemma 3.3. Using
computer algebra we can find a rather unattractive, but explicit expression for the
value of the drift; it is given by the quotient of

α4
(
−(1− 2p)2

)
(p− 1)p+ α3(1− 2p((p− 2)p(p(2p− 5) + 6) + 4))

+ α2(2p− 1)(p(3p((p− 2)p+ 3)− 5) + 1)− α(1− 2p)2p2 − (p− 1)2p3(2p− 1)

and

− 2α5(2p− 1)3 − α4(1− 2p)2((p− 11)p+ 6) + α3(2p− 1)(2p(p3 − 9p+ 10)

− 5)− α2(p+ 1)(2p− 1)(p(p(3p− 7) + 6)− 1) + αp2(2p− 1) + (p− 1)2p3 .

Proposition 3.4. Let pcutoff = (1 + σcutoff)
−1, where σcutoff follows from Lemma

3.3. Then pcutoff > 1/2 iff α > 1/2. We distinguish between transient cases with
and without drift, and the recurrent case as follows.

1a. If either α > 1/2 and p ∈ (1/2, pcutoff) or α < 1/2 and p ∈ (pcutoff , 1/2), then
almost surely lim

n→∞
Xn = ∞ and the drift V > 0 is given as above.
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1b. If either α > 1/2 and p ∈ (1−pcutoff , 1/2) or α < 1/2 and p ∈ (1/2, 1−pcutoff),
then almost surely lim

n→∞
Xn = −∞ and the drift V < 0 is given as minus the

same expression as above but with p replaced by 1− p.

2a. If either α > 1/2 and p ∈ [pcutoff , 1] or α < 1/2 and p ∈ [0, pcutoff ], then
almost surely lim

n→∞
Xn = ∞ , but V = 0.

2b. If either α > 1/2 and p ∈ [0, 1 − pcutoff ] or α < 1/2 and p ∈ [1 − pcutoff , 1],
then almost surely lim

n→∞
Xn = −∞ , but V = 0.

3. Otherwise (when α = 1/2 or p = 1/2 or both), {Xn} is recurrent and V = 0.

Figure 7 compares the drifts for the moving average and independent environ-
ments.

Figure 7: Red: Drift for the moving average environment as a function of p for
α = 1, 0.95, . . . , 0.55 (from highest to lowest curves). Blue: comparison with the
independent case.

It is interesting to note that the cutoff points (where V becomes 0) are signifi-
cantly lower in the moving average case than the iid case, using the same α, while
at the same time the maximal drift that can be achieved is higher for the moving
average case than for the iid case. This is different behavior from the Markovian
case; see also Figure 3.

4 Conclusions

Random walks in random environments can exhibit interesting and unusual be-
havior due to the trapping phenomenon. The dependency structure of the random
environment can significantly affect the drift of the process. We showed how to con-
veniently construct dependent environment processes, including k-dependent and
moving average environments, by using an auxiliary Markov chain. For the well-
known swap RWRE model, this approach allows for easy computation of drift, as
well as explicit conditions under which the drift is positive, negative, or zero. The
cutoff values where the drift becomes zero, are determined via Perron–Frobenius
theory. Various generalizations of the above environments can be considered in
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the same (swap model) framework, and can be analyzed along the same lines, e.g.,

replacing iid by Markovian {Ûi} in the moving average model, or taking moving
averages of more than 3 neighboring states.

Other possible directions for future research are (a) extending the two-state
dependent random environment to a k-state dependent random environment; (b)
replacing the transition probabilities for swap model with the more general rules
in Eq.(2.1); and (c) generalizing the single-state random walk process to a multi-
state discrete-time quasi birth and death process (see, e.g., [2]). By using an infinite
“phase space” for such processes, it might be possible to bridge the gap between
the theory for one- and multi-dimensional RWREs.

Acknowledgements

This work was supported by the Australian Research Council Centre of Excel-
lence for Mathematical and Statistical Frontiers (ACEMS) under grant number
CE140100049. Part of this work was done while the first author was an Ethel
Raybould Visiting Fellow at The University of Queensland.

References

[1] S. Alili. Asymptotic behaviour for random walks in random environments. J.
Appl. Prob., 36:334–349, 1999.

[2] N. G. Bean, L. Bright, G. Latouche, C. E. M. Pearce, P. K. Pollett, and P. G.
Taylor. The quasi-stationary behavior of quasi-birth-and-death processes. The
Annals of Applied Probability, 7(1):134–155, 02 1997.

[3] T. Brereton, D.P. Kroese, O. Stenzel, V. Schmidt, and B. Baumeier. Efficient
simulation of charge transport in deep-trap media. In C. Laroque, J. Him-
melspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, editors, Proceedings
of the 2012 Winter Simulation Conference, Berlin, 2012.

[4] A. A. Chernov. Replication of multicomponent chain by the lighting mecha-
nism. Biophysics, 12:336–341, 1967.

[5] D. Dolgopyat, G. Keller, and C. Liverani. Random walk in Markovian envi-
ronment. The Annals of Probability, 36(5):1676–1710, 09 2008.

[6] A. Greven and F. den Hollander. Large deviations for a random walk in random
environment. Ann. Probab., 22:1381–1428, 1994.

[7] B. D. Hughes. Random Walks and Random Environments. Oxford University
Press, 1996.

[8] H. Kesten, M. W. Koslow, and F. Spitzer. A limit law for random walk in a
random environment. Compositio Math., pages 145–168, 1975.

[9] S. M. Kozlov. The method of averaging and walks in inhomogeneous enviro-
ments. Russian Math. Surveys, 40:73–145, 1985.

[10] E. Mayer-Wolf, A. Roitershtein, and O. Zeitouni. Limit theorems for one-
dimensional transient random walks in Markov environments. Ann. Inst. H.
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Single-class: Each queue has a dedicated (separate) server. This is a generalized Jackson
network.

Multi-class: Queues 1 and 2 are served by the same server under a non-pre-emptive
priority policy giving priority to queue 1. All other queues have their own server. Note
that in this case the load on the server of queues 1 and 2 is ν1/µ1+ν2/µ2 ≈ 0.97 < 1.
I.e. it is quite heavily loaded but is still stable. Note in general having a load of less
than unity does not immediately imply that the system is stable yet for this simple
case it can be shown that stability holds under such a priority policy (c.f. [2]).

Besides exemplifying the correctness of our theoretical results, the goal in this simulation
set-up is to illustrate that while the asymptotic variability parameters do not depend on
service times and scheduling policies, the shape of the variance curve is in general influenced
by such factors.

We ran 2×105 simulation runs of each case (single-class and multi-class) each for 1, 000
time units, starting at time t = 0 with the system empty1. We then estimated Var

(

D5→4(t)
)

for each run over a grid of time points t = 20, 40, 60, . . . , 1000, by taking the sample variance
at each time point over 2×105 observations. Note that we purposely observe the flow 5 → 4
which is not directly adjacent to the multi-class server serving 1 and 2.

Our main theorem applied to this example implies that in both the single-class and
multi-class case, for non-small t,

Var
(

D5→4(t)
)

≈ σ2

5→4t =
199

18
t = 11.055 t.

This is illustrated in Figure 2 (top) where we plot the variance curves versus the approxi-
mation σ2

5→4
t. To take a closer look at the effect of single-class vs. multi-class we then plot

the bias, σ2
5→4

t − Var
(

D5→4(t)
)

on Figure 2 (bottom). It is indeed evident that different
system characteristics yield different variance curves.

It is somewhat expected that the multi-class case will have a higher bias, since in this
case the server of 1 and 2 is under a heavier load (0.97). Further, in that case one can
expect more “bursts” on the flow 2 → 4 since queue 2 is served with low-priority. These
bursts perhaps “propagate” to flow 4 → 5 and ultimately to the flow which we measure:
5 → 4. Nevertheless, such phenomena are not captured by the asymptotic quantities found
in the current paper. It should be noted that in [17] second order properties of this sort
are explored for elementary queueing systems such as the stable M/G/1 queue. It is not
clear how to extend such an investigation to networks.

7 Conclusion

While stable queueing networks have been analysed for decades, up to now, exact ex-
pressions for the asymptotic variability of flows have not been known. In this paper we put
forward easy computable expressions together with a simple diffusion limit theorem for the
flows. It is interesting to see if and how the manufacturing queueing modeling (c.f. [5]) and
queueing network decomposition community will adopt our results and incorporate them
in heuristic decomposition schemes.

1The simulation was carried out using a simulation package written in C++: PRONETSIM. See [25],
Appendix A, for details about this software.
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Figure 2: Simulation estimates of Var
(

D5→4(t)
)

for two cases: single-class (1 and 2 on
separate servers) and multi-class (1 and 2 on same server with a priority policy). The top
graph illustrates the variance curve estimates (dotted) vs. the solid line σ2

5→4
t. The bottom

graph shows the bias: σ2
5→4

t−Var
(

D5→4(t)
)

. As is illustrated, both systems have the same
asymptotic variance for D5→4(t), yet their variance curves differ for finite t.

The queueing networks we considered in this paper are assumed to be open and stable.
This stands in contrast with the more general case handled in [6] (where nodes are allowed
to be either under-loaded, over-loaded or critical). It should be mentioned that our results
easily carry over to the case where some nodes are over-loaded. In this case, the service times
of over-loaded nodes contributes to the exogenous arrivals in a straightforward manner (see
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for example [13] for an early treatment of this idea). On the contrary, the case in which
some nodes are critical is more challenging. In that case, the single-server queue was
only recently handled with some difficulty in [1]. There the authors observed a BRAVO
effect (Balancing Reduces Asymptotic Variance of Outputs). We do not handle this in the
network context. Thus the challenge of finding the asymptotic variability of flows in critical
queueing networks remains.
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