
E�ciency of equilibria in uniform matroid
congestion games
Jasper de Jong

1
, Max Klimm

2
, and Marc Uetz

1

1 Universiteit Twente, Enschede, The Netherlands

{j.dejong-3,m.uetz}@utwente.nl

2 Technische Universität Berlin, Berlin, Germany

klimm@math.tu-berlin.de

Abstract
Network routing games, and more generally congestion games play a central role in algorithmic
game theory, comparable to the role of the traveling salesman problem in combinatorial optimiza-
tion. It is known that the price of anarchy is independent of the network topology for non-atomic
congestion games. In other words, it is independent of the structure of the strategy spaces of the
players, and for a�ne cost functions it equals 4/3. In this paper, we show that the dependence of
the price of anarchy on the network topology is considerably more intricate for atomic congestion
games. More specifically, we consider congestion games with a�ne cost functions where the strat-
egy spaces of players are symmetric and equal to the set of bases of a k-uniform matroid. In this
setting, we show that the price of anarchy is strictly larger than the price of anarchy for singleton
strategy spaces where the latter is 4/3. As our main result we show that the price of anarchy
can be bounded from above by 28/13 ¥ 2.15. This constitutes a substantial improvement over
the price of anarchy bound 5/2, which is known to be tight for arbitrary network routing games
with a�ne cost functions.

1998 ACM Subject Classification C.2.1 Network Architecture and Design: Network topology
F.2.2 Nonnumerical Algorithms and Problems: Computations on Discrete Structures I.2.1 Appli-
cations and Expert Systems: Games

Keywords and phrases Atomic congestion games, Price of anarchy, Matroid strategy spaces,
A�ne cost functions

1 Introduction

Understanding the impact of selfish behavior on the performance of a system is an important
question in algorithmic game theory. One of the cornerstones of the substantial literature on
this topic is the famous result of Roughgarden and Tardos [26]. They considered the tra�c
model of Wardrop [29] in a network with a�ne flow-dependent congestion cost functions on
the edges. Given a set of commodities, each specified by a source node, a target node, and a
flow demand, a Wardrop equilibrium is a multicommodity flow with the property that every
commodity uses only paths that minimize the cost. For this setting, Roughgarden and Tardos
proved that the total cost of an equilibrium flow is not worse than 4/3 times that of a system
optimum. This ratio was coined the price of anarchy by Koutsoupias and Papadimitriou [18]
who introduced it as a measure of a system’s performance degradation due to selfish behavior.
A surprising consequence of the result of Roughgarden and Tardos is that the worst case
price of anarchy in congested networks is attained for very simple single-commodity networks
already considered a century ago by Pigou [22]. Pigou-style networks consist of only two
nodes connected by two parallel links. In fact, Roughgarden [25] proved that for any set of
cost functions, the price of anarchy is independent of the network topology as it is always
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attained for such simple Pigou-style networks where a feasible strategy of each commodity is
to choose exactly one out of the two links.

A model closely related to Wardrop’s model is that of a congestion game with unsplittable
(i.e., atomic) players. In such a game, there is a finite set of players and a strategy of each
player is to choose a set of resources allowable to her. Without any restrictions on the strategy
spaces, the price of anarchy for a�ne cost functions is 5/2 as shown by Christodoulou and
Koutsoupias [9] and Awerbuch et al. [5]. As a contrast, for simple Pigou-style instances with
symmetric and singleton strategies, Lücking et al. [19] showed that the price of anarchy is
only 4/3. These results imply that for atomic congestion games the price of anarchy does
depend on the combinatorial structure of the players’ strategies.

In this work, we shed new light on the impact of the combinatorial structure of strategy
spaces on the ine�ciency of equilibria in atomic congestion games. Specifically, we focus on
the minimum combinatorial structure that one may think of, namely symmetric k-uniform
congestion games where the strategy set of each player consists of all subsets of resources
with exactly k elements. These games are a natural generalization of the singleton case and
model, e.g., load balancing scenarios where each player controls several jobs, see also Abed
et al. [1] for a related model in the context of coordination mechanisms.

1.1 Our Results
As our main result we prove that the price of anarchy in congestion games with a�ne cost
functions is at most 28/13 when strategy spaces are symmetric and bases of a k-uniform
matroid. The proof uses in its core several combinatorial arguments on the amount and
cost of resources that are over- respectively under-demanded in any given Nash equilibrium
as opposed to an optimal solution. It also exploits the a�nity of the cost functions, along
the lines of earlier arguments of Fotakis [11] for the singleton case. The main point of
the technical side of the paper is the insight that the combinatorial structure of strategy
spaces, here of the simplest possible form, allows to furnish combinatorial arguments that
yield improved results on the price of anarchy. We are not aware of earlier attempts in
this direction, and believe this opens new possibilities for our understanding of a “classical”
showcase problem in algorithmic game theory. We also show that the price of anarchy for
the k-uniform matroid case cannot be the same as for singleton congestion games, as we
bound it away from 4/3: For k large enough, the price of anarchy is at least 1.343 for a�ne
cost functions, for k = 5 it is at least 47/35 ¥ 1.3428. We note that larger lower bounds
on the price of anarchy can be achieved for more general settings such as matroid strategy
spaces, or non-a�ne cost functions. They are not included in this paper, however.

1.2 Related Work
Since the early works of Pigou [22], Beckman et al. [6], and Braess [7] it is well known that
user equilibria in congested networks may be suboptimal for the overall performance of the
system. In order to quantify this ine�ciency, Koutsoupias and Papadimitriou [18] proposed
to study the ratio of the total cost of an equilibrium and the total cost of an optimal solution.
This ratio is now known as the price of anarchy. Roughgarden and Tardos [26] showed that
the price of anarchy for non-atomic games with a�ne costs is 4/3. The worst case is attained
for simple networks of two parallel links previously studied by Pigou [22]. Roughgarden [25]
gave a closed form expression for the price of anarchy for arbitary cost functions which is
again attained for Pigou-style networks, e.g., for polynomials with positive coe�cient and
maximum degree d the price of anarchy is of order �(d/ ln(d)).
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Awerbuch et al. [5] and Christodoulou and Koutsoupias [9] considered the related model
with atomic players that was introduced by Rosenthal [23]. They showed that for a�ne
cost functions the price of anarchy is 5/2. Aland et al. [4] gave tight bounds on the price of
anarchy for polynomial cost functions with maximum degree d which behaves asymptotically
as �((d/ ln d)d+1). It is interesting to note that these worst-case bounds are not attained for
simple Pigou-style networks with symmetric and singleton strategies as in the non-atomic
case. Based on previous work of Suri et al. [27], Caragiannis et al. [8] showed that for a�ne
costs, the worst case is attained for asymmetric singleton strategies. For a similar result
for polynomial costs, see Gairing and Schoppmann [14]. In fact, for singleton games with
symmetric strategies, the price of anarchy is considerably better than in the general case. In
fact, Fotakis [11] showed that the price of anarchy of symmetric singleton atomic games is
equal to the price of anarchy of non-atomic games. This improves and generalizes previous
bounds by Lücking et al. [19] and Gairing et al. [13].

The class of k-uniform games that we consider in this paper is also related to the class of
integer-splittable congestion games introduced by Rosenthal [24] and the classes of k-splittable
and integer k-splittable congestion games studied by Meyers [20]. In contrast to our model,
the models above allowed that a player uses a resource with multiple units of demand at the
same time. It turns out that allowing for this kind of self-congestion has a severe impact on
the existence of pure Nash equilibria [10, 24] but for networks of parallel links it is known
that pure Nash equilibria are guranteed to exist [16, 28].

The impact of combinatorial structure on the existence and computability of pure Nash
equilibria in has been studied for many variants of congestion games. Ackermann et al. [2]
proved that for atomic games with unweighted players all sequences of best replies converge in
polynomial time to a pure Nash equilibrium if the set of strategies of each player corresponds
to the set of bases of a matroid. For weighted congestion games, the matroid property
guarantees the existence of a pure Nash equilibria [3] while without that property a pure
Nash equilibrium may fail to exist [15]. Similarly, congestion games with player-specific costs
and matroid strategies have a pure Nash equilibrium which can be computed e�ciently [3]
which is in contrast to the general case [21]. For similar results in the context of resource
buying games, see also Harks and Peis [17].

To the best of our knowledge, the impact of matroid structures on the e�ciency of
Nash equilibria has not been considered before. The only result in this direction is a a yet
unpublished work of Fujishige et al. [12]. They showed that Braess’ paradox cannot occur in
non-atomic games with matroid strategies, i.e., the quality of the user equilibrium cannot
deteriorate when removing a resource. This result, however, has no consequences for the
ine�ciency of equilbria in non-atmomic games since the worst case is attained for Pigou-style
networks where the strategies are symmetric and 2-uniform matroids.

2 Preliminaries

Let N = {1, . . . , n} be a finite set of players and let R be a finite set of resources. Each
player i is associated with a set of subsets of resources X

i

µ 2R allowable to her. A strategy
of a player is to choose a subset x

i

œ X

i

from this set. A strategy vector x = (x
i

)
iœN

consists of n strategies, one for each player. Every resource r is endowed with a cost function
c

r

: N æ R that maps the total number of its users x

r

= |{i œ N : r œ x

i

}| to a cost value
c

r

(x
r

). The private cost of player i in strategy vector x is then defined as

fi

i

(x) =
ÿ

rœxi

c

r

(x
r

).
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We use standard game theory notation; for a strategy vector x œ X = X1 ◊ · · · ◊ X

n

, a
player i and an alternative strategy y

i

œ X

i

, we denote by (y
i

, x≠i

) the strategy vector in
which all players play as in x except for i who plays y

i

. A strategy vector x is a Nash
equilibrium if,

fi

i

(x) Æ fi

i

(y
i

, x≠i

) for all i œ N and y

i

œ X

i

.

Given an instance of a game I = (N, R, X, (c
r

)
rœR

), we denote the set of Nash equilibria of
I by NE(I).

We are interested in how restrictions on the set of strategies of each player influence the
ine�ciency of equilibria. We measure the e�ciency of a strategy vector x œ X in terms of
the social costs C(x) defined as

C(x) =
ÿ

iœN

fi

i

(x).

We denote by OPT(I) the set of strategy vectors x that minimize C(x). For an instance I of
a game, the price of anarachy is defined as

PoA(I) = max
x

NEœNE(I)
C(xNE)

C(xOPT) ,

where x

OPT œ OPT(I) is a strategy vector minimizing C. For a class G of games, the price of
anarachy is defined as

PoA(G) = sup
IœG PoA(I).

We drop G whenever it is clear from context. We are specifically interested in singleton and
uniform matroid strategy spaces. A game is said to be a singleton game, if |x

i

| = 1 for all
x

i

œ X

i

and i œ N . A game is called k-uniform game if for each player, there is a subset
R

i

™ R such that

X

i

= {S ™ R

i

: |S| = k}.

A game is called symmetric, if X

i

= X

j

for all i, j œ N .

3 Symmetric k-Uniform Games

The main result of this paper is the following upper bound on the price of anarchy of
symmetric k-uniform matroid congestion games.

I Theorem 1. The price of anarchy of symmetric k-uniform matroid congestion games is
at most 28

13 ¥ 2.15.

For the proof of Theorem 1, we are going to to prove that C(xNE) Æ 28
13 C(xOPT) for any

given worst-case Nash equilibrium x

NE and optimal solution x

OPT, of an abritrary instance I

of a k-uniform matroid congestion game. For the remainder of this section, fix an instance I,
a worst-case Nash equilibrium x

NE and a system optimal solution x

OPT.
To gain some intuition on congestion games with k-uniform matroid strategies, let us

first consider the following example of a k-uniform matroid congestion game that will serve
as a running example throughout this section. Even though it has only a moderate price
of anarchy of 16/14, it showcases the crucial structures that we exploit later in this section
when proving Theorem 1.
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OPT 1 2 3 1 2 3 1

2

1 2 3 3

NE 1 2 3

c1(x)=1

1 2

c2(x)=1

3

c3(x)=x

2

1

c4(x)=x

2

1

c5(x)=x

3

c6(x)=x

3

c7(x)=x

A B

Figure 1 A symmetric 4-uniform matroid congestion game with seven resources. The hight of

the stack of each resource corresponds to its cost.

I Example 2. Consider the symmetric 4-uniform matroid congestion game in Figure 1. There
are seven resources R = {1, . . . , 7}. The first two resources have constant cost functions
c1(x) = c2(x) = 1 for all x œ N. The cost function of the other five resources is the identity,
i.e., c

r

(x) = x for all r œ {3, . . . , 7}. There are three players whose strategy is to choose
exactly 4 resources, i.e., X

i

= {S µ R : |S| = 4} for all i œ {1, 2, 3}. In the system optimum,
the two resources with constant costs are used by all players and each player chooses two of
the remaining five resources, see the upper profile in Figure 1. One of the resources with
non-constant costs has to be used by two players leading to overall costs of 14. However,
there is a Nash equilibrium, in which not all of the resources with constant costs are used by
all players, see the lower profile in Figure 1. This Nash equilibrium has a total cost of 16.
The price of anarchy of this instance is 16/14 ¥ 1.14.

In order to derive bounds on the price of anarchy for the proof of Theorem 1, we bound
the excess costs of the resources that are chosen by more players in the Nash equilibrium
than in the system optimum in terms of the excess costs of the resources that are chosen by
more players in the system optimum than in the Nash equilibrium. To this end, we denote
by A the set of resources chosen by more players in x

OPT than in x

NE, and by B the set of
resources chosen by more players in x

NE than in x

OPT, i.e.,

A =
Ó

r œ R : x

OPT
r

> x

NE
r

Ô
and B =

Ó
r œ R : x

OPT
r

< x

NE
r

Ô
. (1)

Henceforth, we call the resources in A are underdemanded and the resources in B are
overdemanded. For an illustration, see also Figure 1 where the set of underdemanded
resources is A = {2, 3} and the set of overdemanded resources is B = {4, 5}.

As we show in the following lemma, it is su�cient to bound the excess costs of the
resources in B in terms of the excess costs of of the resources in A in order to bound the
price of anarchy.

I Lemma 3. For a symmetric k-uniform congestion game with a�ne cost functions and A

and B as in (1), we have
3
4C(xNE) Æ C(xOPT) +

ÿ

bœB

1
x

NE
b

≠ x

OPT
b

2
c

b

(xNE
b

) ≠
ÿ

aœA

1
x

OPT
a

≠ x

NE
a

2
c

a

(xNE
a

+ 1). (2)

The proof is a rather straightforward generalization of a similar lemma due to Fotakis [11]
for singleton games. It is contained in the appendix.
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In order to use Lemma 3 for the proof of Theorem 1, we are interested in boundingq
bœB

!
x

NE
b

≠ x

OPT
b

"
c

b

(xNE
b

) ≠
q

aœA

!
x

OPT
a

≠ x

NE
a

"
c

a

(xNE
a

+ 1
"

in terms of C(xNE). It is
interesting to note that for symmetric singleton games, it holds that

c

r

(xNE) Æ c

r

Õ(xNE
r

Õ + 1) (3)

for all r, r

Õ œ R by the Nash inequality. This implies in particular that
ÿ

bœB

!
x

NE
b

≠ x

OPT
b

"
c

b

(xNE
b

) Æ
ÿ

aœA

!
x

OPT
a

≠ x

NE
a

"
c

a

(xNE
a

+ 1
"
, (4)

which together with Lemma 3 implies an upper bound on the price of anarchy of 4/3. This
is the road taken by Fotakis [11] in order to derive this bound.

However, neither inequality (3) nor inequality (4) hold in k-uniform matroid congestion
games due to the more complicated strategy spaces. E.g., for the Nash equilibrium x

NE

and system optimum x

OPT in Figure 1 we have c4(xNE
4 ) = 2 > c2(xNE

2 + 1) = 1 as well as
c4(xNE

4 )+c5(xNE
5 ) = 4 > 3 = c2(xNE

2 +1)+c3(xNE
2 +1). More generally speaking, inequality (4)

does not hold if all players choosing an overloaded resource b œ B in x

NE also choose an
underloaded resource a œ A. The main technical work in our proof of Theorem 1 is be to
derive an alternative upper bound for the right hand side in (2). Specifically, we will work
towards showing that for k-uniform congestion games, we have

ÿ

bœB

!
x

NE
b

≠ x

OPT
b

"
c

b

(xNE
b

) ≠
ÿ

aœA

!
x

OPT
a

≠ x

NE
a

"
c

a

(xNE
a

+ 1) Æ 2
7C(xNE) . (5)

In order to show inequality (5), some further notation is necessary. A natural way of
decomposing the cost of a strategy vector x is to consider the tuples (i, r) with the property
that player i uses resource r in strategy x. One may think of such a tuple as a single unit
of demand that player i places on resource r under strategy vector x. The cost of a unit of
demand is equal to the cost of the corresponding resource under that strategy profile, and
the cost of strategy profile is then equal to the sum of the costs of the units of demand. Let

P

A

™
)

(i, a) : a œ A, a œ x

NE
i

*

be a subset of the units of demand placed in x

NE on the resources in A such that

|{(i, a) œ P

A

}| = x

OPT
a

≠ x

NE
a

for all a œ A,

i.e., for each resource a œ A, P

A

contains exactly as many units of demand as there are more
on these resources in x

OPT than in x

NE. Similarly, let

P

B

™
)

(i, b) : b œ B, b œ x

OPT
i

*

be such that

|{(i, b) œ P

B

}| = x

NE
b

≠ x

OPT
b

for all b œ B.

Given these definitions, we want to bound the total costs of the units in P

B

with respect
to the total costs of the units in P

A

. We first identify a subset of these units, for which a
simple bound can be obtained, i.e., we identify units of demand (i, a) œ P

A

and (j, b) œ P

B

such that c

b

(xNE
b

) Æ c

a

(xNE
a

+ 1). For our purposes, it is su�cient to do this iteratively in a
greedy way, see the greedy cancelling process in Algorithm 1.
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P

Õ
A

Ω P

A

, P

Õ
B

Ω P

B

;
x

ÕOPT
a

Ω x

OPT
a

, ’a œ A;
x

ÕNE
b

Ω x

NE
b

, ’b œ B;
while true do

if there are (i, a) œ P

A

and (j, b) œ P

B

with c

b

(xNE
b

) Æ c

a

(xNE
a

+ 1) then

P

Õ
A

Ω P

Õ
A

\ {(i, a)};
P

Õ
B

Ω P

Õ
B

\ {(j, b)};
x

ÕOPT
a

Ω x

ÕOPT
a

≠ 1;
x

ÕNE
b

Ω x

ÕNE
b

≠ 1;
else

return P

Õ
A

, P

Õ
B

, x

ÕOPT
a

, ’a œ A, x

ÕNE
b

, ’b œ B;
end

end

Algorithm 1: Cancelling process

Intuitively, this algorithm maps all units of demand in P

B

whose cost are bounded by the
cost of another unit in P

A

and removes both units from the sets P

A

and P

B

. In the following,
we denote by P

Õ
A

™ P

A

and P

Õ
B

™ P

B

the set of units that survives this elimination. We
denote by x

ÕOPT
a

and x

ÕNE
b

the number of units of demand that survive this elimination on
each underdemanded and overdemanded resource respectively. Note that by definition of P

A

and P

B

, we have that x

ÕNE
b

Ø x

OPT
b

for b œ B, and x

ÕOPT
a

Ø x

NE
a

for a œ A after the cancelling.
Also note that during the course of the algorithm there may be di�erent pairs (i, a) œ P

A

and (j, b) œ P

B

for which the condition in the if-loop is satisfied. For our following arguments
it is irrelevant, which of these is removed from P

A

and P

B

. Let

A

Õ = {a œ A : there is (i, a) œ P

Õ
A

for some i œ N}, (6a)
B

Õ = {b œ B : there is (i, b) œ P

Õ
B

for some i œ N} (6b)

be the resources that remain over- respectively underdemanded in x

NE as opposed to
x

OPT after the cancelling process. The following lemma then follows directly by definition of
the above cancelling process and states that the cost of cancelled packets on B with respect
to c

b

(xNE
b

) is bounded by the cost of the cancelled packets on A with respect to c

a

(xNE
a

+ 1).

I Lemma 4. For a symmetric k-uniform congestion game with a�ne cost functions, A and
B as in (1), and A

Õ and B

Õ as in (6), we have
ÿ

bœB

(xNE
b

≠ x

ÕNE
b

)c
b

(xNE
b

) ≠
ÿ

aœA

(xOPT
a

≠ x

ÕOPT
a

)c
a

(xNE
a

+ 1) Æ 0 .

For the following arguments, it may be helpful to consult Figure 2 that shows the outcome of
the cancelling process and the resulting sets A

Õ and B

Õ for the congestion game introduced
in Example 2.

Let us define

P = {(i, r) : r œ R, r œ x

NE
i

} (7)

as the set of all units of demand in x

NE. The next lemma is the first, crucial ingredient
that allows us to obtain improved bounds on the price of anarchy. It states that for each
overdemanded unit of demand on a resource in P

Õ
B

, there are “enough” other units on other
resources. Subsequently, we are also going to bound the cost of these other units from below.



8 E�ciency of equilibria in uniform matroid congestion games

PB

PA

OPT . . .

1 2 3 1

2

1 2

. . .

NE . . .

1 2

c2(x)=1

3

c3(x)=x

2

1

c4(x)=x

2

1

c5(x)=x

. . .

A

A

Õ
B

Õ
B

Figure 2 Underloaded resources A = {2, 3} and overloaded resources B = {4, 5} for the game

considered in Example 2. In the cancelling process one unit of demand of resource 4 cancelled out

with a unit of demand of resource 3. After the cancelling process only resource 2 is underloaded and

only resource 5 is overloaded, i.e., A

Õ
= {2} and B

Õ
= {5}.

I Lemma 5. For a symmetric k-uniform congestion game with a�ne cost functions, let P

be as in (7) and let (P Õ
A

, P

Õ
B

) be the output of Algorithm 1. Then, |P \ P

Õ
B

| Ø 3|P Õ
B

|.

Proof. To prove the lemma, we identify for each unit of demand (i, b) œ P

Õ
B

a set of at least
three units of demand in P \ P

Õ
B

.
To this end, let l := |AÕ| and let p be the maximum units of demand put by a single

player on resources in B

Õ, i.e.

p := max
iœN

|{(i, b) œ P

Õ
B

}| .

Note that there are at least |P Õ
B

|/p players that have a unit of demand in P

Õ
B

. Since, the
units of demand in P

Õ
B

survived the cancelling process, and the cancelling process eliminates
units of demand in P

B

together with units of demands in P

A

with c

b

(xNE
b

) Æ c

a

(xNE
a

+ 1),
we derive that x

NE can only be a Nash equilibrium if all players with a unit of demand in
P

Õ
B

already use all resources in A

Õ. Put di�erently, for every |P Õ
B

|/p units of demand in P

Õ
B

,
there are l units of demand on resources in A

Õ, i.e., there are at least

l

|P Õ
B

|
p

(8)

units of demand on resources in A

Õ in x

NE. The above argumentation further implies that
k Ø l + p.

Further, there are |P Õ
A

| units of demand that were put on resources in A

Õ in x

OPT, that
are not there in x

NE. This implies the existence of a set N

Õ of players and q

i

œ {1, . . . , l} for
all i œ N

Õ such that each player i œ N

Õ uses q

i

resources in A

Õ less in x

NE than in x

OPT. For
each player i œ N

Õ, let q

Õ
i

Æ l ≠ 1 be the number of resources in A

Õ still used in x

NE. Each of
these players uses k resources in x

NE, but at most l ≠ 1 resources among those in A

Õ. Thus,
by the fact that x

NE is a Nash equilibrium and deviations from a resource in B

Õ to a resource
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in A

Õ are profitable, none of the players in N

Õ uses a resource in B

Õ in the Nash equilibrium.
We obtain that there are at least

ÿ

iœN

Õ

(k ≠ q

Õ
i

) (9)

units of demand in P \ (P Õ
B

fi P

Õ
A

) on resources in R \ (AÕ fi B

Õ). We next bound (9) from
below observing that

q
iœN

Õ q

Õ
i

Æ |N Õ|l ≠
q

iœN

Õ q

i

, as q

i

+ q

Õ
i

Æ l. Together with the fact that

|N Õ| Ø |P Õ
A

|
l

= |P Õ
B

|
l

we then obtain that there are at least
ÿ

iœN

Õ

(k ≠ q

Õ
i

) Ø |N Õ|(k ≠ l) +
ÿ

iœN

Õ

q

i

= |N Õ|(k ≠ l) + |P Õ
B

|

Ø |P Õ
B

|
l

(k ≠ l) + l

|P Õ
B

|
l

= k

|P Õ
B

|
l

(10)

units of demand in x

NE on resources in R \ (AÕ fi B

Õ). Given that in (8) we only accounted
for units of demand on resources in A

Õ, and in (10) we only accounted for units of demand on
resources in R \ (AÕ fi B

Õ), we do not count any units of demand twice when lower bounding
the number of units |P \ P

Õ
B

| by

l

|P Õ
B

|
p

+ k

|P Õ
B

|
l

Ø l

|P Õ
B

|
p

+
1

l + p

2 |P Õ
B

|
l

= |P Õ
B

|
1

1 + l

p

+ p

l

2
Ø 3|P Õ

B

|,

which establishes the result. J

Before we proceed, we provide two structural lemmas which restrict the space of instances
with worst-case price of anarchy.

I Lemma 6. The worst-case price of anarchy of symmetric k-uniform congestion games is
attained on games that have the property that no resource is chosen by all players both in an
optimal strategy vector and a worst-case Nash equilibrium.

The proof is by contradiction and can be found in the appendix. The next lemma is a
technical lemma specifically about the structure of worst-case instances with PoA(I) Ø 4/3.
Again, the proof is given in the appendix.

I Lemma 7. For any instance I of a symmetric k-uniform matroid congestion game with
a�ne cost functions and PoA(I) Ø 4/3 and a resource r œ R \ B

Õ, chosen by all players in
x

NE, there exists an instance Ĩ, with resource r removed, such that PoA(Ĩ) Ø PoA(I).

The restrictions on the structure of worst-case instances obtained in Lemma 7 will be
used later in the proof of Theorem 1. Before we can do that, however, we proceed to bound
the costs of the resources in A

Õ with the following two lemmas.

I Lemma 8. For a symmetric k-uniform congestion game with a�ne cost functions, we
have c

r

(xNE
r

) Æ 2c

r

Õ(xNE
r

Õ + 1) for any two resources r, r

Õ, where x

NE
r

Ø 1 and x

NE
r

Õ < n.

Proof. Let r, r

Õ be as in the statement of the lemma. Let us assume for contradiction that
c

r

(xNE
r

) > 2c

r

Õ(xNE
r

Õ + 1). Consider the set of resources

R

≠ =
)

r

≠ œ R : c

r

≠(xNE
r

≠) Æ c

r

Õ(xNE
r

Õ + 1)
*

.
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For each r

≠ œ R

≠, we have

c

r

≠(xNE
r

≠ + 1) Æ 2c

r

≠(xNE
r

≠) Æ 2c

r

Õ(xNE
r

Õ + 1) < c

r

(xNE
r

).

Since x

NE is a Nash equilibrium, no player can improve by choosing a resource r

≠ œ R

≠

instead of r. Thus, all players using r in x

NE must also use all resources r

≠ œ R

≠. This
implies in particular that |R≠| < k. As any player chooses exactly k resources, she chooses
at least one resource r̃ œ R \ R

≠. By definition of R

≠, c

r̃

(xNE
r̃

) > c

r

Õ(xNE
r

Õ + 1). Again, by the
Nash property, this implies that all players are using r

Õ, so x

NE
r

Õ = n, which contradicts the
assumption that x

NE
r

Õ < n. J

I Lemma 9. For a symmetric k-uniform congestion game with a�ne cost functions, we
have

ÿ

bœB

Õ

(xÕNE
b

≠ x

OPT
b

)c
b

(xNE
b

) Æ 2
ÿ

aœA

Õ

(xÕOPT
a

≠ x

NE
a

)c
a

(xNE
a

+ 1) .

Proof. First recall that x

NE
b

Ø 1 for all b œ B

Õ, and x

NE
a

< n for all a œ A

Õ as resources in
A

Õ ™ A are chosen more often in x

OPT than in x

NE. By Lemma 8, we can therefore conclude
that c

b

(xNE
b

) Æ 2c

a

(xNE
a

+ 1) for all resources b œ B

Õ and a œ A

Õ. Summing over all units of
demands in P

Õ
A

and P

Õ
B

, respectively, yields the result. J

We are now ready to prove our main theorem (Theorem 1).

Proof of Theorem 1. By Lemma 5, for each unit of demand in P

Õ
B

, there are three distinct
units of demand in x

NE on resources r œ R \ B

Õ. We bound the cost of each of these resource
units from below by

c

r

(xNE
r

) Ø c

r

(xNE
r

+ 1)
2 Ø c

b

(xNE
b

)
4 , (11)

for any b œ B. Here the first inequality follows directly from the fact that the cost functions
are a�ne. The second inequality follows from Lemma 8 for resources r with x

NE
r

< n.
However, by Lemma 7, it is without loss of generality to assume that no resource r œ R \ B

Õ

is chosen by all players in x

NE, unless the price of anarchy is not larger than 4/3. Therefore,
we finally get

C(xNE) Ø
ÿ

bœB

Õ

(xÕNE
b

≠ x

OPT
b

)c
b

(xNE
b

) +
ÿ

bœB

Õ

x

OPT
b

c

b

(xNE
b

) +
ÿ

rœR\B

Õ

x

NE
r

c

r

(xNE
r

)

Ø
ÿ

bœB

Õ

(xÕNE
b

≠ x

OPT
b

)c
b

(xNE
b

) +
ÿ

rœR\B

Õ

x

NE
r

c

r

(xNE
r

)

Ø7
4

ÿ

bœB

Õ

(xÕNE
b

≠ x

OPT
b

)c
b

(xNE
b

) . (12)

Here, the first inequality uses x

ÕNE
b

Æ x

NE
b

for any resource b œ B, which follows from the
cancelling process. The last inequality uses that

q
bœB

Õ(xÕNE
b

≠x

OPT
b

) = |P Õ
B

|, and by Lemma 5,q
rœR\B

Õ x

NE
r

Ø |P \ P

Õ
B

| Ø 3|P Õ
B

| = 3
q

bœB

Õ(xÕNE
b

≠ x

OPT
b

), and each of these resource units
has cost at least c

b

(xNE
b

)/4, for all b œ B by (11).
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Combining (12) with Lemma 4 and Lemma 9 yields
ÿ

bœB

(xNE
b

≠ x

OPT
b

)c
b

(xNE
b

) ≠
ÿ

aœA

(xOPT
a

≠ x

NE
a

)c
a

(xNE
a

+ 1)

Æ
ÿ

bœB

Õ

(xÕNE
b

≠ x

OPT
b

)c
b

(xNE
b

) ≠
ÿ

aœA

Õ

(xÕOPT
a

≠ x

NE
a

)c
a

(xNE
a

+ 1)

Æ1
2

ÿ

bœB

Õ

(xÕNE
b

≠ x

OPT
b

)c
b

(xNE
b

)

Æ2
7C(xNE) ,

where the first inequality is by Lemma 4, the second by Lemma 9, and the third by (12).
Finally, plugging this into (2) proves Theorem 1. J

4 Lower Bound

In this section, we show that generalizing the strategy spaces from singletons to k-uniform
matroids increases the price of anarchy of congestion games.

I Theorem 10. The price of anarchy of symmetric k-uniform congestion games with a�ne
cost functions is at least 7 ≠ 4

Ô
2 ¥ 1.343 for large enough k.

Proof. We first give a lower bound on the price of anarchy of 47/35 ¥ 1.3428, and then we
explain how to extend the example to construct a series of examples for which the price of
anarchy converges to 7 ≠ 4

Ô
2 > 1.343.

The set of resources is partitioned into 3 sets U , V , and W . The set U consists of two
resources with constant cost equal to 1, the set V consists of 6 resources and W consists of
21 resources. Each resource r œ V fi W has costs equal to the number of players using it,
i.e., c

r

(x
r

) = x

r

. There are seven players. Any set which consists of exactly 5 resources is a
feasible strategy.

A system optimum solution and a Nash equilibrium for this game is shown in Figure 3.
In the Nash equilibrium, players 5, 6 and 7 each choose five resources from set W and pay in
total a cost of 5. The four other players each choose two resources from U and share three
resources from V with one other player. Note that none of these players can improve by
deviating; all of them already use all resources in U , and all resources V fi W cost at least
2 after a deviation. This equilibrium yields a total cost of 4 ◊ 2 + 15 + 6 ◊ 2 ◊ 2 = 47. In
the system optimal strategy vector, each player chooses 2 resources in U , and 3 resources
in V fi W such that none of the resources in V fi W is used by more than one player. This
yields a total cost of 7 ◊ 5 = 35. We conclude that for this instance the price of anarchy is
equal to 47/35 ¥ 1.3428.

We can slightly improve this bound by optimizing over the number of resources contained
in the sets U , V , and W . To this end, for some integers p, q œ N, let the set of resources be
partitioned into three sets U , V , and W where U consists of q resources with constant cost 1,
V consists of p · q resources, and W consists of p(p + q) resources. As before, each resource
r in V or W has cost equal to the number of players choosing it, i.e. c

r

(x
r

) = x

r

. There
are p + 2q players. Any set which consists of exactly p + q resources is a feasible strategy.
Analogously to the example above, there is a Nash equilibrium where p players choose p + q

resources from W (yielding cost p + q for these players), and 2q players choose q resources
from U and share p resources from V with one other player. As before, none of these players
can improve by deviating; no more resources in U can be chosen, and all resources in V fi W
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Figure 3 A lower bound instance. Stacks and lines of packets correspond to resources. In the

system optimal solution, every resource is used by exactly one player while in the Nash equilibrium

six of the resources are used by 2 players each.

cost at least 2. This equilibrium yields a total cost of p(p + q) + 2q(q + 2p) = p

2 + 5pq + 2q

2.
In the system optimum, each player chooses q resources in U , and p free resources in V fi W ,
yielding a total cost of (p + 2q)(p + q) = p

2 + 3pq + 2q

2. This implies for the price of anarchy
of k-uniform congestion games with a�ne costs that

PoA Ø sup
p,qœN

p

2 + 5pq + 2q

2

p

2 + 3pq + 2q

2 = sup
p,qœN

!
p

q

"2 + 5 p

q

+ 2
!

p

q

"2 + 3 p

q

+ 2
= max

xœRØ0

x

2 + 5x + 2
x

2 + 3x + 2 .

Basic calculus shows that this maximum is attained at x =
Ô

2, yielding PoA Ø 7 ≠ 4
Ô

2. For
p, q œ Z, we can get arbitrarily close to this value. In our first example p = 3 and q = 2. J

5 Conclusions

The most interesting open problem, next to improving lower and upper bounds for the
k-uniform matroid case we study here, is to analyze the price of anarchy for the generalized
problem with arbitrary matroid strategy spaces.
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A Omitted Proofs

Proof of Lemma 3. For any resource a œ A we have that

x

NE
a

c

a

(xNE
a

) = x

OPT
a

c

a

(xOPT
a

) ≠ x

OPT
a

c

a

(xOPT
a

) + x

NE
a

c

a

(xNE
a

)
Æ x

OPT
a

c

a

(xOPT
a

) ≠ x

OPT
a

c

a

(xNE
a

+ 1) + x

NE
a

c

a

(xNE
a

+ 1)
= x

OPT
a

c

a

(xOPT
a

) ≠ (xOPT
a

≠ x

NE
a

)c
a

(xNE
a

+ 1)

The second inequality uses that x

NE
a

+ 1 Æ x

OPT
a

by the definition of A, and that the
cost-functions are non-decreasing. For any resource b œ B, we have

x

NE
b

c

b

(xNE
b

) = x

OPT
b

c

b

(xNE
b

) + (xNE
b

≠ x

OPT
b

)c
b

(xNE
b

)

Æ x

OPT
b

c

b

(xOPT
b

) + 1
4x

NE
b

c

b

(xNE
b

) + (xNE
b

≠ x

OPT
b

)c
b

(xNE
b

)

Here, the inequality uses that the cost function is of the form c

b

(x) = –x + — with –, — Ø 0
and, thus,

x

OPT
b

c

b

(xNE
b

) = –x

OPT
b

x

NE
b

+ —x

OPT
b

Æ –x

OPT
b

x

OPT
b

+ —x

OPT
b

+ 1
4–x

NE
b

x

NE
b

Æ x

OPT
b

c

b

(xOPT
b

) + 1
4x

NE
b

c

b

(xNE
b

),

since

0 Æ
A

x

OPT
b

≠ x

NE
b

2

B2

= (xOPT
b

)2 +
A

x

NE
b

2

B2

≠ x

OPT
b

x

NE
b

for all b œ B. Finally, for any resource r œ R \ (A fi B) we have that

x

NE
b

c

b

(xNE
b

) = x

OPT
b

c

b

(xOPT
b

)

Summing over all resources yields:

c(xNE) =
ÿ

aœA

x

NE
a

c

a

(xNE
a

) +
ÿ

bœB

x

NE
b

c

b

(xNE
b

) +
ÿ

rœR\(AfiB)
x

NE
r

c

r

(xNE
r

)

=
ÿ

rœR

x

OPT
r

c

r

(xOPT
r

) + 1
4

ÿ

bœB

x

NE
b

c

b

(xNE
b

)

+
ÿ

bœB

(xNE
b

≠ x

OPT
b

)c
b

(xNE
b

) ≠
ÿ

aœA

(xOPT
a

≠ x

NE
a

)c
a

(xNE
a

+ 1)

Æ C(xOPT) + 1
4C(xNE) +

ÿ

bœB

(xNE
b

≠ x

OPT
b

)c
b

(xNE
b

)

≠
ÿ

aœA

(xOPT
a

≠ x

NE
a

)c
a

(xNE
a

+ 1),
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which establishes the claimed result. J

Proof of Lemma 6. Let I be an arbitrary symmetric k-uniform congestion game, let x

NE be
an arbitrary Nash equilibrium of I maximizing C( · ) and let x

OPT be an arbitrary strategy
vector minimizing C( · ).

Assume there is a resource r used by all players in both x

NE and x

OPT. We show that
resource r can be removed without decreasing the price of anarchy. Let Ĩ be the symmetric
(k ≠1)-uniform congestion game that has the same set of players as I, but the set of resources
is reduced by r. Consider the strategy vector x̃

NE in Ĩ where every player chooses the same
resources as in x

NE except for r. Then x̃

NE is a Nash equilibrium in Ĩ. This implies that the
Nash equilibrium x̃

NE with highest cost in Ĩ has cost

C(x̃NE) Ø C(xNE) ≠ c

r

(n)n (13)

Moreover, let x̃

OPT be the strategy vector of Ĩ where all players choose the same resources
as in x

OPT, except for r. Then the optimality of x

OPT for I yields that x̃

OPT must be optimal
for Ĩ.

We have thus established that

PoA(I) = C(xNE)
C(xOPT) Æ C(x̃NE) + c

r

(n)
C(x̃OPT) + c

r

(n) Æ PoA(Ĩ).

Successive elimination of all such resources r yields the claimed result. J

Proof of Lemma 7. Consider an instance I with resource r œ R \ B

Õ that is chosen by all
players in a worst-case Nash equilibrium x

NE. By Lemma 6, we may assume that r is not
chosen by all players in x

OPT, which implies x

NE
r

> x

OPT
r

and, hence, r œ B.
Since r is not in B

Õ, q = x

NE
r

≠ x

OPT
r

units of demand on r were canceled out during
the cancelling process described in Algorithm 1. This implies the existence of q resources
r1, . . . , r

q

with c

ri(xOPT
ri

) Ø c

ri(xNE
ri

+ 1) Ø c

r

(xNE
r

) for all i œ {1, . . . , q}. The first inequality
follows from r

i

œ A for all i œ {1, . . . , q}. The second inequality follows from the canceling
procedure.

Analogously to the proof Lemma 6, let Ĩ be the symmetric (k ≠ 1)-uniform congestion
games with resource r removed. The strategy vector x̃

NE in Ĩ where every player chooses the
same resources as in x

NE, except for r, is a Nash equilibrium for Ĩ. It has cost C(xNE)≠c

r

(n)n.
This implies that the Nash equilibrium x̃

NE with highest cost in Ĩ has cost

C(x̃NE) Ø C(xNE) ≠ c

r

(n)n (14)

We proceed to argue about the cost of an optimal strategy vector for Ĩ. To this end,
note that it is feasible to remove one unit of demand for each player from x

OPT. For all
players i with r œ x

OPT
i

, we may simply remove the unit of demand put on r (since r is
removed anyways). For all other players, by the cancelling process, there is a resource r

i

,
i œ {1, . . . , q} with costs c

ri(xOPT
ri

) Ø x

NE
r

, so we may remove the unit of demand put on this
resource. This yields a feasible solution, and therefore the cost of an optimal strategy vector
x̃

OPT for Ĩ is at most

C(x̃OPT) Æ C(xOPT) ≠ x

OPT
r

c

r

(xOPT
r

) ≠
ÿ

i=1,...,q

c

ri(xOPT
ri

)

Æ C(xOPT) ≠ x

OPT
r

c

r

(xOPT
r

) ≠ (n ≠ x

OPT
r

)c
r

(n)

Æ C(xOPT) ≠ 3
4c

r

(n)n . (15)
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Note that the last inequality follows by basic algebra because of the fact that the cost
functions are a�ne. Inequalities (14) and (15) together imply that

PoA(Ĩ) Ø C(xNE) ≠ c

r

(n)n
C(xOPT) ≠ 3

4 c

r

(n)n
= C(xNE) ≠ c

r

(n)n
1

PoA(I) C(xNE) ≠ 3
4 c

r

(n)n
Ø C(xNE) ≠ c

r

(n)n
C(x

NE)≠cr(n)n

PoA(I)
= PoA(I)

Here, observe that the last inequality follows because PoA(I) Ø 4/3, and as C(xNE) Ø
c

r

(n)n. J
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