
1

A Framework for Representation, Validation and Implementation of Database
Application Semantics

M. van Keulen, J. Skowronek, P. M. G. Apers, H. Balsters, H. M. Blanken, R. A. de By,
J. Flokstra

Information Systems Workgroup
Informatics Faculty, University of Twente

P.O. Box 217, 7500 AE Enschede
The Netherlands

Abstract

New application domains in data-processing envi-
ronments pose new requirements on the methodologies,
techniques and tools used to design them. The applica-
tions’ semantics should be fully represented at an
increasingly high level, and the representation should
be subject to rigorous validation and verification. We
present a semantic representation framework (includ-
ing the language, methods and tools) for design of
data-processing applications. The new features of the
framework include a small number of precisely defined
domain-independent concepts, high-level possibilities
for describing behavioural semantics (methods and
constraints) and the validation and verification tools
included in the framework. We present examples of the
use of the framework, including the use of its tools.

Keyword Codes: D 2.1, H 2.1, H 2.3, D 2.2
Keywords: Requirements/Specifications, Logical
Design, Languages, Tools and Techniques

I. Introduction.

The traditional model of a data-processing applica-
tion is undergoing profound changes. In the past dec-
ades, those applications were designed, implemented
and used by specialized, highly trained and qualified
database professionals. These specialists served as an
interface between the users and their view of the prob-
lem, and the realization of the system. However, as
computer networks permeate still more aspects of our
professional and daily life, computing systems are
designed by an ever-growing public of non-computer
experts. Those experts do not possess the computer
knowledge which was so important before. The group
of non-computer, domain experts will want to design
and implement high-quality, reliable database applica-
tions (encapsulating their complex semantics) them-
selves, and make them available to a broad user
community. In a way, thus, there is and will be a shift
of activities traditionally associated with computer
professionals to other, non-computer specialist groups.
The experts in these groups ordinarily possess a
degree of knowledge in their specific domain, but they

do not have specialized data modelling skills, and are
not proficient in database concepts. Their detailed
domain knowledge is often supported by a considera-
ble body of techniques and methods. Those methods
and techniques are based, not uncommonly, on under-
lying precise and formal models, required by the com-
plex nature of users’ domain-specific problems. In
many cases, validation and verification of these user
models is also supported. These models describe
semantics as seen by the experts from their domain-
specific perspective. We may thus describe them as
representing user-world semantics (subjective user
model of the objective, but indescribably rich real-
world semantics).

The expert users perceive as uncomfortable and
ineffective the difference in concepts and methods in
their domains and in the software means they have to
use to represent them. This difference often causes the
users to abandon provided methodologies and accom-
panying tools. We claim, however, that this happens
only when the methodologies are not sufficiently pre-
cise, and the tools are not adequately developed. These
users do not see complexity as a problem, as they are
used to it in their respective domain. Their problems
lie in inconsequent and incomplete conceptual solu-
tions and awkward tools. They will therefore, in our
opinion, accept the complexity of the models, if they
are complete and consequent, and are embedded
within intuitive tools.

In summary, looking at the problem of data applica-
tion design and use, we will thus be confronted with
two important factors: the increasing use (in the broad
sense of the word, including also design) of data-
processing applications by groups of users, and the
lack of specific database knowledge accompanied by
detailed domain-specific expertise, often supported by
strict models and methods. These two facts form a fun-
damental challenge for the new generation of database
design tools: that of providing methods and tools serv-
ing these growing groups of users.

In the sequel, we present a design framework for
representation, validation and implementation of
data-processing application semantics. The framework
is based on the precise modelling language, which can
be subject to diverse verifications and validations, as

2

well as automatic translation into an implementation
platform, contributing to the quality of the design and
the implementation. In Section II, we present our view
of the requirements for systems used to represent
semantics of database applications. In Section III, we
introduce the language used to represent semantics of
applications, and in Section IV, we present the tools
which are based on the language and which can be
used for verification and validation of the representa-
tion, as well as for its implementation. In Section V we
investigate the shortcomings of our framework and
discuss possible directions of future research.

II. Requirements

In answer to the challenges mentioned in the intro-
duction, various representation systems (defined as the
combination of the modelling language used to
describe the semantics, the methodology and the tools
supporting it) have been proposed and successfully
implemented. They provided the users with varying
degrees of automated support for construction and val-
idation. These representation systems differ in two
aspects: that of scope and underlying semantics. The
aspect of scope of the system concerns the extent to
(and the manner in) which a system can represent
(varying) user-world semantics. In other words: how
its (model-world) semantics maps to the user-world
semantics of the domain problem. An example of that
mapping can be the mapping of the user-world impre-
cise concept of a mechanical part, to the model-world
concept of the class mechanical_part, with a strictly
and precisely defined set of attributes and methods
(using concepts known in object-oriented data models).
Scope differences include the extent and relation of
structural and behavioural representation capabilities
of the models, as, for example, one system may choose
to use subtyping relationships and the other not at all.

The representation systems vary also in the aspect
of the underlying semantics: the manner in which a
model itself is constructed. For example, in this
respect systems may differ when one is based on a
strict mathematical model (formal semantics), while in
the other, behavioural aspects are represented infor-
mally, partly as ‘signature-only,’ or through a program-
ming language notation. The aspects of scope and
underlying semantics can be used to judge and classify
past and present representation systems.

In the past, it was often the case that various
aspects of the representation systems were unsuitable
for the needs of users. They either did not possess the
necessary modelling power, or they were providing
insufficient basis for computer-supported actions using
the model, such as construction of the models, their
validation and implementation. Additionally, those
systems often used metaphors specific to some domain
(or even to some implementation platform), which

restricted their suitability in other domains. Those dif-
ferences made domain experts spend much time
adapting to new terminology and customs. Some of the
systems provided the appropriate scope and underly-
ing semantics aspects, but they did not provide the
tools for efficient use, which also restricted their
usage.

Deriving from this situation, we can pose a number
of requirements for representation systems, which are
essential in order to make them able to respond to the
new challenges mentioned above. These requirements,
in our opinion, are:
• preciseness,
• expressiveness,
• high-level concepts, and
• high-level tools.

The first and foremost requirement is that ofpre-
ciseness. We perceive this requirement as paramount
to the ability to understand and create models by
diverse user groups. In design environments of vary-
ing size, structure and lifetime, in the presence of
cooperative strategies, and increased communication
(also based on automatic tools for knowledge
retrieval), it is very important that the semantics of
the designed data application is understood unambig-
uously, and expressed in an exact way. As an added
value, a precise model, founded on a theoretical basis,
makes possible extensive automatic validations and
implementations, which may shorten and ease the
design process. These capabilities also contribute to
the desired correctness of the representation.

The desired representation systems should also
provide a high level of expressiveness, defined as the
ability to fully represent the semantics of the problem.
That ability makes design of the system more straight-
forward (and less costly). The expressive power of the
model should be geared towards its perceived use;
however, the model should not attempt to achieve or
provide elements which are unnecessarily redundant.
(Some redundancy, however, may be justified by ease
of use.)

The data modelling capabilities should be using
high-level concepts familiar to users; object-oriented
data models have been proposed as most closely
approximating user-world semantic concepts (e.g.,
classes, objects, and their taxonomic relationships).
The preferred representation system should, however,
avoid too close an association with some specific
domain, reflected by the introduction of domain-spe-
cific methodology and concepts; as this will seriously
restrict its user community.

Last, but not least, the model should be embedded
in an array of high-level tools hiding (but still using)
the complexities of the model to provide extensive cre-
ation and validation possibilities. Such possibilities
contribute to the quality of the resulting design.

3

A representation system fulfilling the above
requirements will, in our opinion, accommodate the
needs of diverse groups of users. In this paper, we
attempt to convince the reader that we achieved this
goal.

III. Modelling of the domain using the TM
model and notation.

A. The TM model and notation

TM is a database specification language based on
object-oriented principles (TM stands for Twente-
Milano, the sites of the principal designers of the lan-
guage). Its design was motivated by ideas expressed in
theories like that of Cardelli [3], [11] and Reynolds
[22], programming languages like Smalltalk [15], and
data models like that of O2 [7]. An important design
decision for the language was that specifications
resulting from its use should be subject to formal scru-
tiny by (semi-automatic) tools.

The language allows to define mixed models con-
sisting of values and objects, the latter of which have
unique object identities (oid’s). To this end, a TM speci-
fication contains sort and class definitions, each of
which functions as a common interface to a particular
kind of structured value or object. The language can be
further characterized by its support for various type
constructors (record, variant, set and list), object iden-
tity, object sharing, structural and behavioural (multi-
ple) inheritance, static type-checkability, and a weak
notion of encapsulation. We have reported on several
matters relating to the theory [5], [6] and the use of
the language [4], [14] in the past.

A class (or sort) definition is constructed from three
optional definition sections: a structure section in
which, for instance, attributes can be defined, acon-
straint section in which constraints that restrict the
possible structural values are defined, and amethod
section in which operations on the objects and their
collections are defined. Since the core of the model is a
specification language, we view the structure section
not as an implementational definition, but rather as
an integrated part of the interface of the class. Hence,
an attribute declaration can be informally understood
as the declaration of two methods: one to request the
value of the attribute, and one to change it.

The language distinguishes itself from other pro-
posals in the literature by the following characteris-
tics. First and foremost, the sublanguage used for
‘coding’ the methods and constraints is a non-impera-
tive, functional language designed to be used for ele-
mentary object manipulation and more intricate set
manipulation. As such, it contains a full object query
language, of which we present example expressions
below. This ‘coding’ sublanguage was also designed

bearing the required method inheritance in mind: one
can define methods in a functional style that can be re-
used for subclass objects. All this leads to a specific
typing scheme for methods that implements covariant
method types based on the type variable notion of
selftype. Therefore, although the language is func-
tional, we do not use functions, but rather families of
functions, to represent methods. The language does
not include a relationship construct, which can be,
however, modelled in TM through the use of attributes
and constraints.

Benefits of a non-imperative language over such
now widely spread languages like C++ is that we can
build tools to analyse the specification code and prove
their correctness (an important step in that direction
was the construction of the TM proof checker [9]).
Other advantages of the use of a high-level declarative
language is its independence of the particular imple-
mentation platform as well as improved maintainabil-
ity of the design.

B. Modelling the user domain

To illustrate the process of the creation of a precise
model of an application from a user-world description,
we briefly present an example of a user-world descrip-
tion of an electrical network, and subsequently provide
its representation in TM.1

The energy management system (and any technical
information system in general) poses specific require-
ments for safety and reliability, thus asking for a disci-
plined approach to software engineering. We will
explain the way a user-world model of the application
domain is transformed into a precise model expressed
in TM. Furthermore, we will attempt to assess the dif-
ficulties in the transformation process and the benefits
of the new descriptions employing precise semantics.

In electrical network management, domain special-
ists often distinguish between the structural and
behavioural part of the model. The structural aspect of
the network describes the topology of the network, as
well as various properties (attributes) characterizing
its nodes and edges. The values of attributes are often
gathered from the electrical network by means of
measurements. In the behavioural part, procedures
and actions performed by dispatchers (network opera-
tors) are described.

1. The example originates in the demonstrator
application of the IMPRESS project [14]. It
concerns a database representing a subset of
the electrical network, managed by one of the
largest electricity distribution companies in
Spain, IBERDROLA [19]. In the scope of the
project, a database schema (together with
methods and constraints) was designed and
validated using the TM language and its tools.

4

The structure of the electrical network is modelled
by the domain specialists in the form of installations
connected by lines (Figure 1). The installations include
various kinds of substations and power plants
(hydraulic, thermal or nuclear). Substations are
responsible for energy transport, transformation, and
distribution; they ‘drive’ the electric energy from the
generation points (power plants) to the clients. Power
plants provide the electrical energy to the network and
lines allow for physical connections between the
installations.
Substations, power plants, and lines are complex
structures: they are themselves composed of
installation elements (bar systems, protections). Those
elements in turn are composed of equipments: bars,
switches, breakers. The domain experts therefore
model the network at different levels of detail: network
element level, installation element level, and equipment
level. Elements at various levels are often grouped in
aggregation relationships, e.g., a substation is
composed of a set of installation elements, a bar
system is composed of a number of bars. Based on
these modelling principles, domain specialists model
specific element types at various levels: e.g., they
specialize double-bar substations among substations
as those having a double bar installation element.

The structural part of the user model is comple-
mented with the behavioural part, in which possible
manoeuvres (actions) concerning elements are
described, as well as the broader concept of operator
procedures. The procedures are performed by network
operators (dispatchers), and concern tasks such as
switching, monitoring network safety, monitoring and
optimization of network resources, fault actions, and
preparation of reports. These procedures are composed
of sequences of (elementary) retrieval and update
actions. The actions include opening and closing of
diverse equipments: bars, switches, etc. The actions
typically change the values of attributes of network

Substation

Line

Power Plant

Figure 1: Electricity network.

elements. The actions also include diverse retrieval
queries, which are used by dispatchers to assess the
network state.2 These queries include connectivity
queries as well as hypothetical update (“what-if”) que-
ries.

The user-world semantics described above has been
registered in a quasi-formal way through extensive
and redundant descriptions of element structures and
the actions performed on them. In the presence of
increasing trends to automate yet more aspects of the
network, there is a recognized need within the domain
for a more systematic approach to the modelling prob-
lem.

The construction of representation systems can, in
our opinion, benefit from the observations made on
how domain experts create their models of the user
world. In many cases, the user-world semantics is not
precisely described; it is often summarized in manu-
als, procedures, and in the unwritten experiences of
the experts themselves. Such a representation is
extremely difficult to validate, implement, and main-
tain, and this fact is often recognized by the domain
experts themselves. In many cases, the semantics is
directly ‘implemented’ in languages, in which the mod-
elling power is insufficient to express its complexity.
There is thus a recognized need to represent the
imprecise semantics of the user world in precise terms,
and there have been different domain-specific models
and tools designed for that purpose (e.g., representa-
tion systems in CAD: constructive solid geometry,
boundary representation). The TM model attempts to
provide sufficient means for semantically-rich model-
ling through a number of domain-independent struc-
tural and behavioural primitives, providing a strict
and unambiguous representation of the semantics.

In the following paragraphs, we present how pre-
cise semantics can be constructed using the TM model,
and we formulate our observations of the conceptual
difficulties arising during such transformations, and
the benefits arising from them.

A well-accepted general guideline for object-ori-
ented modelling is to start with identifying classes and
the subtype/supertype relationships between them. In
the example, it is not difficult to see that concepts like
‘Installation’, ‘Substation’, etc. are prominent candi-
dates for being specified as a class. In this process, it is
possible that new (abstract) classes are found (e.g
through generalization), that do not have direct coun-
terparts in the original user models. We observed that
this first step in object-oriented modelling is straight-

2. Example queries are: “provide references to all
manuals that are relevant in this fault situation,”
“give all protections of the Aldeadavila substation
that are connected to line Villarino-Aldeadavila and
that are open,” “give elements protected by element
X.”

5

forward for domain experts, as they already use simi-
lar semantic concepts in their user models (e.g., the
use of words like ‘is a kind of’). An illustration of how a
part of the example can be modelled in TM, is given in
Figure 2. The figure shows one of the TM tools (see fol-

lowing section) with which one can specify the struc-
tural part of the model using diagrams. The double
arrows represent subtype/supertype relationships
where the arrow points from the subclass to the super-
class.

A logical next step in object-oriented modelling is
the addition of attributes. Attributes can be used to
represent various kinds of common properties among
instances of classes, for example, connected_to or
drives_power_to. How hard it is to place the attributes
is very much dependent on how the class-hierarchy is
structured. It is therefore likely that during this phase
one would feel the need to rearrange and fine-tune the
class hierarchy. We have observed that domain spe-
cialists benefit from the graphic view of the schema, as
it provides them with a means to organize their

Figure 2:Excerpt of the class hierarchy and the correspond-
ing fragment of the TM specification.

module Example1
Class Installation
end Installation
Class Substation ISA Installation
end Substation
Class Powerplant ISA Installation
end Powerplant
Class DoubleBar_Substation ISA Substation

// other classes are specified similarly

end Example1

detailed knowledge of the domain. The representation
also enhances their understanding of the model, as it
often shows why certain properties appear in the
model multiple times.

The user model usually contains a significant level
of inaccuracy and redundancy. The inaccuracies are
easily found (and removed) by exploiting the precise-
ness of the specification. The amount of redundancy
can be reduced by the proper structuring of the class
hierarchy. Figure 3 gives an illustration of one of the
more advanced attribute modelling facilities TM
offers: it shows how one can represent the fact that a
bar system in DoubleBar_Substation has to be a
DoubleBar_BarSystem.3 The DoubleBar_Substation
class is a specialized version of Substation, and simul-

Figure 3:Attribute specialization.

module Example2
Class Substation

attributes
barsystem:BarSystem

end Substation
Class DoubleBar_Substation ISA Substation

attributes
barsystem:DoubleBar_BarSystem

end DoubleBar_Substation
Class BarSystem

attributes
bars:P Bar

end BarSystem
Class DoubleBar_BarSystem ISA BarSystem
end DoubleBar_BarSystem
Class Bar
end Bar

end Example2

6

taneously, its attribute barsystem is a specialized ver-
sion of the same attribute in its superclass.

TM offers extensive facilities for enhancement of
the model with precise descriptions of behaviour
(methods) and of the valid states of the objects (con-
straints). The language contains an expressive and
high-level expression language that is used to specify
both constraints and methods in a uniform way. Con-
straints are used to restrict the number of valid object
states to ensure that the class’s universe is in accord-
ance with the user-world model. In the example of Fig-
ure 2, BarSystem contains a set of bars. Consequently,
a DoubleBar_BarSystem contains a set of bars as well.
However, DoubleBar_BarSystems, containing a
number of bars other than two, ‘make no sense’ in the
user-world semantics. Therefore, it is obvious that in
the model, we would like to express that
DoubleBar_BarSystems can only have two bars. In TM,
this is specified as the object constraint4 for this class
“count(bars)=2”, meaning that the number of elements
in the set-valued attribute bars must be equal to two.

The same language is used to specify the methods,
which express the retrieval and update operations per-
formed on objects. TM provides a rich set of expres-
sions, examples of which are:
• explicit expressions, like for instance

< name = “Aldeadavila, voltage = 280>
which denotes a two-field record, or

true
which denotes the boolean value for truth, or

[1, 3, 2, 8]
which denotes a list of four integer numbers.

• selection expressions, like for instance record field
selection in

< name = “Aldeadavila”, voltage = 280>.name
which evaluates to the string “Aldeadavila”, or list
selection, as in

head([1, 3, 2, 8])
which evaluates to integer constant 1.

• predicative expressions, which allow the description
a set of elements by characterization, as in

{x:<a:int, b:int> | x.a = x.b and (x.b=1 or x.b=2)}
• iterative expressions, which take a set or a list and

a function as arguments and evaluate that function
for each element of the set or list. The result
obtained is again a set or a list. Hence, the expres-
sion

3. In the diagram, an arrow represents an attribute.
It points to its type and its name is written under
the type. An arrow with a filled circle at the end rep-
resents a set valued attribute. The dotted line
around an attribute’s type indicates that the type is
defined elsewhere in the diagram (i.e. it’s a refer-
ence).
4. An object constraint is a condition that must be
valid at all times for any object of the class.

collect <voltageInKv = x.voltage/1000>
for x in [<name=”Aldeadavila”, voltage=280>,

<name=”Villarino”, voltage=380>]
renders a new list

[<voltageInKv=0.28>, <voltageInKv=0.38>]
The expression language of TM is statically typed,
making it possible to determine at compile time the
types of all results of expressions and their
subexpressions.
One of the queries in the electrical network
management example was “Give all protections of the
Aldeadavila substation that are connected to line
Villarino-Aldeadavila”. This concrete query can be
generalized by parametrising it with the substation
and the line in question, and can be specified in TM as
the following method (assuming there is a protections
attribute on the class Line and a IsElementOf method
on the class Installation).

ObtainProtections(in s:Substation, ln:Line,
out P Protection) =

{p in ln.protections | IsElementOf[s](p)}

The expression can be read as “collect thosep from
the set-valued attribute protections of ln, that are an
element of s”.

Domain experts who transform their user-world
view of data application to a precise model may
encounter difficulties arising from the inherent differ-
ences in which reality is described in both worlds.
These difficulties manifest themselves when the con-
cepts used in the domain cannot be directly repre-
sented in the model. We believe that TM incorporates
a number of domain-independent concepts that can be
successfully used by experts in many domains. The
initial difficulties that the domain experts may experi-
ence stem from the precise character of the represen-
tation system. Those difficulties are outweighed by the
benefits, which can be summarized as follows:
• the preciseness of the representation often causes

the vague and redundant user-world models to
become exact and compact

• misplaced concepts in the user model are posi-
tioned correctly

• the user view is transformed into an organized and
structured model

• due to the precise and unambiguous character of
the model, extensive validation and verification has
become possible

IV. The Database Design Toolset.

As presented above, we believe that a precise repre-
sentation of data application semantics provides the
designers with important advantages, such as
increased modelling capabilities and validation possi-
bilities. However, the impact of those advantages on

7

users will be restricted if they are not embedded
within easy-to-use tools suitable for use by non-compu-
ter experts, who do not necessarily have to be profi-
cient in formal techniques. Therefore, for wide
acceptance of the language, it is imperative that it is
accompanied by an array of tools. The tools provide an
easy-to-use interface to the various facilities of the
representation system. The tools should be intuitive,
but they should still provide all the advantages of the
underlying language: its preciseness and expressive-
ness. In the past, various proposals for design tools
were presented in the literature, with varying scope
and underlying semantics properties (DBE [8],
EcrinsDesign [1], TRAMIS [18], MOSAICO [20], to
name just a few). Those tools often include only some
of the design and validation techniques, such as
graphical schema design, high-level modelling of
methods and constraints, or prototyping. All of them
are available together in our toolset. The contribution
of our system amounts to the founding of the design
and validation framework on a firm theoretical basis.
This base enabled us to integrate different design, ver-
ification and validation techniques in one framework.
The nature of the framework enabled us to extend the
framework with tools uncommon in the field of data
application design, such as the safeness checker.

In the following paragraphs, we describe the tools
for creation of TM specifications, validation of their
various aspects, as well as their translation to an
implementation platform.

A. Creating specifications.

In Section III, we have outlined the process of
transformation of user-world semantics into model-
world semantics expressed in the TM language. Dur-
ing this process the domain experts map the domain
concepts into the (semantically more precise) concepts
of TM. We have observed that this mapping is not
always straightforward, as during the process of pre-
cise specification, new semantic relationships are dis-
covered. This is a natural consequence of the fact that
the user-world semantics is often redundant and
imprecise. That redundancy, however, is not a desired
characteristic of models, as redundant designs are not
necessarily the ones easiest to understand and com-
municate. Therefore, it is important that the experts
possess the necessary means for careful examination
of their models, so that their undesired characteristics
are quickly discovered. To that end, in the Database
Design Toolset the experts create the specifications in
an intuitive, graphical way (see Figure 2 and Figure
3), which makes it easy to observe semantic relation-
ships, detect redundancies and perform appropriate
changes. The graphical notation used for modelling
provides all structuring primitives available in the
underlying TM language, representing them through

orthodox graphic primitives. In this way, the designer
is not forced to learn the syntax of (yet another) struc-
turing language. In case of behavioural semantics
(constraints and methods), the designer uses the
expression sublanguage of TM to precisely define their
semantics. The sublanguage is not defined with a spe-
cific execution paradigm in mind (being a specification
language and not a programming language), and pro-
vides a rich set of expressions for manipulation of vari-
ous type structures (e.g., collections). As the
behavioural semantics is expressed at the same level
of preciseness as the structure, it can be subject to the
same level of validation.

In large design projects, it is often important that
the errors in the model are detected as soon as possi-
ble, in order to limit and simplify the necessary correc-
tions. To that end, the designer should be able to
validate the model at all stages of its development.
The possible validations of the model, which are all
consequences of its precise foundation, are the verifi-
cation of the model against the typing rules, verifica-
tion of the behavioural semantics against the
requirement of safety (absence of expressions with
infinite results), validation of the semantics of con-
straints and methods through prototyping as well as
verification of transactions in terms of constraint pre-
serving properties.

B. Verification and validation of specifica-
tions: type checking, prototyping and safety
detection.

The advantage of precise semantic representation
becomes particularly evident when we consider the
verification and validation possibilities which are sup-
ported by a representation system. Basing the system
on a sound foundation greatly extends these possibili-
ties.

The verification possibilities of TM are realised by
tools that check two important aspects of TM specifica-
tions, namely:
• consistency of the created types, constraints, and

methods with respect to the syntax and typing
rules.

• safety of the specified constraints and methods,
defined as the guerantee that a certain constraint
and method will not generate infinite results. The
notion of safety has therefore been defined in a sim-
ilar way as in Elamsri [13], while in Ullman [23]
safe expressions have been defined as a subclass of
domain-independent expressions (those whose
result is not dependent on the values that are not
mentioned in the expression and associated rela-
tions).

TM is based on a strict typing discipline, which can be
used to precisely determine the types of all structural

8

and behavioural elements of the specification. This
discipline is expressed in a collection of typing rules,
which are used by the type checker to assess the type
consistency of a specification. Any type errors detected
are reported to the designer, who can then perform
appropriate corrections in the specification. The type
errors detected include erroneous syntax and typing of
expressions, as well as improper use of subtyping and
attribute specialization.

The rich expression sublanguage of TM provides
constructs which can be used to form expressions (pos-
sibly) evaluating to infinite collections. In line of the
example presented above, let us suppose a designer
wants to specify a constraint that ensures that all elec-
trical connections are reflexive. One could specify that
as in Figure 4 (first expression). Thein expression is a
boolean expression testing the membership of an
object (in this case the object itself: self) in a set. We
observe that the right hand-side set expression of the
in expression is infinite, because it is constructed from
the type ElecComponent representing all instances of
that type that can exist. Such expressions are useful at
initial stages of specification, when we are not con-
cerned with implementation possibilities, but they
could, however, cause problems for a ‘naive’ code gen-
erator. However, the whole expression can be evalu-
ated within finite bounds by rewriting the expression
first in a safe way (see Figure 4 - second expression).
In TM, we are therefore confronted with a situation
when an expression can be safe even if its subexpres-
sions are unsafe. The Safeness Detector analyzes this
class of potentially unsafe expressions, and attempts
to decide whether a given expression of that class is
safe.This is done through trying to rewrite of the given
expression into another expression that it is safe.

Apart from verification possibilities, the precise
semantics of TM expressions makes various valida-
tions possible, such as early detection of semantic
errors in the specification. Such errors manifest them-
selves when the specification is type-correct and safe,
but its methods and constraints do not return the
intended results. Detection of semantic errors is
desired at the earliest possible moment in the design

MutuallyConnected: // potentially unsafe
self in

{e:ElecComponent |
forall c in e.connected_to |
e in c.connected_to})

MutuallyConnected: // safe
forall c in self.connected_to |

(self in c.connected_to)

Figure 4:Example of a potentially unsafe and safe con-
straint

process and definitely before the implementation
phase, when the necessary corrections can be very
costly to perform. This detection is realized through
prototyping, when constraints and methods can be
evaluated on test data and their results can be exam-
ined. As TM expressions are complex, the Prototyping
Environment enables creation of objects, evaluation of
methods and constraints, and navigation through
(complex) results of expressions and subexpressions
(see Figure 5). In this way, the designer is able to
detect semantic errors and perform appropriate
changes in the specification.

Summarizing, the TM tools provide a basis for veri-
fication and validation of designs, including type and
safeness checking, as well as prototyping. All these
tools serve to increase the level of (syntactic and
semantic) correctness of specification. Afterwards, the
specification can be implemented using automatic
translation into a target language.

C. Implementing specifications.

In most design projects, the design is meant to be
implemented on a certain implementation platform. In
case of simple designs, the semantics of the applica-
tion is often simple enough to be directly implemented
in a programming language. Even in small projects,
however, this can lead to difficulties in its extension
and evolution and in understanding the application by
larger teams. As the scale of the projects grows, the
need for high-level, independent and powerful repre-
sentation becomes evident, and more and more design
activities are performed at a higher level. If these
high-level representations are not precisely defined,
the task of their translation to an implementation
becomes increasingly complex and more difficult to
realize by teams of programmers. When a representa-
tion system fulfills the requirement of preciseness, the
semantics is expressed unambiguously; in that case

Figure 5:Example of the result of a method evaluation

9

the road is open towards an automatic translation to
an implementation platform.

Among the tools based on the TM language, we
have provided an automatic translation of TM specifi-
cations into a persistent programming language
SPOKE. However, the use of existing persistent pro-
gramming languages and database systems as target
languages for this translation causes problems in
cases where there are semantic differences between
TM concepts such as subtyping, and their representa-
tion in the target language. These issues have to be
taken into account when target platforms are consid-
ered, and we are now studying possible target plat-
forms, on which TM concepts can be represented
directly. An example of such a platform is a dedicated
layered TM expression evaluator, which we are cur-
rently implementing. The evaluator is constructed
around an abstract machine, which enables precise
representation of the semantics of expressions.

D. Example of toolset usage

The integration of the toolset and the iterative
character of the design process can be conveniently
illustrated by means of a possible design scenario:

• The designer graphically creates the classes, inher-
itance links, attributes, constraints, and methods
using the Graphical TM interface.

• The designer type-checks the specification, which
may result in a number of syntax and typing errors.

• The designer returns to the Graphical TM Interface
to correct those errors. After they are corrected,
she/he type-checks the specification again until suc-
cess is reached.

• The designer decides to check whether a specific
method is specified correctly (in the semantic
sense). She/He does this by opening the Prototyp-
ing Environment, creating some test data, and
evaluating a method or a constraint using the test
data. She/He then examines the final and/or tempo-
rary results of the expression body to detect possi-
ble semantic errors. If there are errors, she/he
corrects them using the Graphical TM Interface.

• The designer can check whether some of the speci-
fied constraints and methods contain unsafe con-
structs, such as infinite sets. She/He does this by
invoking the Safeness Detector, which analyzes the
constraints and methods to detect unsafe con-
structs.

• Once the designer is satisfied with the design, she/
he uses one of the Code Generators to generate
optimized programs realizing the specification.

We feel that the above design process is not specific to
some methodology, but can be encompassed within
different methods. The above scenario is the most
unstructured possible; specific design methodologies
may pose restrictions on the way each of the tools are

used. Thanks to the extensible architecture, an
organization can structure the design process
differently or provide other tools, such as versioning
tools, authorization mechanisms, expert system shells,
and cooperative design environments.

E. Components and status of the toolset.

Various tools mentioned in the above subsections
have been implemented in the scope of the IMPRESS
project [14]. The tools have been implemented on a
Unix platform, with the use of Motif window libraries
for graphical user interfaces. The tools which have
been implemented are:
• the TM type checker, which takes a TM specifica-

tion as input and checks its syntax and type consis-
tency,

• the Graphical TM Interface, which aids in creation
of TM specifications, using diagrams presented
above,

• the Prototyping Environment, which validates the
methods and constraints, enabling graphical
browsing of expressions and complex objects, as
well as creation of test databases,

• the Safeness Detector, which detects unsafe expres-
sions within specifications. The tool uses Life [2] to
rewrite expressions,

• the Code Generator, which generates executable
code from a specification. In IMPRESS, the execu-
tion platform was a persistent programming lan-
guage SPOKE; currently we are constructing a
dedicated evaluator for TM expressions, in which
we can more precisely represent the semantics of
TM,
Currently, we are constructing public-domain ver-

sions of the tools with the intention of providing them
to the interested research users.

V. Conclusions and future research.

In the introduction, we formulated a number of
requirements which in our view are essential for the
acceptance and use of semantic representation frame-
works in new application domains by growing user
communities. We stated that those frameworks should
exhibit the properties of preciseness and expressive-
ness, should use high-level concepts and be embedded
within high-level, easy-to-use tools.

Subsequently, we presented the TM modelling lan-
guage, which, in our opinion, provides a precise way of
expressing the semantics of complex applications in
diverse domains. The expression sublanguage of TM
offers a high-level, declarative way of expressing the
behavioural semantics (constraints and methods). The
TM language is domain-independent and offers a
small number of high-level concepts. Its object-ori-
ented flavour leans itself well for modelling complex

10

application domains. The preciseness of the language
has been the basis of the validation and verification
tools, such as the type checker, prototyping environ-
ment and the safeness detector presented in Section
IV.

The extensible structure of the framework makes
possible addition of new tools. An example of such a
tool is the Proof Tool, which can check whether a
method violates the constraints specified for the data-
base. This will enable fast detection of specification
errors without any need of prototyping. In the verifica-
tion process, the Proof Tool will thus ensure robust-
ness of methods and constraints. During the project,
we tried to use available theorem provers (ISABELLE
[21], HOL [16]) to assist in this task, and we plan to
further pursue this effort in future.

We also conduct active research into further exten-
sions of TM, and we scrutinize theoretical foundations
of the language. During the project, new modelling
primitives have been added to enable modular design,
as well as a better formal foundation for method inher-
itance. We also examine the use of TM and the tools in
new application areas, such as distributed databases,
in combination with languages and tools in this area
such as LOTOS [10]. These and other activities,
resulting in high-level tools are meant to make the
framework more suitable for use by non-computer
experts.

Further research is also being conducted in the
area of translating TM into executable languages, e.g.,
using the principles and tools of algebraic optimiza-
tion. We are investigating the translation of TM into
industry-wide standard data models and query lan-
guages, such as ODMG [12] and its query language
OQL. Such translations often have to overcome signifi-
cant differences between corresponding underlying
semantics and type systems, therefore we also investi-
gate the process of evaluation of TM expressions in a
way more closely reflecting their semantics.

All the above mentioned activities can be placed in
the broad perspective of providing a suitable represen-
tation of data-application semantics: a representation
which can be created by the concerned users them-
selves, which offers them suitable modelling power,
which equips them with validation tools, and which
helps them in implementation. Through those activi-
ties, we hope to help the application developers to
answer the challenges which are posed by the complex
semantics of specialized technical domains.

VI. Acknowledgments

We would like to thank all members of the IMPRESS
project for helpful cooperation throughout the project.
In particular, Ricardo Capobianchi, Florence Ardorino
and Marc Mautref of Alcatel AAR were actively
involved in the development of the methodological

guidelines of IMPRESS. Ghislaine Eble, Cyril Autant
and Yves Garrier of Alcatel ISR cooperated with us in
the design and implementation of TM to SPOKE
translation. Enrique Burguera, Fernando Marquinez
and Inaki Angulo of IBERDROLA introduced us to the
intricacies of electrical network management. Reinier
Boon and Karina Weening helped us with the
implementation of the Database Design Tool.
Alexander Bosschaart and Bart Termorshuizen
developed the first functional specification of the
Design Tools.

VII. References

[1] F.Adreit, M. Bonjour, “EcrinsDesign: A Graphi-
cal Editor for Semantic Structures”, Proc. 3rd
Int. Conf. CAiSE’91, Trondheim, Norway, 1991,
pp. 264-284.

[2] H. Aït-Kaci, “An overview of life”, in J.W.
Schmidt and A.A. Stogny, eds., Proc. of the 1st
Int. East-West Database Workshop, Springer-
Verlag, 1991, LNCS 504, pp. 42-58.

[3] A. Albano, L. Cardelli, R. Orsini, “GALILEO: A
strongly-typed, interactive conceptual lan-
guage”, ACM Trans. on Database Systems 10,
June 1985, pp. 230-260.

[4] H. Balsters, R. A. de By & R. Zicari, “Typed sets
as a basis for object-oriented database schemas”,
in Proc. Seventh European Conf. on Object-Ori-
ented Programming (ECOOP), July 26-30, 1993,
Kaiserslautern, Germany, 1993.

[5] H. Balsters & M.F. Fokkinga, “Subtyping can
have simple semantics”, Theoretical Computer
Science 87 (September, 1991), pp. 81-96.

[6] H. Balsters & C.C. de Vreeze, “A semantics of
object-oriented sets”, in The Third Int. Work-
shop on Database Programming Languages:
Bulk Types & Persistent Data (DBPL-3), August
27-30, 1991, Nafplion, Greece, P. Kanellakis &
J.W. Schmidt, eds., Morgan Kaufman Publish-
ers, San Mateo, CA, 1991, pp. 201-217.

[7] F. Bancilhon, C. Delobel, “Building an Object-
Oriented Database System - The story of O2”,
Morgan Kaufman, 1992.

[8] D. Bitton, J.C. Millman, S. Torgersen, “DBE: an
Expert Tool for Database Design”, Proc. 3rd Int.
Conf. CAiSE’91, Trondheim, Norway, 1991, pp.
240-264.

[9] R. J. Blok, “A proof system for FM”, M.Sc. The-
sis, University of Twente, 1993.

[10] T. Bolognesi, E. Brinksma, “Introduction to the
ISO Specification Language LOTOS”,Computer
Networks and ISDN Systems, vol. 14, 1987, pp.
25-59.

[11] L. Cardelli, “A Semantics of multiple inherit-
ance”, Information and Computation 76, pp.
138-164, 1988.

11

[12] R.G.G. Cattell, “ODMG-93: A Standard for
Object-Oriented DBMSs”, Proc. of the 1994 SIG-
MOD Int. Conf. on Management of Data, pp.
480-481.

[13] R. Elmasri, S.B. Navathe, “Fundamentals of
Database Systems”, Benjamin/Cummings, 1989.

[14] J. Flokstra, M. van Keulen, J. Skowronek, “The
IMPRESS DDT: A Database Design Toolbox
Based on a Formal Specification Language”,
Proc. of the 1994 SIGMOD Int. Conf. on Man-
agement of Data, pp. 506-507.

[15] A. Goldberg, D. Robson, “Smalltalk--80: The lan-
guage and its implementation”, Addison-Wesley,
1993.

[16] M. Gordon, “HOL - A Proof Generating System
for Higher-Order Logic”, in VLSI Specification,
Verification and Synthesis, G. Birtwistle and
P.A. Subrahmanyam, Kluwer, 1987.

[17] P.W.P.J. Grefen, R.A. de By, P.M.G. Apers,
“Integrity Control in Advanced Database Sys-
tems”, Bull. Techn. Committee on Data Engi-
neering, vol. 17, no. 2, 1994, pp. 9-13.

[18] J. A. Gulla, G. Willumsen, “Using Explanations
to Improve the Validation of Executable Mod-
els”, Proc. 5th Int. Conf. CAiSE’92, Paris,
France, pp. 118-143.

[19] IMPRESS-IBD-REPORT-W5, “Physical model of
the electric network”, IBERDROLA, 1993.

[20] M. Missikoff, M. Toiati, “MOSAICO - A System
for Conceptual Modeling and Rapid Prototyping
of Object-Oriented Database Application”, Proc.
of the 1994 SIGMOD Int. Conf. on Management
of Data, pp. 508-509.

[21] L. C. Paulson. “Introduction to Isabelle”, Techni-
cal Report 280, University of Cambridge, Com-
puter Laboratory, 1993.

[22] John C. Reynolds, “Three Approaches to Type
Structure”, in Mathematical Foundations of
Software Development, H. Ehrig et al., eds.,
Springer-Verlag, 1985, Lecture Notes in Com-
puter Science, no. 185, pp. 97-138.

[23] J.D. Ullman, “Principles of Database and
Knowledge-base Systems”, Computer Science
Press, 1989.

