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ABSTRACT
This is the appendix to the paper Temporal Analysis of
Static Priority Preemptive Scheduled Cyclic Streaming Ap-
plications using CSDF Models [1].

The temporal analysis approach presented in [1] makes
use of an iterative algorithm that computes so-called maxi-
mum busy periods over multiple task phases. The algorithm
contains a stop criterion indicating after which iteration of
the algorithm subsequent iterations do not need to be con-
sidered. The intuition behind that stop criterion is given
in the paper and supplemented by a formal proof in this
appendix.

A1. VALIDITY OF THE STOP CRITERION
Figure A1 recaps the algorithm presented in Figure 7 of [1].

In order to prove the validity of the stop criterion in line 14
we need to distinguish between the maximum busy periods
and maximum finish times computed in different iterations.

Consequently we introduce an index n that we use for w
′〈n〉
ix ,

w
〈n〉
ix , Z〈n〉ix and f̂

〈n〉
ix′ . We define the relation between x,

x′ = x′n, q = qn and n as follows:

n = qn ·Θi + x′n − x
As one can easily see this definition leads to n being initially
zero and increasing by one in each iteration of the while-loop.
Using this indexing and taking into account that x′ = xmust
hold for exiting the while-loop we can reformulate the stop
criterion more explicitly as follows (with q∗ the q for which
the stop criterion is met):

w
′〈q∗Θi−1〉
ix ≤ q∗ · Pi (A1)

Note that the term −1 appears as the increase of n to q∗Θi

(and thus x′ = x) occurs after the computation of the last
maximum busy period. Moreover, the stop criterion for q∗

would not be checked if it were already true for a q′ with
0 < q′ < q∗. This implies:

∀0<q′<q∗ : w
′〈q′·Θi−1〉
ix > q′ · Pi (A2)

In the following we prove that given these two criteria we

do not have to consider any w
′〈q∗Θi+k〉
ix with k ≥ 0 as the

maximum finish times of task phases cannot become larger
for any of these maximum busy periods. We conduct the
proof by comparing interference characterizations, then ex-
tend these observations to maximum busy periods and fi-
nally maximum finish times. We begin with the period-and-
jitter interference characterization:
Lemma A1. It holds:

∀k≥0 : ηjy(w
′〈q∗Θi+k〉
ix )− ηjy(w

′〈q∗Θi−1〉
ix ) ≤ ηjy(w

′〈k〉
ix )

w
′〈q∗Θi+k〉
ix − w

′〈q∗Θi−1〉
ix ≤ w

′〈k〉
ix

Proof. With the subadditivity of the ceiling function
da + be ≤ dae + dbe it follows with a = c − d and b = d

1 ∀0≤x<Θi
: f̂ix = 0 ;

2 f o r a l l (x : ejyix ∈ Eext ) {
3 x′ = x ; q = 0 ; w′ix = wix = 0 ; Zix = ∅ ;
4 do {
5 w⊕

′
ix = Cix′ +

∑
jy∈hp(i)

[ηjy(w
′
ix + w

⊕′
ix )− ηjy(w

′
ix)] · Cjy ;

6

w⊕ix = Cix′ +
∑

jy∈hp(i)

[ γjy(w
′
ix + w⊕

′
ix ,Zix ∪ {(vix′ , q)})

−γjy(w
′
ix,Zix)] · Cjy ;

7 w
′
ix = w

′
ix + w⊕

′
ix ; wix = wix + w⊕ix ;

8 Zix = Zix ∪ {(vix′ , q)} ;

9 f̂ix′ = max(f̂ix′ , ŝ
ext
ix + wix − q · Pi) ;

10 x′ + + ;

11 i f (x′ = Θi ) {
12 q + + ; x′ = 0 ;
13 }
14 } whi le (x′ 6= x | | w

′
ix > q · Pi ) ;

15 }

Figure A1: Algorithm to compute upper bounds on
finish times of task phases (same as Figure 7 of [1]).

that dce − dde ≤ dc− de and with Ĵjy ≥ 0:

ηjy(∆t1)− ηjy(∆t2) =

⌈
Ĵjy + ∆t1

Pi

⌉
−

⌈
Ĵjy + ∆t2

Pi

⌉

≤

⌈
Ĵjy + ∆t1 −∆t2

Pi

⌉
= ηjy(∆t1 −∆t2) (A3)

By adding up extensions of maximum busy periods accord-

ing to the algorithm in Figure A1 it follows that w
′〈q∗Θi+k〉
ix −

w
′〈q∗Θi−1〉
ix is the fixed point of a function f(∆t) and w

′〈k〉
ix

the fixed point of a function g(∆t) with:

f(∆t) =

k∑
k′=0

Cix′
k′

+
∑

jy∈hp(i)

[ ηjy(w
′〈q∗Θi−1〉
ix + ∆t)

−ηjy(w
′〈q∗Θi−1〉
ix )] · Cjy

g(∆t) =

k∑
k′=0

Cix′
k′

+
∑

jy∈hp(i)

ηjy(∆t) · Cjy

Note that in the definition of f(∆t) we have used ∀0≤k′≤k :
x′q·Θi+k′

= x′k′ . From Equation A3 it immediately follows
that ∀∆t : f(∆t) ≤ g(∆t). With the monotonicity of both
f(∆t) and g(∆t) and with f(0) ≥ 0 one can further conclude
that also the fixed point of f(∆t) must be smaller or equal
to the fixed point of g(∆t), i.e.:

w
′〈q∗Θi+k〉
ix − w

′〈q∗Θi−1〉
ix ≤ w

′〈k〉
ix

And with Equation A3:

ηjy(w
′〈q∗Θi+k〉
ix )− ηjy(w

′〈q∗Θi−1〉
ix )

≤ ηjy(w
′〈q∗Θi+k〉
ix − w

′〈q∗Θi−1〉
ix ) ≤ ηjy(w

′〈k〉
ix )
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Lemma A1 allows us to prove similar inequalities for the
combined interference characterizations, with a restriction
that we relax in Lemma A4.
Lemma A2. If it holds ∀jy∈hp(i) : ζjy(Z〈q

∗Θi−1〉
ix ) ≥ q∗ it

follows with Equations A1 and A2:

∀k≥0 : γjy(w
′〈q∗Θi+k〉
ix ,Z〈q

∗Θi+k〉
ix ) (A4)

− γjy(w
′〈q∗Θi−1〉
ix ,Z〈q

∗Θi−1〉
ix ) ≤ γjy(w

′〈k〉
ix ,Z〈k〉ix )

w
〈q∗Θi+k〉
ix − w〈q

∗Θi−1〉
ix ≤ w

〈k〉
ix (A5)

Proof. Recall that γjy(∆t,Zi) is defined in Section 6.4
of [1] as:

γjy(∆t,Zi) = min(ηjy(∆t), ζjy(Zi))
If actors vi and vj are not connected via a cycle, for in-
stance because the corresponding tasks belong to different
task graphs, the interference characterizations considering
cyclic data dependencies ζjy(Zi) all result in infinity and
Equation A4 becomes the upper inequality of Lemma A1.

However, if both actors are connected via a cycle we have
to differ between two cases. In the first case we assume that
ηjy(w

′〈q∗Θi−1〉
ix ) < ζjy(Z〈q

∗Θi−1〉
ix ). Then the left-hand side

of Equation A4 resolves to:

γjy(w
′〈q∗Θi+k〉
ix ,Z〈q

∗Θi+k〉
ix )− γjy(w

′〈q∗Θi−1〉
ix ,Z〈q

∗Θi−1〉
ix )

= min(ηjy(w
′〈q∗Θi+k〉
ix ), ζjy(Z〈q

∗Θi+k〉
ix ))− ηjy(w

′〈q∗Θi−1〉
ix )

≤ min(ηjy(w
′〈k〉
ix ), δ(Pix′

k
jy) + δ(Pjyix) + q∗ + qk − 1− q∗)

= min(ηjy(w
′〈k〉
ix ), ζjy(Z〈k〉ix )) = γjy(w

′〈k〉
ix ,Z〈k〉ix )

For the first argument of the minimum function we have used
Lemma A1 and for the second argument we have substituted

ζjy(Z〈q
∗Θi+k〉

ix ) using Equation 3 of [1], which is:

ζjy(Zi) = δ(Pix̂jy) + q̂ + δ(Pjyix̌)− q̌ − 1 (A6)

Thereby we have taken into account that Z〈q
∗Θi+k〉

ix has the
following suprema and infima with respect to the ordering
relation defined in Section 6.4 of [1]:

(vix̂, q̂) = (vix′
q∗Θi+k

, qq∗Θi+k) = (vix′
k
, q∗ + qk)

(vix̌, q̌) = (vix, 0)

And with Equation A2 and Pi = Pj (which is implied by
actors vi and vj being on a cycle, i.e. belonging to the
same task graph) we have further concluded for the second
argument:

ηjy(w
′〈q∗Θi−1〉
ix ) ≥ ηjy((q∗ − 1) · Pi)

=

⌈
Ĵjy + (q∗ − 1) · Pi

Pj

⌉
=

⌈
Ĵjy
Pj

⌉
+ q∗ − 1

≥ q∗

In the second case we assume that ηjy(w
′〈q∗Θi−1〉
ix ) ≥

ζjy(Z〈q
∗Θi−1〉

ix ). Then the left-hand side of Equation A4 re-
solves to:

γjy(w
′〈q∗Θi+k〉
ix ,Z〈q

∗Θi+k〉
ix )− γjy(w

′〈q∗Θi−1〉
ix ,Z〈q

∗Θi−1〉
ix )

= min(ηjy(w
′〈q∗Θi+k〉
ix ), ζjy(Z〈q

∗Θi+k〉
ix ))− ζjy(Z〈q

∗Θi−1〉
ix )

≤min(q∗ + ηjy(w
′〈k〉
ix ), δ(Pix′

k
jy) + δ(Pjyix) + q∗ + qk − 1)

− q∗

= min(ηjy(w
′〈k〉
ix ), ζjy(Z〈k〉ix )) = γjy(w

′〈k〉
ix ,Z〈k〉ix )

For the first argument of the minimum function we have
used Lemma A1, the subadditivity of the ceiling function,

vix

vjy

vix′

vjy

vix′
(a) (b)

vjy

vix′

vixvix

Figure A2: Special case ζjy(Z〈q
∗Θi−1〉

ix ) < q∗.

Equation A1 and Pi = Pj such that:

ηjy(w
′〈q∗Θi+k〉
ix ) ≤ ηjy(w

′〈q∗Θi−1〉
ix + w

′〈k〉
ix ) (A7)

≤

⌈
w
′〈q∗Θi−1〉
ix

Pj

⌉
+

⌈
Ĵjy + ηjy(w

′〈k〉
ix )

Pj

⌉

≤
⌈
q∗ · Pi
Pj

⌉
+ ηjy(w

′〈k〉
ix ) = q∗ + ηjy(w

′〈k〉
ix )

For the second argument we have again applied the sub-
stitution via Equation A6. Finally we have used that

ζjy(Z〈q
∗Θi−1〉

ix ) ≥ q∗.
This lets us conclude that Equation A4 holds for all

jy ∈ hp(i) if ∀jy∈hp(i) : ζjy(Z〈q
∗Θi−1〉

ix ) ≥ q∗. In words this
means that the differences between the interference char-
acterizations of w

′〈q∗Θi+k〉
ix and w

′〈q∗Θi−1〉
ix are smaller or

equal to the interference characterizations of w
〈k〉
ix for all

jy ∈ hp(i).
Finally one can see from the algorithm in Figure A1 that

if Equation A4 holds for all jy ∈ hp(i) also the difference be-

tween the maximum busy periods w
′〈q∗Θi+k〉
ix and w

′〈q∗Θi−1〉
ix

must be smaller than the maximum busy period w
〈k〉
ix , i.e.

Equation A5 holds as well.

These lemmas allow us to establish a relation between the
maximum finish time computations in algorithm iterations
q∗Θi + k and k:

Lemma A3. If it holds ∀jy∈hp(i) : ζjy(Z〈q
∗Θi−1〉

ix ) ≥ q∗ it
follows with Equations A1 and A2 for the arguments of the
maximum function in line 9 of the algorithm that:

∀k≥0 : ŝextix +w
〈q∗Θi+k〉
ix −qq∗Θi+k ·Pi ≤ ŝ

ext
ix +w

〈k〉
ix −qk ·Pi

Proof. Using Lemma A2, qq∗Θi+k = q∗ + qk and Equa-
tion A1 it follows:

ŝextix + w
〈q∗Θi+k〉
ix − qq∗Θi+k · Pi

≤ ŝextix + w
〈q∗Θi−1〉
ix + w

〈k〉
ix − (q∗ + qk) · Pi

≤ ŝextix + q∗ · Pi + w
〈k〉
ix − (q∗ + qk) · Pi

= ŝextix + w
〈k〉
ix − qk · Pi

Now we show that Lemma A3 also holds if the restriction
ζjy(Z〈q

∗Θi−1〉
ix ) ≥ q∗ is not true for all jy ∈ hp(i):

Lemma A4. Lemma A3 still holds if it holds for one or

more jy ∈ hp(i) that ζjy(Z〈q
∗Θi−1〉

ix ) < q∗.

Proof. First assume that it holds for only one jy ∈ hp(i)
that ζjy(Z〈q

∗Θi−1〉
ix ) < q∗. From Equation A6 and the or-

dering relation in Section 6.4 of [1] it follows that ζjy(Z〈n〉ix )
increases by one if n is increased by Θi. Thus it holds that:

∀q′≥1 : ζjy(Z〈(q
′
+1)Θi−1〉

ix ) = ζjy(Z〈q
′
Θi−1〉

ix ) + 1

From ζjy(Z〈q
∗Θi−1〉

ix ) < q∗ it therefore follows that also

ζjy(Z〈Θi−1〉
ix ) < 1 and thus ζjy(Z〈Θi−1〉

ix ) = 0 must hold.
If vix is not the first phase of actor vi (i.e. 0 < x < Θi)

then q must have already become one before iteration Θi−1
of the algorithm in Figure A1. With vix′ the immediate



vix

(i)

vix

vjy

vix′vix′

vlz

vjy
(ii)

vlz

Figure A3: Case (a) for ζjy(Z〈q
∗Θi−1〉

ix ) < q∗ and

ζlz(Z〈q
∗Θi−1〉

ix ) < q∗.

predecessor of vix this implies that the supremum of Z〈Θi−1〉
ix

is (vix̂, q̂) = (vix′ , 1), whereas the infimum of Z〈Θi−1〉
ix is

(vix̌, q̌) = (vix, 0). According to Equation A6 it then follows

with ζjy(Z〈Θi−1〉
ix ) = 0:

ζjy(Z〈Θi−1〉
ix ) = δ(Pix′jy) + δ(Pjyix) + 1− 1 = 0

This equation can only be true if both δ(Pix′jy) and δ(Pjyix)
are zero, as depicted in Figure A2(a).

If vix is the first phase of actor vi (i.e. x = 0) then q just
becomes one at the end of algorithm iteration Θi − 1. This

implies that the supremum of Z〈Θi−1〉
ix is (vix̂, q̂) = (vix′ , 0)

and it follows with ζjy(Z〈Θi−1〉
ix ) = 0:

ζjy(Z〈Θi−1〉
ix ) = δ(Pix′jy) + δ(Pjyix)− 1 = 0

In this case the equation can only be true if either δ(Pix′jy)
or δ(Pjyix) is one and the other zero, as depicted in Fig-
ure A2(b).

In both cases (a) and (b) it holds that vix′ and vix can
never be in consecutive execution as vjy is always executed
in between. This intermediate execution of vjy is however
already conservatively considered in the worst-case Linear
Program (LP) presented in Section 7 of [1], which is:

Minimize
∑

vix∈V
ŝextix + ŝix

Subject to ŝs0 = 0

∀eixjy∈Eext : ŝextjy − ŝix ≥ ρ̂ix − δ(eixjy) · Pj
∀eixjy∈E〈2,exp〉 : ŝjy − ŝix ≥ ρ̂ix − δ(eixjy) · Pj

From this follows for case (a) that ŝjy ≥ ŝix′ + ρ̂ix′ and
ŝextix ≥ ŝjy + ρ̂jy and for case (b) with Pi = Pj that ŝjy ≥
ŝix′ + ρ̂ix′ −Pi and ŝextix ≥ ŝjy + ρ̂jy or ŝjy ≥ ŝix′ + ρ̂ix′ and

ŝextix ≥ ŝjy+ρ̂jy−Pi. Thus it also holds that ŝextix ≥ f̂ix′+Cjy
in case (a) and ŝextix ≥ f̂ix′ + Cjy − Pi in case (b).

With f̂ix′ ≥ ŝextix + w
〈Θi−1〉
ix − Pi in case (a) and f̂ix′ ≥

ŝextix +w
〈Θi−1〉
ix in case (b) it further holds for both cases that

w
〈Θi−1〉
ix +Cjy ≤ Pi, which implies that the stop criterion is

already met for q∗ = 1.
Now assume that it holds for multiple jy ∈ hp(i) that

ζjy(Z〈q
∗Θi−1〉

ix ) < q∗. Figure A3 depicts case (a) for two such
phases jy, lz ∈ hp(i) (case (b) and more than two phases can
be constructed analogously).

In case (i) the two phases are always firing one after the
other. Thus it follows from the worst-case LP that ŝjy ≥
ŝix′+ ρ̂ix′ , ŝlz ≥ ŝjy+ ρ̂jy and ŝextix ≥ ŝlz+ ρ̂lz from which we

conclude with the same reasoning as above that w
〈Θi−1〉
ix +

Cjy + Clz ≤ Pi.
In case (ii) the two phases are firing in parallel. Thus

it follows from the worst-case LP that ŝjy ≥ ŝix′ + ρ̂ix′ ,
ŝlz ≥ ŝix′ + ρ̂ix′ and ŝextix ≥ max(ŝjy + ρ̂jy, ŝlz + ρ̂lz).

From this we derive with above reasoning that w
〈Θi−1〉
ix +

max(ρ̂jy, ρ̂lz) ≤ Pi. Additionally we know that the phases
vjy and vlz cannot be on a cycle with one token (otherwise
we would have case (i) again), which implies that the phases
can interfere with each other. As one of the two phases must

have a higher priority than the other it follows that either
ρ̂jy ≥ Cjy + Clz or ρ̂lz ≥ Cjy + Clz. This lets us conclude

again that w
〈Θi−1〉
ix + Cjy + Clz ≤ Pi.

This observation can be generalized as follows. Let
hp′(i) be the set of all jy ∈ hp(i) for which it holds that

ζjy(Z〈q
∗Θi−1〉

ix ) < q∗. If the set is not empty it holds that
the stop criterion is already met for q∗ = 1 and it holds:

w
〈Θi−1〉
ix +

∑
jy∈hp′(i)

Cjy ≤ Pi (A8)

Moreover it holds for all jy ∈ hp′(i):

[γjy(w
′〈Θi+k〉
ix ,Z〈Θi+k〉

ix )− γjy(w
′〈Θi−1〉
ix ,Z〈Θi−1〉

ix )] · Cjy

= [min(ηjy(w
′〈Θi+k〉
ix ), ζjy(Z〈Θi+k〉

ix ))− 0] · Cjy

≤ [min(1 + ηjy(w
′〈k〉
ix ), ζjy(Z〈k〉ix ) + 1)] · Cjy

= [γjy(w
′〈k〉
ix ,Z〈k〉ix ) + 1] · Cjy

For the first argument of the minimum function we have used
Equation A7 from the proof of Lemma A2, for the second

argument that ζjy(Z〈n〉ix ) increases by one if n is increased

by Θi and for γjy(w
′〈Θi−1〉
ix ,Z〈Θi

ix ) that ζjy(Z〈Θi−1〉
ix ) = 0.

From this and Lemma A2 for the other jy ∈ hp(i) \ hp′(i)
it follows:

w
〈Θi+k〉
ix − w〈Θi−1〉

ix ≤ w〈k〉ix +
∑

jy∈hp′(i)

Cjy (A9)

If hp′(i) 6= ∅ (i.e. ∃jy∈hp(i) : ζjy(Z〈q
∗Θi−1〉

ix ) < q∗) we can
therefore conclude with Equation A8 that q∗ = 1 and with
qΘi+qk = 1+qk and Equations A8 and A9 that for all k ≥ 0:

ŝextix + w
〈Θi+k〉
ix − qΘi+qk · Pi

≤ ŝextix + w
〈Θi−1〉
ix + w

〈k〉
ix +

∑
jy∈hp′(i)

Cjy − (1 + qk) · Pi

≤ ŝextix + Pi + w
〈k〉
ix − (1 + qk) · Pi

= ŝextix + w
〈k〉
ix − qk · Pi

Finally we can prove that if Equation A1 holds we do not
need to consider any maximum finish times computed after
the stop criterion is met:
Lemma A5. It follows with Equation A1 for the maximum
finish times computed with the algorithm that:

∀k≥0 : f̂
〈q∗Θi+k〉
ix′ = f̂

〈q∗Θi−1〉
ix′

Proof. Based on line 9 of the algorithm and our indexing
scheme we can write the maximum finish times computed in
an iteration n as follows:

f̂
〈n〉
ix′ = max

0≤n′≤n
(ŝextix + w

〈n′〉
ix − qn′ · Pi)

Moreover we can rewrite any k ≥ 0 as k = l · q∗Θi +k′, with
l ≥ 0 and 0 ≤ k′ ≤ q∗Θi − 1. Considering that Lemma A4
holds we obtain by iteratively applying Lemma A3 for all
k ≥ 0:

ŝextix + w
〈q∗Θi+k〉
ix − qq∗Θi+k · Pi

= ŝextix + w
〈(l+1)·q∗Θi+k

′〉
ix − q(l+1)·q∗Θi+k′ · Pi

≤ ŝextix + w
〈l·q∗Θi+k

′〉
ix − ql·q∗Θi+k′ · Pi

≤ . . . ≤ ŝextix + w
〈k′〉
ix − qk′ · Pi



From this we finally get with 0 ≤ k′ ≤ q∗Θi − 1:

f̂
〈q∗Θi+k〉
ix′ = max

0≤n≤q∗Θi+k
(ŝextix + w

〈n〉
ix − qn · Pi)

= max
0≤n≤q∗Θi−1

(ŝextix + w
〈n〉
ix − qn · Pi)

= f̂
〈q∗Θi−1〉
ix′

Lemma A5 implies that as soon as the stop criterion is
met we know that thereafter the maximum finish times can-
not increase anymore, which proves the validity of the stop
criterion.
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