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ABSTRACT

This is the appendix to the paper Temporal Analysis of
Static Priority Preemptive Scheduled Cyclic Streaming Ap-
plications using CSDF Models [1].

The temporal analysis approach presented in [1] makes
use of an iterative algorithm that computes so-called maxi-
mum busy periods over multiple task phases. The algorithm
contains a stop criterion indicating after which iteration of
the algorithm subsequent iterations do not need to be con-
sidered. The intuition behind that stop criterion is given
in the paper and supplemented by a formal proof in this
appendix.

Al. VALIDITY OF THE STOP CRITERION

Figure A1 recaps the algorithm presented in Figure 7 of [1].
In order to prove the validity of the stop criterion in line 14
we need to distinguish between the maximum busy periods
and maximum finish times computed in different iterations.
(n)

’
Consequently we introduce an index n that we use for w;, ',

wi(;w, ny and f;;ﬁ). We define the relation between x,

2’ =z}, ¢ = g, and n as follows:
n:qn-@iJra:/nfx

As one can easily see this definition leads to n being initially
zero and increasing by one in each iteration of the while-loop.
Using this indexing and taking into account that 2’ = x must
hold for exiting the while-loop we can reformulate the stop
criterion more explicitly as follows (with ¢* the g for which
the stop criterion is met):
"(¢*©;-1)

W,y <q - P (A1)

Note that the term —1 appears as the increase of n to ¢*©;
(and thus 2’ = x) occurs after the computation of the last
maximum busy period. Moreover, the stop criterion for ¢*
would not be checked if it were already true for a ¢’ with
0 < ¢’ < ¢*. This implies:

"(q'-©;—1)

Vo<g/<gr i Wy >q P (A2)

In the following we prove that given these two criteria we

’ *
do not have to consider any wi;q Otk with k > 0 as the
maximum finish times of task phases cannot become larger
for any of these maximum busy periods. We conduct the
proof by comparing interference characterizations, then ex-
tend these observations to maximum busy periods and fi-
nally maximum finish times. We begin with the period-and-
jitter interference characterization:
Lemma A1l. It holds:

. !’ *®1+k ’ *®L71 /<k>
Viso: 1y (w; 1) =y (w,? N < gy (w)
"q*Oit+k) . (q"©;-1) (k)
ixq - i:tq S Wiy

Proor. With the subadditivity of the ceiling function
[a+b] < [a] + [b] it follows with a = ¢ —d and b = d
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! VOS$<®,~¢ fiz:O;
> forall (z: ejyiz € E®™") {

! ’
o =a; q=0; wl, =wip=0; Zip=0;

4 do {
_ ! ! ®/ !’

w?i =Cipr + Z[”jy(“’z‘x + wip ) = Ny (W)l Ciys

JyE€hp(i)
’ ’

wd = Crpr + D [y (Wi +wE Ziz U{(v30,0)})

6 Jjy€hp(i) ,
—Viu(Wizs Zix)] - Ciys
’ ’ ®/ @

7 Wiy = Wiy + Wio 5 Wiz = Wiz + W55 3
8 Ziz = Zix U{(v2r, D)}
9 fiwr = max(fi,r, 858" + win —q - Py);
10 z’ + +

11 if (2 =0;) {
12 g++; ' =0;
}

14 } while (2’ #z || w;I>q-Pi);
}

Figure Al: Algorithm to compute upper bounds on
finish times of task phases (same as Figure 7 of [1]).

that [¢] — [d] < [e — d] and with J;, > 0:
jjy —+ At1—‘ _ ’7ij —+ AtQ—‘

Njy(At1) — njy(At2) = ’7 P P

(A3)

Jjy + Aty — At
= {ﬂaw = 1y (Aty — Ata)

By adding up extensions of maximum busy periods accord-
ing to the algorithm in Figure A1 it follows that w, Oithk) _

i;q*e'i_m is the fixed point of a function f(At) and wifcw
the fixed point of a function g(At) with:

k
f(At) = Zciac;, + Z[ ij(wii-q O + At)
k'=0 Jjy€Ehp(i)
’ *Q,—
_njy(wiiq 1>)] < Cly

k
g(At) = Ciar, + D mjy(AL) - Cyy

k'=0 Jjy€hp(i)

Note that in the definition of f(At) we have used Vo<p/<g:
Ty.o, 44 = T From Equation A3 it immediately follows
that Vac: f(At) < g(At). With the monotonicity of both
f(At) and g(At) and with f(0) > 0 one can further conclude
that also the fixed point of f(At) must be smaller or equal
to the fixed point of g(At), i.e.:

(g @itk) _

And with Equation A3:

’ *
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Lemma Al allows us to prove similar inequalities for the
combined interference characterizations, with a restriction
that we relax in Lemma A4.

Lemma A2. If it holds V;,cnp(i) :
follows with Equations A1 and A2:

Vizo: iy (w, (T @R ZlaT Otk (A4)

ij(Z<q o 71)) >q" it

0;,-1 0,—1 k k
_'Yju( (ll ) Z(q )) < ,Y”( ( ) Z( ))
OO < ()

PROOF. Recall that v,y (At, Z;) is defined in Section 6.4

of [1] as
Viy(At, Zi) = min(n;y (At), Gy (Z:))

If actors v; and v; are not connected via a cycle, for in-
stance because the corresponding tasks belong to different
task graphs, the interference characterizations considering
cyclic data dependencies (jy(Z;) all result in infinity and
Equation A4 becomes the upper inequality of Lemma Al.

However, if both actors are connected via a cycle we have
to differ between two cases. In the first case we assume that
1y (W, @Y < ¢ (28791 Then the left-hand side
of Equatlon A4 resolves to:

( (q 9;+k) Z (47 9; +k>) (q ©;-1) Z(‘I*@z‘*l)

Yiy (W Yiy(w; i )

0,+k *Q;+k "(qg*©;—1
= min(nyy (w, " @), ¢, (22 “)) My (w7 %)

1T

< min(njy(ww) §(Pia M) +6(Piyic) + 4"+ —1—q")

"(k k
= min(nyy (0l), Gy (20))) = 1 (wil, 287)
For the first argument of the minimum function we have used
Lemma A1 and for the second argument we have substituted

ng(Z(q O +k>) using Equation 3 of [1], which is:
Gy(Zi) = 6(Piajy) + G+ 0(Pjyiz) — 4 — 1 (A6)
Thereby we have taken into account that ZZ-(;Z*@"M) has the

following suprema and infima with respect to the ordering
relation defined in Section 6.4 of [1]:

(’Uiivq) = (viz;*ei+k

(viz, G) = (viz, 0)
And with Equation A2 and P; = P; (which is implied by
actors v; and v; being on a cycle, i.e. belonging to the

same task graph) we have further concluded for the second
argument:

7]]@( <q® ))any((q*—l)'Pi)

_ jjy‘f'(q*_l)'Pi _ @ *
_{ P, R

>q"

7Qq*@7;+k) = (Uiz;caq* + Qk)

In the second case we assume that 7;,(w, <q 8= >) >

CJU(Z@ ©i=1) Then the left-hand side of Equatlon A4 re-
solves to:

O;+k O;+k e;-1 e;,-1
’ygy( (q ) Z(q >) ’ng( (q ) Z<q ))

= min(n;y (w; <q o +k)) Giv(Z; <q o +k))) Gu(Z; <q o _1>)

<min(q" + njy(w <k>) 8(Pias jy) +6(Piyic) + 4"+ aqx — 1)
-q

= min(nyy (w, "), Gy (Z7)) = v (wil, Z8)

For the first argument of the minimum function we have
used Lemma Al, the subadditivity of the ceiling function,

mtﬁzﬁtﬁ

Figure A2: Special case ij(Z<q ©i=1))

Equation Al and P; = P; such that:
Ny (il Oy <y (w0 4w ) (A7)

Oi—l k
< wi;q : + Jay"'my( ( >)
- P; P;
q* - P; "(k * "k
< " j2) Z-‘ +njy(wia<c >) =4q +77jy(wia<: >)
J

For the second argument we have again applied the sub-

stitution via Equation A6. Finally we have used that
0,—-1 *

CJy(Z<q >) 2q.

This lets us conclude that Equation A4 holds for all
Jy € hp(3) if Vjyenp(): ij(fo @i_1>) > ¢*. In words this
means that the differences between the interference char-
acterizations of w,, (@"Oitk) and w <q ©i~1 are smaller or

equal to the 1nterference charaeterlzatlons of wﬁ? for all
7y € hp(i).

Finally one can see from the algorithm in Figure Al that
if Equation A4 holds for all jy € hp(i) also the difference be-
(q O;+k) ECRCIESY
" (k)

ir )

tween the maximum busy periods w, ) and w,,

must be smaller than the maximum busy period w,_’, i.e.
Equation A5 holds as well. []

These lemmas allow us to establish a relation between the
maximum finish time computations in algorithm iterations
q"O; + k and k:

Lemma A3. If it holds Vychp(i) : Ciy(ZL790Y > g it
follows with Equations A1 and A2 for the arqguments of the
mazimum function in line 9 of the algorithm that:

Vi>o: sf;ft—i—wfg i Jrk>—q vo,4k P < sfft+wz<z>—qk P;
ProoF. Using Lemma A2, gs=0,+1 = ¢" + ¢& and Equa-
tion Al it follows:
(4" ©;+k)

~ext
Siz Wy —qqre,+k - b

<& w9 L™ (g i) P,
<EN 4G Prwl — (0" ) P
=5 yuw® — g P, O

Now we show that Lemma A3 also holds if the restriction
ij(ng eﬁn) > ¢" is not true for all jy € hp(i):
Lemma A4. Lemma A8 still holds if it holds for one or

more jy € hp(i) that Qy(Z(q iy < g,

PROOF. First assume that it holds for only one jy € hp(7)
that C]y(Z<q ©i~Y) < ¢*. From Equation A6 and the or-
{n))

dering relation in Section 6.4 of [1] it follows that (;,(Z;,
increases by one if n is increased by ©@;. Thus it holds that:

o1t Gy(BLT DO g (20 0y 4

From §Jy(Z<q O 71)) < ¢" it therefore follows that also
Ciy(ZL2771) < 1 and thus ¢y (219771 = 0 must hold.

If v, is not the first phase of actor v; (i.e. 0 < z < ©;)
then ¢ must have already become one before iteration ©; —1
of the algorithm in Figure Al. With v;,» the immediate
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Figure A3: Case (a) for (;,(22 % ") < ¢* and
(2% <

predecessor of v;, this implies that the supremum of fo) i1
is (viz,4) = (Vizr,1), whereas the infimum of foiil) is
(viz, q) = (viz,0). According to Equation A6 it then follows
with iy (2 Keiil)) =0:

CJy(Z<® 71)) = 0(Pizjy) + 0(Pjyic) +1—-1=0
This equation can only be true if both 6(P;z,) and 6(Pjyiz)
are zero, as depicted in Figure A2(a).

If vy is the first phase of actor v; (i.e. x = 0) then g just
becomes one at the end of algorithm iteration ©; — 1. This
implies that the supremum of Z (9i=1) i (viz, §) = (Vigr, 0)
and it follows with (j, (2277 ") = 0:

;-1
G (ZEY) = 8(Piary) + 8(Piyia) = 1=0
In this case the equation can only be true if either §(P;yjy)
or §(Pjyiz) is one and the other zero, as depicted in Fig-
ure A2(b).

In both cases (a) and (b) it holds that v;,» and vz can
never be in consecutive execution as vjy is always executed
in between. This intermediate execution of v;, is however
already conservatively considered in the worst-case Linear
Program (LP) presented in Section 7 of [1], which is:

Minimize >  8%%f 4 &,

Vigpg €V
Subject to $s0 =0

aext

VemijE”“: Sy — Siz > Pix — 5(€ixjy) . Pj

8jy — Biz > Piz — 6(einjy) - P

VeinsyeBiZenn)

From this follows for case (a) that §;, > 8;,» + pirr and
58 > 84y + pjy and for case (b) with P; = P; that §;, >
swf + pigr — P; and 8551 > 84y + Py OF Sy > Sigr —|—,5“/ and
5878 > 55, +pjy— P;. Thus it also holds that §¢%¢ > flxl+ij
in case (a) and §5%* > fi,» + Cj, — Pi in case (b).

With fio > 862t 4 wfﬁl) — Pi in case (a) and fi >
55t +w<® Y in case (b) it further holds for both cases that

w< by Cjy < PZ, which implies that the stop criterion is
already met for ¢* = 1.
Now assume that it holds for multiple jy € hp(i) that

ij(Z@ . >) < ¢". Figure A3 depicts case (a) for two such
phases jy, lz € hp(i) (case (b) and more than two phases can
be constructed analogously).

In case (i) the two phases are always firing one after the
other. Thus it follows from the worst-case LP that §;, >
Siw' + Pixty S12 > Sjy+ pjy and §¢Zt > 812+ pi» from which we
conclude with the same reasoning as above that w<® by
ng + Clz S P

In case (ii) the two phases are firing in parallel. Thus
it follows from the worst-case LP that $;y > S0 + Pias,
81 > Sia + pir and 55° > max(85y + Pjy, Sz + i)
From this we derive with above reasoning that w< b
max(pjy, p1-) < P;. Additionally we know that the phases
v;y and vy, cannot be on a cycle with one token (otherwise
we would have case (i) again), which implies that the phases
can interfere with each other. As one of the two phases must

have a higher priority than the other it follows that either
piy = Cjy + Ciz or pi. > Cjy + Ci.. This lets us conclude

again that w<e =1 +Cijy +Ci. < P
This observatlon can be generalized as follows. Let
hp'(i) be the set of all jy € hp(i) for which it holds that

ij(Z@ O 71)) < ¢". If the set is not empty it holds that
the stop criterion is already met for ¢* = 1 and it holds:

w4+ Cy <Py (A8)
Jyehp’ (i)
Moreover it holds for all jy € hp'(i):

O;+k ©;+k ©;—-1 ©;—1
'Yju(w< > Z< >) Yy (w; ( ) Z< >)] Ciy

[

= [min(ny (w, " *’“>>, Gy —0]- Oy
< 5, Gy (28N + 1)) - ¢y

= Iy (w, P z<’“>>+1] Ciy

For the first argument of the minimum function we have used
Equation A7 from the proof of Lemma A2, for the second

min(1 + n;y(w,

argument that ij(Z (">) increases by one if n is increased

by ©; and for ~y;, (w; <9 >,Z< ") that ij(Z<® —b ) 0.
From this and Lemma A2 for the other Jy € hp(i) \ hp' ()
it follows:

wig ™ —wPTY <wl) + 30y, (A9)
juchp’ ()
If hp'(i) # 0 (ie. 3 (3@9—1)) )
p (1) # 0 (i.e. Jjyenpy: Coy < ¢*) we can

therefore conclude with Equatlon A8 that ¢ = 1 and with
goe;+q, = 1+qr and Equations A8 and A9 that for all £ > 0:

~ext
Siz T W,

s+ w <9 Pl +3 Chy - () P

Jy€hp’ (i)
-1 +aq)- P
=52l — g - P, 0

©,;+k
{ >_q@'+%'Pi

I/\

8+ P+ wl

IN

Finally we can prove that if Equation A1l holds we do not
need to consider any maximum finish times computed after
the stop criterion is met:
Lemma A5. It follows with Equation A1 for the mazimum
finish times computed with the algorithm that:

Viso: f<q ©;+k) _

1T

fﬂq:‘@i*U

PRrOOF. Based on line 9 of the algorithm and our indexing
scheme we can write the maximum finish times computed in
an iteration n as follows:

An) _ sewt (n') )

fia:’ - Og}f}}én(szz + Wip " —Aqn’ - Pl)
Moreover we can rewrite any k > 0 as k = [-¢*0; + k', with
I >0and 0 <k <q*O; — 1. Considering that Lemma A4

holds we obtain by iteratively applying Lemma A3 for all
k> 0:

i w(q Outk) —qqro,+k - i
= §§;t + w§g(cz+1),q*@i+k’> — qt1)q e,k Pi
< §f;:t + w;lc-q*eﬂrk’) — Qrgro, 1k - P
< L<ET ) g Py



From this we finally get with 0 < k' < ¢*©; — 1:

#(a"©;+k) sext (n)
) = max Siw +w. T — - P
i OSnSq*ka( e w e B)

~ext (n)
max Si +w. T — - P;
ogngq*e,;—l( iz iz qn 1)

#{g"O;—1

o O
Lemma A5 implies that as soon as the stop criterion is

met we know that thereafter the maximum finish times can-

not increase anymore, which proves the validity of the stop
criterion.
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