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Preface

The IWOTA conference in 2014 was held in Amsterdam from July 14 to 18 at
the Vrije Universiteit. This was the second time the IWOTA conference was held
there, the first one being in 1985. It was also the fourth time an IWOTA conference
was held in The Netherlands. The conference was an intensive week, filled with
exciting lectures, a visit to the Rijksmuseum on Wednesday, and a well-attended
conference dinner. There were five plenary lectures, twenty semi-plenary ones, and
many special sessions. More than 280 participants from all over the world attended
the conference.

The book you hold in your hands is the Proceedings of the IWOTA 2014
conference.

The year 2014 marked two special occasions: it was the 80th birthday of
Damir Arov, and the 65th birthday of Leiba Rodman. The latter two events were
celebrated at the conference on Tuesday and Thursday, respectively, with special
session dedicated to their work. Several contributions to these proceedings are the
result of these special sessions.

Both Arov and Rodman were born in the Soviet Union at a time when contact
with mathematicians from the west was difficult to say the least. Although their
lives went on divergent paths, they both worked in the tradition of the Krein school
of mathematics.

Arov was a close collaborator of Krein, and stayed and worked in Odessa
from his days as a graduate student. His master thesis is concerned with a topic in
probability theory, but later on he moved to operator theory with great success.
Only after 1989 it was possible for him to get in contact with mathematicians in
Western Europe and Israel, and from those days on he worked closely with groups
in Amsterdam at the Vrije Universiteit, The Weizmann Institute in Rehovot and
in Finland, the Abo Academy in Helsinki. Arov’s work focusses on the interplay
between operator theory, function theory and systems and control theory, result-
ing in an ever increasing number of papers: currently MathSciNet gives 117 hits
including two books. A description of his mathematical work can be found further
on in these proceedings.

Being born 15 years later, Rodman’s life took a different turn altogether.
His family left for Israel when Leiba was still young, so he finished his studies at
Tel Aviv University, graduating also on a topic in the area of probability theory.
When Israel Gohberg came to Tel Aviv in the mid seventies, Leiba Rodman was
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his first PhD student in Israel. After spending a year in Canada, Leiba returned
to Israel, but moved in the mid eighties to the USA, first to Arizona, but shortly
afterwards to the college of William and Mary in Williamsburg. Leiba’s work is very
diverse: operator theory, linear algebra and systems and control theory are all well
represented in his work. Currently, MathSciNet lists more than 335 hits including
10 books. Leiba was a frequent and welcome visitor at many places, including Vrije
Universiteit Amsterdam and Technische Universität Berlin, where he had close
collaborators. Despite never having had any PhD student, he influenced many of
his collaborators in a profound way. Leiba was also a vice president of the IWOTA
Steering Committee; he organized two IWOTA meetings (one in Tempe Arizona,
and one in Williamsburg).

When the IWOTAmeeting was held in Amsterdam Leiba was full of optimism
and plans for future work, hoping his battle with cancer was at least under control.
Sadly this turned out not to be the case, and he passed away on March 2, 2015. The
IWOTA community has lost one of its leading figures, a person of great personal
integrity, boundless energy, and great talent. He will be remembered with fondness
by those who were fortunate enough to know him well.

January 2016 Tanja Eisner, Birgit Jacob,
André Ran, Hans Zwart
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My Way in Mathematics:
From Ergodic Theory Through Scattering
to J -inner Matrix Functions and
Passive Linear Systems Theory

Damir Z. Arov

Abstract. Some of the main mathematical themes that I have worked on, and
how one theme led to another, are reviewed. Over the years I moved from
the subject of my Master’s thesis on entropy in ergodic theory to scatter-
ing theory and the Nehari problem (in work with V.M. Adamjan and M.G.
Krein) and then (in my second thesis) to passive linear stationary systems
(including the Darlington method), to generalized bitangential interpolation
and extension problems in special classes of matrix-valued functions, and then
(in work with H. Dym) to the theory of de Branges reproducing kernel Hilbert
spaces and their applications to direct and inverse problems for integral and
differential systems of equations and to prediction problems for second-order
vector-valued stochastic processes and (in work with O. Staffans) to new de-
velopments in the theory of passive linear stationary systems in the direction
of state/signal systems theory. The role of my teachers (A.A. Bobrov, V.P.
Potapov and M.G. Krein) and my former graduate students will also be dis-
cussed.

Mathematics Subject Classification (2010). 30DXX, 35PXX, 37AXX, 37LXX,
42CXX, 45FXX, 46CXX, 47CXX, 47DXX, 93BXX.

Keywords. Entropy, dynamical system, automorphism, scattering theory, scat-
tering matrix, J-inner matrix function, conservative system, passive system,
Darlington method, interpolation problem, prediction problem, state/signal
system, Nehari problem, de Branges space.
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1. My master’s thesis on entropy in the metrical theory
of dynamical systems (1956–57).
Entropy by Kolmogorov and Sinai. K-systems

My master’s research advisor A.A. Bobrov (formerly a graduate student of A.Ya.
Hinchin and A.N. Kolmogorov) proposed that I study Shannon entropy in the
theory of information, involving two of Hinchin’s papers, published in 1953 and
1954. At that time I had been attending lectures by N.I. Gavrilov (formerly a
graduate student of I.G. Petrovskii), that included a review of some results in
the theory of dynamical systems with invariant measure, the ergodic theorem and
the integral spectral representation of a self-adjoint operator in a Hilbert space.
In my master’s research [11]1 I proposed to use Shannon’s entropy in the theory
of dynamical systems with invariant measure and I introduced the notion of ε-
entropy for a system T t (flow) on a space Ω with measure μ on some σ-algebra
Θ of measurable sets with μ(Ω) = 1 as follows. Let T be automorphism on Ω,
i.e., T is a bijective transform on Ω such that μ is invariant with respect to T :

1The entropy chapter of [11] was recently published in [26].
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μ(TA) = μ(A), A ∈ Θ. I had introduced the notion of ε-entropy h(T ; ε) as a
measure of the mixing of T . For the flow T t I considered T = T t0 , where t0 > 0,
and I introduced (ε, t0)-entropy h(ε; t0) = h(T ; ε). In the definition h(T ; ε) I first
of considered a finite partition ξ = {Ai}m1 of Ω on measurable sets and for it I
defined

H(ξ) = −
m∑
1

μ(Ai) log2 μ(Ai), h(T ; ξ) = lim
n→∞

1

n
H(∨n−1

0 T kξ)

then,
h(T ; ε) = sup

{
h(T ; ξ) : ξ = {Ai}m1 ,

μ(Ai) ≥ ε, 1 ≤ i ≤ m for some m
}
, ε > 0,

(1)

where T kξ =
{
T kAi

}m

1
and ζ = ∨αξα is the intersection (supremum) of the

partitions ξα.
Since Bobrov was not an expert on this topic, he arranged a journey for me

to Moscow University to consult with A.N. Kolmogorov. At that time Kolmogorov
was serving as a dean and was very busy with his duties. So, after a brief conversa-
tion with me and a quick look at my work, he introduced me to V.M. Alekseev and
R.L. Dobrushin. I spoke with them and gave them a draft of my research paper.

Sometime later, at the 1958 Odessa Conference on Functional Analysis, S.V.
Fomin presented a preview of Kolmogorov’s research that included a notion of
entropy for a special class of flows (automorphisms), which after the publication
of these results in [56], were called K-flows (K-automorphisms). After Fomin’s
presentation at the conference, I remarked that in my Master’s research I intro-
duced the notion of ε-entropy for a dynamical system with invariant measure, that
is connected to Kolmogorov’s definition of entropy that was presented by Fomin.
Fomin proposed that I show him my work on this subject. As he looked through
it, he volunteered to send it to Kolmogorov. I agreed to this. Some time later, Kol-
mogorov invited me to his home to discuss possible applications of my ε-entropy.
Kolmogorov felt that after his work [56] my work did not add anything of scientific
interest, but there might be historical interest in how notions of entropy developed.
If I wished, he would recommend my work for publication. At that time I gave a
negative answer. Then he said that he was preparing a second publication on this
topic, and in it he would mention my work. He did so in [57].

Subsequently, Ya. Sinai [61] defined the entropy h(T ) of T by the formula

h(T ) = sup{h(T ; ξ) : finite partitions ξ}. (2)

Thus,

h(T ) = lim
ε↓0

h(T ; ε). (3)

Kolmogorov introduced the notion of entropy h1(T ) for an automorphism
T with an extra property: there exists a partition ζ such that T−1ζ ≺ ζ, the
infimum ∧∞1 T−kζ is the trivial partition {Ω,∅} and the supremum ∨∞0 T kζ is the
partition on the points, the maximal partition ζmax of Ω. Such automorphisms
are now called K-automorphisms. If ξ is a finitely generated partition, i.e., such
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that ∨∞−∞T kξ = ζmax , then T is a K-automorphism and, as was shown by Sinai,
Kolmogorov’s entropy

h1(T ) = h(T ) = h(T ; ξ).

In this case

h(T ; ε) = h(T ) for 0 < ε ≤ ε0 = min {μ(Ai) : ξ = {Ai}m1 } ,

where ξ is a generating partition. The notion of entropy h(T ) permitted to resolve
an old problem on metrical invariants of automorphisms T .

There is a connection between the theory of metrical automorphisms T and
the spectral theory of unitary operators: to T corresponds the unitary operator U
in the Hilbert space L2(dμ) of complex-valued measurable functions f on Ω with
‖f‖2 =

∫
Ω
|f(μ)|2dμ <∞ that is defined by formula

(Uf)(p) = f(T−1p), p ∈ Ω, f ∈ L2(dμ). (4)

It is easy to see, that, if two automorphisms Ti on (Ωi,Θi, μi), i = 1, 2, are metrical
isomorphic, i.e., if T2 = XT1X

−1, where X is a bijective measure invariant map
from the first space onto the second one, then the unitary operators corresponding
to Ti are unitarily equivalent. Thus, the spectral invariants of the unitary operator
U are metrical invariants of the corresponding automorphism T . Moreover, it is
known that the unitary operators U that correspond to K-automorphisms are
unitarily equivalent, since all of them have Lebesgue spectrum with countable
multiplicity. This can be shown by consideration of the closed subspace D of the
functions f from H = L2(dμ), that are constant on the elements of the Kolmogorov
partition ζ. Then

UD ⊂ D, ∩∞0 UnD = {0}, ∨∞0 U−nD = H, (5)

where the (defect) subspace N = D � UD is an infinite-dimensional subspace of
the separable Hilbert space H, since (Ω,Θ, μ) is assumed to be a Lebesgue space
in the Rohlin’s sense. From this it follows easily that U has Lebesgue spectrum
with countable multiplicity. However, Kolmogorov discovered that there exists K-
automorphisms T with different positive entropy h1(T ), i.e., that are not metrically
isomorphic, since for nonperiodic K-automorphisms h(T ) = h1(T ) is a metrical
invariant of T . In particular, as such T are the so-called Bernoulli automorphisms
with different entropy. For such an automorphism there exists a finite generating
partition ξ = {Ai}m1 , such that μ

(
∩n0T kAik

)
=
∏n

0 μ (Aik ) for any n > 0. For such
T and Bernoulli partition ξ entropy h(T ) = h(T ; ξ) = H(ξ).

Later Ornstein showed that the entropy of a Bernoulli automorphism defines
it up to metrical isomorphism. Thus, for any h > 0 and any natural m > 1, such
that h ≤ log2 m, there exists an automorphism T with h(T ) = h and with Bernoulli
partition that has m elements, and all Bernoulli automorphisms with entropy h
are isomorphic to this T . Then it was shown that there exists a K-automorphism,
that is not a Bernoulli automorphism, i.e., for it the entropy is not its complete
metrical invariant.
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As far as I know, the problem of describing a complete set of metrical invari-
ants of K-automorphisms that define a K-automorphism up to metrical isomor-
phism, is still open. Moreover, in view of above, h(T ; ε) is uniquely defined by h(T )
for any Bernoulli automorphism T and any ε, 0 < ε ≤ 1

2 . I do not know if this also
holds forK-automorphisms. Similar results were obtained for the K-flows T t, since
h(T t) = th(T 1). In particular, the group U t of unitary operators corresponding to
a K-flow has a property similar to (5), and all such groups have Lebesgue spec-
trum with countable multiplicity; hence, they are all unitary equivalent, although
the K-flows may have different entropy.

2. My first thesis “Some problems in the metrical theory of
dynamical systems” (1964)

In 1959 V.P. Potapov invited me to be his graduate student. In order to overcome
the difficulties involved because of my nationality (which in the Soviet slang of
that time was referred to as paragraph 5), he suggested that I ask Kolmogorov for
a letter of recommendation. Kolmogorov wrote such a letter and I was officially
accepted as a graduate student at the Odessa Pedagogical Institute from 1959-
1962. There I prepared my first dissertation [12]. In this thesis:

1) The entropy h(T ) of an endomorphism T of a connected compact commuta-
tive group of dimension n (in particular, of n-dimensional torus) was calcu-
lated; see [14]. This generalized the results of L.M. Abramov, who dealt with
the case n = 1; my results were later generalized further by S.A. Yuzvinskii
(1967).

2) A notion of entropy m(T ) for a measurable bijection T of a Lebesgue space
that maps a set with zero (positive) measure onto a set with zero (positive)
measure was introduced, by consideration of the formula

m(T, ξ) = lim
n↑∞

1

n
log2N (∨n−1

k=0T
kξ),

where N(ζ) is the number of sets Ai in the partition ζ and setting

m(T, {ξk}) = lim
n→∞

m(T, ξk)

for a nondecreasing sequence ξk of finite measurable partitions, m(T ) =
inf {m(T, {ξk}) : {ξk}}. It was shown here that h(T ) = m(T ) for the au-
tomorphisms of torus.

3) It was shown that two homeomorphical automorphisms in the connected com-
pact commutative groups X and Y with weight not exceeding the continuum
are isomorphic; moreover, if these automorphisms are ergodic, the groups are
finite dimensional and G is the homeomorphism under consideration, then G
is a product of a shift in X and an isomorphism X onto Y , see [13]; these
results were generalized by E.A. Gorin and V.Ya. Lin.
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The external review on my first thesis was written by Ya.G. Sinai, the opponents
were V.A. Rohlin and I.A. Ibragimov. The thesis was defended in 1964 at Leningrad
University.

M.S. Birman invited me to lecture on my joint work with V.M. Adamjan in
the V.I. Smirnov seminar a day before my defense in Leningrad. This work de-
veloped a connection between the Lax–Phillips scattering scheme and the work of
Nagy–Foias on unitary dilations and the characteristic functions of contractions.
In particular, we showed that the characteristic function of a simple contraction
of the class C00 is the scattering matrix of a discrete time Lax–Phillips scatter-
ing scheme, which we viewed as the unitary coupling of two simple semi-unitary
operators.

We learned about the results of Nagy–Foias from a presentation by Yu.P.
Ginzburg in M.G. Krein’s seminar and about the Lax–Phillips scattering theme
from an unpublished manuscript that M.G. Krein obtained from them at an inter-
national conference in Novosibirsk. This manuscript described their recent work
on the scattering operator S and scattering matrix s(λ) for a continuous group Ut

of unitary operators in a Hilbert space H in which there exist subspaces D+ and
D− such that

(a) U±tD± ⊂ D±, t > 0, (b) ∩t>0 U±tD± = {0},
(c) ∨t<0 U±tD± = H, (d) D+ ⊥ D−.

(6)

Krein suggested that the work of Lax–Phillips be presented in his seminar
and that it would be good to find a connection between the scattering matrix in
the Lax–Phillips scheme and the scattering matrix in perturbation theory, where
the scattering operator is defined for two groups of unitary operators by consider-
ation of the wave operator under certain conditions. V.M. Adamjan and I found
a connection by considering a second group of unitary operators U0

t on the space
H0 = D− ⊕D+, such that V ±

t := U±tID± = U0
±tID± , t ≥ 0. We called the groups

Ut and U0
t “the couplings of two semigroups of semiunitary operators V ±

t ”. More-
over, we discovered that Lax-Phillips scattering matrix s(λ) essentially coincides
with the Livsic characteristic function of the dissipative operator B, such that iB
is the generator of semigroup of contractive operators Tt in the space X = H�H0

of the class C00, i.e., Tt = eiBt has property

Tt �→ 0 and T ∗
t → 0 as t→ +∞. (7)

(Earlier M.S. Livsic in [58] also interpreted the characteristic function of B as a
scattering matrix.) More precisely, since at that time the characteristic function of
a dissipative operator was defined only for bounded operators B, we considered the
Cayley transformK = (iI−B)(iI+B)−1 of B, and showed that s ((i− λ)/(i + λ))
coincides (up to unitary multipliers) with the Nagy–Foias characteristic function
of a contraction K in the class C00, and it is the scattering matrix of the unitary
coupling U of two simple semi-unitary operators V±, where U and V± are Cayley
transforms of a selfadjoint operator A and a pair of maximal dissipative operators
A± that are taken from Ut = eiAt and V ±

t = eiA±t, respectively; U is the minimal
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unitary dilation of the contraction K ∈ C00. This work was published in [2], and
then later, in [3], we generalized these results to the case where (c) in (6) was
replaced by

(c′) (∨t<0UtD+) ∨ (∨t>0UtD−) = H.

Then the condition (7) is not needed, andKmay be any contraction inX that does
not have a unitary part, i.e., it is simple. Moreover, we considered a generalization
of the Lax-Phillips scattering scheme, in which the condition (d) in (6) is not
assumed. Then instead of a scattering matrix s(λ) that is analytic and contractive
in the upper half-plane C+, we considered a scattering suboperator s(μ) that is
contractive on the real axis R. We also showed that s(μ) is the nontangential
boundary value of a scattering matrix s(λ) that is analytic and contractive in C+

if and only if (d) in (6) is satisfied. Our results were presented in detail in [5].
My interest in the Lax–Phillips scattering scheme was partially motivated

by the fact that to any K-system with continuous or discrete time (K-flow or
K-automorphism) in a space with invariant measure there corresponds an infinite
family of Lax–Phillips scattering schemes that satisfy the conditions (a)–(c) in (6)
and hence infinitely many scattering suboperators s(· ) that are all unitary on the
real axis or on the unit circle, respectively. Indeed, as was explained earlier, if T
is a K-automorphism, then the operator U defined by formula (4) is unitary in
the Hilbert space H = L2(dμ) and there exists a closed subspace D+ of H with
property (5) that is defined by a Kolmogorov partition ζ and is invariant under
U . Since T−1 is a K-automorphism when T is a K-automorphism, a subspace
D− based on T−1 may be obtained similarly so that the discrete group Un and
the subspaces D± have properties, similar to (a), (b) and (c) in (6). Thus, to
different pairs of Kolmogorov partitions ζ+ and ζ− of K-automorphisms T and
T−1 correspond different scattering suboperators s(. ), and this family is a metrical
invariant for a K-system. I hope that this family s(· ), will be useful elsewhere.
(Another connection between K-automorphisms and scattering theory may be
found in the theory of polymorphisms that is developed by A.M. Vershik, see, e.g.,
[64] and references inside.)

In [6] V.M.Adamjan and I applied the Lax–Phillips generalized scattering
scheme to the problem of predicting the future of one weakly stationary process
by past of another weakly stationary process when the cross correlation between
these two processes is stationary.

3. From scattering to the Nehari problem. Joint research with
V.M. Adamjan and M.G. Krein (1967–71)

Our joint research with V.M. Adamjan led us to consider the problem of describing
the set of all the scattering suboperators s(μ) on R (or s

(
eiμ

)
on the unit circle, in

the discrete time case) of the set of all unitary couplings Ut (or U , respectively))

into Hilbert spaces H ⊃ D
def
= D−∨D+ of two simple semiunitary semigroups V ±

t

(semiunitary operators V±, respectively) on D±, where the angle between D+ and
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D− is measured by a Hankel operator with symbol s(· ). In the discrete time case
the values of s(eiμ) are contractive operators acting between the defect subspaces

N± = D± � V±D± of the operators V± and the Hankel operator T̂ = T̂(s) with
symbol s(eiμ) is the operator from L2

+(N+) into L2
−(N−) that is defined by the

formula

(T̂ϕ)(eiμ) = π−Msϕ, ϕ ∈ L2
+(N+), (8)

where
L2
+(N) =

{
ϕ ∈ L2(N) : ϕ(eiμ) =

∑∞
0 ϕke

ikμ, ϕk ∈ N
}
,

L2
−(N) = L2(N)� L2

+(N),

Ms is operator of “multiplication” by s(eiμ), acting from L2(N+) into L2(N−)
and π− is the orthoprojection from L2(N−) onto L2

−(N−). This way we came to
a problem that we called the “generalized Schur problem.”

In the scalar case the generalized Schur problem problem may be formulated
as follows: Given a sequence of complex numbers {γk}∞k=1 find a function s ∈ L∞

with ‖s‖∞ ≤ 1 such that the coefficient of e−ikμ in its Fourier series expansion
equal γk for k ≥ 1. The classical Schur coefficient problem for functions that are
holomorphic and contractive in the unit disk functions is equivalent to the special
case of this problem, when γk = 0 for k > n.

In our joint work [7] with V.M. Adamjan and M.G. Krein we showed that
this problem has a solution if and only if the Hankel operator T in l2 defined by
the infinite Hankel matrix (γj+k−1)

∞
j,k=1 is contractive, i.e., if and only if ‖T‖∞ ≤

1. Moreover, in the set N(T) of all the solutions to this problem there exists a
solution s(· ) with ‖s‖∞ = ‖T‖. Later, we changed the name of this problem from
generalized Schur to Nehari, because we discovered that Nehari had studied this
problem before us, and had obtained the same results as in [7] by different methods.

Subsequently in [8] the set N(T) was described based on results in the theory
of unitary (self-adjoint) extensions U of an isometric (symmetric) operator V . The
main tool was a formula of Krein that parametrized the generalized resolvents of
a symmetric operator. We obtained a criteria for existence of only one solution,
and, in the opposite case, parametrization of the set N(T) by the formula

s(ς) = [p−(ζ)ε(ζ) + q−(ζ)] [q+(ζ)ε(ζ) + p+(ζ)]
−1

, (9)

where ε is an arbitrary scalar function that is holomorphic and contractive in the
unit disk, i.e., in terms of the notation Sp×q for the Schur class of p × q matrix
functions that are holomorphic and contractive in the unit disk or upper half-
plane, ε ∈ S1×1. The matrix of coefficients in the linear fractional transformation
considered in (9) has special properties that will be discussed later.

In the problem under consideration U is the unitary coupling of the simple
semi-unitary operators V±, defined in the Hilbert space D = D− ∨ D+, U is a
unitary extension of the isometric operator V in the Hilbert space D = D− ∨D+,
such that the restriction of V to D+ is equal to V+ and restriction of V to V−D−
is equal to V ∗

−. The problem has unique solution if and only if U = V . If not, then
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V has defect indices (1, 1), and formula (9) was obtained using the Krein formula
that was mentioned above. In [9] this formula was generalized to the operator-
valued functions in the strictly completely indeterminate case, i.e., when ‖T‖ < 1,
where the formulas for the coefficients of the linear fractional transformation in (9)
in terms of Hankel operator T were obtained by a purely algebraical method that
is different from the method used in [8]. Then in [10] we established the formula

sk = min{‖s− h− r‖∞ : h+ r ∈ H∞,k}, (10)

for the singular values (s1 ≥ s2 ≥ · · · ) of a compact Hankel operator T̂ with a scalar
symbol s(. ), where r belongs to the class of rational functions that are bounded
on the unit circle with at most k poles in the unit disc (counting multiplicities)
and h ∈ H∞. Moreover, a formula for the function that minimizes the distance in

(10) in terms of the Schmidt pairs of T̂ was obtained in [10]. In [1], V.M. Adamjan
extended the method that was used in [8] to the operator-valued Nehari problem.
In particular, formula (9) was obtained for the matrix-valued Nehari problem
in the so-called completely indeterminate case, when s(· ) ∈ Lp×q

∞ , q = dimN+,
p = dimN−. In this case ε ∈ Sp×q in (9). Adamjan also obtained a parametrization
formula in the form of the Redheffer transform (see the formula (23) below) that
describes the set N(T) of the solutions for the Nehari problem even when it is
not in the completely indeterminate case. The matrix coefficients in the linear
fractional transform (9) have special properties that were established in [8] for the
scalar problem, and in [1] for the matrix-valued problem. These properties will be
discussed in the next section.

4. From scattering and Nehari problems to the Darlington method,
bitangential interpolation and regular J -inner matrix functions.
My second thesis: linear stationary passive systems with losses

V.P. Potapov was my advisor for my first dissertation, and I owe him much for
his support in its preparation and even more for sharing his humanistic viewpoint.
However, my mathematical interests following the completion of my first disserta-
tion were mostly defined by my participation in Krein’s seminar and by my work
with him. In this connection I consider both M.G. Krein and V.P. Potapov as my
teachers. (See [25].)

I only started to work on problems related to the theory of J-contractive
mvf’s (matrix-valued functions), which was Potapov’s main interest, in the 70s.
Although earlier I participated in Potapov’s seminar on this theme and in his
other seminar, where passive linear electrical finite networks were studied, using
the book [60] of S. Seshu and M.B. Reed. In the second seminar, the Darlington
method of realizing a real rational scalar function c(λ) that is holomorphic with
�c(λ) > 0 in the right half-plane (i.e., c(−iλ) belongs to the Carathéodory class C),
as the impedance of an ideal electrical finite linear two pole with only one resistor
was discussed. A generalization by Potapov and E.Ya. Malamud who obtained the
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representation

c(λ) = TA(τ)
def
= [a11(λ)τ + a12(λ)] [a21(λ)τ + a22(λ)]

−1 , (11)

for real rational mvf’s c(λ) such that c(−iλ) belongs to the Carathéodory class
Cp×p of p × p mvf’s, τ is a constant real nonnegative p × p matrix and the mvf
A(λ) with four blocks ajk(λ) is a real rational mvf such that A(−iλ) belongs to
the class U(Jp) of Jp-inner mvf’s in the open upper half-plane C+; see [59] and
references therein. Recall that an m×m matrix J is a signature if it is selfadjoint
and unitary. The main examples of signature matrices for this paper are

±Im, Jp =

[
0 −Ip
−Ip 0

]
, jpq =

[
Ip 0
0 −Iq

]
, jp = jpp. (12)

An m×m mvf U(λ) belongs to the Potapov class P(J) of J-contractive mvf’s in
the domain Ω (which is equal to either C+, or −iC+, or the unit disk D), if it is
meromorphic in Ω and

U(λ)∗JU(λ) ≤ J at holomorphic points in Ω. (13)

The Potapov–Ginzburg transform

S = PG(U)
def
= [P− + P+U ][P+ + P−U ]−1, where P± =

(
1

2

)
(Im ± J), (14)

maps U ∈ P(J) into a mvf S(λ) in the Schur class Sm×m in Ω with

det(P+ + P−S) �≡ 0 in Ω.

The converse is also true: If S ∈ Sm×m(Ω) and det(P+ + P−S) �≡ 0 in Ω, then
PG(S) ∈ P(J). From this it follows, that

P(J) ⊆ Nm×m, (15)

where Nm×m is the Nevanlinna class of m×m mvf’s that are meromorphic in Ω
with bounded Nevanlinna characteristic of growth. Consequently, a mvf U ∈ P(J)
has nontangential boundary values a.e. on the boundary of Ω. A mvf U ∈ P(J)
belongs to the class U(J) of J-inner mvf’s, if these boundary values are J-unitary
a.e. on the boundary of Ω, i.e.,

U(λ)∗JU(λ) = J a.e. on ∂Ω. (16)

Moreover U belongs to this class if and only if the corresponding S belongs to
the class Sm×m

in of bi-inner m × m mvf’s, i.e., S ∈ Sm×m and S has unitary
nontangential boundary values a.e. on ∂Ω.

My second dissertation “Linear stationary passive systems with losses” was
dedicated to further developments in the theory of passive linear stationary systems
with continuous and discrete time. In particular, the unitary operators U±t in the
passive generalized scattering scheme (a), (b), (c′) and (d) that was considered
in (6) were replaced by a pair of contractive semigroups Zt and Z∗

t for t ≥ 0.
This made it possible to extend the earlier study of simple conservative scattering
systems to dissipative (or, in other terminology, passive) systems too. Minimal
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passive scattering systems with both internal and external losses were studied
and passive impedance and transmission systems with losses were analyzed by
reduction to the corresponding scattering systems. The Darlington method was
generalized as far as possible and was applied to obtain new functional models for
simple conservative scattering systems with scattering matrix s and for dissipative
scattering systems and minimal dissipative scattering systems.

A number of the results mentioned above were obtained by generalizing the
Potapov–Malamud result on Darlington representation (11) to the class Cp×pΠ =
Cp×p∩Πp×p, where Πp×p is the class of mvf’s f fromN p×p, that have meromorphic
pseudocontinuation f− into exterior Ωe of Ω, that belong to the Nevanlinna class
in Ωe such that the nontangential boundary value f on ∂Ω coincides a.e. with the
nontangential boundary value of f−. It is easy to see that this last condition is
necessary in order to have the representation (11) with a constant p × p matrix
τ with �τ ≥ 0 and A ∈ U(Jp). The sufficiency of this condition was presented
in [15] and with detailed proofs in [16]. This result is intimately connected with
an analogous result on the Darlington representation of the Schur class Sp×q of
mvf’s s:

s(λ) = TW (ε)
def
= [w11(λ)ε+ w12(λ)] [w21(λ)ε+ w22(λ)]

−1
, (17)

where ε is a constant contractive p× q matrix and the mvf W (λ) of the coefficients
belongs to U(jpq). In [15] and [16] it was shown that such a representation exists
if and only if s ∈ Sp×qΠ, where this last class is defined analogously to the class
Cp×pΠ. Moreover, it was shown, that such a representation exists if and only if s
may be identified as s = s12, where s12 is 12-block in the four block decomposition
of a bi-inner mvf S(λ),

S(λ) =

(
s11(λ) s12(λ)
s21(λ) s22(λ)

)
. (18)

Furthermore, the set of all such Darlington representations S of minimal size p̃× p̃
were described as well as the minimal representations (18) with minimal losses, p̃ =
p+pl = q+ql, where ql = rank(Ip−s(μ)s(μ)∗), pl = rank(Iq−s(μ)s(μ)∗) a.e. These
mvf’s S(λ) were used in [15], [17]–[21] to construct functional models of simple
conservative scattering systems with scattering matrix s(λ) with minimal losses of
internal scattering channels and minimal losses of external channels. The operator-
valued s ∈ S(N+,N−)Π also was presented as the 12-block of a bi-inner function
S ∈ Sin(N+,N−), that is a divisor of a scalar inner function. Independently and
at approximately the same time similar results were obtained by R.G. Douglas
and J.W. Helton [54]; they obtained them as an operator-valued generalization
of the work of P. Dewilde [53], who also independently from author obtained
Darlington representation in the form (18) for mvf’s. P. Dewilde obtained his
result as a generalization to nonrational mvf’s of a result of V. Belevich [52], who
generalized the Darlington method to ideal finite linear passive electrical multipoles
with losses, using the scattering formalism, by representating a rational mvf s that
is real contractive in C+ as a block in a real rational bi-inner mvf S. In [54] the
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problem of finding criteria for the existence of a bi-inner dilation S (without extra
conditions on S) for a given operator function s, was formulated. This problem
was solved after more than 30 years by the author with Olof Staffans [48]: a bi-
inner dilation S for a Schur class operator function s exists if and only if the two
factorization problems

I − s(μ)∗s(μ) = ϕ(μ)∗ϕ(μ) and I − s(μ)s(μ)∗ = ψ(μ)ψ(μ)∗ a.e. (19)

in the Schur class of operator-valued functions ϕ and ψ are solvable.

My second dissertation was prepared for defence twice: first in 1977 and then
again in 1983, because of anti-semitic problems. In 1977 I planned to defend it at
Leningrad University. At that time I had moral support from V.P. Potapov, M.G.
Krein, V.A. Yakubovich and A.M. Vershik, but that was not enough.

My contact with V.A. Yakubovich in 1977 led to our joint work [50], which
he later built upon to further develop absolutely stability theory.

The defence of the second version of my second dissertation was held at the
Institute of Mathematics AN USSR (Kiev, 1986). Again there was opposition be-
cause of the prevailing antisemitism, but this time this difficulty was overcome
with the combined support of M.G. Krein, Yu.M. Berezanskii and my opponents
M.L. Gorbachuk (who, as a gladiator, waged war with a my (so-called) black oppo-
nent and with the chief of the joint seminar, where my dissertation was discussed
before its presentation for defence), S.V. Hruschev and I.V. Ostrovskii and V.P.
Havin, who wrote external report on my dissertation. Moreover, after the defence,
I heard that a positive opinion by B.S. Pavlov helped to generate acceptance by
“VAK.”

This dissertation was dedicated to further developments in the theory of
passive linear time invariant systems with discrete and continuous time and with
scattering matrices s, that are not bi-inner. In it the Darlington method was
generalized so far as possible and was applied to obtain new functional models
of conservative simple scattering realizations of scattering matrices s with losses
inner scattering channels, as well as to obtain dissipative scattering realizations
of s with losses external scattering channels. In particular, minimal dissipative
and minimal optimal and minimal ∗-optimal realizations were obtained. Here the
results on the generalized Lax–Phillips scattering scheme and the Nehari problem
that were mentioned earlier were used and were further developed. Some of the
results, that were presented in the dissertation are formulated above and some
other will be formulated below.

My work on the Darlington method lead me to deeper investigations of the
Nehari problem and to the study of generalized Schur and Carathéodory interpo-
lation problems and their resolvent matrices. I introduced the class of γ-generating
matrices

A(ς) =

(
p−(ς) q−(ς)
q+(ς) p+(ς)

)
, (20)
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that describe the set of solutions N(T) of completely indeterminate Nehari prob-
lems by the formulas

N(T) = TA(S
p×q)

def
= {s = TA(ε) : ε ∈ Sp×q} (21)

and (9).
Later, in joint work with Harry Dym, the matrix-valued functions in this

class were called right regular γ-generating matrices and that class was denoted
MrR(jpq). This class will be described below.

A matrix function A(ζ) with four block decomposition (20) belongs to the
class Mr(jpq) of right γ-generating matrices if it has jpq-unitary values a.e. on the
unit circle and its blocks are nontangential limits of mvf’s p± and q± such that

s22
def
= p−1

+ ∈ Sq×q
out , s11

def
= (p#−)

−1 ∈ Sp×p
out ,

s21
def
= −p−1

+ q+ ∈ Sq×p,
(22)

where Sk×k
out is the class of outer matrix functions in the Schur class Sk×k, f#(z) =

f(1/z). Formula (9) may be rewritten as a Redheffer transform:

s(ζ) = RS(ε)
def
= s12(ζ) + s11(ζ)ε(ζ) (Iq − s21(ζ)ε(ζ))

−1
s22(ζ). (23)

The matrix function S(· ) with four blocks sjk is the Potapov–Ginzburg transform
of the matrix function A(· ). If A ∈ Mr(jpq) and s0 is defined by (9) for some

ε ∈ Sp×q and T̂ = T̂(s0) is defined by(8), then

TA(S
p×q) ⊆ N(T) (24)

with equality if and only if A ∈MrR(jpq). This result as well as related results on
the description of the set of solutions of a c.i. (completely indeterminate) general-
ized Schur interpolation problem GSIP(b1, b2; s

0) (by a linear fractional transfor-
mation based on a regular (later renamed as right regular in joint work with Harry
Dym) jpq-inner matrix function W ∈ UrR(jpq) (so-called resolvent matrix of the
problem) and analogous results on the c.i. generalized Carathéodory interpolation
problem GCIP(b3, b4; c

0) and their resolvent matrices were obtained in the second
dissertation and presented in [22]–[24].

The classes MrR(jpq) of right regular γ-generating matrices and US(J) and
UrR(J) of singular and right regular J-inner matrix functions are defined as follows:
A J-inner matrix function U belongs to the class US(J) of singular J-inner matrix
functions, if it is outer, i.e., if U ∈ Nm×m

out , where

Nm×m
out = {f = g−1h : h ∈ Sm×m

out , g ∈ S1×1
out }. (25)

If a matrix function in the Nevanlinna class is identified with its nontangential
boundary value, then US(jpq) ⊂Mr(jpq). Moreover, the product

A = A1W, where A1 ∈Mr(jpq) and W ∈ US(jpq), (26)

belongs to Mr(jpq); and, by definition, A ∈MrR(jpq), if in any of its factorizations
(26), the factor W is a constant matrix. Every A ∈Mr(jpq) admits an essentially
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unique factorization (26) with A1 ∈MrR(jpq) and any matrix function U ∈ U(J)
has an essentially unique factorization

U = U1U2, where U1 ∈ UrR(J) and U2 ∈ US(J). (27)

A matrix function U ∈ UrR(J), if it does not have nonconstant right divisors
in U(J) that belong to US(J). The classes UrR(jpq) and UrR(Jp) are the classes of
resolvent matrices of c.i. GSIP’s and GCIP’s, respectively.

In a GSIP(b1, b2; s
0), the matrix functions b1 ∈ Sp×p

in , b2 ∈ Sq×q
in and s0 ∈

Sp×q are given and the problem is to describe the set

S(b1, b2; s0) = {s ∈ Sp×q : b−1
1 (s− s0)b−1

2 ∈ Hp×q
∞ } (28)

This problem is called c.i. (completely indeterminate) if for every nonzero ξ ∈ Cp

there exists an s ∈ S(b1, b2; s
0) such that s(λ)ξ �= s0(λ)ξ for some λ ∈ C+.

In a GCIP(b3, b4; c
0), the matrix functions b3, b4 ∈ Sp×p

in and c0 ∈ Cp×p are
given and the problem is to describe the set

C(b3, b4; c0) = {c ∈ Cp×p : b−1
3 (c− c0)b−1

4 ∈ Np×p
+ }, (29)

where

N p×p
+ = {f ∈ N p×p : f = g−1h, g ∈ Sout and h ∈ Sp×p}

is the Smirnov class of p× p matrix functions in C+. The definition of c.i. for such
a problem is similar to the definition for a GSIP.

One of my methods for obtaining Darlington representations was based on
these generalized interpolation problems. Thus, if s ∈ Sp×qΠ and ‖s‖∞ < 1, then

it can be shown that there exists a pair b1 ∈ Sp×p
in and b2 ∈ Sq×q

in such that

b2(Iq − s#s)−1s#b1 ∈ N q×p
+ , where s#(λ) = s(λ)∗.

Then, the GSIP(b1, b2; s
0) with s0 = s is s.c.i. (strictly completely indeterminate,

i.e., it has a solution s with ‖s‖∞ < 1) and there exists a resolvent matrix W ∈
UrR(jpq) such that s = TW (0). Thus, a Darlington representation of s is obtained
by solving this GSIP. Moreover, if s11 and s22 are the diagonal blocks of S =
PG(W ), then

b−1
1 s11 ∈ Sp×p

out and s22b
−1
2 ∈ Sq×q

out . (30)

Later, in work with Harry Dym such a pair of inner mvf’s was called an associated
pair of W and the set of all associated pairs of W was denoted by ap(W ). It was
shown that: If W ∈ E ∩ U(jpq), i.e., if W is entire, and {b1, b2} ∈ ap(W ) then b1
and b2 are entire mvf’s too. The converse is true, if W is right regular.

Analogous results were obtained for the Darlington representations of mvf’s in
the Carathéodory class, by consideration of c.i. GCIP’s. In this case, the resolvent
matrices A ∈ U(Jp) and associated pairs of the first and second kind are defined
for such A in terms of the associated pairs of the mvf’s

W (λ) = VA(λ)V and B(λ) = A(λ)V, where V =
1√
2

[
−Ip Ip
Ip Ip

]
. (31)
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If [b21 b22] = [0 Ip]B, then (b#21)
−1 and b−1

22 belong to N p×p
+ and hence they have

inner-outer and outer-inner factorizations, respectively. If b3 and b4 are inner p× p
mvf’s taken from these factorizations, then {b3, b4} is called an associated pair for
B and the set of all associated pairs of B is denoted ap(B). The set apI(A) and
apII(A) of associated pairs of first and second kind for A are defined as

apI(A) = ap(W ) and apII(A) = ap(B).

Additional details on GSIP’s, GCIP’s, resolvent matrices and associated pairs
of mvf’s may be found in the monographs [27], [28] with Harry. Results, related to
entire J-inner mvf’s are used extensively in [28] in the study of bitangential direct
and inverse problems for canonical integral and differential systems.

5. Development of the theory of passive systems by
my graduate students

An important contribution to my efforts to develop the theory of passive lin-
ear stationary systems, J-inner matrix functions and related problems was made
by my graduate students: L. Simakova, M.A. Nudelman (his main advisor was
V.A. Yakubovich), L.Z. Grossman, S.M. Saprikin, N.A. Rozhenko, D. Pik (his
main advisor was M.A. Kaashoek), see [43]–[46], [37]–[39] and references cited
therein. I also helped to advise the works of O. Nitz, D. Kalyuzjnii-Verbovetskii,
and M. Bekker (his advisor was M.G. Krein and I was his a nonformal advisor).
The main results of Simakova, with complete proofs, may be found in [27]. She
studied the mvf’s W meromorphic in Ω such that TW (Sp×q) ⊂ Sp×q and mvf’s A
such that TA(Cp×p) ⊂ Cp×p. She showed that if detW �≡ 0 (resp., detA �≡ 0) then
the first (resp., second) inclusion holds if and only if ρWεP(jpq) (resp., ρAεP(Jp))
for some scalar function ρ that is meromorphic in Ω. With M. Nudelman we further
developed the theory of passive scattering and impedance systems with continuous
time. In particular a criterium for all the minimal passive realizations of a given
scattering (impedance) matrix to be similar was obtained in [42].

The role of scattering matrices in the theory of unitary extensions of isometric
operators was developed with L. Grossman in [36].

The Darlington method was extended with N. Rozhenko in [43] and other
papers, cited therein. Darlington representations were extended to mvf’s in the
generalized Schur class Sp×q

χ with S. Saprikin [45].
A theory of Livsic–Brodskii J-nodes with right strongly regular characteristic

mvf’s was developed by my daughter Zoya Arova in [51] (her official advisors were
I.S. Kac, and M.A. Kaashoek).

6. Joint research with B. Fritzsche and B. Kirstein on J -inner
mvf’s (1989–97)

After “perestroika” I had the good fortune to work with mathematicians from
outside the former Soviet Union. First I worked in Leipzig University with the
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two Bernds: B.K. Fritzsche and B.E. Kirstein. Mainly we worked on completion
problems for (jp, Jp)-inner matrix functions (see, e.g., [32] and the references in-
side) and on parametrization formulas for the sets of solutions to c.i. Nehari and
GCIP’s [34], [33]. We worked together for 10 years, and published 9 papers. In
Leipzig University I also collaborated with I. Gavrilyuk on an application the
Cayley transform to reduce the solution of a differential equation to the solution
of a corresponding discrete time equation (see, e.g., [35]).

7. Joint research on passive scattering theory with M.A. Kaashoek
(and D. Pik) with J. Rovnjak (and S. Saprikin)

During the years 1994–2000 I worked in Amsterdam Vrije Universiteit with Rien
Kaashoek and our graduate student Derk Pik on further developments in the
theory of passive linear scattering systems (see [37], [38] and the references inside).
Derk generalized the Darlington method to nonstationary scattering systems. Then
in the years 2000 and 2001 I visited University of Virginia for one month each year
to work with Jim Rovnyak. Subsequently, Jim invited S.M. Saprikin to visit him
for one month in order to help write up our joint work. Our results were published
in [21] and [44].

8. Joint research with Olof J. Staffans (and M. Kurula) on passive
time-invariant state/signal systems theory (2003–2014)

I first met Olof at the MTNS Conference in 2002, where he presented his view on
conservative and passive infinite-dimensional systems [62]. We discovered that we
have a common interest in passive linear systems theory. After this meeting he in-
vited me to visit him each year for two or three months to pursue joint work on the
further development of passive linear time invariant systems theory. We wrote a
number of papers together. In particular, [47] on the Kalman–Yakubovich–Popov
inequality for continuous time systems and [48] that was mentioned earlier. How-
ever, the main focus of our work was in a new direction that we call “state/signal”
(s/s for short) systems theory.

In this new direction instead of input and output data u and y, that are
considered in i/s/o (input/state/output) systems theory, only one external signal
w in a vector space W with a Hilbert space topology is considered. Thus, in
a linear stationary continuous time s/s system a classical trajectory (x(t), w(t))
on an interval I is considered, where the state component x(t) is a continuously
differentiable function on I with values from a vector space X with a Hilbert space
topology (x ∈ C1(X ; I)), signal component w(t) is a continuous function on I with
values from W (w ∈ C(W, I)) and they satisfy the conditions

dx/dt = F (x(t), w(t)), (32)
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x(t)
w(t)

]
∈ D(F ), (33)

where F is a closed linear operator, acting from X×W into X with domain D(F )
such that the subset

X0 =

{
x ∈ X :

[
x
w

]
∈ D(F ) for some w ∈W

}
is dense in X . A generalized trajectory (x(t), w(t)) of the system is defined as the
limit in C(X ; I)× L2

loc(W ; I) of a sequence of classical trajectories.

Mainly we study the so-called future (or past, or two-sided) solvable systems
for which the set of classical trajectories on R+ = [0,∞) (or R− = (−∞, 0], or R)
is not empty for any x(0) ∈ X0.

A discrete time s/s system is defined analogously. The only change is that
difference x(t + 1) − x(t) is considered instead of the derivative, F is a bounded
operator on a closed domain and X0 = X .

If W can be decomposed as (an ordered) direct sum W =
[
U
Y

]
of two closed

subspaces U and Y such that the system (32), (33) is equivalent to the system[
dx
dt
y(t)

]
= S

[
x(t)
u(t)

]
,

[
x(t)
u(t)

]
∈ D(S), (34)

where S is a linear closed operator, acting from X × U into X × Y with domain
D(S) that has certain properties (in particular, main operator A of the system is
defined on a dense domain in X as the projection onto X of the restriction of S
to D(S) ∩ (X × {0}) ) and w(t) = (u(t), y(t)), then this decomposition is called
admissible and the corresponding i/s/o system

∑
i/s/o = (S;X,U, Y ) (including

classical and generalized trajectories (x(t), u(t), y(t)) on the intervals I) is called
an i/s/o representation of the s/s system

∑
= (V ;X,W ), where V is the graph

of the operator F in (32), (33). (In general, we prefer to use the graph V instead
of the operator F .) Some results on passive linear stationary continuous time s/s
systems and their i/s/o representations we obtained in joint work with Mikael
Kurula, a former graduate student of Olof Staffans, see, e.g., [40], [41] and the
references inside.

Our results on linear time invariant s/s systems with continuous time are
summarized in the monograph [49] that is still in electronic version. In the last
chapter of this monograph, passive systems of this kind are considered.

We also plan to write a separate monograph dedicated to passive systems. In a
passive s/s system, X is a Hilbert space andW is a Krein space and V is a maximal
nonnegative subspace in the Krein (node) spaceR = X�X�W . Any fundamental
decomposition W = W+ � (−W−) of the Krein signal space W is admissible for
such a system. The corresponding i/s/o representation of this system is called a
scattering representation of the system and is denoted

∑
sc = (S;X,W+,W−). The



18 D.Z. Arov

notion of a passive i/s/o scattering system
∑

sc = (S;X,U, Y ) is introduced and
it is shown that any such system is a scattering i/s/o representation of a certain
passive s/s system with Krein signal space W = U � (−Y ). Moreover, the transfer
function of any scattering passive i/s/o system, scattering matrix, is holomorphic
in C+ and its restriction to C+ belongs to the Schur class S(U, Y ) of holomor-
phic contractive functions with values from B(U, Y ). If dimW− = dimW+, then
the s/s system Σ may have a Lagrangian decomposition W = U � Y , i.e., both
closed subspaces U and Y are neutral subspaces in W . The corresponding i/s/o
representation of Σ is called an impedance representation and it is denoted by∑

imp = (S;X,U, Y ). A third significant class of i/s/o representations of a passive

s/s system is the class of transmission representations
∑

tr = (S;X,U, Y ) in which
U and Y are orthogonal in the Krein signal space W . Thus a passive s/s system
with a Krein signal space W with indefinite metric has infinitely many scatter-
ing representations and may also have impedance and transmission representa-
tions. Correspondingly, it has infinitely many scattering matrices and may have
impedance and transmission matrices, transfer functions of these representations.

If V is a Lagrangian subspace in a Krein node space, then the system is
called conservative. To each such system there correspond conservative scatter-
ing (impedance and transmission) representations. The notions of dilation and
compression may be introduced for an s/s system Σ and an i/s/o system. A con-
servative s/s system is called simple, if it is not the dilation of another conservative
s/s system. A passive s/s system that is not a dilation of an other s/s system is
called minimal. It is shown that every conservative s/s system is the dilation of a
simple conservative system and every passive s/s system is the dilation of a mini-
mal passive s/s system. The notions of incoming and outgoing scattering channels
are introduced for a passive s/s system in a natural way. The scattering matrices
of a passive i/s/o system and its compression coincide in C+.

By focusing on the Laplacian transformations of the components of the
trajectories, we came to the notion of the resolvent set ρ(Σ) of an s/s system
Σ = (V ;X ;W ). The systems for which ρ(Σ) �= ∅ (i.e., the class of regular systems)

are studied and the i/s/o resolvent functions Ĝ(λ) for Σ and in its four block de-

composition its four blocks Â(λ) (s/s resolvent function), B̂(λ) (i/s resolvent func-

tion), Ĉ(λ) (s/o resolvent function) and D̂(λ) (i/o resolvent function) are defined
by a frequency domain admissible ordered sum decomposition W = U � Y =

[
U
Y

]
of W as follows. A point λ ∈ ρ(Σ) if there exists a (frequency domain admissible)
decomposition W =

[
U
Y

]
such that for any x0 ∈ X and û(λ) ∈ U the condition⎡⎣ λx̂(λ) − x0

x̂(λ)
ŵ(λ)

⎤⎦ ∈ V with ŵ(λ) =

[
û(λ)
ŷ(λ)

]
is equivalent to the equation[

x̂(λ)
ŷ(λ)

]
=

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

][
x0

û(λ)

]
,
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where four block operator on the right-hand side is bounded and acts between
vector spaces with Hilbert space topologies. In a natural way the notions of Ω-
dilation, Ω-compression, Ω-restriction, Ω-projection are introduced for two regular
s/s systems

∑
i = (Vi;Xi,W ) and an open set Ω ⊆ ρ(Σ1) ∩ ρ(Σ2). The notions

of dilation, compression, restriction and projection we introduced and study in
the time domain for s/s and i/s/o systems too and even for so-called s/s pre-
systems, in which the generating subspace V may be the graph of a multi-valued
closed operator F , and for i/s/o pseudo-systems, in which the operator S may be
multi-valued. In the time domain these notions are mainly reasonable for the so-
called well-posed i/s/o systems and the well-posed s/s systems. A chapter in our
monograph [49] is devoted to well-posed i/s/o systems that is adapted from the
monograph [63] by Olof. Another chapter is devoted to well-posed s/s systems, i.e.,
to systems that have at least one well-posed i/s/o representation. In particular,
any passive s/s system is well posed.

9. Joint research with Harry Dym on the theories of J-inner mvf’s
and de Branges spaces and their applications to interpolation,
extrapolation and inverse problems and prediction (1992–2014)

I started to work with Harry Dym on the development of the theory of J-contract-
ive matrix functions and related problems in 1992. Every year since then I have
visited the Weizmann Institute of Science (for 3 or more months). The results of
the more than 20 years of our joint research were published in a series of papers
that are mostly summarized in our monographs [27], [28] (where can be founded
references to our other publications). The history of the start of our joint work
may be found in the introduction to [27]. At the outset I was familiar with Harry’s
monograph [55], with his papers with I. Gohberg on the Nehari problem, with
P. Dewilde on Darlington representation and the entropy functional, with D. Al-
pay on J-inner matrix functions, de Branges RKHS’s (Reproducing Kernel Hilbert
Spaces) and some of their applications to inverse problems and to the Krein resol-
vent matrices for symmetric operators. I found that Harry was familiar with much
of the work that was done by M.G. Krein and his school. He also had experience in
the development of L. de Branges theory of RKHS’s and their applications to the
interpolation problems and inverse problems. Before I began to work with Harry,
I had no experience with de Branges RKHS’s and their applications.

As I noted earlier, the results of our joint work up to 2012 are mainly summa-
rized in our monographs [27], [28]. In particular, these volumes include applications
of our results on right regular and strongly right regular mvf’s to interpolation and
extension problems in special classes of mvf’s (Schur, Carathéodory, positive def-
inite, helical) and inverse problems for canonical integral and differential systems
of equations and for Dirac–Krein system. Functional models for nonselfadjoint op-
erators (Livsic–Brodskii operator nodes and their characteristic functions) are also
presented; other models may be found in [51].
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After this we worked on the application of these results to prediction problems
for second-order multi-dimensional stochastic processes: ws (weakly stationary)
processes and processes with ws-increments. In the course of this work the theory
of de Branges RKHS’s, J-inner matrix functions, extension problems and inverse
problems for canonical integral and differential systems were developed further.
Some of these more recent results are summarized in the papers [29], [30] and in
a monograph [31], which is currently being prepared for publication. Below I will
mention only some highlights of our results on the classes UrR(J) and UrsR(J)
of right regular and right strongly regular J-inner mvf’s, and two classes of de
Branges spaces that are connected with them: H(U) and B(E). Both of these
spaces are RKHS’s (Reproducing kernel Hilbert Spaces).

Recall that for every U ∈ U(J), there corresponds a RKHS H(U) with the
RK (Reproducing Kernel)

KU
ω =

J − U(λ)JU(ω)∗

−2πi(λ− ω)
,

λ, ω ∈ hU (extended to λ = ω by continuity), where hU denotes the domain of
holomorphy of the mvf U in the complex plane. Then H(U) is the Hilbert space
of (holomorphic) m× 1 vector functions on hU such that:

1) KU
ω ξ ∈ H(U) for every ω ∈ hU and ξ ∈ Cm.

2) ξ∗f(λ) = (f,KU
λ ξ)H(U) for every ξ ∈ Cm, f ∈ H(U) and λ ∈ hU .

It was shown thatH(U) ⊂ Πm and thatH(U) ⊂ E∩Πm (the entire vector functions
in Πm) if and only if U is an entire J-inner mvf (i.e., if and only if U ∈ E∩U(J))

There exist a number of different ways to characterize the classes US(J),
UrR(J) and UrsR(J). In particular (upon identifying vvf’s in Πm with their non-
tangential boundary values):

1) U ∈ US(J) if and only if H(U) ∩ Lm
2 = {0};

2) U ∈ UrR(J) if and only if H(U) ∩ Lm
2 is dense in H(U);

3) U ∈ UrsR(J) if and only if H(U) ⊂ Lm
2 .

The last condition led us to a criteria for right strongly regularity in terms of
the matricial Treil–Volberg version of the Muckenhoupt condition for a matricial
weight, defined by the mvf U .

The class E ∩ UrR(Jp) coincides with the class of resolvent matrices of c.i.
generalized Krein helical extension problems and we extensively exploited results
on this class in the study of direct and inverse problems for canonical systems.
Moreover, the classes UrsR(jpq) and UrsR(Jp) coincide with the classes of resolvent
matrices for strictly completely indeterminate generalized Schur and Carathéodory
interpolation problems. We presented algebraic formulas for resolvent matrices in
this last setting in terms of the given data of the problems.

Another kind of de Branges RKHS that we studied and exploited for spectral
analysis and prediction problems is the space B(E), that is defined by a p×2p mvf
E = [E− E+] that is meromorphic in C+ with two p× p blocks E± such that

detE+ �≡ 0 and E−1
+ E− ∈ Sp×p

in .
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For such a mvf, the RK

KE
ω =

E(λ)jpE(ω)
∗

2πi(λ− ω)
,

(extended to λ = ω by continuity) is positive on hE× hE. Our main interest in the
class of de Branges matrices is in the subclass I(jp) of de Branges matrices E for
which B(E) is invariant under the generalized backwards shift operator

(Rαf)(λ) =

⎧⎨⎩ f(λ)− f(α)

λ− α
for λ �= α and

f ′(α) for λ = α,

for f ∈ B(E) and α ∈ hE. The formula

EU =
[
EU

− EU
+

]
=
[
UP+ + P− UP− + P+

]
, where P± =

1

2
(Im ± J),

associates a de Branges matrix EU ∈ I(Jm) with every U ∈ U(J). Moreover, U is an
entire mvf if and only if EU is an entire mvf, and U ∈ U0(J) (i.e., U is holomorphic
at 0 with U(0) = Im) if and only if EU ∈ I0(jm) (i.e., EU is holomorphic at 0 and

EU (0) = [Im Im]). Furthermore, it is easy to check that KEU

ω = KU
ω and hence

that B(EU ) = H(U). This connection between the two kinds de Branges RKHS’s
was exploited in [29], [30].

Another correspondence between the classes U(Jp) and I(jp) is established
by the formula

EA = [E− E+] = [a22 − a21 a22 + a21] =
√
2[0 Ip]B, for A ∈ U(Jp),

where B is defined in (31). Moreover, A is an entire mvf if and only if EA is an
entire mvf and, if A ∈ U0(Jp), then EA ∈ I0(jp).

A mvf A ∈ U(Jp) is said to be perfect if the mvf c = TA(Ip) satisfies the
condition

lim
ν→∞

ν−1�c(iν) = 0.

For each E ∈ I0(jp), there exists exactly one perfect mvf A ∈ U0(Jp) such that
E = EA. This two-sided connection between the classes U0(Jp) and I0(jp) was
extensively exploited in our study of direct and inverse spectral problems, as well
as in a number of extension and prediction problems and their bitangential gen-
eralizations.
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Abstract. This paper deals with the effect of generic but structured low rank
perturbations on the Jordan structure and sign characteristic of matrices that
have structure in an indefinite inner product space. The paper is a follow-up
of earlier papers in which the effect of rank one perturbations was consid-
ered. Several results that are in contrast to the case of unstructured low rank
perturbations of general matrices are presented here.
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1. Introduction

In the past two decades, the effects of generic low rank perturbations on the
Jordan structure of matrices and matrix pencils with multiple eigenvalues have
been extensively studied, see [5, 9, 20, 21, 23, 24]. Recently, starting with [15]
the same question has been investigated for generic structure-preserving low rank
perturbations of matrices that are structured with respect to some indefinite inner
product. While the references [5, 9, 20, 21, 23, 24] on unstructured perturbations
have dealt with the general case of rank k, [15] and the follow-up papers [16]–[19] on
structure-preserving perturbations focussed on the special case k = 1. The reason
for this restriction was the use of a particular proof technique that was based on
the so-called Brunovsky form which is handy for the case k = 1 and may be for
the case k = 2, but becomes rather complicated for the case k > 2. Nevertheless,

A large part of this work was done while Leiba Rodman visited at TU Berlin and VU Amsterdam.
We are very sad that shortly after finalizing this paper, Leiba passed away on March 2, 2015. We

will remember him as a dear friend and we will miss discussing with him as well as his stimulating
interest in matters concerning matrices and operators in indefinite inner product spaces.
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the papers [15]–[19] (see also [6, 10]) showed that in some situations there are
surprising differences in the changes of Jordan structure with respect to general
and structure-preserving rank-one perturbations. This mainly has to do with the
fact that the possible Jordan canonical forms for matrices that are structured
with respect to indefinite inner products are restricted. This work has later been
generalized to the case of structured matrix pencils in [1]–[3], see also [4]. Although
a few questions remained open, the effect of generic structure-preserving rank-one
perturbations on the Jordan structure and the sign characteristic of matrices and
matrix pencils that are structured with respect to an indefinite inner product
seems now to be well understood.

In this paper, we will consider the more general case of generic structure-
preserving rank-k perturbations, where k ≥ 1. Numerical experiments with random
perturbations support the following meta-conjecture.

Meta-Conjecture 1.1. Let A ∈ Fn,n be a matrix that is structured with respect to
some indefinite inner product and let B ∈ Fn,n be a matrix of rank k so that A+B
is from the same structure class as A. Then generically the Jordan structure and
sign characteristic of A + B are the same that one would obtain by performing a
sequence of k generic structure-preserving rank-one perturbations on A.

Here and throughout the paper, F denotes one of the fields R or C. Moreover,
the term generic is understood in the following way. A setA ⊆ Fn is called algebraic
if there exist finitely many polynomials pj in n variables, j = 1, . . . , k such that
a ∈ A if and only if

pj(a) = 0 for j = 1, . . . , k.

An algebraic set A ⊆ Fn is called proper if A �= Fn. Then, a set Ω ⊆ Fn is called
generic if Fn \ Ω is contained in a proper algebraic set.

A proof of Conjecture 1.1 on the meta level seems to be hard to achieve.
We illustrate the difficulties for the special case of H-symmetric matrices A ∈
Cn×n, i.e., matrices satisfying ATH = HA, where H ∈ Cn×n is symmetric and
invertible. An H-symmetric rank-one perturbation of A has the form A + uuTH
while an H-symmetric rank-two perturbation has the form A + [u, v][u, v]TH =
A+uuTH+vvTH , where u, v ∈ Cn. Here, one can immediately see that the rank-
two perturbation of A can be interpreted as a sequence of two independent rank-
one perturbations, so the only remaining question concerns genericity. Now the
statements on generic structure-preserving rank-one perturbations ofH-symmetric
matrices from [15] typically have the form that they assert the existence of a generic
set Ω(A) ⊆ Cn such that for all u ∈ Ω(A) the spectrum of A + uuTH shows
the generic behavior stated in the corresponding theorem. Clearly, this set Ω(A)
depends on A and thus, the set of all vectors v ∈ Cn such that the spectrum of the
rank-one perturbation A+uuTH+vvTH of A+uuTH shows the generic behavior
is given by Ω(A + uuTH). On the other hand, the precise meaning of a generic
H-symmetric rank-two perturbation A+ uuTH + vvTH of A is the existence of a
generic set Ω ⊆ Cn×Cn such that (u, v) ∈ Ω. Thus, the statement of Conjecture 1.1
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can be translated by asserting that the set

Ω =
⋃

u∈Ω(A)

(
{u} × Ω(A+ uuTH)

)
is generic. Unfortunately, this fact cannot be proved without more detailed knowl-
edge on the structure of the generic sets Ω(A) as the following example shows.
Consider the set

C2 \
{
(x, ex)

∣∣ x ∈ C
}
=

⋃
x∈C

(
{x} ×

(
C \ {ex}

))
.

Clearly, the sets C and C \ {ex} are generic for all x ∈ C. However, the set
C2 \

{
(x, ex)

∣∣x ∈ C
}
is not generic as Γ :=

{
(x, ex)

∣∣ x ∈ C
}
, the graph of the

natural exponential function, is not contained in a proper algebraic set.
Still, the set Γ from the previous paragraph is a thin set in the sense that it is

a set of measure zero, so one might have the idea to weaken the term generic to sets
whose complement is contained in a set of measure zero. However, this approach
would have a significant drawback when passing to the real case. In [17, Lemma
2.2] it was shown that if W ⊆ Cn is a proper algebraic set in Cn, then W ∩ Rn

is a proper algebraic set in Rn – a feature that allows to easily transfer results
on generic rank-one perturbations from the complex to the real case. Clearly, a
generalization of [17, Lemma 2.2] to sets of measure zero would be wrong as the
set Rn itself is a set of measure zero in Cn. Thus, using the term generic as defined
here does not only lead to stronger statements, but also eases the discussion of the
case that the matrices and perturbations under consideration are real.

The classes of structured matrices we consider in this paper are the following.
Throughout the paper let A� denote either the transpose AT or the conjugate
transpose A∗ of a matrix A. Furthermore, let H� = H ∈ Fn×n and −JT = J ∈
Fn×n be invertible. Then A ∈ Fn×n is called

1. H-selfadjoint, if F = C, � = ∗, and A∗H = HA;
2. H-symmetric, if F ∈ {R,C}, � = T , and ATH = HA;
3. J-Hamiltonian, if F ∈ {R,C}, � = T , and AT J = −JA.

There is no need to consider H-skew-adjoint matrices A ∈ Cn,n satisfying A∗H =
−HA, because this case can be reduced to the case of H-selfadjoint matrices by
considering iA instead. Similarly, it is not necessary to discuss inner products
induced by a skew-Hermitian matrix S ∈ Cn,n as one can consider iS instead. On
the other hand, we do not considerH-skew-symmetric matrices A ∈ Fn,n satisfying
ATH = −HA or J-skew-Hamiltonian matrices A ∈ Fn,n satisfying ATJ = JA for
F ∈ {R,C}, because in those cases rank-one perturbations do not exist and thus
Conjecture 1.1 cannot be applied.

The remainder of the paper is organized as follows. In Section 2 we provide
preliminary results. In Sections 3 and 4 we consider structure-preserving rank-k
perturbations of H-symmetric, H-selfadjoint, and J-Hamiltonian matrices with
the focus on the change of Jordan structures in Section 3 and on the change of the
sign characteristic in Section 4.
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2. Preliminaries

We start with a series of lemmas that will be key tools in this paper. First, we
recap [2, Lemma 2.2] and also give a proof for completeness.

Lemma 2.1 ([2]). Let B ⊆ F	 not be contained in any proper algebraic subset of F	.
Then, B × Fk is not contained in any proper algebraic subset of F	 × Fk.

Proof. First, we observe that the hypothesis that B is not contained in any proper
algebraic subset of F	 is equivalent to the fact that for any nonzero polynomial p
in � variables there exists an x ∈ B (possibly depending on p) such that p(x) �= 0.
Letting now q be any nonzero polynomial in �+ k variables, then the assertion is
equivalent to showing that there exists an (x, y) ∈ B × Fk such that q(x, y) �= 0.
Thus, for any such q consider the set

Γq :=
{
y ∈ Fk | q( · , y) is a nonzero polynomial in � variables

}
which is not empty (otherwise q would be constantly zero). Now, for any y ∈ Γq, by
hypothesis there exists an x ∈ B such that q(x, y) �= 0 but then (x, y) ∈ B×Fk. �
Lemma 2.2 ([15]). Let Y (x1, . . . , xr) ∈ Fm×n[x1, . . . , xr ] be a matrix whose entries
are polynomials in x1, . . . , xr. If rankY (a1, . . . , ar) = k for some [a1, . . . , ar]

T ∈
Fr, then the set {

[b1, . . . , br]
T ∈ Fr

∣∣ rankY (b1, . . . , br) ≥ k
}

(2.1)

is generic.

Lemma 2.3. Let H� = H ∈ Fn×n be invertible and let A ∈ Fn×n have rank k. If n
is even, let also −JT = J ∈ Fn×n be invertible.

(1) Let F = C and � = ∗, or let F = R and � = T . If A�H = HA, then there exists
a matrix U ∈ Fn×k of rank k and a signature matrix Σ = diag(s1, . . . , sk) ∈
Rk×k, where sj ∈ {+1,−1}, j = 1, . . . , n such that A = UΣU�H.

(2) If F = C, � = T , and A is H-symmetric, then there exists a matrix U ∈ Cn×k

of rank k such that A = UUTH.
(3) If F = R and A is J-Hamiltonian, then there exists a matrix U ∈ Rn×k of rank

k and a signature matrix Σ = diag(s1, . . . , sk) ∈ Rk×k, where sj ∈ {+1,−1},
j = 1, . . . , n, such that A = UΣUTJ .

(4) If F = C and A is J-Hamiltonian, then there exists a matrix U ∈ Cn×k of
rank k such that A = UUTJ .

Proof. If � = ∗ and A is H-selfadjoint, then AH−1 is Hermitian. By Sylvester’s

Law of Inertia, there exists a nonsingular matrix Ũ ∈ Cn×n and a matrix Σ̃ =

diag(s1, . . . , sn) ∈ Cn×n such that AH−1 = Ũ Σ̃Ũ∗, where we have s1, . . . , sk ∈
{+1,−1} and sk+1 = · · · = sn = 0 as A has rank k. Letting U ∈ Cn×k contain

the first k columns of Ũ and Σ := diag(s1, . . . , sk) ∈ Ck×k, we obtain that A =
UΣU∗H which proves (1). The other parts of the lemma are proved analogously
using adequate factorizations like a nonunitary version of the Takagi factorization.

�
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Lemma 2.4. Let A,G ∈ Cn×n, R ∈ Ck×k, let G,R be invertible, and let A have the
pairwise distinct eigenvalues λ1, . . . , λm ∈ C with algebraic multiplicities a1, . . . ,
am. Suppose that the matrix A+URU�G generically (with respect to the entries of
U ∈ Cn×k if � = T and with respect to the real and imaginary parts of the entries
of U ∈ Cn×k if � = ∗) has the eigenvalues λ1, . . . , λm with algebraic multiplicities
ã1, . . . , ãm, where ãj ≤ aj for j = 1, . . . ,m.

Furthermore, let ε > 0 be such that the discs

Dj :=
{
μ ∈ C

∣∣ |λj − μ| < ε2/n
}
, j = 1, . . . ,m

are pairwise disjoint. If for each j = 1, . . . ,m there exists a matrix Uj ∈ Cn×k

with ‖Uj‖ < ε such that the matrix A + UjRU�
j G has exactly (aj − ãj) simple

eigenvalues in Dj different from λj , then generically (with respect to the entries
of U if � = T and with respect to the real and imaginary parts of the entries of U
if � = ∗) the eigenvalues of A+URU�G that are different from the eigenvalues of
A are simple.

Lemma 2.4 was proved in [18, Lemma 8.1] for the case k = 1, � = T , and
R = Ik, but the proof remains valid (with obvious adaptions) for the more general
statement in Lemma 2.4.

Definition 2.5. Let L1 and L2 be two finite nonincreasing sequences of positive
integers given by n1 ≥ · · · ≥ nm and η1 ≥ · · · ≥ η	, respectively. We say that L2
dominates L1 if � ≥ m and ηj ≥ nj for j = 1, . . . ,m.

Part (3) of the following theorem will be a key tool used in the proofs of our
main results in this paper.

Theorem 2.6. Let A,G,R ∈ Cn×n, let G,R be invertible, and let k ∈ N \ {0}.
Furthermore, let λ ∈ C be an eigenvalue of A with geometric multiplicity m > k
and suppose that n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan blocks associated
with λ in the Jordan canonical form of A, i.e., the Jordan canonical form of A
takes the form

Jn1(λ)⊕ Jn2(λ) ⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,
where λ �∈ σ(J̃ ). Then, the following statements hold:

(1) If U0 ∈ Cn×k, then the Jordan canonical form of A+ U0RU�
0G is given by

Jη1(λ) ⊕ Jη2(λ)⊕ · · · ⊕ Jη�
(λ)⊕ Ĵ ; η1 ≥ · · · ≥ η	,

where λ �∈ σ(Ĵ ) and where (η1, . . . , η	) dominates (nk+1, . . . , nm), that is, we
have � ≥ m− k, and ηj ≥ nj+k for j = 1, . . . ,m− k.

(2) Assume that for all U ∈ Cn×k the algebraic multiplicity aU of λ as an eigen-
value of A + URU�G satisfies aU ≥ a0 for some a0 ∈ N. If there exists one
matrix U0 ∈ Cn×k such that aU0 = a0, then the set

Ω := {U ∈ Cn×k | aU = a0}
is generic (with respect to the entries of U if � = T and with respect to the
real and imaginary parts of the entries of U if � = ∗).
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(3) Assume that there exists one particular matrix U0 ∈ Cn×k such that the
Jordan canonical form of A+ U0RU�

0G is described as in the statements (a)
and (b) below:
(a) The Jordan structure at λ is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ) ⊕ Ĵ ,

where λ �∈ σ(Ĵ ).
(b) All eigenvalues that are not eigenvalues of A are simple.
Then, there exists a generic set Ω ⊆ Cn×k (with respect to the entries of
U ∈ Cn×k if � = T and with respect to the real and imaginary parts of
the entries of U ∈ Cn×k if � = ∗) such that the Jordan canonical form of
A+ URU�G is as described in (a) and (b) for all U ∈ Ω.

Proof. (1) is a particular case of [5, Lemma 2.1]. (Note that no assumption on the
rank of U0 is needed.)

In the remainder of this proof, the term generic is always meant in the sense
‘generic with respect to the entries of U ∈ Cn×k’ if � = T and ‘generic with respect
to the real and imaginary parts of the entries of U ∈ Cn×k’ if � = ∗.

(2) In this argument, let Y (U) := (A + URU�G− λIn)
n. By hypothesis, we

have that rank
(
Y (U0)

)
= n − a0 for some matrix U0 ∈ Cn,k. Thus, we can apply

Lemma 2.2 to Y (U), which yields that the set

Ω :=
{
U ∈ Cn×k | rank

(
Y (U)

)
≥ n− a0

}
is generic. Observe that the condition rank

(
Y (U)

)
≥ n− a0 is equivalent to aU ≤

a0, and since aU ≥ a0 by hypothesis, it is even equivalent to aU = a0. Hence, Ω is
the desired generic set from the assertion.

(3) By (1), the list of partial multiplicities in A+URU�G at λ dominates the
list (nk+1, . . . , nm), and hence, the algebraic multiplicity aU of A+ URU�G at λ
must be greater than or equal to a0 := nk+1 + · · ·+ nm. However, by hypothesis
there exists one U0 so that A + U0RU�

0G has exactly the partial multiplicities
(nk+1, . . . , nm), so in particular it has the algebraic multiplicity aU0 = a0. There-
fore, by (2) the set Ω1 of all U ∈ Cn×k satisfying aU = a0 is generic and for
all U ∈ Ω1. Since (nk+1, . . . , nm) is the only possible list of partial multiplici-
ties that dominates (nk+1, . . . , nm) and leads to the algebraic multiplicity a0, we
find that the perturbed matrix A + URU�G satisfies condition (a). Moreover,
since A+U0RU�

0G already satisfies condition (b), by Lemma 2.4 the set Ω2 of all
U ∈ Cn×k satisfying (b) is also generic. Thus, Ω = Ω1 ∩ Ω2 is the desired set. �

We end this section by collecting important facts about the canonical forms
of matrices that are structured with respect to some indefinite inner products.
These forms are available in many sources, see, e.g., [8, 11, 14] or [12, 13, 26] in
terms of pairs of Hermitian or symmetric and/or skew-symmetric matrices. We
do not need the explicit structures of the canonical forms for the purpose of this
paper, but only information on paring of certain Jordan blocks and on the sign
characteristic. The sign characteristic is an important invariant of matrices that
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are structured with respect to indefinite inner products, we refer the reader to
[7, 8] for details. To give a brief impression, consider the following example.

Example 2.7. Let λ ∈ R and consider the matrices

H =

[
0 1
1 0

]
, A1 = J2(λ) :=

[
λ 1
0 λ

]
, A2 =

[
λ −1
0 λ

]
.

Then A1 and A2 are both H-selfadjoint and they are similar. However, they are
not “equivalent as H-selfadjoint matrices” in the sense that there does not exist a
nonsingular matrix S ∈ C2×2 so that S−1A1S = A2 and S∗HS = H . (Note that
this transformation corresponds to a change of basis in C2 with transformation
matrix S). Indeed, any transformation matrix S that changes A1 into A2 would
transform H into −H . In fact, (J2(λ), H) and (J2(λ),−H) are the canonical
forms of the pairs (A1, H) and (A2, H), respectively, and they differ by a sign
σ ∈ {+1,−1} as a scalar factor of the matrix inducing the indefinite inner product.
This sign is an additional invariant that can be thought of as being attached to
the partial multiplicity 2 of the eigenvalue λ of A1 (or A2).

In general, if H ∈ Cn×n is invertible and λ ∈ R is an eigenvalue of the H-
selfadjoint matrix A ∈ Cn×n, then in the canonical form of (A,H) there is a sign
for any partial multiplicity ni of λ as an eigenvalue of A. The collection of all these
signs then forms the sign characteristic of the eigenvalue λ. As in the example, we
interpret the sign to be attached to the particular partial multiplicity. The following
theorem states which eigenvalues of matrices that are structured with respect
to indefinite inner products have a sign characteristic and it also lists possible
restrictions in the Jordan structure of particular eigenvalues if there are any.

Theorem 2.8 (Sign characteristic and restriction of Jordan structures). Let H� =
H ∈ Fn×n be invertible and let A ∈ Fn×n. If n is even, let also −JT = J ∈ Fn×n

be invertible. Moreover, let λ ∈ C be an eigenvalue of A.

(1) Let either F = C and � = ∗, or F = R and � = T , and let A�H = HA. If λ is
real, then each partial multiplicity of λ has a sign in the sign characteristic
of λ.

(2) Let F = C and � = T , and let A be H-symmetric. Then λ does not have a
sign characteristic.

(3) Let F = C and let A be J-Hamiltonian. Then λ does not have a sign charac-
teristic. If λ = 0, then the partial multiplicities of λ as an eigenvalue of A of
each fixed odd size n0 occur an even number of times.

(4) Let F = R and let A be J-Hamiltonian. If λ �= 0 is purely imaginary, then
each partial multiplicity of λ has a sign in the sign characteristic of λ. If
λ = 0, then the partial multiplicities of λ as an eigenvalue of A of each fixed
odd size n0 occur an even number of times. Furthermore, each even partial
multiplicity of the eigenvalue λ = 0 has a sign in the sign characteristic of λ.
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3. Jordan structure under rank-k perturbations

In this section, we aim to investigate the effect of structure-preserving rank-k
perturbations on the Jordan structure of H-selfadjoint, H-symmetric, and J-
Hamiltonian matrices.

In our first result, we will consider the class of (complex) H-selfadjoint ma-
trices. Recall that any H-selfadjoint rank-k perturbation has the form that is
described in Lemma 2.3(1).

Theorem 3.1. Let H ∈ Cn,n be invertible and Hermitian and let A ∈ Cn,n be
H-selfadjoint. Furthermore let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} for j =
1, . . . , k. Then, there exists a generic set Ωk ⊆ Cn×k (with respect to the real
and imaginary parts of the entries of U ∈ Cn×k) such that for all U ∈ Ωk and
B := UΣU∗H the following statements hold:

(1) Let λ ∈ C be any eigenvalue of A and let m denote its geometric multiplicity.
If k ≥ m, then λ is not an eigenvalue of A + B. Otherwise, suppose that
n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan blocks associated with λ in
the Jordan canonical form of A, i.e., the Jordan canonical form of A takes
the form

Jn1(λ)⊕ Jn2(λ) ⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,
where λ �∈ σ(J̃ ). Then, the Jordan canonical form of A+B is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ) ⊕ Ĵ ,

where λ �∈ σ(Ĵ ).
(2) If μ ∈ C is an eigenvalue of A+B, but not of A, then μ is a simple eigenvalue

of A+B.

Proof. In this proof, the term generic is meant it the sense ‘generic with respect
to the real and imaginary parts of the entries of U ∈ Cn×k’. We show that there
exist two generic subsets Ωk,1 and Ωk,2 of Cn,k so that property (1) is satisfied on
Ωk,1 and property (2) on Ωk,2. Then, Ωk := Ωk,1 ∩ Ωk,2 is the desired generic set.

Concerning (1): By part (3) of Theorem 2.6 it is sufficient to construct one
particular H-selfadjoint rank-k perturbation, such that the Jordan structure is as
claimed. We do this by constructing a sequence of k rank-one perturbations with
the desired properties.

Now, by [16, Theorem 3.3], for a generic rank-1 perturbation of the form
s1uu

∗H the perturbed matrix A + s1uu
∗H will have the partial multiplicities

n2, . . . , nm at each eigenvalue λ. ([16, Theorem 3.3] was formulated and proved for
the case s1 = 1 only, but if s1 = −1, one can still apply this result, by considering
rank-1 perturbations of the form uu∗(−H) of the (−H)-selfadjoint matrix A.) We
consider now a fixed u1 so that A1 := A + s1u1u

∗
1H has this property. Then, [16,

Theorem 3.3], can be applied anew to the matrix A1 showing that there exists a
vector u2 such that A2 = A + s1u1u

∗
1H + s2u2u

∗
2H has the partial multiplicities

n3, . . . , nm at each eigenvalue λ. Repeating this step k − 2 more times results in
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an H-selfadjoint matrix Ak = A+ s1u1u
∗
1H + · · ·+ skuku

∗
kH that has the partial

multiplicities nk+1, . . . , nm at each eigenvalue λ.

Concerning (2): We assert that the particular rank-k perturbation of the form
A + u1u

∗
1H + · · · + uku

∗
kH constructed above has the property that all eigenval-

ues different from those of A are simple. In fact, since in each step j = 2, . . . , k
we generate Aj := Aj−1 + sjuju

∗
jH , only the eigenvalues of Aj that have been

eigenvalues of Aj−1 can be multiple, so that these have been also eigenvalues of A.
Thus, the existence of the desired generic set Ωk,2 follows from Lemma 2.4. �

Next, we turn to H-symmetric matrices, where we will treat both cases,
F = R and F = C, at once. Note that by Lemma 2.3, any H-symmetric rank k
perturbation of A has the form UΣUTH where U ∈ Fn,k and where Σ ∈ Rk,k is a
diagonal matrix with ±1’s on the diagonal (in case F = R) or +1’s on the diagonal
(in case F = C). Still, even in the case F = C, we will allow −1’s on the diagonal of
Σ, which does not lead to a more general statement but allows a unified treatment
of both cases.

Theorem 3.2. Let H ∈ Fn,n be invertible with HT = H and let A ∈ Fn,n be
H-symmetric. Furthermore let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} for j =
1, . . . , k. Then, there exists a generic set Ωk ⊆ Fn×k such that for all U ∈ Ωk and
B := UΣUTH the following statements hold:

(1) Let λ ∈ C be any eigenvalue of A and let m denote its geometric multiplicity.
If k ≥ m, then λ is not an eigenvalue of A + B. Otherwise, suppose that
n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan blocks associated with λ in
the Jordan canonical form of A, i.e., the Jordan canonical form of A takes
the form

Jn1(λ)⊕ Jn2(λ) ⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,
where λ �∈ σ(J̃ ). Then, the Jordan canonical form of A+B is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ) ⊕ Ĵ ,

where λ �∈ σ(Ĵ ).
(2) If μ ∈ C is an eigenvalue of A+B, but not of A, then μ is a simple eigenvalue

of A+B.

Proof. We sketch the proof of this theorem in the complex case only, since the real
case is then obtained by the fact that for a generic set Ωk ⊆ Cn,k, the set Ωk∩Rn,k

is generic as well, see [17, Lemma 2.2]. Then, the proof of the complex case proceeds
as the proof of Theorem 3.1, by showing that there exist two generic subsets Ωk,1

and Ωk,2 of Cn,k so that the intersection of them is the desired generic set (note
that these sets are actually generic and not just generic with respect to the real
and imaginary parts of their entries). Thus, for the sake of brevity, we refrain from
giving a complete proof but point out that the only difference (beside replacing ∗
by T ) is that for rank-1 perturbations of the form suuTH (with s = ±1) we refer
to the result [15, Theorem 5.1] instead of [16, Theorem 3.3]. �
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Now, we turn to J-Hamiltonian matrices. As we saw in Theorem 2.8, the
Jordan blocks of Hamiltonian matrices at 0 have to be paired in a certain way.
This restriction produced surprising results in the case of Hamiltonian rank-one
perturbations of Hamiltonian matrices, see [15, Theorem 4.2]. We will in the fol-
lowing see that also in the case of rank-k perturbations, taking care of this pairing
of certain blocks will be the most challenging task.

As in the previous theorem, we will treat both cases, F = C and F = R at the
same time. Thus, also as before, we will in the case F = C consider perturbations
of the form UΣUTJ , with Σ possibly having some −1’s on the diagonal, so that
we can treat complex and real perturbations at once.

Theorem 3.3. Let J ∈ Fn,n be skew-symmetric and invertible, let A ∈ Fn,n be
J-Hamiltonian. Furthermore, let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} for
j = 1, . . . , k. Then, there exists a generic set Ωk ⊆ Fn×k such that for all U ∈ Ωk

and B := UΣUTJ the following statements hold:

(1) Let λ ∈ C be any eigenvalue of A and let m denote its geometric multiplicity.
If k ≥ m, then λ is not an eigenvalue of A + B. Otherwise, suppose that
n1 ≥ n2 ≥ · · · ≥ nm are the sizes of the Jordan blocks associated with λ in
the Jordan canonical form of A, i.e., the Jordan canonical form of A takes
the form

Jn1(λ)⊕ Jn2(λ) ⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,
where λ �∈ σ(J̃ ). Then:
(1a) If either λ �= 0 or λ = 0 and n1 + · · · + nk is even, then the Jordan

canonical form of A+B is given by

Jnk+1
(λ)⊕ Jnk+2

(λ)⊕ · · · ⊕ Jnm(λ) ⊕ Ĵ ,

where λ �∈ σ(Ĵ ).
(1b) If λ = 0 and n1 + · · · + nk is odd, then the Jordan canonical form of

A+B is given by

Jnk+1+1(λ)⊕ Jnk+2
(λ) ⊕ · · · ⊕ Jnm(λ) ⊕ Ĵ ,

where λ �∈ σ(Ĵ ).
(2) If μ ∈ C is an eigenvalue of A+B, but not of A, then μ is a simple eigenvalue

of A+B.

Proof. We provide the proof of this theorem in the complex case only, since the
real case is then obtained by the fact that for a generic set Ωk ⊆ Cn,k, the set
Ωk ∩ Rn,k is generic as well, see [17, Lemma 2.2]. We show that there exist two
generic sets Ωk,1 and Ωk,2 so that property (1) is satisfied on Ωk,1 and property
(2) on Ωk,2, so that Ωk := Ωk,1 ∩ Ωk,2 is the desired generic set.

Proof of (1): We first mention that in the case λ = 0, all odd-sized multiplicities
have to occur an even number of times by Theorem 2.8. This implies in particular
that n1+ · · ·+nm is even. Therefore, if the number n1+ · · ·+nk is even, then odd
entries in both subsequences n1, . . . , nk and nk+1, . . . , nm occur an even number
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of times so that, in particular, there is no fundamental obstruction to the sequence
nk+1, . . . , nm of partial multiplicities occurring in some Hamiltonian matrix at 0.

On the other hand, if n1+· · ·+nk is odd, then there must occur an odd number
of blocks of size nk = nk+1 in both subsequences n1, . . . , nk and nk+1, . . . , nm. In
particular, it is thus not possible for the partial multiplicities nk+1, . . . , nm to be
realized in some Hamiltonian matrix at 0.

Case (1a): By part (3) of Theorem 2.6 it is sufficient to construct a sequence
of k Hamiltonian rank-one perturbations such that the Jordan structure is as
claimed.

If λ �= 0, then by [15, Theorem 4.2] for a generic rank-1 perturbation of the
form s1uu

TJ , the perturbed matrix A+s1uu
TJ will have the partial multiplicities

n2, . . . , nm at λ (if s1 = −1, this also holds by applying [15, Theorem 4.2] to −A).
We now consider a fixed u1 so that A1 := A+s1u1u

T
1 J has this property. Then [15,

Theorem 4.2] can be applied anew to the matrix A1. Repeating this step k−1 more
times finally results in a Hamiltonian matrix Ak = A+ s1u1u

T
1 J + · · ·+ skuku

T
k J

that has the partial multiplicities nk+1, . . . , nm at λ.
Next, let us consider the case that λ = 0 but n1 + · · ·+ nk is even. We aim

to proceed as for λ �= 0 applying [15, Theorem 4.2]. In this case, a generic rank-1
perturbation of the form s1uu

TJ will in the perturbed matrix A + s1uu
TJ at 0

create the partial multiplicities n2, . . . , nm if n1 is even and n2 + 1, n3, . . . , nm if
n1 is odd. We now fix u1 so that

A1 := A+ s1u1u
T
1 J

has this property. Again, by [15, Theorem 4.2] for a generic vector v the matrix
A1 + s2vv

TJ will at 0 have the partial multiplicities n3, . . . , nm if n1 + n2 is even
(this includes the case that n1 = n2 are odd as in this case the block of size n2 +1
will simply disappear) and n3+1, n4, . . . , nm if n1+n2 is odd. We fix u2 with this
property setting

A2 := A+ s1u1u
T
1 J + s2u2u

T
2 J.

After k − 2 more steps of this procedure, we obtain a Hamiltonian matrix Ak =
A+ s1u1u

T
1 J + · · ·+ skuku

T
k J with the partial multiplicities nk+1, . . . , nm at 0 as

n1 + · · ·+ nk is even.

Case (1b): Let us assume that λ = 0 and n1 + · · ·+ nk is odd, which imme-
diately implies k + 1 ≤ m. As mentioned above, the partial multiplicity sequence
nk+1, . . . , nm contains the odd entry nk+1 an odd number of times, and thus cannot
be realized in a Hamiltonian matrix at 0. Hence, the minimum algebraic multi-
plicity of A + B at zero is nk+1 + · · · + nm + 1. By Theorem 2.6(2), this is the
generic algebraic multiplicity of A + B at 0 if we can find a particular perturba-
tion that creates this algebraic multiplicity. However, such a perturbation is easily
constructed as in Case (1a), λ = 0, using [15, Theorem 4.2].

In order to determine the precise partial multiplicities of A+B in this case,
we employ an argument that was initially used to prove [2, Theorem 3.4], see also
the following Example 3.4 for an illustration of this argument: Let us assume that
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B = UΣUTJ , where U is an element of a generic set Ω̃k ⊆ Cn×k such that (1a)
holds for all nonzero eigenvalues of A and the algebraic multiplicity of A + B at
zero is nk+1+· · ·+nm+1. It remains to determine the generic partial multiplicities
of A+B at 0. Let us group together Jordan blocks of the same size, i.e., let

(n1, n2, n3, . . . , nm) = (p1, . . . , p1︸ ︷︷ ︸
t1 times

, p2, . . . , p2︸ ︷︷ ︸
t2 times

, . . . , pν , . . . , pν︸ ︷︷ ︸
tν times

),

and let � be such that p	 = nk = nk+1. Then p	 is odd, t	 is even, and

(nk+1, . . . , nm) = (p	, . . . , p	︸ ︷︷ ︸
d times

, p	+1, . . . , p	+1︸ ︷︷ ︸
t�+1 times

, . . . , pν , . . . , pν︸ ︷︷ ︸
tν times

),

where d is odd. Now, A+B has the algebraic multiplicity nk+1+· · ·+nm+1 at zero
and by Theorem 2.6, the list of descending partial multiplicities of A+B at zero
dominates (nk+1, . . . , nm). Therefore, either one of the blocks corresponding to the
partial multiplicities nk, . . . , nm has grown in size by exactly one, or a new block
of size one has been created. Moreover, the Hamiltonian matrix A+B must have
an even number of Jordan blocks of size p	 at 0. If ν > � and p	+1 < p	 − 1, then
these restrictions can only be realized by the list of partial multiplicities given by

(p	 + 1, p	, . . . , p	︸ ︷︷ ︸
(d−1) times

, p	+1, . . . , p	+1︸ ︷︷ ︸
t�+1 times

, . . . , pν , . . . , pν︸ ︷︷ ︸
tν times

). (3.2)

Only when ν > � and p	+1 = p	 − 1, or when ν = � and p	 = 1 then also a list
different from (3.2) can be realized, namely

( p	, . . . , p	︸ ︷︷ ︸
(d+1) times

, p	+1, . . . , p	+1︸ ︷︷ ︸
(t�+1−1) times

, . . . , pν , . . . , pν︸ ︷︷ ︸
tν times

). (3.3)

Hereby, in the latter case of ν = � and p	 = 1, the above list is given by (p	, . . . , p	)
(repeated (d + 1) times), and this interpretation shall be applied to the following
lists as well. Then, aiming to prove that the partial multiplicities in (3.2) are
generically realized in A + B at 0, let us assume the opposite: assume for some
Hamiltonian matrix A that A + B has the partial multiplicities from (3.3) at 0
for all U ∈ B, where B is not contained in any proper algebraic subset of Cn,k.
Then, we apply a further Hamiltonian rank-1 perturbation suuTJ to A+B (again,
s ∈ {−1,+1}). By Theorem 2.6(1), for all [U, u] ∈ B ×Cn, the sequence of partial
multiplicities at 0 of the Hamiltonian matrix A+B + suuTJ dominates

(p	, . . . , p	︸ ︷︷ ︸
d times

, p	+1, . . . , p	+1︸ ︷︷ ︸
(t�+1−1) times

, . . . , pν , . . . , pν︸ ︷︷ ︸
tν times

). (3.4)

On the other hand, applying the already proved part (1a) to the case k+1, we find
that there exists a generic set Γ ⊆ Cn×(k+1) such that the partial multiplicities of
A+ [U, u](Σ⊕ [s])[U, u]TJ at 0 are given by

( p	, . . . , p	︸ ︷︷ ︸
(d−1) times

, p	+1, . . . , p	+1︸ ︷︷ ︸
t�+1 times

, . . . , pν , . . . , pν︸ ︷︷ ︸
tν times

),



Generic rank-k Perturbations of Structured Matrices 39

for all [U, u] ∈ Γ. Observe that the latter sequence does not dominate the one
in (3.4). Thus, a contradiction is obtained as by Lemma 2.1 the set B ×Cn is not
contained in any proper algebraic subset of Cn,k+1 and thus, clearly, (B×Cn)∩Γ
is not empty.

Proof of (2): Analogous to (2) of Theorem 3.1. �

Example 3.4. Let A ∈ Fn,n be a J-Hamiltonian matrix for some invertible skew-
symmetric matrix J ∈ Fn,n. Assume that A has the partial multiplicities (6, 5, 5, 4,
3, 3, 2) at 0 and apply a J-Hamiltonian rank-three perturbation C to A. Then the
J-Hamiltonian matrix A+C has a list of partial multiplicities at 0 that dominates
(4, 3, 3, 2). Since there are examples for J-Hamiltonian rank-three perturbations
that lead to these partial multiplicities at 0, it follows from part (3) of Theorem 2.6
that this is the generic case.

Now assume that a J-Hamiltonian rank-two perturbation B is applied to A.
Then the J-Hamiltonian matrix A+B has a list of partial multiplicities at 0 that
dominates (5, 4, 3, 3, 2). This list, however, cannot be realized in a Hamiltonian
matrix at 0, because the partial multiplicity 5 only occurs once, but not an even
number of times. Thus, the minimal algebraic multiplicity a0 = 17 = 5+4+3+3+2
of the eigenvalue zero cannot be realized in A+B, but there are examples for the
algebraic multiplicity a0 + 1 = 18. The only possible lists of partial multiplici-
ties at 0 that lead to the algebraic multiplicity 18 and that can be realized in a
Hamiltonian matrix are

(6, 4, 3, 3, 2) and (5, 5, 3, 3, 2).

The proof of Theorem 3.3 shows that the list (6, 4, 3, 3, 2) is the one that generically
occurs: Suppose that there exists a set B ⊆ Fn×Fn that is not contained in a proper
algebraic set, so that for all rank-two perturbations parametrized by elements of
B, the second list (5, 5, 3, 3, 2) is realized. Then, any further rank-one perturbation
would create partial multiplicities dominating (5, 3, 3, 2) at 0, so for all rank-three
perturbations parametrized by elements of B × Fn, which is not contained in a
proper algebraic set, the partial multiplicities would dominate (5, 3, 3, 2). This
is in contradiction to the fact that the subset of Fn,3 parametrizing all rank-
three perturbations that do not lead to the partial multiplicities (4, 3, 3, 2) at 0 is
contained in a proper algebraic set.

We provide a second, more simple example that looks rather surprising at
first sight.

Example 3.5. Consider the (real or complex) matrices

A = J6(0)⊕
[
J5(0) 0
0 J5(0)

]
and J =

[
0 I3
−I3 0

]
⊕
[

0 I5
−I5 0

]
.

Then A is J-Hamiltonian. Applying a generic J-Hamiltonian rank-2 perturbation
of the form B = uuTJ + vvT J for some (u, v) ∈ Ω2, where Ω2 is the generic set
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from Theorem 3.3, results in a J-Hamiltonian matrix A + B having the Jordan
canonical form

J6(0)⊕ Ã, (3.5)

where Ã has ten simple nonzero eigenvalues. At first, this example looks as if the
two smaller Jordan blocks of A at 0 have disappeared and the largest Jordan block
of size J6(0) has remained, which is in complete contrast to the well-known results
from [20] that state that under a generic unstructured rank-two perturbation, the
two largest Jordan blocks associated with each eigenvalue disappear. However,
interpreting B as a sequence of two rank-one perturbations, we see that in the
first step A+ uuTJ generically has the Jordan canonical form

J5(0)⊕ J5(0)⊕ Â,

where Â has six simple nonzero eigenvalues if u ∈ Ω1, where Ω1 is as in Theo-
rem 3.3. Applying now the rank-one perturbation vvT J to A + uuTJ , we obtain
that A + uuTJ + vvT J has the Jordan canonical form as in (3.5), because the
single Jordan block J5(0) cannot be realized in any Hamiltonian matrix as Jor-
dan blocks of odd sizes associated with the eigenvalue zero have to occur an even
number of times. Therefore, the “remaining” block has to grow in size by one.
From this point of view, the Jordan block of size six did not remain, but was de-
stroyed by the first rank-one perturbation and then recreated by the second one.
This interpretation is in line with the fact that by Theorem 3.3 a generic Hamil-
tonian rank-two perturbation of a Hamiltonian matrix with the Jordan canonical
form J2m(0) ⊕ J5(0) ⊕ J5(0) will for any m ≥ 3 result in a Hamiltonian matrix

having the Jordan canonical form J6(0) ⊕ Ã with Ã having only simple nonzero
eigenvalues.

Remark 3.6. We conclude this section by mentioning that in each of the cases
in Theorems 3.1–3.3, the generic set Ωk = Ωk(A, s1, . . . , sk) does not only de-
pend on the matrix A, but also on the choices of the parameters s1, . . . , sk ∈
{−1,+1}. However, since there are only finitely many combinations of the pa-

rameters (namely 2k different choices) the intersection Ω̃k(A) of these 2k generic
sets Ωk(A, s1, . . . , sk) is still generic. Thus, the statement of each of the Theo-

rems 3.1–3.3 can be strengthened in such a way that for all U ∈ Ω̃k(A), and
all Σ = diag(s1, . . . , sk) with s1, . . . , sk ∈ {−1,+1}, the matrix A + UΣU∗H or
A + UΣUTH or A + UΣUTJ , respectively, has the properties as stated in Theo-
rems 3.1, 3.2, or 3.3, respectively.

4. Sign characteristic under rank-k perturbations

Since the behavior of the Jordan structure of matrices under rank-k perturbations
was already established in the previous section, we now turn to the question of the
change of the sign characteristic of (complex)H-selfadjoint, realH-symmetric, and
real J-Hamiltonian matrices. (We recall that the other types of matrices considered
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in this paper, i.e., complex H-symmetric and complex J-Hamiltonian ones, do not
have a sign characteristic by Theorem 2.8.)

First, we turn to H-selfadjoint and real H-symmetric matrices. Recall from
Theorem 2.8 that each partial multiplicity nij of a real eigenvalue λi of a matrix
A that is H-selfadjoint or real H-symmetric has a sign σij ∈ {+1,−1} in the sign
characteristic of λi. We go on to prove a theorem on the sign characteristic of
H-selfadjoint matrices under H-selfadjoint rank-k perturbations. However, since
this theorem will come without an explicit genericity hypothesis, we will later be
able to also apply it to real H-symmetric matrices.

Theorem 4.1. Let H ∈ Cn×n be invertible and Hermitian let A ∈ Cn×n be H-
selfadjoint. Let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1} and let λ1, . . . , λp be the
pairwise distinct real eigenvalues of A and λp+1, . . . , λq be the pairwise distinct
nonreal eigenvalues of A. Furthermore, (in difference to before) let n1,j > · · · >
nmj ,j be the distinct block sizes of A at some eigenvalue λj such that there exist
�i,j blocks of size ni,j at λj and, whenever j ∈ {1, . . . , p}, let A have the signs
{σ1,i,j , . . . , σ	i,j ,i,j} attached to its blocks of size ni,j at λj. Then, whenever U ∈
Cn,k is such that for B := UΣU∗H the statement (1) below is satisfied, also (2)
holds.

(1) The perturbed matrix A + B has the Jordan structure as described in (1) of
Theorem 3.1. More precisely, for each j = 1, . . . , q, the matrix A+B has the
distinct block sizes nκj ,j > nκj+1,j > · · · > nmj ,j occurring �′κj,j, �κj+1,j, . . . ,

�mj,j times, respectively, at λj , where �′κj,j
= �1,j + · · ·+ �κj,j − k and κj is

the smallest integer with �′κj ,j
≥ 1.

(2) For each j = 1, . . . , p, let {σ′
1,κj ,j , . . . , σ

′
	′κj ,j ,κj ,j

} be the signs of A + B at

blocks of size nκj ,j at λj and let {σ′
1,i,j , . . . , σ

′
	i,j ,i,j

} be the signs at blocks of

size ni,j at λj for i = κj + 1, . . . ,mj. Then,

	i,j∑
s=1

σs,i,j =

	i,j∑
s=1

σ′
s,i,j , i = κj + 1, . . . ,mj , j = 1, . . . , p (4.6)

and ∣∣∣∣∣∣∣
	κj ,j∑
s=1

σs,κj ,j −
	′κj,j∑
s=1

σ′
s,κj ,j

∣∣∣∣∣∣∣ ≤ �κj,j − �′κj ,j, j = 1, . . . , p. (4.7)

Proof. In the first step of the proof, we show that there exists some set Ω′
k ⊆ Cn,k,

that is generic with respect to the real and imaginary parts of the entries of its
elements (and the term “generic” is understood in this way in the remainder of
this proof), so that for all U ∈ Ω′

k, the statements from (1) and (2) above hold.

Letting Ω1, . . . ,Ωk be the generic sets constructed in Theorem 3.1, we define

Ω′
k := (Ω1 × Cn,k−1) ∩ (Ω2 × Cn,k−2) ∩ · · · ∩Ωk,
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which is (as the intersection of finitely many generic sets) clearly a generic subset
of Cn,k. Now, let U := [u1, . . . , uk] ∈ Ω′

k, then clearly the Jordan structure of
A1 := A + s1u1u

∗
1H is as described in (1) and (2) of Theorem 3.1 for k = 1.

Therefore, by [19, Theorem 4.6] for all j = 1, . . . , p all signs of A attached to
blocks at λj of size n2,j, . . . , nmj,j are preserved, i.e., they are the same in A and
A1. Further, of the �1,j signs attached to blocks of size n1,j in A at λj , exactly
�1,j − 1 are attached to blocks of size n1,j in A1, i.e., if η is the sum of the �1,j
signs attached to blocks of size n1,j in A at λj and if η̃ is the sum of the �1,j − 1
signs attached to blocks of size n1,j in A1, then |η− η̃| = 1. (If there are both signs
+1 and −1 among the list of �1,j signs attached to the blocks of size n1,j , then it
depends on the particular perturbations whether the sign that has been dropped
to obtain the list of �1,j − 1 signs is positive or negative.)

Now, we consider the perturbed matrix A2 := A1+s2u2u
∗
2H . Since [u1, u2] ∈

Ω2, clearly A2 has the Jordan structure as described in (1) and (2) of Theorem 3.1
for k = 1, whereby we consider A1 instead of A as the unperturbed matrix in that
theorem. Hence, again applying [19, Theorem 4.6] for all j = 1, . . . , p, all signs of
A1 attached to blocks of size n3,j , . . . , nmj,j are preserved, i.e., they are the same
in A2 and A1. Further, if �1,j ≥ 2, then also all signs of A1 at blocks of size n2,j

at λj are preserved and of the �1,j − 1 signs of A1 at blocks of size n1,j, exactly
�1,j − 2 are preserved, i.e., attached to blocks of size n1,j in A2 (the remaining
sign does not occur anymore since the corresponding block was destroyed under
perturbation). In the remaining case �1,j = 1, the matrix A1 does not have a
Jordan block of size n1,j at λj , thus of its �2,j signs attached to blocks of size n2,j ,
exactly �2,j − 1 are attached to blocks of size n2,j in A2.

Now, repeating this argument k − 2 more times, we arrive at Ak = A + B
letting the largest Jordan block of Ak at λj have size nκj,j with exactly �′κj ,j

=

�1,j + · · ·+ �κj,j − k copies. Then, the signs at blocks of size nκj+1,j , . . . , nmj,j are
preserved, i.e., they are the same in A and in Ak (4.6), and of the signs attached
to blocks of size nκj ,j in A, exactly �κ′

j,j
are attached to blocks of size nκj ,j in Ak

which is equivalent to (4.7).
At last, we turn to the second step of the proof by following the lines of

the proof of [19, Theorem 4.6]. Thus, let us assume for some U ∈ Cn,k that the
property (1) from above holds but U /∈ Ω′

k. Then, by [22, Theorem 3.4], there exists
δ > 0 such that for every U0 ∈ Cn,k with ‖U−U0‖ < δ and with (A+U0ΣU0H,H)
satisfying property (1) (where B is replaced by U0ΣU0H), the sign characteristic
of (A+U0ΣU0H,H) coincides with that of (A+UΣUH,H). It remains to choose
U0 ∈ Ω′

k, which is possible in view of the genericity of Ω′
k. �

Now, if A is H-selfadjoint, it is immediately clear that for the generic (with
respect to the real and imaginary parts of the entries) set Ωk ⊆ Cn,k from Theo-
rem 3.1, both (1) and (2) from the above Theorem hold, i.e., the behavior described
in (1) and (2) above is generic (with respect to the real and imaginary parts of U).

On the other hand, if H is real and A is real H-symmetric, one can interpret
A as being (complex) H-selfadjoint and still apply the above theorem. Since for
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the real generic set Ωk ⊆ Rn,k from Theorem 3.2 (in the case F = R) condition
(1) from the above theorem is satisfied, also (2) holds whenever U ∈ Ωk. Note
that since there was no explicit genericity hypothesis in Theorem 4.1, it could
be applied to both the H-selfadjoint and the H-symmetric case, despite the two
different notions of genericity in Theorems 3.1 and 3.2.

Next, let us turn to rank-k perturbations of real J-Hamiltonian matrices,
whereby Theorem 4.1 will be a key ingredient. Again, the J-Hamiltonian case will
be more difficult since the partial multiplicities of a J-Hamiltonian matrix behave
differently under structured low-rank perturbations.

By Theorem 2.8, each partial multiplicity nij of a purely imaginary but
nonzero eigenvalue λi of a matrix A that is real J-Hamiltonian has a sign σij ∈
{+1,−1} in the sign characteristic of λi. Moreover, if λ = 0 is an eigenvalue of a
real J-Hamiltonian matrix, then only even partial multiplicities will have a sign in
the sign characteristic. In order to allow a unified treatment of purely imaginary
eigenvalues including the eigenvalue λ = 0, we will extend the notion of sign char-
acteristic and define each odd partial multiplicity at the eigenvalue zero to have
the “sign” zero in the sign characteristic.

Theorem 4.2. Let J ∈ Rn×n be invertible and skew-symmetric (thus n is even),
and let A ∈ Rn×n be J-Hamiltonian. Let Σ = diag(s1, . . . , sk) with sj ∈ {−1,+1}
and let λ1, . . . , λp be the purely imaginary eigenvalues of A and λp+1, . . . , λq be
the non purely imaginary eigenvalues of A. Further, let n1,j > · · · > nmj,j be the
distinct block sizes of A at some eigenvalue λj such that there exist �i,j blocks of size
ni,j at λj and, whenever j ∈ {1, . . . , p}, let A have the signs {σ1,i,j , . . . , σ	i,j ,i,j}
attached to its blocks of size ni,j at λj. Then, whenever U ∈ Rn,k is such that for
B := UΣUTJ the statement (1) below is satisfied, also (2) holds.

(1) The perturbed matrix A + B has the Jordan structure as described in (1)
of Theorem 3.3. To be more precise, for each j = 1, . . . , q, letting �′κj ,j

=

�1,j+ · · ·+ �κj ,j−k and letting κj be the smallest integer with �′κj,j
≥ 1, then:

(a) If λj �= 0, or if λj = 0 and �1,jn1,j + · · · + �κj−1,jnκj−1,j + (�κj,j −
�′κj,j

)nκj ,j is even, A+B has the distinct block sizes

nκj,j > nκj+1,j > · · · > nmj ,j (4.8)

occurring �′κj,j , �κj+1,j , . . . , �mj,j times, respectively, at λj.

(b) If λj = 0 and �1,jn1,j + · · ·+ �κj−1,jnκj−1,j + (�κj ,j − �′κj ,j
)nκj ,j is odd,

A+B has the distinct block sizes

nκj,j + 1 > nκj,j > nκj+1,j > · · · > nmj,j (4.9)

occurring 1, (�′κj,j
− 1), �κj+1,j , . . . , �mj,j times, respectively, at 0.

(2) For each j = 1, . . . , p, let {σ′
1,κj ,j , . . . , σ

′
	′κj ,j ,κj ,j

} be the signs of A + B at

blocks of size nκj ,j at λj and let {σ′
1,i,j , . . . , σ

′
	i,j ,i,j

} be the signs at blocks of

size ni,j at λj for i = κj + 1, . . . ,mj. Then the following statements hold for
j = 1, . . . , p:
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(a1) If λj �= 0, then the signs of A+B satisfy

	i,j∑
s=1

σs,i,j =

	i,j∑
s=1

σ′
s,i,j , i = κj + 1, . . . ,mj ,

and ∣∣∣∣∣∣∣
	κj,j∑
s=1

σs,κj ,j −
	′κj,j∑
s=1

σ′
s,κj ,j

∣∣∣∣∣∣∣ ≤ �κj,j − �′κj ,j .

(a2) If λj = 0 and �1,jn1,j + · · ·+ �κj−1,jnκj−1,j +(�κj,j − �′κj,j)nκj ,j is even,

the signs of A+B satisfy

	i,j∑
s=1

σs,i,j =

	i,j∑
s=1

σ′
s,i,j

for i = κj + 1, . . . ,mj, where both sums are zero whenever ni,j is odd.
Furthermore, if nκj ,j is odd, then the above also holds for i = nκj,j (as
in that case both sums are zero), and if nκj,j is even, then∣∣∣∣∣∣∣

	κj,j∑
s=1

σs,κj ,j −
	′κj,j∑
s=1

σ′
s,κj ,j

∣∣∣∣∣∣∣ ≤ �κj,j − �′κj ,j .

(b) If λj = 0 and �1,jn1,j + · · ·+ �κj−1,jnκj−1,j + (�κj ,j − �′κj ,j)nκj ,j is odd,

the signs of A+B satisfy

	i,j∑
s=1

σs,i,j =

	i,j∑
s=1

σ′
s,i,j

for i = κj + 1, . . . ,mj, where both sums are zero whenever ni,j is odd.
(In particular, nκj ,j is odd, so all corresponding signs are zero.)

Proof. We proceed using [19, Theorem 4.1] in order to identify the signs attached
to blocks in (A, J) with ones attached to blocks in (iA, iJ), where iA is an iJ-
selfadjoint (complex) matrix.

We first consider the case (a1), i.e., λj = iα is different from zero. Now,
for any U ∈ Rn,k such that the perturbed matrix A + UΣUTJ has the partial
multiplicities in (4.8) at λj , also iA+ iUΣUTJ , which is iJ-selfadjoint, has these
multiplicities at −α. Hence, by Theorem 4.1, the signs of iA+ iUΣUTJ at −α are
obtained as follows: All signs at blocks of sizes nκj+1,j , . . . , nmj,j are preserved,
and of the signs at blocks of size nκj ,j , exactly �′κj,j

ones are preserved. Now, the

same procedure applies to the signs of A+UΣUTJ by [19, Theorem 4.1], i.e., the
signs satisfy the assertion in (a1).

The next case is (a2), i.e., we have λj = 0 and the number

�1,jn1,j + · · ·+ �κj−1,jnκj−1,j + (�κj ,j − �′κj ,j)nκj ,j
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is even. This number is the sum of the sizes of all blocks at λj that are destroyed
under perturbation in this case. Since �1,jn1,j , . . . , �κj−1,jnκj−1,j are all even, this
implies that either �κj ,j − �′κj ,j or nκj ,j is even (or both), i.e., an even number of

odd-sized blocks is destroyed under perturbation.

Again, let U ∈ Rn,k be such that the perturbed matrix A+UΣUTJ has the
partial multiplicities from (4.8) at 0. Then the same is true for the iJ-selfadjoint
matrix iA+ iUΣUTJ at 0. Hence, by Theorem 4.1, the signs of iA+ iUΣUTJ are
obtained as follows: All signs at blocks of sizes nκj+1,j , . . . , nmj,j are preserved,
and of the signs at blocks of size nκj,j , exactly �′κj ,j

ones are preserved. By [19,

Theorem 4.1] this translates to the signs of A+UΣUTJ at 0: All signs at blocks of
even sizes smaller than nκj,j are preserved. Further, if nκj ,j is even, then exactly
�′κj,j

signs at this block size are preserved, i.e., the signs satisfy the assertion in (a2).

Finally, let λj = 0 and let �1,jn1,j+· · ·+�κj−1,jnκj−1,j+(�κj ,j−�′κj ,j
)nκj ,j be

odd. From this immediately follows that (�κj ,j− �′κj,j
)nκj ,j must be odd, i.e., nκj ,j

and (�κj ,j − �′κj ,j) are both odd, and since �κj,j is even, �′κj,j is odd. In particular,

as nκj,j is odd, there are no signs attached to blocks of this size in neither A nor

A+UΣUTJ . Also, we note that �′κj,j−1 may be 0 so that in the perturbed matrix,

there do not occur blocks of this size.

Concerning the Jordan structure of the perturbed matrix, again we assume
that U ∈ Rn×k is such that the perturbed matrix A + UΣUTJ has the partial
multiplicities in (4.9) at 0. Concerning the sign characteristic, we cannot apply
Theorem 4.1 in this case (note that the partial multiplicities in (4.9) differ from
the ones required in Theorem 4.1) so that we continue with a strategy similar to
the one from the proof of Theorem 3.3:

Let sk+1 ∈ {−1,+1} and let u ∈ Ω1 be a vector from the generic set Ω1 in
Theorem 3.3 applied for the case k = 1 to the matrix A+B. Then at the eigenvalue
λj = 0, the matrix A+B + sk+1uu

TJ has the partial multiplicities

nκj ,j > nκj+1,j > · · · > nmj ,j

occurring (�′κj ,j − 1), �κj+1,j , . . . , �mj,j times, respectively, i.e., only the newly gen-

erated block of size nκj ,j + 1 at λj = 0 in A+B has vanished.

Let {σ′′
1,i,j , . . . , σ

′′
	i,j ,i,j

} be the signs of A + B + sk+1uu
TJ at blocks of size

ni,j at λj = 0 for i = κj +1, . . . ,mj . (The signs on the blocks of size nκj ,j are zero
by definition as nκj,j is odd, so there is no need for considering these signs in the

following.) Observe that A+ B + sk+1uu
TJ is a rank-one perturbation of A + B

that satisfies the hypotheses of (1) and (a2), so applying the already proved part
(a2) for the rank-one case to the matrix A+B, we obtain that

	i,j∑
s=1

σ′
s,i,j =

	i,j∑
s=1

σ′′
s,i,j , i = κj + 1, . . . ,mj . (4.10)

On the other hand, the matrix A+B+sk+1uu
TJ is a rank-(k+1) perturbation of

A that also satisfies the hypotheses of (1) and (a2), so applying the already proved



46 L. Batzke, Ch. Mehl, A.C.M. Ran and L. Rodman

part (a2) for the rank-(k + 1) case to the matrix A, we obtain that

	i,j∑
s=1

σs,i,j =

	i,j∑
s=1

σ′′
s,i,j , i = κj + 1, . . . ,mj . (4.11)

Combining (4.10) and (4.11), we see that the assertion in (b) is satisfied. �

In particular, since the case k = 1 is included in the above theorem, we have
hereby proved [19, Conjecture 4.8]. Then again, in the above theorem, there is no
statement on the sign at the newly generated block of (even) size nκj ,j + 1 in the
case (2b). Examples show that this sign can either be +1 or −1 depending on the
particular perturbation; see also [19, Conjecture 4.4], [4].

5. Conclusion

We have completely described the canonical form, i.e., Jordan structure and sign
characteristic (whenever applicable) of structured matrices under generic, struc-
ture-preserving rank-k perturbations. In particular, the Meta-Conjecture 1.1 from
the Introduction of this paper was proved for the cases of H-selfadjoint matrices
over the field C, and for H-symmetric and J-Hamiltonian matrices over both the
fields R and C.
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Abstract. In this paper we study the self-adjoint Krein–von Neumann realiza-
tion AK of the perturbed Laplacian −Δ+ V in a bounded Lipschitz domain
Ω ⊂ Rn. We provide an explicit and self-contained description of the domain
of AK in terms of Dirichlet and Neumann boundary traces, and we establish
a Weyl asymptotic formula for the eigenvalues of AK .
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1. Introduction

The main objective of this note is to investigate the self-adjoint Krein–von Neu-
mann realization associated to the differential expression −Δ+V in L2(Ω), where
Ω ⊂ Rn, n > 1, is assumed to be a bounded Lipschitz domain and V is a non-
negative bounded potential. In particular, we obtain an explicit description of the
domain of AK in terms of Dirichlet and Neumann boundary traces, and we prove
the Weyl asymptotic formula

N(λ,AK) =
λ→∞

(2π)−nvn|Ω|λn/2 +O
(
λ(n−(1/2))/2

)
. (1.1)

Here N(λ,AK) denotes the number of nonzero eigenvalues of AK not exceeding
λ, vn is the volume of the unit ball in Rn, and |Ω| is the (n-dimensional) Lebesgue
measure of Ω.
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Let us first recall the definition and some properties of the Krein–von Neu-
mann extension in the abstract setting. Let S be a closed, densely defined, sym-
metric operator in a Hilbert space H and assume that S is strictly positive, that
is, for some c > 0, (Sf, f)H � c‖f‖2H for all f ∈ dom(S). The Krein–von Neumann
extension SK of S is then given by

SKf = S∗f, f ∈ dom(SK) = dom(S) +̇ ker(S∗), (1.2)

see the original papers Krein [48] and von Neumann [57]. It follows that SK is
a nonnegative self-adjoint extension of S and that for all other nonnegative self-
adjoint extensions SΘ of S the operator inequality SK � SΘ holds in the sense of
quadratic forms. As ker(SK) = ker(S∗), it is clear that 0 is an eigenvalue of SK

(except if S is self-adjoint, in which case SK = S∗ = S). Furthermore, if the self-
adjoint Friedrichs extension SF of S has purely discrete spectrum then the same is
true for the spectrum of SK with the possible exception of the eigenvalue 0, which
may have infinite multiplicity. For further developments, extensive references, and
a more detailed discussion of the properties of the Krein–von Neumann extension
of a symmetric operator we refer the reader to [2, Sect. 109], [3], [4]–[6], [7, Chs. 9,
10], [8]–[13], [14], [15], [16], [17], [19], [27], [28], [29], [32, Sect. 15], [33, Sect. 3.3],
[36], [38], [39, Sect. 13.2], [40], [41], [50], [55], [58], [59, Ch. 13], [60], [61], [62], [64],
[65], [66], and the references cited therein.

In the concrete case considered in this paper, the symmetric operator S above
is given by the minimal operator Amin associated to the differential expression
−Δ+ V in the Hilbert space L2(Ω), that is,

Amin = −Δ+ V, dom(Amin) = H̊2(Ω), (1.3)

where H̊2(Ω) denotes the closure of C∞
0 (Ω) in the Sobolev space H2(Ω), and

0 � V ∈ L∞(Ω). It can be shown that Amin is the closure of the symmetric
operator −Δ + V defined on C∞

0 (Ω). We point out that here Ω is a bounded
Lipschitz domain and no further regularity assumptions on ∂Ω are imposed. The
adjoint A∗

min of Amin coincides with the maximal operator

Amax = −Δ+ V,

dom(Amax) =
{
f ∈ L2(Ω)

∣∣Δf ∈ L2(Ω)
}
,

(1.4)

where Δf is understood in the sense of distributions. From (1.2) and (1.3) it is
clear that the Krein–von Neumann extension AK of Amin is then given by

AK = −Δ+ V, dom(AK) = H̊2(Ω) +̇ ker(Amax). (1.5)

In the present situation Amin is a symmetric operator with infinite defect indices
and therefore ker(A∗

min) = ker(Amax) is infinite-dimensional. In particular, 0 is
an eigenvalue of AK with infinite multiplicity, and hence belongs to the essential
spectrum. It is also important to note that in general the functions in ker(AK)
do not possess any Sobolev regularity, that is, ker(AK) �⊂ Hs(Ω) for every s > 0.
Moreover, since Ω is a bounded set, the Friedrichs extension of Amin (which coin-
cides with the self-adjoint Dirichlet operator associated to −Δ+ V ) has compact
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resolvent and hence its spectrum is discrete. The abstract considerations above
then yield that with the exception of the eigenvalue 0 the spectrum of AK consists
of a sequence of positive eigenvalues with finite multiplicity which tend to +∞.

The description of the domain of the Krein–von Neumann extension AK

in (1.5) is not satisfactory for applications involving boundary value problems.
Instead, a more explicit description of dom(AK) via boundary conditions seems
to be natural and desirable. In the case of a bounded C∞-smooth domain Ω, it is
known that

dom(AK) =
{
f ∈ dom(Amax)

∣∣ γNf +M(0)γDf = 0
}

(1.6)

holds, where γD and γN denote the Dirichlet and Neumann trace operator, re-
spectively, defined on the maximal domain dom(Amax), and M(0) is the Dirichlet-
to-Neumann map or Weyl–Titchmarsh operator at z = 0 for −Δ + V . The de-
scription (1.6) goes back to Vĭsik [67] and Grubb [37], where certain classes of
elliptic differential operators with smooth coefficients are discussed in great de-
tail. Note that in contrast to the Dirichlet and Neumann boundary conditions
the boundary condition in (1.6) is nonlocal, as it involves M(0) which, when Ω
is smooth, is a boundary pseudodifferential operator of order 1. It is essential for
the boundary condition (1.6) that both trace operators γD and γN are defined on
dom(Amax). Even in the case of a smooth boundary ∂Ω, the elements in dom(AK),
in general, do not possess any Hs-regularity for s > 0, and hence special atten-
tion has to be paid to the definition and the properties of the trace operators.
In the smooth setting the classical analysis due to Lions and Magenes [49] en-
sures that γD : dom(Amax)→ H−1/2(∂Ω) and γN : dom(Amax)→ H−3/2(∂Ω) are
well-defined continuous mappings when dom(Amax) is equipped with the graph
norm.

Let us now turn again to the present situation, where Ω is assumed to be a
bounded Lipschitz domain. Our first main objective is to extend the description of
dom(AK) in (1.6) to the nonsmooth setting. The main difficulty here is to define
appropriate trace operators on the domain of the maximal operator. We briefly
sketch the strategy from [18], which is mainly based and inspired by abstract
extension theory of symmetric operators. For this denote by AD and AN the self-
adjoint realizations of −Δ+V corresponding to Dirichlet and Neumann boundary
conditions, respectively. Recall that by [43] and [31] their domains dom(AD) and
dom(AN ) are both contained in H3/2(Ω). Now consider the boundary spaces

GD(∂Ω) :=
{
γDf

∣∣ f ∈ dom(AN )
}
,

GN (∂Ω) :=
{
γNf

∣∣ f ∈ dom(AD)
}
,

(1.7)

equipped with suitable inner products induced by the Neumann-to-Dirichlet map
and Dirichlet-to-Neumann map for −Δ+V −i, see Section 3 for the details. It turns
out that GD(∂Ω) and GN(∂Ω) are both Hilbert spaces which are densely embedded
in L2(∂Ω). It was shown in [18] that the Dirichlet trace operator γD and Neumann
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trace operator γN can be extended by continuity to surjective mappings

γ̃D : dom(Amax)→ GN(∂Ω)∗ and γ̃N : dom(Amax)→ GD(∂Ω)∗, (1.8)

where GD(∂Ω)∗ and GN (∂Ω)∗ denote the adjoint (i.e., conjugate dual) spaces of
GD(∂Ω) and GN (∂Ω), respectively. Within the same process also the Dirichlet-to-
Neumann map M(0) of −Δ+V (originally defined as a mapping from H1(∂Ω) to

L2(∂Ω)) admits an extension to a mapping M̃(0) from GN(∂Ω)∗ to GD(∂Ω)∗. With
the help of the trace maps γ̃D and γ̃N , and the extended Dirichlet-to-Neumann

operator M̃(0) we are then able to extend the description of the domain of the
Krein–von Neumann extension for smooth domains in (1.6) to the case of Lipschitz
domains. More precisely, we show in Theorem 3.3 that the Krein–von Neumann
extension AK of Amin is defined on

dom(AK) =
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
. (1.9)

For an exhaustive treatment of boundary trace operators on bounded Lipschitz
domains in Rn and applications to Schrödinger operators we refer to [17].

Our second main objective in this paper is to prove the Weyl asymptotic
formula (1.1) for the nonzero eigenvalues of AK . We mention that the study of the
asymptotic behavior of the spectral distribution function of the Dirichlet Laplacian
originates in the work of Weyl (cf. [68], [69], and the references in [70]), and that
generalizations of the classicalWeyl asymptotic formula were obtained in numerous
papers – we refer the reader to [20], [21], [22], [23], [24], [25], [26], [56], [63], and
the introduction in [16] for more details. There are relatively few papers available
that treat the spectral asymptotics of the Krein Laplacian or the perturbed Krein
Laplacian AK . Essentially these considerations are inspired by Alonso and Simon
who, at the end of their paper [3] posed the question if the asymptotics of the
nonzero eigenvalues of the Krein Laplacian is given by Weyl’s formula. In the case
where Ω is bounded and C∞-smooth, and V ∈ C∞(Ω), this has been shown to
be the case three years later by Grubb [38], see also the more recent contributions
[52], [53], and [40]. Following the ideas in [38] it was shown in [14] that for so-called
quasi-convex domains (a nonsmooth subclass of bounded Lipschitz domains with
the key feature that dom(AD) and dom(AN ) are both contained in H2(Ω)) the
Krein–von Neumann extension AK is spectrally equivalent to the buckling of a
clamped plate problem, which in turn can be reformulated with the help of the
quadratic forms

a[f, g] :=
(
Aminf,Aming

)
L2(Ω)

and t[f, g] :=
(
f,Aming

)
L2(Ω)

, (1.10)

defined on dom(Amin) = H̊2(Ω). In the Hilbert space (H̊2(Ω), a[·, ·]) the form t can
be expressed with the help of a nonnegative compact operator T , and it follows
that

λ ∈ σp(AK)\{0} if and only if λ−1 ∈ σp(T ), (1.11)

counting multiplicities. These considerations can be extended from quasi-convex
domains to the more general setting of Lipschitz domains, see, for instance, Sec-
tion 4 and Lemma 4.2. Finally, the main ingredient in the proof of the Weyl
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asymptotic formula (1.1) for the Krein–von Neumann extension AK of −Δ + V
on a bounded Lipschitz domain Ω is then a more general Weyl-type asymptotic
formula due to Kozlov [46] (see also [45], [47]) which yields the asymptotics of
the spectral distribution function of the compact operator T , and hence via (1.11)
the asymptotics of the spectral distribution function of AK . This reasoning in the
proof of our second main result Theorem 4.1 is along the lines of [14, 15], where the
special case of quasi-convex domains was treated. For perturbed Krein Laplacians
this result completes work that started with Grubb more than 30 years ago and
demonstrates that the question posed by Alonso and Simon in [3] regarding the
validity of the Weyl asymptotic formula continues to have an affirmative answer
for bounded Lipschitz domains – the natural end of the line in the development
from smooth domains all the way to minimally smooth ones.

2. Schrödinger operators on bounded Lipschitz domains

This section is devoted to studying self-adjoint Schrödinger operators on a non-
empty, bounded Lipschitz domain in Rn (which, by definition, is assumed to be
open). We shall adopt the following background assumption.

Hypothesis 2.1. Let n ∈ N\{1}, assume that Ω ⊂ Rn is a bounded Lipschitz
domain, and suppose that 0 � V ∈ L∞(Ω).

We consider operator realizations of the differential expression −Δ+V in the
Hilbert space L2(Ω). For this we define the preminimal realization Ap of −Δ+V by

Ap := −Δ+ V, dom(Ap) := C∞
0 (Ω). (2.1)

It is clear that Ap is a densely defined, symmetric operator in L2(Ω), and hence
closable. The minimal realization Amin of −Δ+ V is defined as the closure of Ap

in L2(Ω),

Amin := Ap. (2.2)

It follows that Amin is a densely defined, closed, symmetric operator in L2(Ω). The
maximal realization Amax of −Δ+ V is given by

Amax := −Δ+ V, dom(Amax) :=
{
f ∈ L2(Ω)

∣∣Δf ∈ L2(Ω)
}
, (2.3)

where the expression Δf , f ∈ L2(Ω), is understood in the sense of distributions.
In the next lemma we collect some properties of the operators Ap, Amin, and

Amax. The standard L2-based Sobolev spaces of order s � 0 will be denoted by
Hs(Ω); for the closure of C∞

0 (Ω) in Hs(Ω) we write H̊s(Ω).

Lemma 2.2. Assume Hypothesis 2.1 and let Ap, Amin, and Amax be as introduced
above. Then the following assertions hold:

(i) Amin and Amax are adjoints of each other, that is,

A∗
min = A∗

p = Amax and Amin = Ap = A∗
max. (2.4)
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(ii) Amin is defined on H̊2(Ω), that is,

dom(Amin) = H̊2(Ω), (2.5)

and the graph norm of Amin and the H2-norm are equivalent on the domain
of Amin.

(iii) Amin is strictly positive, that is, for some C > 0 we have

(Aminf, f)L2(Ω) � C‖f‖2L2(Ω), f ∈ H̊2(Ω). (2.6)

(iv) Amin has infinite deficiency indices.

One recalls that the Friedrichs extension AF of Amin is defined by

AF := −Δ+ V, dom(AF ) :=
{
f ∈ H̊1(Ω)

∣∣Δf ∈ L2(Ω)
}
. (2.7)

It is well known that AF is a strictly positive self-adjoint operator in L2(Ω) with
compact resolvent (see, e.g., [30, Sect. VI.1]).

In this note we are particularly interested in the Krein–von Neumann exten-
sion AK of Amin. According to (1.2), AK is given by

AK := −Δ+ V, dom(AK) := dom(Amin) � ker(Amax). (2.8)

In the following theorem we briefly collect some well-known properties of the
Krein–von Neumann extension AK in the present setting. For more details we refer
the reader to the celebrated paper [48] by Krein and to [3], [4], [11], [14], [15], [16],
[40], and [41] for further developments and references.

Theorem 2.3. Assume Hypothesis 2.1 and let AK be the Krein–von Neumann
extension of Amin. Then the following assertions hold:

(i) AK is a nonnegative self-adjoint operator in L2(Ω) and σ(AK) consists of
eigenvalues only. The eigenvalue 0 has infinite multiplicity,

dim(ker(AK)) =∞,

and the restriction AK |(ker(AK))⊥ is a strictly positive self-adjoint operator in

the Hilbert space (ker(AK))⊥ with compact resolvent.
(ii) dom(AK) �⊂ Hs(Ω) for every s > 0.
(iii) A nonnegative self-adjoint operator B in L2(Ω) is a self-adjoint extension of

Amin if and only if for some (and, hence for all ) μ < 0,

(AF − μ)−1 � (B − μ)−1 � (AK − μ)−1. (2.9)

We also mention that the Friedrichs extension AF and the Krein–von Neu-
mann extension AK are relatively prime (or disjoint), that is,

dom(AF ) ∩ dom(AK) = dom(Amin) = H̊2(Ω). (2.10)

For later purposes we briefly recall some properties of the Dirichlet and Neu-
mann trace operator and the corresponding self-adjoint Dirichlet and Neumann
realizations of −Δ+ V in L2(Ω). We consider the space

H
3/2
Δ (Ω) :=

{
f ∈ H3/2(Ω)

∣∣Δf ∈ L2(Ω)
}
, (2.11)
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equipped with the inner product

(f, g)
H

3/2
Δ (Ω)

= (f, g)H3/2(Ω) + (Δf,Δg)L2(Ω), f, g ∈ H
3/2
Δ (Ω). (2.12)

One recalls that the Dirichlet and Neumann trace operators γD and γN defined by

γDf := f �∂Ω and γNf := n · ∇f �∂Ω, f ∈ C∞(Ω), (2.13)

admit continuous extensions to operators

γD : H
3/2
Δ (Ω)→ H1(∂Ω) and γN : H

3/2
Δ (Ω)→ L2(∂Ω). (2.14)

Here H1(∂Ω) denotes the usual L2-based Sobolev space of order 1 on ∂Ω; cf. [51,
Chapter 3] and [54]. It is important to note that the extensions in (2.14) are both
surjective, see [36, Lemma 3.1 and Lemma 3.2].

In the next theorem we collect some properties of the Dirichlet realization
AD and Neumann realization AN of −Δ+V in L2(Ω). We recall that the operators
AD and AN are defined as the unique self-adjoint operators corresponding to the
closed nonnegative forms

aD[f, g] := (∇f,∇g)(L2(Ω))n + (V f, g)L2(Ω), dom(aD) := H̊1(Ω),

aN [f, g] := (∇f,∇g)(L2(Ω))n + (V f, g)L2(Ω), dom(aN ) := H1(Ω).
(2.15)

In particular, one has AF = AD by (2.7). In the next theorem we collect some
well-known facts about the self-adjoint operators AD and AN . The H3/2-regularity
of the functions in their domains is remarkable, and a consequence of Ω being a
bounded Lipschitz domain. We refer the reader to [35, Lemma 3.4 and Lemma 4.8]
for more details, see also [42, 43] and [31].

Theorem 2.4. Assume Hypothesis 2.1 and let AD and AN be the self-adjoint
Dirichlet and Neumann realization of −Δ + V in L2(Ω), respectively. Then the
following assertions hold:

(i) The operator AD coincides with the Friedrichs extension AF and is given by

AD = −Δ+ V, dom(AD) =
{
f ∈ H

3/2
Δ (Ω)

∣∣ γDf = 0
}
. (2.16)

The resolvent of AD is compact, and the spectrum of AD is purely discrete
and contained in (0,∞).

(ii) The operator AN is given by

AN = −Δ+ V, dom(AN ) =
{
f ∈ H

3/2
Δ (Ω)

∣∣ γNf = 0
}
. (2.17)

The resolvent of AN is compact, and the spectrum of AN is purely discrete
and contained in [0,∞).
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3. Boundary conditions for the Krein–von Neumann realization

Our goal in this section is to obtain an explicit description of the domain of the
Krein–von Neumann extension AK in terms of Dirichlet and Neumann boundary
traces. For this we describe an extension procedure of the trace maps γD and γN in
(2.14) onto dom(Amax) from [18]. We recall that for ϕ ∈ H1(∂Ω) and z ∈ ρ(AD),
the boundary value problem

−Δf + V f = zf, γDf = ϕ, (3.1)

admits a unique solution fz(ϕ) ∈ H
3/2
Δ (Ω). Making use of this fact and the trace

operators (2.14) we define the Dirichlet-to-Neumann operator M(z), z ∈ ρ(AD),
as follows:

M(z) : L2(∂Ω) ⊃ H1(∂Ω)→ L2(∂Ω), ϕ �→ −γNfz(ϕ), (3.2)

where fz(ϕ) ∈ H
3/2
Δ (Ω) is the unique solution of (3.1). It can be shown that M(z)

is an unbounded operator in L2(∂Ω). Moreover, if z ∈ ρ(AD) ∩ ρ(AN ) then M(z)
is invertible and the inverse M(z)−1 is a bounded operator defined on L2(∂Ω).
Considering z = i, we set

Σ := Im (−M(i)−1). (3.3)

The imaginary part ImM(i) of M(i) is a densely defined bounded operator in
L2(∂Ω) and hence it admits a bounded closure

Λ := Im(M(i)) (3.4)

in L2(∂Ω). Both operators Σ and Λ are self-adjoint and invertible with unbounded
inverses. Next we introduce the boundary spaces

GD(∂Ω) :=
{
γDf

∣∣ f ∈ dom(AN )
}

(3.5)

and

GN (∂Ω) :=
{
γNf

∣∣ f ∈ dom(AD)
}
. (3.6)

It turns out that

GD(∂Ω) = ran
(
Σ1/2

)
and GN(∂Ω) = ran

(
Λ1/2

)
, (3.7)

and hence the spaces GD(∂Ω) and GN(∂Ω) can be equipped with the inner products

(ϕ, ψ)GD(∂Ω) :=
(
Σ−1/2ϕ,Σ−1/2ψ

)
L2(∂Ω)

, ϕ, ψ ∈ GD(∂Ω), (3.8)

and

(ϕ, ψ)GN (∂Ω) :=
(
Λ−1/2ϕ,Λ−1/2ψ

)
L2(∂Ω)

, ϕ, ψ ∈ GN(∂Ω), (3.9)

respectively. Then GD(∂Ω) and GN(∂Ω) both become Hilbert spaces which are
dense in L2(∂Ω). The corresponding adjoint (i.e., conjugate dual) spaces will be
denoted by GD(∂Ω)∗ and GN (∂Ω)∗, respectively. The following result can be found
in [18, Section 4.1].



The Krein–von Neumann Realization of −Δ+ V 57

Theorem 3.1. Assume Hypothesis 2.1. Then the Dirichlet trace operator γD and the
Neumann trace operator γN in (2.14) can be extended by continuity to surjective
mappings

γ̃D : dom(Amax)→ GN (∂Ω)∗ and γ̃N : dom(Amax)→ GD(∂Ω)∗ (3.10)

such that ker(γ̃D) = ker(γD) = dom(AD) and ker(γ̃N ) = ker(γN ) = dom(AN ).

In a similar manner the boundary value problem (3.1) can be considered for
all ϕ ∈ GN (∂Ω)∗ and the Dirichlet-to-Neumann operator M(·) in (3.2) can be
extended. More precisely, the following statement holds.

Theorem 3.2. Assume Hypothesis 2.1 and let γ̃D and γ̃N be the extended Dirichlet
and Neumann trace operator from Theorem 3.1. Then the following are true:

(i) For ϕ ∈ GN(∂Ω)∗ and z ∈ ρ(AD) the boundary value problem

−Δf + V f = zf, γ̃Df = ϕ, (3.11)

admits a unique solution fz(ϕ) ∈ dom(Amax).
(ii) For z ∈ ρ(AD) the Dirichlet-to-Neumann operator M(z) in (3.2) admits a

continuous extension

M̃(z) : GN(∂Ω)∗ → GD(∂Ω)∗, ϕ �→ −γ̃Nfz(ϕ), (3.12)

where fz(ϕ) ∈ dom(Amax) is the unique solution of (3.11).

Now we are able to state our main result in this section, amounting to a con-
crete description of the domain of the Krein–von Neumann extension AK in terms
of Dirichlet and Neumann boundary traces. The extended Dirichlet-to-Neumann
map at z = 0 will enter as a regularization parameter in the boundary condition.
For C∞-smooth domains this result goes back to Grubb [37], where a certain class
of elliptic differential operators with smooth coefficients is discussed systematically.
For the special case of a so-called quasi-convex domains Theorem 3.3 reduces to
[15, Theorem 5.5] and [36, Theorem 13.1]. In an abstract setting the Krein–von
Neumann extension appears in a similar form in [18, Example 3.9].

Theorem 3.3. Assume Hypothesis 2.1 and let γ̃D, γ̃N and M̃(0) be as in Theo-
rem 3.1 and Theorem 3.2. Then the Krein–von Neumann extension AK of Amin

is given by

AK = −Δ+ V,

dom(AK) =
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
.

(3.13)

Proof. We recall that the Krein–von Neumann extension AK of Amin is defined on

dom(AK) = dom(Amin) � ker(Amax). (3.14)

Thus, from Lemma 2.2 (ii) one concludes

dom(AK) = H̊2(Ω) � ker(Amax). (3.15)
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Next, we show the inclusion

dom(AK) ⊆
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
. (3.16)

Fix f ∈ dom(AK) and decompose f in the form f = fmin+f0, where fmin ∈ H̊2(Ω)
and f0 ∈ ker(Amax) (cf. (3.15)). Thus,

γDfmin = γ̃Dfmin = 0 and γNfmin = γ̃Nfmin = 0, (3.17)

and hence it follows from Theorem 3.2 (ii) that

M̃(0)γ̃Df = M̃(0)γ̃D(fmin + f0) = M̃(0)γ̃Df0 = −γ̃Nf0 = −γ̃Nf. (3.18)

Thus, γ̃Nf + M̃(0)γ̃Df = 0 and the inclusion (3.16) holds.

Next we verify the opposite inclusion

dom(AK) ⊇
{
f ∈ dom(Amax)

∣∣ γ̃Nf + M̃(0)γ̃Df = 0
}
. (3.19)

We use the direct sum decomposition

dom(Amax) = dom(AD) +̇ ker(Amax), (3.20)

which is not difficult to check. Assuming that f ∈ dom(Amax) satisfies the bound-
ary condition

M̃(0)γ̃Df + γ̃Nf = 0, (3.21)

according to the decomposition (3.20) we write f in the form f = fD + f0, where
fD ∈ dom(AD) and f0 ∈ ker(Amax). Thus, γDfD = γ̃DfD = 0 by Theorem 3.1
and with the help of Theorem 3.2 (ii) one obtains

M̃(0)γ̃Df = M̃(0)γ̃D(fD + f0) = M̃(0)γ̃Df0 = −γ̃Nf0. (3.22)

Taking into account the boundary condition (3.21) one concludes

−γ̃Nf = M̃(0)γ̃Df = −γ̃Nf0, (3.23)

and hence

0 = γ̃N (f − f0) = γ̃NfD. (3.24)

Together with Theorem 3.1 this implies fD ∈ ker(γ̃N ) = ker(γN ) = dom(AN ).
Thus, one arrives at

fD ∈ dom(AD) ∩ dom(AN ) = dom(Amin) = H̊2(Ω). (3.25)

Summing up, one has

f = fD + f0 ∈ H̊2(Ω) � ker(Amax) = dom(AK), (3.26)

which establishes (3.19) and completes the proof of Theorem 3.3. �
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4. Spectral asymptotics of the Krein–von Neumann extension

As the main result in this section we derive the followingWeyl-type spectral asymp-
totics for the Krein–von Neumann extension AK of Amin.

Theorem 4.1. Assume Hypothesis 2.1. Let {λj}j∈N ⊂ (0,∞) be the strictly positive
eigenvalues of the Krein–von Neumann extension AK enumerated in nondecreasing
order counting multiplicity, and let

N(λ,AK) := #
{
j ∈ N : 0 < λj � λ

}
, λ > 0, (4.1)

be the eigenvalue distribution function for AK . Then the following Weyl asymptotic
formula holds,

N(λ,AK) =
λ→∞

vn |Ω|
(2π)n

λn/2 +O
(
λ(n−(1/2))/2

)
, (4.2)

where vn = πn/2/Γ((n/2) + 1) denotes the (Euclidean ) volume of the unit ball in
Rn (with Γ(·) the classical Gamma function [1, Sect. 6.1]) and |Ω| represents the
(n-dimensional) Lebesgue measure of Ω.

The proof of Theorem 4.1 follows along the lines of [14, 15], where the case of
quasi-convex domains was investigated. The main ingredients are a general Weyl
type asymptotic formula due to Kozlov [46] (see also [45], [47] for related results)
and the connection between the eigenvalues of the so-called buckling operator and
the positive eigenvalues of the Krein–von Neumann extension AK (cf. [15], [16]).

We first consider the quadratic forms a and t on dom(Amin) = H̊2(Ω) defined by

a[f, g] :=
(
Aminf,Aming

)
L2(Ω)

, f, g ∈ dom(a) := H̊2(Ω), (4.3)

t[f, g] :=
(
f,Aming

)
L2(Ω)

, f, g ∈ dom(t) := H̊2(Ω). (4.4)

Since the graph norm of Amin and the H2-norm are equivalent on dom(Amin) =

H̊2(Ω) by Lemma 2.2 (ii), it follows that W := (dom(a); (·, ·)W ), where the inner
product is defined by

(f, g)W := a[f, g] =
(
Aminf,Aming

)
L2(Ω)

, f, g ∈ dom(a), (4.5)

is a Hilbert space. One observes that the embedding ι : W → L2(Ω) is compact;
this is a consequence of Ω being bounded. Next, we consider for fixed g ∈ W the
functional

W � f �→ t[ιf, ιg], (4.6)

which is continuous on the Hilbert space W and hence can be represented with
the help of a bounded operator T in W in the form

(f, T g)W = t[ιf, ιg], f, g ∈ W . (4.7)

The nonnegativity of the form t implies that T is a self-adjoint and nonnegative
operator in W . Furthermore, one obtains for f, g ∈ W from (4.4) that

(f, T g)W = t[ιf, ιg] =
(
ιf, Aminιg

)
L2(Ω)

=
(
f, ι∗Aminιg

)
W , (4.8)
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and hence,

T = ι∗Aminι. (4.9)

In particular, since Aminι : W → L2(Ω) is defined on the whole space W and
is closed as an operator from W to L2(Ω), it follows that Aminι is bounded and
hence the compactness of ι∗ : L2(Ω)→W implies that T = ι∗Aminι is a compact
operator in the Hilbert space W .

The next lemma shows that the eigenvalues of T are precisely the reciprocals
of the nonzero eigenvalues of AK . Lemma 4.2 is inspired by the connection of the
Krein–von Neumann extension to the buckling of a clamped plate problem (cf.
[15, Theorem 6.2] and [14, 16, 38]).

Lemma 4.2. Assume Hypothesis 2.1 and let T be the nonnegative compact operator
in W defined by (4.7). Then

λ ∈ σp(AK)\{0} if and only if λ−1 ∈ σp(T ), (4.10)

counting multiplicities.

Proof. Assume first that λ �= 0 is an eigenvalue of AK and let g be a corresponding
eigenfunction. We decompose g in the form

g = gmin + g0, gmin ∈ dom(Amin), g0 ∈ ker(Amax) (4.11)

(cf. (2.8)), where gmin �= 0 as λ �= 0. Then one concludes

Amingmin = AK(gmin + g0) = AKg, (4.12)

and hence,

Amingmin − λgmin = AKg − λgmin = λg − λgmin = λg0 ∈ ker(Amax), (4.13)

so

AmaxAmingmin = λAmaxgmin = λAmingmin. (4.14)

This yields

(f, λ−1gmin)W = a[f, λ−1gmin] =
(
Aminf, λ

−1Amingmin

)
L2(Ω)

=
(
f, λ−1AmaxAmingmin

)
L2(Ω)

=
(
f,Amingmin

)
L2(Ω)

= t[f, gmin] = (f, T gmin)W , f ∈ W ,

(4.15)

where, for simplicity, we have identified elements in W with those in dom(a), and
hence omitted the embedding map ι. From (4.15) we then conclude

Tgmin =
1

λ
gmin, (4.16)

which shows that λ−1 ∈ σp(T ).
Conversely, assume that h ∈ W\{0} and λ �= 0 are such that

Th =
1

λ
h (4.17)
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holds. Then it follows for f ∈ dom(a) from (4.5) and (4.7) that

a[f, h] = a[f, λTh] = (f, λTh)W = t[f, λh] =
(
f, λAminh

)
L2(Ω)

. (4.18)

As a consequence of the first representation theorem for quadratic forms [44, Theo-
rem VI.2.1 (iii), Example VI.2.13], one concludes thatAmaxAmin is the representing
operator for a, and therefore,

h ∈ dom(AmaxAmin) and AmaxAminh = λAminh. (4.19)

In particular, h ∈ dom(Amin) and

Amax(Amin − λ)h = AmaxAminh− λAmaxh

= AmaxAminh− λAminh = 0.
(4.20)

Let us define

g :=
1

λ
Aminh = h+

1

λ

(
Amin − λ

)
h. (4.21)

As h ∈ dom(Amin) and (Amin−λ)h ∈ ker(Amax) by (4.20), we conclude from (2.8)
that g ∈ domAK . Moreover, g �= 0 since Amin is positive. Furthermore,

AKg = Amaxg =
1

λ
AmaxAminh = Aminh = λg, (4.22)

shows that λ ∈ σp(AK). �

Proof of Theorem 4.1. Let T be the nonnegative compact operator in W defined
by (4.7). We order the eigenvalues of T in the form

0 � · · · � μj+1(T ) � μj(T ) � · · · � μ1(T ), (4.23)

listed according to their multiplicity, and set

N (λ, T ) := #
{
j ∈ N : μj(T ) � λ−1

}
, λ > 0. (4.24)

It follows from Lemma 4.2 that

N (λ, T ) = N(λ,AK), λ > 0, (4.25)

and hence [46] yields the asymptotic formula,

N(λ,AK) = N (λ, T ) =
λ→∞

ω λn/2 +O
(
λ(n−(1/2))/2

)
, (4.26)

with

ω :=
1

n(2π)n

ˆ
Ω

(ˆ
Sn−1

[ ∑n
j=1 ξ

2
j∑n

j,k=1 ξ
2
j ξ

2
k

]n
2

dωn−1(ξ)

)
dnx (4.27)

=
vn |Ω|
(2π)n

. �

For bounds on N( · , AK) in the case of Ω ⊂ Rn open and of finite (n-
dimensional) Lebesgue measure, and V = 0, we refer to [34].
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Abstract. We present a spectral and inverse spectral theory for the zero dis-
persion spectral problem associated with the Camassa–Holm equation. This
is an alternative approach to that in [10] by Eckhardt and Teschl.
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1. Background

The Camassa–Holm (CH) equation

ut − uxxt + 3uux + 2κux = 2uxuxx + uuxxx

was suggested as a model for shallow water waves by Camassa and Holm [5],
although originally found by Fuchssteiner and Fokas [12]. Here κ is a constant
related to dispersion. The equation has scaling properties such that one needs
only study the cases κ = 1 and the zero dispersion case κ = 0.

There are compelling reasons to study the equation. Like the KdV equation
it is an integrable system but, unlike the KdV equation, among its solutions are
breaking waves (see Camassa and Holm [5] and Constantin [8]). These are solutions
with smooth initial data that stay bounded, but where the wave front becomes
vertical in finite time, so that the derivative blows up. A model for water waves
displaying wave breaking was long sought after.

Since the CH equation is an integrable system it has an associated spectral
problem, which is

−f ′′ + 1
4f = λwf, (1.1)

where w = u− uxx +κ. At least two cases are particularly important, namely the
periodic case and the case of decay at infinity. We only deal with the latter case
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here (see, e.g., Constantin and Escher [9]), so in the zero dispersion case we should
have w small at infinity. For the periodic case see Constantin and McKean [6].

In the zero dispersion case the solitons (here called peakons) give rise to w
which is a Dirac measure, so one should clearly at least allow w to be a measure1.
It is also important that one does not assume that w has a fixed sign, since no
wave breaking will then take place (see Jiang, Ni and Zhou [15]).

In [3] we discussed scattering and inverse scattering in the case κ �= 0, which is
the important case for shallow water waves. We did not discuss the zero dispersion
case κ = 0, which is relevant in some other situations, but this case was treated
by Eckhardt and Teschl in [10], based on the results of Eckhardt [11].

The approach of [10] was based on the fact that in the zero dispersion case it
is possible to define a Titchmarsh–Weyl type m-function for the whole line spectral
problem. This approach does not work if κ �= 0. The fundamental reason behind
this is that for corresponding half-line problems one gets a discrete spectrum in
the zero dispersion case, but there is always a half-line of continuous spectrum
if κ �= 0. More conceptually, the continuous spectrum is of multiplicity 2 which
excludes the existence of a scalar m-function. For the inverse theory Eckhardt
[11] uses de Branges’ theory of Hilbert spaces of entire functions. Our approach is
different and analogous to that in our paper [3].

It should be noted that the methods of this note combined with those of [3]
allow one to prove a uniqueness theorem for inverse scattering in the case κ �= 0 for
the case when w is a measure, extending the results of [3] where it was assumed
that w ∈ L1

loc. These results do not appear to be accessible using de Branges’
theory.

2. A Hilbert space

Instead of (1.1) we shall analyze the slightly more general spectral problem

−f ′′ + qf = λwf, (2.1)

where q is a positive measure not identically zero, since this presents few additional
difficulties. A solution of (2.1), or more generally of −f ′′+ qf = λwf + g, where g
is a given measure, is a continuous function f satisfying the equation in the sense
of distributions. Since (λw− q)f + g is then a measure it follows that a solution is
locally absolutely continuous with a derivative of locally bounded variation. It is
known that a unique solution exists with prescribed values of f and, say, its left
derivative at a given point (this result may be found for example in Bennewitz [1,
Chapter 1]), and we will occasionally use this. It follows that the solution space of
the homogeneous equation is of dimension 2.

We will also have occasion to talk about the Wronskian [f1, f2] = f1f
′
2−f ′

1f2
of two solutions f1 and f2 of (2.1). The main property is that such a Wronskian is
constant, which easily follows on differentiation and use of the equation. Note that

1In this paper we use the word measure for a distribution of order 0.
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the regularity of solutions is such that the product rule applies when differentiating
the Wronskian in the sense of distributions. The unique solvability of the initial
value problem shows that f1 and f2 are linearly dependent precisely if [f1, f2] = 0.

We shall consider (2.1) in a Hilbert space H1 with scalar product

〈f, g〉 =
∫
R

(f ′g′ + qfg).

Thus we are viewing (2.1) as a ‘left definite’ equation. The space H1 consists of
those locally absolutely continuous functions f which have derivative in L2(R) and
for which

∫
R
q|f |2 < ∞, so it certainly contains the test functions C∞

0 (R). Some
properties of the space H1 will be crucial for us.

Lemma 2.1. Non-trivial solutions of −u′′ + qu = 0 have at most one zero, and
there is no non-trivial solution in H1.

Proof. The real and imaginary parts of a solution u are also solutions and in H1 if
u is, so it is enough to consider real-valued solutions. From the equation it is clear
that such a solution is convex in any interval where it is positive, concave where
it is negative.

The set of zeros of a real-valued non-trivial solution u is a closed set with
no interior by the uniqueness of the initial value problem. Since u is continuous it
keeps a fixed sign in any component of the complement. Convexity of |u| in each
component shows that any such component is unbounded, so u has at most one
zero.

Since |u| is convex and non-negative u′ can only be in L2 if u is constant.
But this would imply q = 0, so the second claim follows. �

As we shall see there are, however, non-trivial solutions with |u′|2 + q|u|2
integrable on a half-line. We shall also need the following lemma (cf. Lemmas 2.1
and 2.2 of [3]).

Lemma 2.2. Functions with square integrable (distributional) derivative for large

|x| are o(
√
|x|) as x → ±∞ and point evaluations are bounded linear forms on

H1. Furthermore, C∞
0 (R) is dense in H1,

Proof. The first two claims are proved in [3, Lemma 2.1]). The final claim follows
since clearly C∞

0 (R) ⊂ H1 and if u ∈ H1 is orthogonal to C∞
0 (R) an integration by

parts shows that
∫
u(−ϕ′′+qϕ) = 0 for all ϕ ∈ C∞

0 (R) so that u is a distributional
solution of −u′′ + qu = 0. By Lemma 2.1 it is therefore identically 0. �

We also need the following result.

Lemma 2.3. For any λ ∈ C there can be at most one linearly independent solution
of −f ′′ + qf = λwf with f ′ in L2 near infinity. Similarly for f ′ in L2 near −∞.

This means that (2.1) is in the ‘limit-point case’ at ±∞, with a terminology
borrowed from the right definite case. The lemma is a consequence of general facts
about left definite equations (see our paper [2]), but we will give a simple direct
proof.
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Proof. Suppose there are two linearly independent solutions f, g with f ′, g′ in L2

near∞. We may assume the Wronskian fg′−f ′g = 1. Now by Lemma 2.2 f(x)/
√
x

and g(x)/
√
x are bounded for large x. It follows that (fg′ − f ′g)/

√
x = 1/

√
x is

in L2 for large x, which is a contradiction.
Similar calculations may be made for x near −∞. �

Let E(x) be the norm of the linear formH1 � f �→ f(x). We can easily find an
expression for E(x), since the Riesz representation theorem tells us that there is an
element g0(x, ·) ∈ H1 such that f(x) = 〈f, g0(x, ·)〉. Thus |f(x)| ≤ ‖g0(x, ·)‖‖f‖,
with equality for f = g0(x, ·) so that

E(x) = ‖g0(x, ·)‖ =
√
g0(x, x).

If ϕ ∈ C∞
0 we have 〈ϕ, g0(x, ·)〉 = ϕ(x), which after an integration by parts

means ∫
R

(−ϕ′′ + qϕ)g0(x, ·) = ϕ(x)

so (in a distributional sense) g0(x, ·) is a solution of −f ′′ + qf = δx, where δx is
the Dirac measure at x. Since g0(x, y) = 〈g0(x, ·), g0(y, ·)〉 we have a symmetry

g0(x, y) = g0(y, x). Now g0 is real-valued since Im g0(x, ·) satisfies −f ′′ + qf = 0
and therefore vanishes according to Lemma 2.1. We may thus write

g0(x, y) = F+(max(x, y))F−(min(x, y))

where F± are real-valued solutions of −f ′′ + qf = 0 small enough at ±∞ for
g0(x, ·) to be inH1 and by Lemma 2.3 this determines F± up to real multiples. The
equation satisfied by g0(x, ·) shows that the Wronskian [F+, F−] = F+F

′
−−F ′

+F− =
1. In particular, E(x) is locally absolutely continuous. At any specified point of R
there are elements of H1 that do not vanish, so that E > 0 and F± never vanish.
Since g0(x, x) > 0 we may therefore assume both to be strictly positive. Note that
this still does not determine F± uniquely since multiplying F+ and dividing F−
by the same positive constant does not change g0.

However, |F ′
±|2+q|F±|2 has finite integral near ±∞, although not, according

to Lemma 2.3, over R. If we can solve the equation −f ′′+ qf = 0 we can therefore
determine E(x). For example, if q = 1/4 we have g0(x, y) = exp(−|x − y|/2) and
E(x) ≡ 1.

We shall need some additional properties of F± and make the following defi-
nition.

Definition 2.4. Define K = F−/F+.

We have the following proposition.

Proposition 2.5.

• F± are both convex,
• lim∞ F ′

+ = lim−∞ F ′
− = 0,

• F ′
± as well as F− are non-decreasing while F+ is non-increasing,

• F+(x)→∞ as x→ −∞ and F−(x)→∞ as x→∞,
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• lim−∞ F− and lim∞ F+ are finite,
• 1/F+ ∈ L2 near −∞ while 1/F− ∈ L2 near ∞,
• The function K is strictly increasing with range R+ and of class C1 with a
C1 inverse, and K ′ = 1/F 2

+.

Proof. The convexity of F± follows from positivity and the differential equation
they satisfy. Thus F ′

± has finite or infinite limits at ±∞, and since F ′
± is in L2

near ±∞ we have lim−∞ F ′
− = lim∞ F ′

+ = 0 so F ′
− ≥ 0 while F ′

+ ≤ 0. It follows
that lim∞ F+ and lim−∞ F− are finite.

Neither of F± is constant so it follows that lim∞ F− = lim−∞ F+ = +∞
and that the range of K is R+. Furthermore K ′ = [F+, F−]/F

2
+ = 1/F 2

+ so K ′ is
continuous and > 0. Thus K has an inverse of class C1.

Since K(x) =
∫ x

−∞ 1/F 2
+ we have 1/F+ in L2 near −∞, and differentiating

1/K we similarly obtain 1/F− in L2 near ∞. �

3. Spectral theory

In addition to the scalar product, the Hermitian form w(f, g) =
∫
R
fgw plays a

role in the spectral theory of (2.1). We denote the total variation measure of w by
|w|, and make the following assumption in the rest of the paper.

Assumption 3.1. w is a real-valued, non-zero measure (distribution of order zero)
and E2|w| is a finite measure.

We then note the following.

Proposition 3.2. If E2|w| is a finite measure the form w(f, g) is bounded in H1.

Proof. We have |w(f, g)| ≤ ‖f‖‖g‖
∫
R
E2|w|. �

As we shall soon see, the assumption actually implies that the form w(f, g)
is compact in H1. Note that if q = 1/4, or any other constant > 0, then the
assumption is simply that |w| is finite. It may be proved that this is the case also
if q − q0 is a finite signed measure for some constant q0 > 0, and that it is in all
cases enough if (1 + |x|)w(x) is finite.

Using Riesz’ representation theorem Proposition 3.2 immediately shows that
there is a bounded operator R0 on H1 such that∫

R

fgw = 〈R0f, g〉, (3.1)

where ‖R0‖ ≤
∫
R
E2|w|. Since w is real-valued the operator R0 is symmetric.

We also have R0u(x) = 〈R0u, g0(x, ·)〉 =
∫
R
ug0(x, ·)w so that R0 is an integral

operator.
It is clear that R0u = 0 precisely if uw = 0, so unless2 suppw = R the

operator R0 has a nontrivial nullspace. We need the following definition.

2We always use supports in the sense of distributions.
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Definition 3.3. The orthogonal complement of the nullspace of R0 is denoted by H.

The restriction of R0 to H, which we also denote by R0, is an operator on
H with dense range since the orthogonal complement of the range of R∗

0 = R0 is
the nullspace of R0. Thus the restriction of R0 to H has a selfadjoint inverse T
densely defined in H and R0 is the resolvent of T at 0.

Lemma 3.4. f ∈ DT and Tf = g precisely if f, g ∈ H and (in the sense of
distributions) −f ′′ + qf = wg.

Proof. Tf = g means that f = R0g which in turn means that 〈f, ϕ〉 =
∫
gϕw for

ϕ ∈ C∞
0 which may be written

∫
f(−ϕ′′ + qϕ) =

∫
gϕw after an integration by

parts. But this is the meaning of the equation −f ′′ + qf = wg.
The same calculation in reverse, using that according to Lemma 2.2 C∞

0 (R)
is dense in H1, proves the converse. �

The complement of suppw is a countable union of disjoint open intervals. We
shall call any such interval a gap in suppw. We obtain the following characteriza-
tion of the elements of H.

Corollary 3.5.

• The projection of v ∈ H1 onto H equals v in suppw, and if (a, b) is a gap
in the support of w the projection is determined in the gap as the solution of
−u′′ + qu = 0 which equals v in the endpoints a and b if these are finite.

If a = −∞ the restriction of the projection to the gap is the multiple of
F− which equals v in b, and if b =∞ it is the multiple of F+ which equals v
in a.
• The support of an element of H can not begin or end inside a gap in the
support of w.
• The reproducing kernel g0(x, ·) ∈ H if and only if x ∈ suppw.

Proof. The difference between v and its projection onto H can be non-zero only in
gaps of suppw. Clearly ϕw = 0 for any ϕ ∈ C∞

0 (a, b) so that C∞
0 (a, b) is orthogonal

to H. It follows that an element of H satisfies the equation −u′′ + qu = 0 in any
gap of the support of w.

The first two items are immediate consequences of this, that non-trivial so-
lutions of −u′′ + qu = 0 have at most one zero according to Lemma 2.1, and of
the fact that elements of H are continuous.

The third item is an immediate consequence of the first two. �

Theorem 3.6. Under Assumption 3.1 the operator R0 is compact with simple spec-
trum, so T has discrete spectrum.

Proof. Suppose fj ⇀ 0 weakly in H. Since point evaluations are bounded linear
forms we have fj → 0 pointwise, and {fj}∞1 is bounded in H, as is {R0fj}∞1 . We
have

‖R0fj‖2 =

∫
R

R0fjfjw.
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Here the coefficient of w tends pointwise to 0 and is bounded by ‖R0‖‖fj‖2E2

which in turn is bounded by a multiple of E2. It follows by dominated convergence
that ‖R0fj‖ → 0. Thus R0 is compact, and the spectrum is simple by Lemma 2.3.

�

Actually, R0 is of trace class as is proved by Eckhardt and Teschl in [10] for
the case q = 1/4, but we will not need this.

4. Jost solutions

In one-dimensional scattering theory Jost solutions play a crucial part. In the
case of the Schrödinger equation these are solutions asymptotically equal at ∞
respectively −∞ to certain solutions of the model equation −f ′′ = λf . In the
present case the model equation would be one where w ≡ 0, i.e., −f ′′+qf = 0. We
shall therefore look for solutions f±(·, λ) of −f ′′+qf = λwf which are asymptotic
to F± at ±∞.

Let us write f+(x, λ) = g(x, λ)F+(x), so we are looking for g which tends
to 1 at ∞. We shall see that if, with K = F−/F+ as in Definition 2.4, there is a
bounded solution to the integral equation

g(x, λ) = 1− λ

∫ ∞

x

(K −K(x))F 2
+g(·, λ)w, (4.1)

then it will have the desired properties. For x ≤ t Proposition 2.5 shows that

0 ≤ (K(t)−K(x))F 2
+(t) ≤ F−(t)F+(t) = E2(t),

so that (4.1) implies that

|g(x, λ)| ≤ 1 + |λ|
∫ ∞

x

|g|E2|w|. (4.2)

Therefore successive approximations in (4.1) starting with 0 will lead to a bounded
solution (see Bennewitz [1, Chapter 1]). The convergence is uniform in x and locally
so in λ, so our ‘Jost solution’ f+(x, λ) exists for all complex λ and is an entire
function of λ, locally uniformly in x and real-valued for real λ. Differentiating (4.1)
we obtain

g′(x, λ) = λF+(x)
−2

∫ ∞

x

F 2
+g(·, λ)w, (4.3)

so f ′
+ = g′F+ + gF ′

+ = λF−1
+

∫∞
x

F 2
+gw + gF ′

+. Differentiating again shows that
f+ satisfies (2.1).

Since F 2
+(t) = E2(t)F+(t)/F−(t) ≤ E2(t)F+(x)/F−(x) if x ≤ t clearly f ′

+ is

in L2 near∞, so since g(·, λ) is bounded the first term is O((F−(x))
−1

∫∞
x

E2|w|),
and the second term is O(|F ′

+|). By Lemma 2.3 there can be no linearly indepen-
dent solution with derivative in L2 near∞. Since g is bounded in fact |f ′

+|2+q|f+|2
is integrable near∞. Similar statements, with∞ replaced by −∞, are valid for f−.
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We summarize as follows.

Lemma 4.1. The solutions f± have the following properties:

• f+(x, λ) ∼ F+(x) as x→∞ and f−(x, λ) ∼ F−(x) as x→ −∞.
• f ′

+(x, λ)→ 0 as x→∞ and f ′
−(x, λ)→ 0 as x→ −∞.

• Any solution f of (2.1) for which |f ′|2 + q|f |2 is integrable near ∞ is a
multiple of f+. Similarly, integrability near −∞ implies that f is a multiple
of f−.
• λk is an eigenvalue precisely if f+(·, λk) and f−(·, λk) are linearly dependent,
and all eigenfunctions with eigenvalue λk are multiples of f+(·, λk).

Thus λ is an eigenvalue precisely if f±(·, λ) are linearly dependent, the eigen-
values are simple, and the eigenfunctions are multiples of f+(·, λ). Clearly

f ′
+(x, λ)→ 0 as x→∞,

but in general one can not expect that f ′
+ ∼ F ′

+. For u ∈ H and every eigenvalue
λn we define the Fourier coefficients

u±(λn) = 〈u, f±(·, λn)〉 = λn

∫
R

uf±(·, λn)w, (4.4)

where the second equality follows from (3.1).
Applying Gronwall’s inequality3 to (4.2) gives

|g(x, λ)| ≤ exp
(
|λ|

∫ ∞

x

E2|w|
)
,

|g′(x, λ)| ≤ E−2(x)
(
exp

(
|λ|

∫ ∞

x

E2|w|
)
− 1

)
,

where the second formula is easily obtained by inserting the first in (4.3). Thus
f+(x, ·) and f ′

+(x, ·) are entire functions of exponential type
∫∞
x

E2|w| at most.
This is easily sharpened to yield the following lemma.

Lemma 4.2. As functions of λ and locally uniformly in x, the quantities f±(x, λ)
and f ′

±(x, λ) are entire functions of zero exponential type4.
In fact, λ �→ f+(x, λ)/F+(x) is of zero exponential type uniformly for x in

any interval bounded from below and f−(x, λ)/F−(x) in any interval bounded from
above. Also the Wronskian [f+, f−] is an entire function of λ of zero exponential
type.

Proof. Consider first a solution f of (2.1) with initial data at some point a. Dif-
ferentiating H = |f ′|2 + |λ||f |2 we obtain

H ′ = 2Re((f ′′ + |λ|f)f ′)

= 2Re((q − λw + |λ|)ff ′) ≤
√
|λ|(|w| + 1 + |q|/|λ|)H.

3A version of Gronwall’s inequality valid when w is a measure may be found in [1, Lemma 1.3],
and [1, Lemma 1.2] may be useful for the estimate of g′.
4Uniformity here means that one can for every ε > 0 find a constant Cε so that the function
may be estimated by eε|λ| for |λ| ≥ Cε, independently of x.
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By the use of Gronwall’s inequality this shows that

H(x) ≤ H(a) exp
(√
|λ|

∣∣∣ ∫ x

a

(|w|+ 1 + |q|/|λ|)
∣∣∣)

where the second factor contributes a growth of order 1/2 and type locally bounded
in x.

If now the initial data of f are entire functions of λ of exponential type
then so are f and f ′, and at most of the same type as the initial data. It follows
that locally uniformly in x the functions f+ and f ′

+ are entire of exponential type∫∞
a E2|w| for any a, and are thus of zero type. For f+/F+ the uniformity extends
to intervals bounded from below.

Similar arguments may be carried out for f− and f ′
−, which immediately

implies the result for the Wronskian. �

We shall need the following definition.

Definition 4.3. Let H(a, b) = {u ∈ H : suppu ⊂ [a, b]}.

Clearly H(a, b) is a closed subspace of H.

Corollary 4.4. For every u ∈ H(a,∞) with a ∈ R the generalized Fourier trans-
form û+ extends to an entire function of zero exponential type vanishing at 0 and
defined by

û+(λ) = λ

∫
R

uf+(·, λ)w.

A similar statement is valid for û− given any u ∈ H(−∞, a).

5. Inverse spectral theory

We shall give a uniqueness theorem for the inverse spectral problem. In order to
avoid the trivial non-uniqueness caused by the fact that translating the coefficients
of the equation by an arbitrary amount does not change the spectral properties of
the corresponding operator, we normalize F±, and thus f±, by requiring F+(0) =
F−(0). This means that F+(0) = F−(0) = E(0).

We will need the following lemma.

Lemma 5.1. The Wronskian W (λ) = [f−(·, λ), f+(·, λ)] is determined by the eigen-
values of T and if λk is an eigenvalue, then

λkW
′(λk) = 〈f−(·, λk), f+(·, λk)〉. (5.1)

Proof. For any x we have

W (λ)−W (λk) = [f−(x, λ)− f−(x, λk), f+(x, λ) − f+(x, λk)]

+ [f−(x, λ), f+(x, λk)] + [f−(x, λk), f+(x, λ)]

since W (λk) = 0. Since f±(x, ·) and f ′
±(x, ·) are entire functions the first term is

O(|λ − λk|2) as λ→ λk.
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The function h(x) = [f−(x, λ), f+(x, λk)] → 0 as x → −∞ by Lemma 4.1
and since f± are proportional for λ = λk.

We have h′(x) = (λ− λk)f−(x, λ)f+(x, λk)w so if w has no point mass at x,

[f−(x, λ), f+(x, λk)]

λ− λk
→

∫ x

−∞
f−(·, λk)f+(·, λk)w

as λ → λk, by Lemma 4.2. A similar calculation shows that interchanging λ and
λk in the Wronskian the limit is the same integral, but taken over (x,∞), so we
obtain W ′(λk) =

∫
R
f−(·, λk)f+(·, λk)w. Now, if v ∈ H, then

〈f−(·, λk), v〉 = λk〈R0f−(·, λk), v〉 = λk

∫
R

f−(·, λk)vw,

so we obtain (5.1).
The zeros of the Wronskian are located precisely at the eigenvalues, and by

(5.1) the zeros of the Wronskian are all simple, so that the corresponding canonical
product is determined by the eigenvalues.

However, if two entire functions with the same canonical product are both of
zero exponential type, then their quotient is also entire of zero exponential type
according to Lemma A.1 and has no zeros. It is therefore constant. It follows that
the Wronskian, which equals −1 for λ = 0, is determined by the eigenvalues. �

In addition to the eigenvalues we introduce, for each eigenvalue λn, the corre-
sponding matching constant αn defined by f+(·, λn) = αnf−(·, λn). Together with
the eigenvalues the matching constants will be our data for the inverse spectral
theory. Instead of the matching constants one could use normalization constants
‖f+(·, λn)‖ or ‖f−(·, λn)‖. If λn is an eigenvalue, then by Lemma 5.1 the scalar
product 〈f−(·, λn), f+(·, λn)〉 is determined by the Wronskian, in other words by
the eigenvalues, and since

〈f−(·, λn), f+(·, λn)〉 = αn‖f−(·, λn)‖2 = α−1
n ‖f+(·, λn)‖2

all three sets of data are equivalent if the eigenvalues are known. We therefore
make the following definition.

Definition 5.2. By the spectral data of the operator T we mean the set of eigen-
values for T together with the corresponding matching constants and the two sets
of normalization constants.

The spectral data of T are thus determined if the eigenvalues and for each
eigenvalue either the matching constant or one of the normalization constants are
known.

In our main result we will be concerned with two operators T and T̆ of the
type we have discussed. Connected with T̆ there are then coefficients q̆, w̆ and

solutions F̆±, f̆±, etc.

Theorem 5.3. Suppose T and T̆ have the same spectral data. Then there are con-
tinuous functions r, s defined on R such that r is strictly positive with a derivative
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of locally bounded variation, s : R → R is bijective and s(x) =
∫ x

0
r−2. Moreover,

q̆ ◦ s = r3(−r′′ + qr) and w̆ ◦ s = r4w.

Conversely, if the coefficients of T and T̆ are connected in this way, then T
and T̆ have the same spectral data.

Given additional information one may even conclude that T = T̆ .

Corollary 5.4. Suppose in addition to the operators T and T̆ having the same
spectral data that q̆ = q. Then T = T̆ .

We postpone the proofs to the next section.

Remark 5.5. The spectral data of T , as we have defined them, are particularly
appropriate for dealing with the Camassa–Holm equation, i.e., the case q = 1/4,
since if w = u − uxx where u is a solution of the Camassa–Holm equation for
κ = 0, then as w evolves with time the eigenvalues are unchanged while the other
spectral data evolve in the following simple way:

• αk(t) = et/2λkαk(0),
• ‖f−(·, λk; t)‖2 = e−t/2λk‖f−(·, λk; 0)‖2,
• ‖f+(·, λk; t)‖2 = et/2λk‖f+(·, λk; 0)‖2.

6. Proofs of Theorem 5.3 and Corollary 5.4

We begin with the proof of the converse of Theorem 5.3, and then define ϕ±(·, λ) =
rf̆±(s(·), λ). Using that r2s′ = 1 one easily checks that [ϕ−, ϕ+] = [f̆−, f̆+]. If we
can prove that ϕ± = f± it follows that eigenvalues and matching constants agree
for the two equations.

Now ϕ±(x, λ)/ϕ±(x, 0) = f̆±(s(x), λ)/F̆±(s(x)) → 1 as x→ ±∞ so we only
need to prove that ϕ± solve the appropriate equation and that ϕ±(·, 0) = F±. The
first property follows by an elementary computation, so it follows that ϕ±(·, 0) =
A±F+ +B±F− for constants A± and B±. We have

A− +B−K

A+ +B+K
=

ϕ−(·, 0)
ϕ+(·, 0)

= K̆ ◦ s,

so the Möbius transform t �→ A−+B−t
A++B+t has fixpoints 0, 1 and∞ so that A− = B+ =

0 and B− = A+ �= 0. Thus ϕ±(·, 0) = AF± for some constant A which is > 0 since

ϕ±(·, 0) and F± are all positive. But 1 = [F̆−, F̆+] = [ϕ−(·, 0), ϕ+(·, 0)] = A2 so
A = 1 and the proof is finished.

Keys for proving our inverse result are the connections between the support of
an element of H and the growth of its generalized Fourier transform. Such results
are usually associated with the names of Paley and Wiener. We could easily prove
a theorem of Paley–Wiener type for our equation, analogous to what is done in
our paper [3], but shall not quite need this.
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Lemma 6.1. Suppose δ > 0, a ∈ suppw and u ∈ H(a,∞). Then

û+(λ)/λf+(a, λ) = O(|λ/ Im λ|) as λ→∞,

û+(λ)/λf+(a, λ) = o(1) as λ→∞ in | Imλ| ≥ δ|Reλ|.

Similar estimates hold for û−(λ)/λf−(a, λ) if u ∈ H(−∞, a).

Proof. For Imλ �= 0 we have f+(x, λ) = λf+(a, λ)
f+(x,λ)
λf+(a,λ) , where we denote the

last factor by ψ[a,∞)(x, λ), since this is the Weyl solution for the left definite
Dirichlet problem (1.1) on [a,∞) (see our paper [2, Lemma 4.10]). Like in [2,
Chapter 3] one may show that

〈u, ψ[a,∞)(·, λ)〉 =
∫
R

ũ(t)

t− λ
dσ(t)

with absolute convergence, where ũ is the generalized Fourier transform of u as-
sociated with the Dirichlet problem on [a,∞) and dσ the corresponding spectral
measure. Thus

û+(λ) = λf+(a, λ)

∫
R

ũ(t)

t− λ
dσ(t),

so the statement for û+ follows by Lemma A.3. Similar calculations give the result
for û−. �

We shall also need the following lemma.

Lemma 6.2. Suppose x ∈ suppw. Then

f−(x, λ)f+(x, λ)

[f−, f+]
= O(|λ/ Im λ|) as λ→∞.

Proof. Let m±(λ) = ±f ′
±(x, λ)/(λf±(x, λ)). These are the Titchmarsh–Weyl m-

functions (see [2, Chapter 3]) for the left definite problem (2.1) with Dirichlet
boundary condition at x for the intervals [x,∞) and (−∞, x] respectively, and are
thus Nevanlinna functions5. Setting m = −1/(m− +m+) also m is a Nevanlinna
function and

f−(x, λ)f+(x, λ)

[f−, f+]
= −m(λ)/λ.

As a Nevanlinna function m may be represented as

m(λ) = A+Bλ+

∫
R

1 + tλ

t− λ

dρ(t)

t2 + 1
,

where A ∈ R, B ≥ 0 and dρ(t)/(t2 + 1) is a finite positive measure. Thus

m(λ)/λ = A/λ+B +
1

λ

∫
R

1

t− λ

dρ(t)

t2 + 1
+

∫
R

1

t− λ

t dρ(t)

t2 + 1
.

The lemma therefore follows by use of Lemma A.3. �

5That is, functions m analytic in C \ R with Imλ Imm(λ) ≥ 0 and m(λ) = m(λ).
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We may expand every u ∈ H in a series u(x) =
∑

û±(λn)
f±(x,λn)

‖f±(·,λn)‖2 where

{û±(λn)/‖f±(·, λn)‖} ∈ �2. Conversely, any such series converges to an element of

H and thus locally uniformly. Similarly for ŭ ∈ H̆. If the eigenvalues and normal-

ization constants for T and T̆ are the same we may therefore define a unitary map
U : H → H̆ by setting

Uu(s) = ŭ(s) =
∑

û+(λn)
f̆+(s, λn)

‖f̆+(·, λn)‖2
.

Note that expanding with respect to {f−(·, λn)} and defining U by use of these
expansions we obtain the same operator U . The following proposition is an imme-
diate consequence of the definition of U .

Proposition 6.3. Suppose that ŭ = Uu, v̆ = Uv, λk is an eigenvalue and û±(λk) =

〈u, f±(·, λk)〉. Then û±(λk) = 〈ŭ, f̆±(·, λk)〉, Uf±(·, λk) = f̆±(·, λk) and u is in the

domain of T with Tu = v if and only if ŭ is in the domain of T̆ with T̆ ŭ = v̆.

Assume now that the generalized Fourier transform û± of u ∈ H, which is
defined on all eigenvalues λn, has an entire extension and define the auxiliary
function

A±(u, x, λ) = Rλu(x) +
û±(λ)f∓(x, λ)

λ[f−(·, λ), f+(·, λ)]
,

where Rλ is the resolvent at λ of T . Similar auxiliary functions Ă± may be defined

related to T̆ .
The next lemma is crucial.

Lemma 6.4. Suppose x ∈ suppw and y ∈ supp w̆. Also suppose u ∈ H(x,∞) and

v̆ ∈ H̆(y,∞) and let ŭ = Uu, v = U−1v̆. Then either ŭ ∈ H̆(y,∞) or v ∈ H(x,∞).

Similarly, if u ∈ H(−∞, x) and v̆ ∈ H̆(−∞, y), then ŭ ∈ H̆(−∞, y) or
v ∈ H(−∞, x).

Proof. By Corollary 4.4 u and v̆ have generalized Fourier transforms û+ and v̂+
which have entire extensions of zero exponential type. These are also extensions
of the generalized Fourier transforms of ŭ respectively v. We have

A+(v, x, λ) = Rλv(x) +
v̂+(λ)

λf̆+(y, λ)

f̆+(y, λ)

f+(x, λ)

f+(x, λ)f−(x, λ)

[f−, f+]
.

The first term is O(‖Rλv‖) and therefore O(| Im λ|−1), and by Lemmas 6.1 and
6.2 respectively both the first and last factors in the second term are O(|λ/ Im λ|)
as λ → ∞ while the first factor tends to 0 in any double sector | Imλ| ≥ δ|Reλ|.
Adding similar considerations for Ă+ we therefore obtain

A+(v, x, λ) = (|λ|/| Imλ|)2O
(
1 +

∣∣∣ f̆+(y, λ)
f+(x, λ)

∣∣∣) as λ→∞,

Ă+(ŭ, y, λ) = (|λ|/| Imλ|)2O
(
1 +

∣∣∣f+(x, λ)
f̆+(y, λ)

∣∣∣) as λ→∞,
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A+(v, x, λ) = o
(
1 +

∣∣∣ f̆+(y, λ)
f+(x, λ)

∣∣∣) as λ→∞ in | Imλ| ≥ δ|Reλ|,

Ă+(ŭ, y, λ) = o
(
1 +

∣∣∣f+(x, λ)
f̆+(y, λ)

∣∣∣) as λ→∞ in | Imλ| ≥ δ|Reλ|.

Thus

min(|A+(v, x, λ)|, |Ă+(ŭ, y, λ)|) = O(|λ/ Im λ|2) as λ→∞,

min(|A+(v, x, λ)|, |Ă+(ŭ, y, λ)|) = o(1) as λ→∞ in | Imλ| ≥ δ|Reλ|.

By Lemma 4.2 and Theorem A.4 the functions A+(v, x, ·) and Ă+(ŭ, y, ·) are of
zero exponential type, so by Lemma A.6 one of them vanishes.

If A+(v, x, ·) = 0 Lemma A.5 shows that A+(v, z, ·) = 0 for all z ≤ x. Thus
inserting f(z) = A+(v, z, λ) in −f ′′ +(q−λw)f shows that wv = 0 in (−∞, x], so
that v = 0 in (−∞, x] except in gaps of suppw. Since v vanishes at the endpoints
of any gap with endpoints in (−∞, x] it follows by Corollary 3.5 that v vanishes

in all such gaps. We conclude that v ∈ H(x,∞). Similarly, if Ă+(ŭ, y, ·) = 0 we

conclude that ŭ ∈ H̆(y,∞).

Analogous considerations involving A− and Ă− prove the second statement.
�

We next show how supports of elements of H are related to the supports of
their images under U . Note that dimH equals the number of points in suppw if
this is finite and is infinite otherwise.

Lemma 6.5. Suppose suppw contains at least two points. Then so does supp w̆ and
there are strictly increasing, bijective maps

s+ : suppw \ {sup suppw} → supp w̆ \ {sup supp w̆}
s− : suppw \ {inf suppw} → supp w̆ \ {inf supp w̆}

such that H̆(s+(x),∞) = UH(x,∞) and H̆(−∞, s−(x)) = UH(−∞, x) for all x in
the domains of s+ respectively s−.

Proof. Suppose u ∈ H(x,∞) where x ∈ suppw \ {sup suppw}. There is at least
one such u �= 0 (obtained by subtracting an appropriate multiple of g0(z, ·) from
g0(x, ·) where x < z ∈ suppw). Therefore ŭ /∈ H̆(y,∞) for some y ∈ supp w̆. By

Lemma 6.4 this means that v ∈ H(x,∞) for every v̆ ∈ H̆(y,∞). Now let s+(x) be
the infimum of all y ∈ supp w̆ for which the last statement is true.

If s+(x) = −∞ the support of w̆ is unbounded from below so that the pro-

jection onto H̆ of a compactly supported element of H̆1 has a support bounded
from below. Such elements of H̆ are dense, and consequently H̆ ⊂ UH(x,∞).
However, this would contradict the fact that U is unitary. Thus s+(x) is finite, so
s+(x) ∈ supp w̆.
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Note that if s+(x) is the left endpoint of a gap in supp w̆, then the infimum
defining s+(x) is attained. Thus, if it is not there are points of supp w̆ to the
right of and arbitrarily close to s+(x). But then we may approximate elements of

H̆(s+(x),∞) arbitrarily well (see [3, Lemma 6.8]) by elements of H̆(y,∞) for some

y > s+(x). It follows that H̆(s+(x),∞) ⊂ UH(x,∞).
On the other hand, if y = −∞ or supp w̆ � y < s+(x) there exists v̆ ∈

H̆(y,∞) such that U−1v̆ /∈H(x,∞) and thus, by Lemma 6.4, UH(x,∞)⊂H̆(y,∞).
Since this is true for all y ∈ supp w̆ with y < s+(x) we have in fact UH(x,∞) ⊂
H̆(s+(x),∞) unless s+(x) is the right endpoint of a gap in supp w̆. In the latter
case we may choose y ≥ −∞ so that (y, s+(x)) is a gap in supp w̆.

Thus H̆(y,∞) is a one-dimensional extension of H̆(s+(x),∞), so if there exists

u ∈ H(x,∞) with suppUu intersecting (y, s+(x)), then U−1H̆(y,∞) ⊂ H(x,∞).

But this would mean that s+(x) ≤ y. It follows that UH(x,∞) = H̆(s+(x),∞) in
all cases.

The function s+ has range supp w̆ \ {sup supp w̆}, since if not let y be in
this set but not in the range of s+. An argument analogous to that defining s+
determines x ∈ suppw such that H̆(y,∞) = UH(x,∞). Since x can not be in the
domain of s+ we must have x = sup suppw, so that H(x,∞) = {0} and thus also

H̆(y,∞) = {0}. This contradicts the choice of y.
Analogous reasoning proves the existence of the function s−. �

We can now show that U is given by a so-called Liouville transform.

Lemma 6.6. There exist real-valued maps r, s defined in suppw such that r does
not vanish and s : suppw → supp w̆ is increasing and bijective and such that
u = rUu ◦ s on suppw for any u ∈ H.

Proof. If suppw = {x}, then dimH = 1 so also dim H̆ = 1. It follows that also
supp w̆ is a singleton, say {s}. It is clear that H consists of all multiples of g0(x, ·)
and H̆ of all multiples of ğ0(s, ·). It follows that for all u ∈ H we have u(x) = rŭ(s)
where r = g0(x, x)/ğ0(s, s) which proves the lemma in this case, so now assume
suppw has at least two points.

If x ∈ suppw and v ∈ H with v(x) = 1 we may, given any u ∈ H, write
u = u− + u+ + u(x)v where u− ∈ H(−∞, x) and u+ ∈ H(x,∞). Applying U we

obtain from Lemma 6.5 that ŭ = ŭ−+ŭ++u(x)v̆ where ŭ− ∈ H̆(−∞, s−(x)) unless

x = inf suppw in which case u− = 0 and thus ŭ− = 0. Similarly ŭ+ ∈ H̆(s+(x),∞)
unless x = sup suppw in which case u+ = 0 and thus ŭ+ = 0.

If s± are both defined at x we can not have s−(x) < s+(x) since then the

restrictions of elements of H̆ to (s−(x), s+(x)) would be a one-dimensional set,
which implies that (s−(x), s+(x)) is an unbounded gap in supp w̆, contradicting
the fact that s±(x) are in supp w̆.

A similar reasoning but starting from ŭ ∈ H̆ and using the inverses of s±
shows that we can not have s−(x) > s+(x) either, so that we define s = s+ = s−
whenever one of s± is defined. It now follows that ŭ(s(x)) = v̆(s(x))u(x), and
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v̆(s(x)) �= 0 since not all elements of H̆ vanish at s(x). We may now set r(x) =
1/v̆(s(x)) and the proof is finished. �

Since s : suppw → supp w̆ is bijective and increasing it follows that (a, b) is a
gap in suppw if and only if (s(a), s(b)) is a gap in supp w̆, and similarly if a = −∞
or b =∞. Thus gaps in suppw and supp w̆ are in a one-to-one correspondence. We
now need to define the functions r, s also in gaps of suppw and prove the other
claimed properties of these functions. The key to this is the following proposition.

Proposition 6.7. If x and y are in suppw, then

g0(x, y) = r(x)r(y)ğ0(s(x), s(y)).

Proof. Suppose ŭ ∈ H̆ and u = U−1ŭ. Since s(x) ∈ supp w̆ it follows that

ğ0(s(x), ·) ∈ H̆ and, by Lemma 6.6, u(x) = r(x)ŭ(s(x)) so that

〈ŭ,Ug0(x, ·)〉 = 〈u, g0(x, ·)〉 = u(x) = r(x)ŭ(s(x)) = r(x)〈ŭ, ğ0(s(x), ·)〉.
Thus Ug0(x, ·) = r(x)ğ0(s(x), ·). Since y ∈ suppw Lemma 6.6 also shows that
g0(x, y) = r(y)Ug0(x, ·)(s(y)), and combining these formulas completes the proof.

�

The proposition has the following corollary.

Corollary 6.8. If x ∈ suppw, then

F±(x) = r(x)F̆±(s(x)). (6.1)

Proof. Suppose x, y ∈ suppw and y ≤ x. Then, by Proposition 6.7,

F+(x)

r(x)F̆+(s(x))
=

r(y)F̆−(s(y))

F−(y)
.

This implies that both sides are independent of x and y and thus equal a constant
C. The corollary is proved if we can prove that C = 1.

Now let λ be an eigenvalue of T̆ so that f̆+(·, λ) is an eigenfunction and

according to Proposition 6.3 f+(·, λ), given by f+(x, λ) = r(x)f̆+(s(x), λ) for x ∈
suppw, the corresponding eigenfunction for T . We then have

C
f+(x, λ)

F+(x)
=

f̆+(s(x), λ)

F̆+(s(x))

for all x ∈ suppw. If suppw is bounded above, choose x = sup suppw. Then we

have f+(x, λ) = F+(x) and f̆+(s(x), λ) = F̆+(s(x)) so that C = 1. If suppw is
not bounded above we take a limit as x → ∞ in suppw and arrive at the same
conclusion. �

If we can extend the definitions of r and s to continuous functions such that
(6.1) continues to hold for all x it follows that u = rUu ◦ s for all u ∈ H even in
gaps of suppw. This is a consequence of two facts. Firstly, the formula u = rŭ ◦ s
then gives a bijective map of the solutions of −u′′ + qu = 0 to the solutions of
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−ŭ′′+ q̆ŭ = 0 and, secondly, elements of H and H̆ are determined in gaps of suppw
respectively supp w̆ as described in Corollary 3.5.

With K as in Definition 2.4 and K̆ defined similarly we must define s so
that K = K̆ ◦ s, so Proposition 2.5 and the normalization of F± and F̆± show

that s(0) = 0 and we have s = K̆−1 ◦ K. Thus s is strictly increasing of class

C1 with range R and a strictly positive derivative s′ = (F̆+ ◦ s/F+)
2, which is

locally absolutely continuous. Furthermore we must define r = F+/F̆+ ◦ s. This
gives r > 0 and shows that r is locally absolutely continuous with a derivative of
locally bounded variation as well as r2s′ = 1 so that s(x) =

∫ x

0
r−2. With these

definitions (6.1) holds for all x.

Differentiating F+ = rF̆+ ◦ s we obtain F ′
+ = rs′F̆ ′

+ ◦ s + r′F̆+ ◦ s = F̆ ′
+ ◦

s/r + r′F̆+ ◦ s. Differentiating once more we obtain

qF+ = F ′′
+ = s′F̆ ′′

+ ◦ s/r − r′F̆ ′
+ ◦ s/r2 + r′s′F̆ ′

+ ◦ s+ r′′F̆+ ◦ s
= r−3q̆ ◦ sF̆+ ◦ s+ r′′F̆+ ◦ s = r−4q̆ ◦ sF+ + r′′F+/r.

It follows that

q̆ ◦ s = r3(−r′′ + qr).

A similar calculation, using that according to Proposition 6.3 Tu = v pre-
cisely if T̆ ŭ = v̆, shows that we also have

w̆ ◦ s = r4w.

This uses that the range of T is H, so that there always are choices of v different
from 0 in a neighborhood of any given point.

This completes the proof of Theorem 5.3. To prove Corollary 5.4 we need
only note that if q = q̆, then K = K̆ so that s is the identity and r ≡ 1. Thus
w̆ = w.

Appendix: Some technical lemmas

We begin by quoting a standard fact.

Lemma A.1. Suppose f , g are entire functions of zero exponential type such that
f/g is entire. Then f/g is also of zero exponential type.

The lemma is a special case of the corollary to Theorem 12 in Chapter I of
Levin [14]. We shall also need the following lemma.

Lemma A.2. Suppose f is entire and for every ε > 0 satisfies

Im(z)f(z) = O(eε|z|)

for large |z|. Then f is of zero exponential type.
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Proof. Put u = log+ |f |. Then, with z = reiθ ,

0 ≤ u(r, θ) ≤ εr +O(1) + log(| sin θ|−1)

for large r. The last term is locally integrable, so we obtain

1

2π

∫ 2π

0

u(r, θ) dθ ≤ εr +O(1).

Now, since u is subharmonic and non-negative we have, by the Poisson integral
formula,

0 ≤ u(z) ≤ 1

2π

∫ 2π

0

r2 − |z|2
|reiθ − z|2 u(reiθ) dθ ≤ 3

2π

∫ 2π

0

u(reiθ) dθ

if |z| ≤ r/2, since then

0 ≤ r2 − |z|2
|reiθ − z|2 ≤

r2 − |z|2
(r − |z|)2 =

r + |z|
r − |z| ≤ 3.

It follows that 0 ≤ u(z) ≤ 6ε|z|+O(1) if |z| = r/2, so |f(z)| = O(e6ε|z|) for large
|z|. Thus f is of zero exponential type. �

Our next lemma estimates the Stieltjes transform of certain measures.

Lemma A.3. Suppose dμ is a (signed) Lebesgue–Stieltjes measure and that h(λ) =∫
R

dμ(t)
t−λ is absolutely convergent for Imλ �= 0. As λ → ∞ we then have h(λ) =

O(|λ|/| Im λ|) and for any δ > 0 we have h(λ) = o(1) as λ → ∞ in the double
sector | Imλ| ≥ δ|Reλ|.

Proof. We have

|h(λ)| ≤
∫
R

∣∣∣ t− i

t− λ

∣∣∣ |dμ|(t)|t− i| .

Here the first factor may be easily estimated by (2|λ| + 1)/| Imλ| so6 the first
statement follows. Furthermore, the first factor tends boundedly to 0 as λ → ∞
in the sector | Imλ| ≥ δ|Reλ|, so the second statement follows. �

We now turn to the auxiliary functions of the previous section.

Theorem A.4. If û+(λ)/λ is entire so is A+(u, x, ·), and if û+ is also of zero
exponential type so is A+(u, x, ·). Similarly for A−(u, x, ·), depending on properties
of û−.

Proof. Let A denote the function A+(u, x, ·), i.e.,

A(λ) = (Rλu)(x) +
û+(λ)f−(x, λ)

λW (λ)

6The best possible t-independent estimate is (|λ+ i|+ |λ− i|)/(2| Imλ|).
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where W (λ) = [f−(·, λ), f+(·, λ)]. Thus A is meromorphic with poles possible at
the eigenvalues of T , which are also the zeros of W . There is no pole at 0, since
this is no eigenvalue and û+ vanishes there. We have

Rλu(x) =
∑ û+(λn)f+(x, λn)

(λn − λ)‖f+(·, λn)‖2
,

so the residue at λ = λn is

−û+(λn)
f+(x, λn)

‖f+(·, λn)‖2
= −û+(λn)

f−(x, λn)

〈f−(·, λn), f+(·, λn)〉
.

Since λnW
′(λn) = 〈f−(·, λn), f+(·, λn)〉 by Lemma 5.1 the residues of the two

terms in A cancel and A is entire.

It is also clear that f(λ) = Rλu(x)W (λ) is entire, and since Im(λ)Rλ is
bounded we obtain the same growth estimates for Im(λ)f as for W . Since W is of
zero exponential type, so is f by Lemma A.2. It follows that A is the quotient of
two functions of zero exponential type if û+ is of zero exponential type. Thus A is
itself of zero exponential type by Lemma A.1.

Similarly one proves the statements about A−(u, x, ·). �

We shall also need the following result.

Lemma A.5. Suppose λ �→ A+(u, z, λ) is an entire function of zero exponential
type for every z ≤ x and that it vanishes identically for z = x. Then it vanishes
identically for all z ≤ x.

Similarly, if λ �→ A−(u, z, λ) is an entire function of zero exponential type
for every z ≥ x and vanishes identically for z = x, then it vanishes identically for
all z ≥ x.

Proof. Suppose A+(u, x, ·) = 0. Then

A+(u, z, λ) = Rλu(z)− ψ(−∞,x](z, λ)λRλu(x),

where ψ(−∞,x](z,λ)=f−(z,λ)/(λf−(x,λ)) is the Weyl solution for (2.1) on (−∞, x]
with a Dirichlet condition at x. This function tends to 0 as λ → ∞ along the
imaginary axis (see [2, Corollary 3.12]), while the operator λRλ stays bounded, so
it is clear that A+(v, z, λ)→ 0 as λ→∞ on the imaginary axis. Since A+(v, z, ·)
is entire of zero exponential type it follows by the theorems of Phragmén–Lindelöf
and Liouville that A+(v, z, ·) = 0.

Similar arguments apply in the case of A−. �

The next lemma is crucial but a very slight extension of a lemma by de
Branges. We shall give a full proof, however, since there is an oversight in the
proof by de Branges which will be corrected below. We are not aware of the
oversight being noted in the literature, but a correct proof may also be found in
the Diplomarbeit of Koliander [13].
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Lemma A.6. Suppose Fj are entire functions of zero exponential type, and assume
that for some α ≥ 0 we have

min(|F1(λ)|, |F2(λ)|) = o(|λ|α)
uniformly in Reλ as | Imλ| → ∞, as well as min(|F1(iν)|, |F2(iν)|) = o(1) as
ν → ±∞. Then F1 or F2 vanishes identically.

This is a simple consequence of the following lemma, which is essentially de
Branges’ [4, Lemma 8, p. 108].

Lemma A.7. Let Fj be entire functions of zero exponential type, and assume that
min(|F1(z)|, |F2(z)|) = o(1) uniformly in Re z as | Im z| → ∞. Then F1 or F2 is
identically zero.

Proof of Lemma A.6. Suppose first that F1 is a polynomial not identically zero.
Then, by assumption, F2(iν) = o(1) as ν → ±∞, so by the theorems of Phragmén–
Lindelöf and Liouville it follows that F2 vanishes identically. Similarly if F2 is a
polynomial.

In all other cases F1, F2 both have infinitely many zeros, so if n ≥ α and
z1, . . . , zn are zeros of F1 we put G1(λ) = F1(λ)/

∏n
1 (λ−zj). Defining G2 similarly

we now have min(|G1(λ)|, |G2(λ)|) = o(1) uniformly in Reλ as Imλ→ ±∞, while
G1, G2 are still entire of zero exponential type. By Lemma A.7 it follows that G1

or G2 is identically zero, and the lemma follows. �
To prove Lemma A.7 we need some additional lemmas.

Lemma A.8. Suppose F is entire of exponential type. If there is a constant C and
a sequence rj →∞ such that |F (z)| = O(1) as j →∞ for | Im z| ≥ C and |z| = rj,
then F is constant.

Proof. Setting u = log+ |F | we have u(z) = O(1) if | Im z| ≥ C and |z| = rj . If
z = rje

iθ the condition | Im z| ≤ C means | sin θ| ≤ C/rj , and the measure of the

set of θ ∈ [0, 2π] satisfying this is O(1/rj) as j → ∞, whereas |F (z)| ≤ eO(|z|) so

that u(rje
iθ) = O(rj). Thus

∫ 2π

0
u(rje

iθ) dθ = O(1) as j →∞.
It follows that F is bounded, using the Poisson integral formula in much the

same way as in the proof of Lemma A.2, so that F is constant. �
Next we prove a version of de Branges’ Lemma 7 on p. 108 of [4], with the

added assumption that 0 < p < 1, with p as below. Without the extra assumption
the lemma is not true7. If F is an entire function we define u as before and

V (r) =

∫ 2π

0

(u(reiθ))2 dθ.

Furthermore, let x = log r so that u(reiθ) = u(ex+iθ) is a continuous, subharmonic
and non-negative function of (x, θ), with period 2π in θ, and put v(x) = V (ex).

7The original statement of de Branges is correct if one defines p(x) = ∞ whenever p(x) = 1

according to de Branges. This is not an unnatural definition, but will not help in proving his
Theorem 35 nor our Lemma A.7.
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Let M = {(x, θ) : u(ex+iθ) > 0}. The set M has period 2π in θ, and we define p(x)
so that 2πp(x) is the measure of the trace

M(x) = {θ ∈ [0, 2π) : (x, θ) ∈M}.

The function p is lower semi-continuous, and we have p(x) ≤ 1. Now assume one
may choose a so that p(x) > 0 for x ≥ a. Thus p is locally in [a,∞) bounded away
from 0, so that 1/p is upper semi-continuous, positive and locally bounded. We
may therefore define the strictly increasing function

s(x) =

∫ x

a

exp

(∫ t

a

1/p

)
dt.

Lemma A.9. Suppose 0 < p(x) < 1 for all x ≥ a. Then the quantity v is a convex
function of s > 0.

Proof. We may think of u as defined on a cylindrical manifold C with coordinates
(x, θ) ∈ R× [0, 2π) of which M is an open subset. In M the function u is harmonic,
and the boundary ∂M is a level set of |F |. The boundary is therefore of class C1

except where the gradient of |F | vanishes. However, the length of the gradient
equals |F ′|, as is easily seen, and the exceptional points are therefore locally finite
in number. We may therefore use integration by parts (the divergence theorem or
the general Stokes theorem) for the set M .

Assuming ϕ ∈ C∞
0 (C) and integrating by parts we obtain∫

M

Δϕu2 =

∫
∂M

(
u2 ∂ϕ

∂n
− 2ϕu

∂u

∂n

)
+

∫
M

ϕΔu2 = 2

∫
M

ϕ| gradu|2,

since u vanishes on ∂M and is harmonic in M . Now suppose ϕ is independent of
θ. Then we may write the above as∫

R

ϕ′′v =

∫
R

ϕ(x)
(
2

∫
M(x)

(u2
x + u2

θ)
)
dx,

so that (in the sense of distributions) v′′(x) = 2
∫
M(x)(u

2
x + u2

θ). A similar calcula-

tion shows that v′(x) =
∫
M(x) 2uux.

The function s has a C1 inverse, so we may think of x, and thus v, as a

function of s. We obtain v′ = s′ dvds and v′′ = (s′)2 d2v
ds2 + s′′ dvds . Thus (s′)2 d2v

ds2 =
v′′ − v′s′′/s′ = v′′ − v′/p. We need to prove the positivity of this. Now

v′′(x)− v′(x)/p(x) = 2

∫
M(x)

(u2
x + u2

θ − uux/p)

= 2

∫
M(x)

((ux − u/2p)2 + u2
θ − u2/4p2) dθ

≥ 2
(∫

M(x)

u2
θ −

1

4p2

∫
M(x)

u2
)
.
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Positivity therefore follows if we have the inequality∫
M(x)

u2
θ ≥

1

4p2(x)

∫
M(x)

u2. (A.2)

Since p(x) < 1 the function θ �→ u(ex+iθ) has a zero, so that u vanishes at
the endpoints of all components of the open set M(x). If I is such a component
we therefore have

∫
I
(uθ)

2 ≥ (π/|I|)2
∫
I
u2 where |I| is the length of I.

This just expresses the fact that the smallest eigenvalue of −u′′ = λu with
Dirichlet boundary conditions on I is (π/|I|)2. We have (π/|I|)2 ≥ (2p)−2 since
|I| ≤ 2πp, so adding up the inequalities for the various components of M(x) we
obtain (A.2), and the proof is finished. �

Proof of Lemma A.7. Suppose first that F1 is bounded and therefore constant. If
this constant is not zero the assumption implies that F2(iν) → 0 as ν → ±∞.
Since F2 is of zero exponential type the Phragmén-Lindelöf principle shows that
F2 is bounded and has limit zero along the imaginary axis and therefore is the
constant 0. Similarly if F2 is bounded. We may thus assume that F1 and F2 are
both unbounded.

If there is a sequence rj → ∞ such that F1(z) satisfies the assumptions of
Lemma A.8, then F1 is constant according to Lemma A.8. Similarly for F2.

We may thus also assume that for k = 1, 2 and every large r the inequality
|Fk(z)| ≤ 1 is violated for some z with |z| = r and | Im z| > C. Since Fk is analytic
and thus continuous, the opposite inequalities must hold on some open θ-sets for
z = reiθ and every large r.

But if |F1(z)| > 1 we must have |F2(z)| ≤ 1 for large |z| and | Im z| > C and
vice versa. It follows that for some a we have 0 < pk(x) < 1, k = 1, 2, for x ≥ a.

By Cauchy–Schwarz 1
2π

∫ 2π

0
u1(re

iθ) dθ ≤
(

1
2π

∫ 2π

0
u2
1(re

iθ) dθ
)1/2

, so it fol-

lows that if v1 is bounded, then so is F1, using the Poisson integral formula in
much the same way as in the proof of Lemma A.2. Thus v1 must be unbounded,
and since it is non-negative and convex as a function of s1 there is a constant c > 0
such that v1(x) ≥ cs1(x) for large x. Similarly we may assume v2(x) ≥ cs2(x) for
large x. We shall show that this contradicts the assumption of order for F1, F2.

Using the convexity of the exponential function we obtain for large x > a

(
V1(r(x)) + V2(r(x))

)
/2 ≥ c

∫ x

a

exp
(∫ t

a

(1/p1 + 1/p2)/2
)
dt. (A.3)

Now, by assumption min(u1(re
iθ), u2(re

iθ)) = 0 for large r and C ≤ r| sin θ| so
that then u1 or u2 equal zero. The measure of the θ-set not satisfying r| sin θ| ≥ C
for a given r is less than 2πC/r. It follows that p1 + p2 ≤ 1 + C/r. Since

1

p1
+

1

p2
=

p1 + p2
p1p2

≥ 4

p1 + p2
≥ 4r

r + C
=

4ex

ex + C



Spectral Problem for the Camassa–Holm Equation 89

the integral in (A.3) is at least 1
2 (e

2x−e2a)/(ea+C)2. Thus V1(r)+V2(r) ≥ c′r2 for
some constant c′ > 0 and large r. The assumption of order for Fk means, however,
that Vk(r) = o(r2). This contradiction proves the lemma. �
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Schatten Class Integral Operators Occurring
in Markov-type Inequalities

Albrecht Böttcher, Holger Langenau and Harold Widom

Abstract. This paper is motivated by the search for best constants in Markov-
type inequalities with different weights on both sides. It is known that in
a large range of cases these constants involve the operator norm of certain
Volterra integral operators. The proofs are based on the happy circumstance
that these operators are Hilbert-Schmidt. The conjecture is that in the re-
maining cases the same operators occur, but a proof is still outstanding. We
here show that in these cases the operators are Schatten class operators, and
hence in particular compact, having hopes this will be of use in future efforts
towards a confirmation of the conjecture on the best constants.

MSC 2010. Primary 47B10. Secondary 15A60, 26D10, 41A44, 45D05

Keywords. Markov inequality, Volterra operator, Schatten norm

1. Introduction and result

This paper is devoted to the problem of finding the smallest constant C in a
Markov-type inequality of the form

‖Dνf‖β ≤ C‖f‖α for all f ∈ Pn. (1)

Here Pn stands for the linear space of the algebraic polynomials of degree at most
n with complex coefficients, Dν is the operator of taking the νth derivative, and
‖ · ‖γ is the norm given by

‖f‖2γ =

∫ ∞

0

|f(t)|2tγe−tdt, (2)

where γ > −1 is a real parameter. Thus, with Pn(γ) denoting the space Pn with
the norm (2), the best constant C in (1) is just the operator norm (= spectral
norm) of the linear operator Dν : Pn(α) → Pn(β). We denote this best constant

C by λ
(ν)
n (α, β).
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The original inequalities by the Markov brothers had the maximum norm on
both sides. Erhard Schmidt was the first to consider such inequalities in Hilbert

space norms. In [8], he proved in particular that λ
(1)
n (0, 0) ∼ 2

πn, where here and in
what follows an ∼ bn means that an/bn → 1 as n→∞. Subsequently, Turán [11]
found the exact formula

λ(1)
n (0, 0) =

(
2 sin

π

4n+ 2

)−1

.

Shampine [9], [10] made the first step towards higher derivatives. He established
the asymptotic formula λ2

n(0, 0) ∼ 1
μ2
0
n2, where μ0 is the smallest positive solution

of the equation 1 + cosμ coshμ = 0. Dörfler [5] went further to ν ≥ 3 and proved
that

1

2ν!

√
4

2ν + 1
≤ lim inf

n→∞

λ
(ν)
n (0, 0)

nν
≤ lim sup

n→∞

λ
(ν)
n (0, 0)

nν
≤ 1

2ν!

√
2ν

2ν − 1
.

It had not been known until [2] whether or not λ
(ν)
n (0, 0)/nν possesses a limit as

n → ∞ if ν ≥ 3. The results of [2] (α = 0) and [3] (α > −1) say that this limit
exists and that, moreover, this limit is the operator norm of a certain Volterra
integral operator:

λ(ν)
n (α, α) ∼ ‖L∗

ν,α,α‖∞nν , (3)

where ‖ · ‖∞ is the operator norm and L∗
ν,α,α acts on L2(0, 1) by the rule

(L∗
ν,α,αf)(x) =

1

(ν − 1)!

∫ x

0

x−α/2yα/2(x − y)ν−1f(y)dy.

First results on the case α �= β are in [1], [6], where it is in particular shown
that

λ(ν)
n (α, α+ ν) =

√
n!

(n− ν)!
∼ nν/2. (4)

The situation for different α and β is best understood by looking at the number
ω := β − α − ν. Thus, (4) settles the case ω = 0 while (3) disposes of the case
ω = −ν. For general ω, a conjecture was raised in [4]. The following is a more
precise and stronger version of that conjecture.

Conjecture 1.1. Let α, β > −1 be real numbers, let ν be a positive integer, and put
ω = β − α− ν. Then

λ(ν)
n (α, β) ∼ Cν(α, β)n

(ν+|ω|)/2

with

Cν(α, β) =

{
2ω for ω ≥ 0,
‖L∗

ν,α,β‖∞ for ω < 0,

where L∗
ν,α,β is the Volterra integral operator on L2(0, 1) given by

(L∗
ν,α,βf)(x) =

1

Γ(−ω)

∫ x

0

x−α/2yβ/2(x− y)−ω−1f(y)dy. (5)
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This conjecture was confirmed in [4] in the case where ω ≥ 0 is an integer and
then in [7] in the case where ω ≥ 0 is an arbitrary real number. The conjecture was
also proved in [4] under the assumption that ω < −1/2. Moreover, for ω = −1,
the norm ‖L∗

ν,α,β‖∞ was shown to be 2/(ν+1) times the reciprocal of the smallest
positive zero of the Bessel function J(α−1)/(ν+1), which yields in particular such
nice formulas as

λ(2)
n

(
−1

2
,
1

2

)
∼ 4

3π
n3/2, λ(4)

n

(
7

2
,
13

2

)
∼ 2

5π
n5/2, λ(5)

n (4, 8) ∼ 1

3π
n3.

Thus, what remains open is the case −1/2 ≤ ω < 0.
The method used in [2], [3], [4] to prove the conjecture for ω < −1/2 is as

follows. Finding the best constant in (1) comes down to determining the operator
norm (= spectral norm) of the matrix representation of Dν in an appropriate pair
of orthonormal bases. In the case of the Laguerre norms we choose the normalized
Laguerre polynomials with respect to the parameters α and β. The kth Laguerre
polynomial associated with the norm (2) is

Pk(t, γ) =
1

Γ(k + 1)
t−γet

dk

dtk
(
tk+γe−t

)
=

k∑
	=0

(−1)	
(
k + γ

k − �

)
t	

�!
.

The kth normalized Laguerre polynomial is then given by

P̂k(t, γ) = wk(γ)Pk(t, γ), wk(γ) :=

√
Γ(k + 1)

Γ(k + γ + 1)
.

The resulting matrix is upper-triangular and the first ν diagonals are zero. Thus,
for a fixed n we have the following entries for the upper nonzero N × N matrix
block AN , N = n− ν + 1:

(AN )jk = (−1)k+ν−jwk+ν (α)

wj(β)

(
β − α− ν

k − j

)
, 0 ≤ j ≤ k ≤ N − 1.

Now let LN be the integral operator on L2(0, 1) that is defined by

(LNf)(x) =

∫ 1

0

�N(x, y)f(y)dy

with the piecewise constant kernel �N (x, y) = (A∗
N )[Nx],[Ny], where [·] denotes the

integral part and A∗
N is the Hermitian adjoint of AN . A result established in [12],

[13] and independently also rediscovered by Shampine [9], [10] says that

‖A∗
N‖∞ = N‖LN‖∞.

Taking a closer look on the scaled operators N1−(ν+|ω|)/2LN leads to the guess
that these should converge in the operator norm to the integral operator (5) on
L2(0, 1), which will be temporarily abbreviated to L, that is, L = L∗

ν,α,β . This
would give

‖A∗
N‖∞ = N‖LN‖∞ ∼ N N−(1−(ν+|ω|)/2)‖L‖∞ = N (ν+|ω|)/2‖L‖∞



94 A. Böttcher, H. Langenau and H. Widom

and hence prove Conjecture 1.1 for ω < 0. In the papers cited above this was
shown to work under the assumption that ω < −1/2. The technically most difficult
part was to prove the convergence of N1−(ν+|ω|)/2LN to L in the operator norm.
Fortunately, L can be shown to be a Hilbert–Schmidt operator if ω < −1/2 and
it can also be shown that N1−(ν+|ω|)/2LN converges to L in the Hilbert–Schmidt
norm for ω < −1/2.

If ω ≥ −1/2, the operator L is no longer Hilbert–Schmidt. The result of this
paper, stated below as Theorem 1.2, tells us that L is still a compact operator for
ω < 0. This is not of immediate help for proving Conjecture 1.1 but could be of use
for further attempts towards accomplishing that goal. Namely, since L is compact,
it follows that PNLPN converges to L in the operator norm whenever {PN} is
a sequence of operators such that PN and the adjoints P ∗

N converge strongly (=
pointwise) to the identity operator. Our hope is that one can find a clever sequence
{PN} which enables one to prove that

‖N1−(ν+|ω|)/2LN − PNLPN‖∞ → 0,

which together with the fact that ‖PNLPN−L‖∞ → 0 implies the desired uniform
convergence ofN1−(ν+|ω|)/2LN to L. Our second result, Theorem 1.3, says that L is
in the 2nth Schatten class if ω < −1/2n. This has again no immediate consequences
for a proof of Conjecture 1.1, but we consider this fact as noteworthy, because
any additional piece of information about L might be of use when approaching
Conjecture 1.1.

Here are the necessary notions and notations. Let T be a bounded operator
acting on some separable Hilbert space H and let {sk(T )}k∈N denote the sequence
of singular values of T in non-increasing order. The operator T is said to belong
to the pth Schatten class if {sk(T )}k∈N ∈ �p(N). We write Sp for the set of these
operators and define the norm by ‖T ‖Sp = ‖{sk(T )}k∈N‖	p . In the following we
only consider values of p that are powers of two and just write ‖T ‖Sp = ‖T ‖2n
for p = 2n. Clearly, ‖T ‖2 ≥ ‖T ‖22 ≥ · · · ≥ ‖T ‖2n ≥ · · · ≥ ‖T ‖∞. All we need is

the equality ‖T ‖2n = ‖T ∗T ‖1/22n−1, which holds for all n ≥ 1, and the fact that the

Hilbert-Schmidt norm ‖T ‖2 of an integral operator T is equal to the L2 norm of
the kernel of T .

Herewith the results of this paper.

Theorem 1.2. Let α, β, ω be real numbers and suppose β > −1, ω < (β − α)/2,
ω < 0. Then the operator given by the right-hand side of (5) is compact.

Theorem 1.3. Let α > −1, β > −1, ν ≥ 1 be real numbers and put ω = β − α− ν.
If n is a positive integer and ω < −1/2n, then the operator (5) belongs to the 2nth
Schatten class.

Theorem 1.2 will be proved in Section 2. The proof of Theorem 1.3 will be
given in Sections 3 and 4.
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2. Proof of Theorem 1.2

The factor 1/Γ(−ω) is irrelevant for the compactness of the operator (5). Thus,
we consider the operator M defined on L2(0, 1) by

(Mf)(x) =

∫ x

0

x−α/2yβ/2(x− y)−ω−1f(y)dy.

For 0 < r < 1, let Mr be the operator on L2(0, 1) that is given by

(Mrf)(x) =

∫ rx

0

x−α/2yβ/2(x − y)−ω−1f(y)dy.

The square of the Hilbert–Schmidt norm of Mr is∫ 1

0

∫ rx

0

x−αyβ(x − y)−2ω−2dydx =

∫ 1

0

∫ r

0

xβ−α−2ω−1yβ(1− y)−2ω−2dydx.

This is finite if β > −1 and ω < (β − α)/2. Consequently, these two assumptions
ensure that Mr is compact. We have

((M −Mr)f)(x) =

∫ x

rx

x−α/2yβ/2(x− y)−ω−1f(y)dy

=

∫ 1

r

x(β−α)/2−ωyβ/2(1− y)−ω−1f(xy)dy,

and since ω < (β − α)/2, it follows that

|((M −Mr)f)(x)| ≤
∫ 1

r

yβ/2(1− y)−ω−1|f(xy)|dy.

We therefore obtain

‖(M −Mr)f‖ =
(∫ 1

0

|((M −Mr)f)(x)|2dx
)1/2

≤
(∫ 1

0

(∫ 1

r

yβ/2(1− y)−ω−1|f(xy)|dy
)2

dx

)1/2

,

and by virtue of Minkowski’s inequality for integrals, this is not larger than∫ 1

r

(∫ 1

0

yβ(1 − y)−2ω−2|f(xy)|2dx
)1/2

dy

=

∫ 1

r

yβ/2(1− y)−ω−1

(∫ 1

0

|f(xy)|2dx
)1/2

dy.

(6)

Taking into account that
∫ 1

0 |f(xy)|2dx = y−1
∫ y

0 |f(t)|2dt ≤ y−1‖f‖2, we see
that (6) does not exceed ∫ 1

r

yβ/2−1/2(1 − y)−ω−1‖f‖dy.
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In summary, we have shown that

‖(M −Mr)f‖ ≤
(∫ 1

r

yβ/2−1/2(1− y)−ω−1dy

)
‖f‖. (7)

The assumption that ω < 0 guarantees that the integral occurring in (7) goes to
zero as r → 1. This implies that ‖M −Mr‖∞ → 0 as r → 1, which proves that M
is compact.

3. Auxiliary results and an example

Let T be an integral operator on L2(0, 1) with a real-valued kernel k(·, ·) and T ∗

its adjoint. These are then given by

(Tf)(x) =

∫ 1

0

k(x, y)f(y)dy, (T ∗f)(x) =

∫ 1

0

k(y, x)f(y)dy,

and thus,

((T ∗T )f)(x) =

∫ 1

0

(∫ 1

0

k(z, x)k(z, y)dz

)
f(y)dy.

We define a sequence of kernel functions {k2n}n≥0 making up the integral operators
K2n , respectively. We set

k1(x, y) =

{
y−α/2xβ/2(y − x)−ω−1 for x < y,

0 otherwise.

Clearly, K1 is just Γ(−ω) times the operator (5). Next, we set

k2n(x, y) =

∫ 1

0

k2n−1(z, x)k2n−1(z, y)dz.

It follows that K2n = K∗
2n−1K2n−1. We want to show that ‖K1‖2n < ∞. This is

the same as ‖(K∗
1K1)

n−1‖2 = ‖K2n−1‖2 <∞. So we reduce the estimation of the
2nth Schatten norm of the operator K1 to the estimation of the Hilbert–Schmidt
norm of the operator K2n−1 , which is given by

‖K2n−1‖22 =

∫ 1

0

∫ 1

0

k2n−1(x, y)k2n−1(x, y)dxdy.

To anticipate the arguments that will be used in the proof in the general case,
we start with considering the case n = 2. Thus, suppose −1/2 ≤ ω < −1/4. Our
aim is to show that K2 is a Hilbert–Schmidt operator. Since k2(x, y) = k2(y, x),
we have

‖K2‖22 =

∫ 1

0

∫ 1

0

k2(x2, x0)k2(x0, x2)dx0dx2

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

k1(x1, x2)k1(x1, x0)k1(x3, x0)k1(x3, x2)dx0dx1dx2dx3.
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The indexing of the variables might seem strange at the first glance, but it will
turn out to be perfect when treating the general case. Notice also that all these
kernels are non-negative, which implies that the integral over the cube is equal to
the iterated integrals and that we can change the order of integration.

We have to distinguish between the cases xi < xj and xi > xj . To this end
we split the area of integration, that is, the cube [0, 1]4, into 4! disjoint simplices

Ωπ = {(x0, x1, x2, x3) ∈ [0, 1]4 : xπ(0) < xπ(1) < xπ(2) < xπ(3)},

where π is a permutation of the numbers 0, 1, 2, 3. The integral for ‖K2‖22 then
splits into 4! integrals over the areas Ωπ. In all but four cases one of the kernels
k1(xi, xj) is zero. These four cases are the permutations which send (0, 1, 2, 3) to
(1, 3, 0, 2), (1, 3, 2, 0), (3, 1, 0, 2), (3, 1, 2, 0). We are therefore left with showing that
each of these four integrals is finite. Let us consider the integral corresponding to
the last permutation, that is, the simplex given by x3 < x1 < x2 < x0. This
integral equals

I4 :=

∫ 1

0

∫ x0

0

∫ x2

0

∫ x1

0

ϕ4(x)dx3dx1dx2dx0

with

ϕ4(x) = x−α
0 x−α

2 xβ
1x

β
3 (x2 − x1)

−σ(x0 − x1)
−σ(x2 − x3)

−σ(x0 − x3)
−σ,

where here and in the following σ := ω + 1. The inner integration in I4 gives∫ x1

0

ϕ4(x)dx3 = x−α
0 x−α

2 xβ
1 (x2−x1)

−σ(x0−x1)
−σ

∫ x1

0

xβ
3 (x2−x3)

−σ(x0−x3)
−σdx3.

Now a first lemma comes into the game. Recall that 0 < σ = ω + 1 < 1.

Lemma 3.1. Let a > −1, τ > 0, σ > 0 be real numbers and let k ≥ 0 and � ≥ 0
be integers. Suppose (k + � + 1)τ < 1 and (1 + τ)σ < 1. Assume further that
0 < s ≤ y < x. Then∫ s

0

ta(x− t)−(1−kτ)σ(y − t)−(1−	τ)σdt ≤ C(x− y)−(1−(k+	+1)τ)σsa−(1+τ)σ+1

with some constant C <∞.

Proof. We write (x− t)−(1−kτ)σ = (x− t)−(1−(k+	+1)τ)σ(x− t)−(	+1)τσ, and since

(x− t)−(1−(k+	+1)τ)σ ≤ (x− y)−(1−(k+	+1)τ)σ,

(x− t)−(	+1)τσ ≤ (s− t)−(	+1)τσ, (y − t)−(1−	τ)σ ≤ (s− t)−(1−	τ)σ,

we obtain that the integral is not larger than

(x− y)−(1−(k+	+1)τ)σ

∫ s

0

ta(s− t)−(1+τ)σdt.
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The last integral equals

sa−(1+τ)σ+1

∫ 1

0

ta(1 − t)−(1+τ)σdt = sa−(1+τ)σ+1 · C,

where C := Γ(a+ 1)Γ(1− (1 + τ)σ)/Γ(a + 2− (1 + τ)σ) <∞. �

Now choose τ = 1/3. Since σ = 1 + ω < 1 − 1/4, we have (1 + τ)σ < 1.
Applying the lemma with k = � = 0 to the above integral

∫ x1

0
ϕ4(x)dx3 we get∫ x1

0

ϕ4(x)dx3 ≤ Cx−α
0 x−α

2 x
2β−(1+τ)σ+1
1 (x2 − x1)

−σ(x0 − x1)
−σ(x0 − x2)

−(1−τ)σ

=: ϕ3(x).

Next we perform the inner integration in

I4 ≤
∫ 1

0

∫ x0

0

∫ x2

0

ϕ3(x)dx1dx2dx0.

We obtain∫ x2

0

ϕ3(x)dx1 = Cx−α
0 x−α

2 (x0 − x2)
−(1−τ)σ

×
∫ x2

0

x
2β−(1+τ)σ+1
1 (x2 − x1)

−σ(x0 − x1)
−σdx1,

and hence may again use Lemma 3.1 with k = � = 0. The only question is whether
a = 2β − (1 + τ)σ + 1 > −1. This problem is disposed of by the following lemma.

Lemma 3.2. Let α > −1, β > −1, ν ≥ 1 be real numbers. Put ω = β − α− ν and
suppose −1/2n−1 ≤ ω < −1/2n. If k and � are integers satisfying 0 ≤ � ≤ k ≤ 2n−1

and τ is defined as τ = 1/(2n − 1), then

kβ − �α− (k + �− 1)(1 + τ)(ω + 1) + (k + �− 1) > �− 1.

Proof. Since (1+τ)(ω+1) < 1, we have −(k+�−1)(1+τ)(ω+1)+(k+�−1) > 0.
Hence

kβ − �α− (k + �− 1)(1 + τ)(ω + 1) + (k + �− 1) > kβ − �α

= k(β − α) + (k − �)α = k(ω + ν) + (k − �)α > k(ω + 1)− (k − �)

= kω + � ≥ �− k/2n−1 ≥ �− 1. �

In the present case, n = 2 and accordingly τ = 1/3, as above. Lemma 3.2
with k = 2 and � = 0 shows that indeed a = 2β − (1 + τ)σ + 1 > −1. We may
therefore use Lemma 3.1 with k = � = 0 to conclude that∫ x2

0

ϕ3(x)dx1 ≤ Cx−α
0 x

2β−α−2(1+τ)σ+2
2 (x0−x2)

−(1−τ)σ(x0−x2)
−(1−τ)σ =: ϕ2(x),
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where here and throughout what follows C denotes a finite constant, but not
necessarily the same at each occurrence. Thus,

I4 ≤
∫ 1

0

∫ x0

0

ϕ2(x)dx2dx0.

We have∫ x0

0

ϕ2(x)dx2 = Cx−α
0

∫ x0

0

x
2β−α−2(1+τ)σ+2
2 (x0 − x2)

−2(1−τ)σdx2

= xb
0

∫ 1

0

tc(1− t)−2(1−τ)σdt =: xb
0 · C̃

with b = 2β − 2α− 2(1 + τ)σ + 2− 2(1− τ)σ + 1 and c = 2β − α− 2(1+ τ)σ + 2.
Clearly, 2(1 − τ)σ < 2(1 − 1/3)(1 − 1/4) = 1, Lemma 3.2 with k = 2 and � = 1
shows that c > −1, and finally,

b = 2β − 2α− 2(1 + τ)σ + 2− 2(1− τ)σ + 1

≥ 2(ω + 1)− 2(1 + τ)(ω + 1)− 2(1− τ)(ω + 1) + 3 = 3−2(ω + 1) > 1.

This proves that I4 ≤ C̃
∫ 1

0
xb
0dx0 <∞.

4. Proof of Theorem 1.3

We now turn to the general case. The case n = 1 is a simple computation. So
suppose n ≥ 2 and −1/2n−1 ≤ ω < −1/2n. Put σ = 1 + ω. We have to show that

‖K2n−1‖22 =

∫ 1

0

∫ 1

0

k2n−1(x0, x2n−1)k2n−1(x2n−1 , x2n)dx2n−1dx0 (x2n := x0)

is finite; notice that k2n−1(x2n−1 , x0) = k2n−1(x0, x2n−1) for n ≥ 2. We write

k2n−1(xi, xj) =

∫ 1

0

k2n−2(x	, xi)k2n−2(x	, xj)dx	

where � = (i+ j)/2 and so on until we have only the kernels k1(·, ·). For example,
if n = 4, then

‖K8‖22 =

∫ 1

0

∫ 1

0

k8(x0, x8)k8(x8, x16)dx8dx0 (x16 := x0)

with

k8(x0, x8) =

∫ 1

0

k4(x4, x0)k4(x4, x8)dx4

=

∫ 1

0

∫ 1

0

∫ 1

0

k2(x2, x4)k2(x2, x0)k2(x6, x4)k2(x6, x8)dx2dx6dx4

=

∫ 1

0

· · ·
∫ 1

0

k1(x3, x2)k1(x3, x4)k1(x1, x2)k1(x1, x0)

× k1(x5, x6)k1(x5, x4)k1(x7, x6)k1(x7, x8)dx1 · · · dx7
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and a similar expression for k8(x8, x16). In this way the integral for ‖K2n−1‖22
becomes an integral over Ω = [0, 1]2

n

. We divide Ω into (2n)! disjoint simplices

Ωπ = {(x0, . . . , x2n−1) ∈ [0, 1]2
n

: xπ(0) < xπ(1) < · · · < xπ(2n−1)},
labelled by the permutations π of the numbers 0, 1, . . . , 2n−1. The result is

‖K2n−1‖22 =
∑
π

∫ 1

0

∫ xπ(2n−1)

0

∫ xπ(2n−2)

0

· · ·
∫ xπ(1)

0⎛⎝2n−1−1∏
j=0

k1(x2j+1, x2j)k1(x2j+1, x2j+2)

⎞⎠ dxπ(0) . . . dxπ(2n−1).

We perform the integrations from the inside to the outside and may restrict our-
selves to the permutations π for which we never meet a kernel whose first variable
is greater than the second. Thus, take such a permutation and consider

I2n =

∫ 1

0

∫ xπ(2n−1)

0

∫ xπ(2n−2)

0

· · ·
∫ xπ(1)

0

ϕ2n(x)dxπ(0) . . . dxπ(2n−1)

with

ϕ2n(x) =

2n−1−1∏
j=0

k1(x2j+1, x2j)k1(x2j+1, x2j+2)

=
2n−1−1∏
j=0

x−α
2j xβ

2j+1[(x2j − x2j+1)(x2j+2 − x2j+1)]
−σ.

We put τ = 1/(2n − 1). Then

(1 + τ)σ <

(
1 +

1

2n − 1

)(
1− 1

2n

)
= 1.

The first integral is an integral as in Lemma 3.1 with a = β and k = � = 0. We
estimate this integral from above exactly as in this lemma and obtain a function
ϕ2n−1(x). Integrating this function, we have again an integral as in Lemma 3.1
with k = 1 and � = 0, and we estimate as in this lemma to get a function ϕ2n−2(x).
In this way we perform 2n − 2 integrations and estimates. In the end we have a
function ϕ2(x).

In each step, we use Lemma 3.1 with some a and some k and �. Let us
first describe the evolution of the exponents a. After the first integration it equals
2β−(1+τ)σ+1. Each further integration adds −(1+τ)σ+1 to the exponent, and
from outside the integral we still have to add the values β or −α in dependence
on whether the j in the integral

∫ xj

0 is odd or even. Thus, each time we add
β − (1 + τ)σ + 1 or −α− (1 + τ)σ + 1, and after k + � integrations the exponent
is (k+1)β− �α− (k+ �)(1 + τ) + (k+ �). Since we do not meet kernels which are
identically zero, at each place in the sequence π(0) < · · · < π(2n−1) the number of
predecessors with odd subscript is at least as large as the number of predecessors
with even subscript. This implies that always k + 1 ≥ �. The first integration is
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over a variable with odd subscript. It follows that the number of integrals
∫ xj

0

with odd j is at most 2n−1 − 1, so that always k + 1 ≤ 2n−1. We therefore obtain
from Lemma 3.2 (with k replaced by k + 1) that the exponent a is greater than
�− 1 ≥ −1.

Our next objective is the evolution of the numbers k and � occurring in
Lemma 3.1. For this purpose, we associate weighted graphs G2n , . . . , G2 with the
functions ϕ2n(x), . . . , ϕ2(x). The graph G2n has 2n vertices, which are labeled
from x0 to x2n−1, and 2n edges, which join xj and xj+1 and will be denoted by
[xj , xj+1]. Each edge gets the weight 0. This is because in ϕ2n(x) each |xj − xj+1|
has the exponent −σ, which may be written as −(1 − mτ)σ with m = 0. The
function ϕ2n−1(x) results from ϕ2n(x) via an estimate of the form∫ xj

0

xa
i (xi−1 − xi)

−σ(xi+1 − xi)
−σdxi ≤ Cx

a−(1+τ)σ+1
j |xi−1 − xi+1|−(1−τ)σ;

we write the differences in absolute values, since this dispenses us from distinguish-
ing the cases xi−1 < xi+1 and xi+1 < xi−1. Thus, the differences xi−1 − xi and
xi+1−xi are no longer present in ϕ2n−1(x). Instead, ϕ2n−1(x) contains |xi−1−xi+1|
with the exponent −(1−τ)σ, which is −(1−mτ)σ with m = 1. Accordingly, G2n−1

results from G2n by deleting the edges [xi−1, xi] and [xi, xi+1] and introducing a
new edge [xi−1, xi+1] with the weight m = 1. We proceed in this way. If ϕh−1(x)
is obtained from ϕh(x) by an estimate∫ xj

0

xa
i (xp − xi)

−(1−kτ)σ(xq − xi)
−(1−	τ)σdxi

≤ Cx
a−(1+τ)σ+1
j |xp − xq|−(1−(k+	+1)τ)σ,

(8)

then Gh contained the edge [xp, xi] with the weight k and the edge [xi, xq] with
the weight �, we delete these two edges, and replace them by the edge [xp, xq] with
the weight k + �+ 1 to obtain Gh−1.

The graph G2 consists of two edges which both join xπ(2n−2) and xπ(2n−1).
Let r and s be the weights of these edges. The sum of all weights in G2n is zero,
and in each step the sum of the weights increases by −k − �+ (k + �+ 1) = 1. As
we made 2n − 2 steps, it follows that r + s = 2n − 2. We see in particular that
in (8) we always have k+ � < 2n− 2, whence (k+ �+1)τ < (2n− 1)/(2n− 1) = 1.
This (together with the inequality a > −1 shown above) justifies the application
of Lemma 3.1 in each step.

Figure 1 shows the graphs for the introductory example considered in Sec-
tion 3, while Figure 2 presents the sequence of graphs for n = 3 and the simplex
associated with the permutation x5 < x1 < x3 < x2 < x4 < x7 < x6 < x0.

We abbreviate xπ(2n−2) and xπ(2n−1) to xp and xq. What we are left with is
to prove that ∫ 1

0

∫ xq

0

ϕ2(x)dxpdxq <∞

with
ϕ2(x) = Cx−α

q xa
p(xq − xp)

−(1−rτ)σ(xq − xp)
−(1−sτ)σ.
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G4

x0

x1

x2

x3

0 0

00

G3

x0

x1

x2

0 0

1

G2

x0 x2

1

1

Figure 1. The sequence of graphs for n = 2 and x3 < x1 < x2 < x0.

The exponent a comes from k = 2n−1 − 1 integrals
∫ xj

0 with odd subscript j and

� = 2n−1− 1 integrals
∫ xj

0
with even j. (Notice that p and q are necessarily even.)

Hence a = (k+1)β− �α− (k+ �)(1+ τ)σ+(k+ �), and from Lemma 3.2 we infer
that a > −1. It follows that∫ xq

0

ϕ2(x)dxp = Cx−α
q

∫ xq

0

xa
p(xq − xp)

−(2−(r+s)τ)σdxp

= Cx−α
q xa−(2−(r+s)τ)σ+1

q

∫ 1

0

ta(1− t)−(2−(r+s)τ)σdt.

(9)

Obviously,

(2−(r + s)τ)σ =

(
2− 2n − 2

2n − 1

)
(1 + ω) =

2n

2n − 1
(1 + ω) <

2n

2n − 1

(
1− 1

2n

)
= 1,

and hence (9) is finite. It remains to consider the integral
∫ 1

0 xb
qdxq with the expo-

nent b = −α+ a− (2− (r+ s)τ)σ+1. We just proved that 1− (2− (r+ s)τ)σ > 0.
We also have

−α+ a = (k + 1)β − (k + 1)α− 2k(1 + τ)σ + 2k

= (k + 1)β − (k + 1)α− (2k + 1)(1 + τ)σ + (2k + 1) + (1 + τ)σ − 1

> k + 1− 1 + (1 + τ)σ − 1 (Lemma 3.2)

= k − 1 + (1 + τ)σ > k − 1 = 2n−1 − 2 ≥ 0.

This shows that b > 0 and thus that
∫ 1

0 xb
qdxq <∞. The proof of Theorem 1.3 is

complete.
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G8

x0
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x6

x7

0

0 0

0

0

00

0

G7

x0

x1

x2

x3

x4

x6

x7

0

0 0

0

1

0

0

G6

x0

x2

x3

x4

x6

x7

1

0

0

1

0

0

G5

x0

x2

x4

x6

x7

1 1

1

0

0

G4

x0 x4

x6

x7

3

1

0

0

G3

x0

x6

x7

5

0

0

G2

x0

x6

5

1

Figure 2. The sequence of graphs obtained for n = 3 and the permu-
tation x5 < x1 < x3 < x2 < x4 < x7 < x6 < x0.
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Abstract. A glimpse backwards at the twenty plus years since I met and
began to collaborate with Dima Arov. Some highlights of the research that
began ever so briefly with prediction for multivariate stationary processes,
quickly evolved into the study of direct and inverse spectral problems for
canonical integral and differential systems and Dirac–Krein systems, and a
number of bitangential interpolation and extension problems and circled back
to prediction a couple of years ago will be presented.
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1. Genesis, or, how it all began

I met Dima for the first time in June/July 1991 in Japan. That year IWOTA
was held in Sapporo (organized by Professor Ando) and MTNS was held the week
following in Kobe. This was shortly after Perestroika and Glasnost and a num-
ber of Russian mathematicians attended. The list of participants included Vadim
Adamjan, Damir Arov, Adolf Nudelman, Lev Sakhnovich, Edward Tsekanovskii
and possibly others. It was probably the first time that they were permitted to
attend a conference outside the former Soviet Bloc. We almost did not meet, since
Dima got on the wrong plane. This is difficult to do. But, as many of you know,
Dima is very clever.

Since Dima’s English at the time was rather limited and my knowledge of
Russian was limited to Da and Nyet, and neither of us spoke Japanese, we did not
communicate with each until almost the end of the second week. Then one evening,
at a barbecue organized during the MTNS week, Dima conveyed an interest in
visiting the Weizmann Institute through our mutual friend and colleague Israel
Gohberg. Fortunately, I was able to arrange this, and in the autumn of 1992,
Dima and his wife Natasha, came to the Institute for the first time.
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2. Autumn 1992

At the Institute Dima gave two series of lectures, one on system theory and one
on J theory. Each lecture was on the order of 2 hours. Dima just got up there and
spoke, without notes. A truly impressive performance. (I often wondered if paper
was very expensive in the FSU.)

We also started to look for a problem of mutual interest that we could work
on together and began to investigate the analytic counterpart of the problem of
prediction for vector-valued stationary stochastic processes, given a finite segment
of the past. Thus, as of the date of this IWOTA conference, we have been working
together for twenty two years; unfortunately, the title of Dumas novel [Du45] that
was borrowed for this talk refers to only twenty years, but that was the closest
that I could find.

3. A version of the 1992 problem

Given: a p×p measurable mvf Δ(μ) on R that meets the following three conditions

Δ(μ) is positive definite a.e. on R,

∫ ∞

−∞

traceΔ(μ)

1 + μ2
dμ <∞

and

∫ ∞

−∞

ln{det Δ(μ)}
1 + μ2

dμ > −∞.

(1)

Let

ϕt(μ) = i

∫ t

0

eiμsdsIp =
eitμ − 1

μ
Ip (2)

and

Z [0,a](Δ) = closed linear span{ϕtξ : t ∈ [0, a] and ξ ∈ Cp} (3)

in Lp
2(Δ), for 0 < a <∞

Objective: Compute the orthogonal projection of f ∈ Lp
2(Δ) onto Z [0,a](Δ).

More precisely, the objective was to identify Δ as the spectral density of a
system of integral or differential equations and then use the transforms based on
the fundamental solution of this system to compute the projection, in much the
same way as had already been done for the case p = 1, following a program that was
envisioned by M.G. Krein [Kr54] and completed in the 1976 monograph [DMc76].

Although some progress was made, it became clear that in order to penetrate
further, it was necessary to develop a deeper understanding of direct and inverse
problems for canonical systems of integral and differential equations and the as-
sociated families of RKHS’s (reproducing kernel Hilbert spaces). Accordingly, we
decided to postpone the study of the prediction problem for a while, and to focus
on canonical systems.

That was about a 20 year detour.
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4. Reproducing Kernel Hilbert Spaces

A Hilbert space H of p × 1 vvf’s (vector-valued functions) defined on Ω ⊂ C is
said to be a RKHS if there exists a p× p mvf (matrix-valued function) Kω(λ) on
Ω× Ω such that

(1) Kωu ∈ H for every ω ∈ Ω and u ∈ Cp.

(2) 〈f,Kωu〉H = u∗f(ω) for every f ∈ H, ω ∈ Ω and u ∈ Cp.

A p× p mvf that meets these two conditions is called a RK (reproducing kernel).

It is well known (and not hard to check) that

(1) A RKHS has exactly one RK.

(2) Kω(λ)
∗ = Kλ(ω) for all points λ, ω in Ω× Ω.

(3) Kω(λ) is positive in the sense that

n∑
i,j=1

u∗
iKωi(ωj)uj ≥ 0 for any set of points ω1, . . . , ωn in Ω

and vectors u1, . . . , un in Cp.
(4)

(4) Point evaluation is a bounded vector-valued functional

‖f(ω)‖ ≤ ‖f‖H {‖Kω(ω)‖}1/2 :

for ω ∈ Ω and f ∈ H.

Conversely, by the matrix version of a theorem of Aronszajn (see, e.g., The-
orem 5.2 in [ArD08b]) each p × p kernel Kω(λ) that is positive on Ω × Ω in the
sense of (3) can be identified as the RK of exactly one RKHS of p× 1 vv.’s on Ω.
There is also a converse to item (4): If ej , j = 1, . . . , p, denotes the standard basis
for Cp, H is a Hilbert space of p× 1 vvf’s and

|e∗jf(ω)| ≤ ‖f‖HMω for j = 1, . . . , p, ω ∈ Ω and f ∈ H,

then, by the Riesz representation theorem, there exists vectors qjω ∈ H such that

e∗jf(ω) = 〈f, qjω〉H for j = 1, . . . , p.

Thus, if Qω denotes the array
[
q1ω · · · qpω

]
and u =

∑p
j=1 ujej , then

u∗f(ω) =

p∑
j=1

uj(e
∗
jf)(ω) =

p∑
j=1

uj〈f, qjω〉H = 〈f,Qωu〉H,

i.e., the p× p mvf Qω(λ) on Ω× Ω is a RK for H.

5. Examples of RKHS’s

The Hardy space Hp
2 of p× 1 vvf’s that are

(1) holomorphic in the open upper half-plane C+;
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(2) meet the constraint

sup
b>0

∫ ∞

−∞
f(a+ ib)∗f(a+ ib)da <∞

(3) and are endowed with the standard inner product (applied to the nontangen-
tial boundary limits)

〈f, g〉st =
∫ ∞

−∞
g(μ)∗f(μ)dμ

is a RKHS with RK

Kω(λ) = Ip/ρω(λ),

where

ρω(λ) = −2πi(λ− ω) for ω ∈ C+. (5)

The verification is Cauchy’s theorem for Hp
2 :

If p = 1, then

〈f, 1/ρω〉st =
1

2πi

∫ ∞

−∞

f(μ)

μ− ω
dμ = f(ω) for ω ∈ C+.

If p > 1 and v ∈ Cp, then

〈f, v/ρω〉st = v∗
1

2πi

∫ ∞

−∞

f(μ)

μ− ω
dμ = v∗f(ω) for ω ∈ C+.

If b(λ) is a p× p inner mvf, then Hp
2 � bHp

2 is a RKHS with RK

Kb
ω(λ) =

Ip − b(λ)b(ω)∗

ρω(λ)
for λ, ω ∈ C+.

6. Entire de Branges matrices

An entire p× 2p mvf

E(λ) =
[
E−(λ) E+(λ)

]
with p× p blocks E±(λ)

is said to be a de Branges matrix if

(1) det E+(λ) �≡ 0 in C+, the open upper half-plane.

(2) E−1
+ E− is a p× p inner mvf with respect to C+, i.e.,

‖(E−1
+ E−)(λ)‖ ≤ 1 if λ ∈ C+

and

(E−1
+ E−)(μ) is unitary for μ ∈ R.
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7. de Branges spaces B(E)

The de Branges space B(E) associated with an entire de Branges matrix E is

B(E) = {entire p× 1 vvf’s: E−1
+ f ∈ Hp

2 and E−1
− f ∈ (Hp

2 )
⊥}

endowed with the inner product

〈f, g〉B(E) =

∫ ∞

−∞
g(μ)∗{E+(μ)E+(μ)

∗}−1f(μ)dμ

B(E) is a RKHS with RK

KE
ω (λ) =

⎧⎪⎨⎪⎩
E+(λ)E+(ω)

∗ − E−(λ)E−(ω)
∗

ρω(λ)
if λ �= ω

E′
+(ω)E+(ω)

∗ − E′
−(ω)E−(ω)

∗

−2πi if λ = ω

,

with ρω(λ) as in (5) (and E′
±(λ) denotes the derivative of E±(λ) with respect to

λ). This again may be verified by Cauchy’s theorem.

8. A special subclass of de Branges matrices

We shall restrict attention to entire de Branges matrices with the extra property
that

(ρiE
#
− )−1 ∈ Hp×p

2 and (ρiE+)
−1 ∈ Hp×p

2 , (6)

where

f#(λ) = f(λ)∗.

Condition (6) is equivalent to other conditions that are formulated in terms of the
generalized backwards shift operator

(Rαf)(λ) =

⎧⎨⎩
f(λ)− f(α)

λ− α
when λ �= α

f ′(α) when λ = α
:

The following three conditions are equivalent for entire de Branges matrices
E =

[
E− E+

]
:

(1) E meets the constraints in (6).
(2) B(E) is invariant under Rα for at least one point α ∈ C.
(3) B(E) is invariant under Rα for every point α ∈ C.

Additional equivalences are discussed on pp. 145–146 of [ArD12].
Moreover, under the constraint (6),

(E#
− )−1 = b3ϕ3 and E−1

+ = ϕ4b4,

where b3 and b4 are entire inner p× p mvf’s and ρ−1
i ϕ3 and ρ−1

i ϕ4 are outer p× p

mvf’s in Hp×p
2 .
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The mvf’s b3 and b4 are uniquely determined by E#
− and E+ up to a right

constant unitary factor for b3 and a left constant unitary factor for b4. They are
entire mvf’s of exponential type. The set

ap(E)
def
= {(b3u, vb4) : u, v ∈ Cp×p and u∗u = v∗v = Ip}

is called the set of associated pairs of E.

9. de Branges spaces are of interest

de Branges spaces play a central role in prediction problems because if Δ(μ) is
subject to the constraints in (1), then the spaces

Z [0,a](Δ) = closed linear span{ϕtξ : t ∈ [0, a] and ξ ∈ Cp}
in Lp

2(Δ) with

ϕt(μ) = i

∫ t

0

eiμsdsIp =
eitμ − 1

μ
Ip

can be identified as de Branges spaces. Then ΠZ[0,a] can be calculated via the RK
of this space, as will be illustrated in a number of examples below.

10. Example 1, Δ(μ) = Ip

Let

f̂(μ) =

∫ ∞

−∞
eiμsf(s)ds and f∨(t) =

1

2π

∫ ∞

−∞
e−iμtf(μ)dμ

denote the Fourier transform and inverse Fourier transforms respectively in Lp
2.

With the help of the Paley–Wiener theorem, it is not hard to show that

Z [0,a](Ip) =

{∫ a

0

eiλsg(s)ds : g ∈ Lp
2([0, a])

}
.

Correspondingly, f ∈ Z [0,a](Ip) if and only if

f(λ) =

∫ a

0

eiλsf∨(s)ds =

∫ a

0

eiλs
{

1

2π

∫ ∞

−∞
e−iμsf(μ)dμ

}
ds

=

∫ ∞

−∞

{
1

2π

∫ a

0

eiλse−iμsds

}
f(μ)dμ,

i.e., for each v ∈ Cp,

v∗f(λ) = 〈f,Z [0,a]
λ v〉st the standard inner product

with

Z [0,a]
λ (μ) =

{
1

2π

∫ a

0

ei(μ−λ)sds

}
Ip =

{
1− ei(μ−λ)a

ρλ(μ)

}
Ip.
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Thus, Z [0,a](Ip) is a de Branges space with RK

Z [0,a]
μ (λ) =

E+(λ)E+(μ)
∗ − E−(λ)E−(μ)

∗

ρμ(λ)
,

in which E−(λ) = eiλaIp and E+(λ) = Ip.

Moreover, the orthogonal projection ΠZ[0,a] of f ∈ Lp
2 onto Z [0,a](Ip) is given

by the formula

(ΠZ[0,a]f)(λ) =

∫ a

0

eiλsf∨(s)ds =

∫ ∞

−∞
Z [0,a]

μ (λ)f(μ)dμ.

An analogous set of calculations for the space Z [−a,a] leads to the formula

Z [−a,a]
λ (μ) =

{
1

2π

∫ a

−a

ei(μ−λ)sds

}
Ip =

{
e−i(μ−λ)a − ei(μ−λ)a

ρλ(μ)

}
Ip,

i.e., Z [−a,a](Ip) is a de Branges space with E−(λ) = eiλaIp and E+(λ) = e−iλaIp.

11. Example 2, αIp ≤ Δ(μ) ≤ βIp for some β ≥ α > 0

If, in addition to (1), the density Δ(μ) is subject to the constraints

0 < αIp ≤ Δ(μ) ≤ βIp a.e. on R (and β <∞), (7)

then

f ∈ Z [0,a](Δ)⇐⇒ f ∈ Z [0,a](Ip)

and point evaluation is a bounded vector-valued functional in both. Thus, both
spaces are RKHS’s.

Let Ka
ω(λ) denote the RK for Z [0,a](Δ) and let Za

ω(λ) continue to denote the
RK for Z [0,a](Ip). Then

v∗f(ω) = 〈f,Za
ωv〉st ∀ f ∈ Z [0,a](Ip), v ∈ Cp and ω ∈ C

and

v∗f(ω) = 〈f,Ka
ωv〉Δ ∀ f ∈ Z [0,a](Δ), v ∈ Cp and ω ∈ C.

Therefore, since

Z [0,a](Ip) = Z [0,a](Δ) (as vector spaces)

when (7) is in force,

〈f,Za
ωv〉st = 〈f,Ka

ωv〉Δ = 〈f,ΔKa
ωv〉st = 〈f,ΠaΔKa

ωv〉st
for every choice of f ∈ Z [0,a](Ip), v ∈ Cp and ω ∈ C, where

Πa denotes the orthogonal projection of Lp
2 onto Z [0,a](Ip).

Thus,

ΠaΔKa
ωv = Za

ωv. (8)



112 H. Dym

12. Spectral densities in the Wiener algebra

If

Δ(μ) = Ip + ĥ(μ) with h ∈ Lp
1 (9)

and Δ(μ) > 0 for μ ∈ R, then, since Δ(μ) is continuous on R and, by the Riemann–
Lebesgue lemma, Δ(±∞) = Ip, Δ meets the constraints in (7) for some choice of
β > α > 0. Consequently, in view of (8),

ΠaΔKa
ωv = Πa(Ip + ĥ)Ka

ωv

= Ka
ωv +ΠaĥK

a
ωv = Za

ωv.

Thus, as

Ka
ω(λ) =

∫ a

0

eiλsϕω(s)ds and Za
ω(λ) =

1

2π

∫ a

0

eiλse−iωsIpds,

the formula

Ka
ωv +ΠaĥK

a
ωv = Za

ωv

can be reexpressed in the time domain as

ϕω(s) +

∫ a

0

h(t− s)ϕω(s)ds =
1

2π
e−iωsIp for s ∈ [0, a]. (10)

If it is also assumed that h(t) is continuous, then the solution of (10) can be
expressed explicitly as

ϕω(t) =
1

2π
e−iωtIp +

1

2π

∫ a

0

γa(t, s)e
−iωsdsIp

in which γa(t, s) is the kernel of an integral operator and the RK of Z [0,a](Δ)

Ka
ω(λ) =

∫ a

0

eiλtϕω(t)dt

=
1

2π

∫ a

0

eiλt
{
e−iωtIp +

∫ a

0

e−iωsγa(t, s)ds

}
dt.

With the help of the Krein–Sobolev formula (see, e.g., [GK85] for a clear discussion
of this formula)

∂

∂a
γa(t, s) = γa(t, a)γa(a, s)

and a variant thereof

∂

∂a
γa(a− t, a− s) = γa(a− t, 0)γa(0, a− s)

it can be checked by brute force calculation that

∂

∂a
Ka

ω(λ) =
1

2π
Ea

−(λ)E
a
−(ω)

∗

where

Ea
−(λ) = eiλaIp +

∫ a

0

eiλtγa(t, a)dt. (11)
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Thus, as K0
ω(λ) = 0,

Ka
ω(λ) =

∫ a

0

∂

∂s
Ks

ω(λ)ds =
1

2π

∫ a

0

Es
−(λ)E

s
−(ω)

∗ds. (12)

The p× 2p mvf Ea(λ) =
[
Ea

−(λ) Ea
+(λ)

]
with

Ea
+(λ) = Ip +

∫ a

0

eiλsγa(s, 0)ds

is a de Branges matrix and

∂

∂t
Et(λ) = iλEt(λ)

[
Ip 0
0 0

]
+ Et(λ)

[
0 γt(t, 0)

γt(0, t) 0

]
.

The assumption that h(t) is continuous on R can be relaxed to the weaker
assumption that h(t) is continuous on (−∞, 0) ∪ (0,∞) with left and right limits
at 0. This is shown in a recent paper of Alpay, Gohberg, Kaashoek, Lerer and
Alexander Sakhnovich [AGKLS10].

If h = 0 in formula (9), then formulas (11) and (12) reduce to

Ea
−(λ) = eiλaIp and Ka

ω(λ) = Za
ω(λ) =

{
1

2π

∫ a

0

ei(λ−ω)sds

}
Ip,

respectively.

13. 1993–2011

The formulas referred to in the previous section for Δ(μ) of the form (9) are
attractive and were accessible in 1992. However, this class of spectral densities is
far too restrictive. It does not even include the simple case

Δ(μ) =
1

1 + μ2
.

Thus, it was clear that it was essential to develop analogous projection formulas
for a wider class of spectral densities. This lead us to investigate:

(1) Direct and inverse problems for canonical integral and differential systems
and Dirac–Krein systems.

(2) Bitangential interpolation and extension problems.

The exploration of these two topics and the interplay between them before we
returned to reconsider multivariate prediction took almost twenty years. The con-
clusions from these studies were presented in a lengthy series of articles that cul-
minated in due course in the two volumes [ArD08b] and [ArD12]. A small sample
of some of the major themes are surveyed briefly in the remaining sections of
this paper. The focus will be on spectral densities Δ(μ) that meet the constraints
in (3).
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14. Entire J -inner mvf’s

A matrix J ∈ Cm×m is said to be a signature matrix, if it is both self-adjoint and
unitary with respect to the standard inner product, i.e., if

J = J∗ and J∗J = Im.

The main choices of J are

±Im, jpq =

[
Ip 0
0 −Iq

]
, jp = jpp and Jp =

[
0 −Ip
−Ip 0

]
.

The signature matrix jpq is most appropriate for problems concerned with con-
tractive mvf’s, whereas Jp is most appropriate for problems concerned with mvf’s
having a nonnegative real part, since:

if ε ∈ Cp×q, then Ip − ε∗ε ≥ 0⇐⇒
[
ε∗ Ip

] [Ip 0
0 −Iq

] [
ε
Ip

]
≤ 0;

if ε ∈ Cp×p, then ε+ ε∗ ≥ 0⇐⇒
[
ε∗ Ip

] [ 0 −Ip
−Ip 0

] [
ε

Ip

]
≤ 0.

The signature matrices Jp and jp are unitarily equivalent:

V =
1√
2

[
−Ip Ip
Ip Ip

]
=⇒ VJpV = jp and VjpV = Jp.

An m×m mvf U(λ) is said to belong to the class E ∩ U(J) of entire J-inner
mvf’s with respect to an m×m signature matrix J if

(1) U(λ) is an entire mvf.
(2) J − U(λ)JU(λ) is positive semidefinite for every point λ ∈ C+.
(3) J − U(λ)JU(λ) = 0 for every point λ ∈ R.

The last equality extends by analytic continuation to

U(λ)JU#(λ) = J for every point λ ∈ C

and thus implies further that

(4) U(λ) is invertible for every point λ ∈ C.
(5) U(λ)−1 = JU#(λ)J for every point λ ∈ C.
(6) J − U(λ)JU(λ) is negative semidefinite for every point λ ∈ C−.

15. Canonical systems

A canonical integral system is a system of integral equations of the form

u(t, λ) = u(0, λ) + iλ

∫ t

0

u(s, λ)dM(s)J, (13)

where M(s) is a continuous nondecreasing m × m mvf on [0, d] or [0,∞) with
M(0) = 0 and signature matrix J .
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In many problems M(t) =
∫ t

0
H(s)ds with H(s) ≥ 0 a.e. and at least locally

summable. Then, the integral system can be written as

u(t, λ) = u(0, λ) + iλ

∫ t

0

u(s, λ)H(s)dsJ

and the fundamental solution of this system is the m ×m continuous solution of
the integral system

U(t, λ) = Im + iλ

∫ t

0

U(s, λ)H(s)dsJ.

Then, by iterating the inequality

‖U(t, λ)‖ ≤ 1 + |λ|
∫ t

0

‖U(s, λ)‖ ‖H(s)‖ds,

it is readily checked that

‖U(t, λ)‖ ≤ exp

{
|λ|

∫ t

0

‖H(s)‖ds
}
,

and hence that U(t, λ) is an entire mvf of exponential type in the variable λ.
Moreover,

J − U(t, λ)JU(t, ω)∗

ρω(λ)
=

1

2π

∫ t

0

U(s, λ)H(s)U(s, ω)∗ds. (14)

Formula (14) implies that the kernel

KUt
ω (λ) =

⎧⎪⎨⎪⎩
J − U(t, λ)JU(t, ω)∗

ρω(λ)
for λ �= ω

1
2πi

(
∂Ut
∂λ

)
(ω) for λ = ω

is positive and hence, by the matrix version of a theorem of Aronszajn (see, e.g.,
Theorem 5.2 in [ArD08b]), there exists exactly one RKHS of m × 1 vvf’s with
KUt

ω (λ) as its RK. We shall denote this space by H(Ut).

Formula (14) also implies that

J − U(t, λ)JU(t, ω)∗ = −i(λ− ω)

∫ a

0

U(s, λ)H(s)U(s, ω)∗ds (15)

and hence that

J − U(t, ω)JU(t, ω)∗ ≥ 0 if ω ∈ C+ with equality if ω ∈ R.

Thus, Ut(λ) = U(t, λ) belongs to the class

E ∩ U◦(J) of entire J-inner mvf’s U with U(0) = Im

(in the variable λ).

Formula (15) also implies that

J − U(t, ω)JU(t, ω)∗ = 0
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and hence that Ut(ω) is invertible for every point ω ∈ C.

The spaces H(Ut) are nested:

H(Ut1) ⊆ H(Ut2) if 0 ≤ t1 ≤ t2,

but the inclusions are not necessarily isometric.

In particular, if At(λ) denotes the fundamental solution of (13) when J = Jp
and [

Et
−(λ) Et

+(λ)
]
=
√
2
[
0 Ip

]
At(λ)V,

then

√
2
[
0 Ip

]{Jp − At(λ)JpAt(ω)
∗

ρω(λ)

}√
2

[
0
Ip

]

=
√
2
[
0 Ip

]{Jp −At(λ)VjpVAt(ω)
∗

ρω(λ)

}√
2

[
0
Ip

]

=
Et

+(λ)E
t
+(ω)

∗ − Et
−(λ)E

t
−(ω)

∗

ρω(λ)
,

where

ρω(λ) = −2πi(λ− ω).

The point is that the positivity of the first kernel implies the positivity of the
second kernel and

At(0) = Im =⇒
[
Et

−(0) Et
+(0)

]
=
[
Ip Ip

]
.

Thus,
[
Et

−(λ) Et
+(λ)

]
is an entire de Branges matrix with Et

−(0) = Et
+(0) = Ip.

16. Linear fractional transformations

Let

Sp×p = {ε : ε is holomorphic in C+ and ‖s(λ)‖ ≤ 1 in C+},
denote the Schur class and

Cp×p = {τ : τ is holomorphic in C+ and �c(λ) ≥ 0 in C+}

denote the Carathéodory class.
If W ∈ U(jp), then the linear fractional transformation

TW [ε] = (w11ε+ w12)(w21ε+ w22)
−1 maps ε ∈ Sp×p �→ Sp×p,

whereas, if A ∈ U(Jp), then

TA[ε] = (a11ε+ a12)(a21ε+ a22)
−1 maps ε ∈ Cp×p �→ Cp×p,

when det{a21ε+ a22} �≡ 0 in C+.
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If A ∈ E ∩ U◦(Jp) and B(λ) = A(λ)V =

[
b11 b12
b21 b22

]
, then

TB[ε] = (b11ε+ b12)(b21ε+ b22)
−1 maps ε ∈ Sp×p �→ Cp×p, (16)

when det{b21ε+ b22} �≡ 0 in C+.

17. Subclasses of E ∩ U◦(J) with J �= ±Im

A mvf U ∈ E ∩ U◦(J) with J �= ±Im belongs to the class

US(J) of singular J-inner mvf’s if it is of minimal exponential type

UrR(J) of right regular J-inner mvf’s if it has no singular right divisors

UrsR(J) of strongly right regular J-inner mvf’s if it is

unitarily equivalent to a mvf W ∈ U(jpq) in the class

UrsR(jpq) of strongly right regular jpq-inner mvf’s if there exists a mvf

ε ∈ Sp×q such that ‖TW [ε]‖ ≤ δ < 1 .

18. A pleasing RK result

A pleasing result that was obtained early in this period (in [ArD97]) is that a mvf
U ∈ E ∩ U(J) with J �= ±Im belongs to the class

US(J)⇐⇒ H(U) ∩ Lp
2 = {0}

UrR(J)⇐⇒ H(U) ∩ Lp
2 is dense in H(U)

UrsR(J)⇐⇒ H(U) ⊂ Lp
2.

Some years later (in [ArD01]) it was discovered that if U ∈ E∩U(J), J �= ±Im
and P± = (Im ± J)/2, then

U ∈ E ∩ UrsR(J) if and only if the mvf P+ + U(μ)P−U(μ)∗ (17)

satisfies the matrix Muckenhoupt (A2) condition formulated by Treil and Volberg
in [TV97]. Chapter 10 of [ArD08b] contains characterizations of the class UrsR(J)
of J-inner mvf’s that are not necessarily entire.

This characterization of the class E ∩ UrsR(J) has a nice reformulation
([ArD??]) that rests on the observation that

F(λ) =
[
F−(λ) F+(λ)

]
=
[
U(λ)P+ + P− U(λ)P− + P+

]
,

is a de Branges matrix that is related to the mvf in (17) by the formula

F+(μ)F+(μ)
∗ = P+ + U(μ)P−U(μ)∗.
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Moreover,

f ∈ H(U)⇐⇒ f ∈ B(F)⇐⇒ F−1
+ f ∈ Hm

2 and (F−1
− f) ∈ (Hm

2 )⊥

and

‖f‖2H(U) =

∫ ∞

−∞
f(μ)∗ {F+(μ)F+(μ)

∗}−1
f(μ)dμ,

which exhibits the role of the mvf P+ + U(μ)P−U(μ)∗ in the calculation of the
norm in H(U).

19. A simple inverse monodromy problem

The given data for the inverse monodromy problem is a mvf U ∈ E ∩ U(J) with
U(0) = Im.

The objective is to find an m×m mvf H(t) on [0, d] such that

(1) H(t) ≥ 0, H ∈ Lm×m
1 ([0, d]) and traceH(t) = 1 a.e. on [0, d]

(2) U(λ) = Ud(λ), where

Ut(λ) = Im + iλ

∫ d

0

Us(λ)H(s)dsJ. (18)

The existence of a solution to this problem is guaranteed by a theorem of
Potapov (see, e.g., pp. 182–184 in [ArD08b] ). Moreover, it follows easily from (18)
that

Ut(0) = Im and
Ud(λ)− Im

iλ
J =

∫ d

0

Us(λ)H(s)ds

and hence that

d = trace

{
−i

(
dUd

dλ

)
(0)J

}
.

In general H(t) is not unique unless other constraints are imposed.

If, for example, m = p+ q and p = q = 1,

J = j11, W (λ) =

[
eiλa1 0
0 e−iλa2

]
with a1 ≥ 0, a2 ≥ 0, a1 + a2 > 0,

then d = a1 + a2. Thus, if H(t) is a solution of the inverse monodromy problem
for the given W , then the fundamental solution

Wt(λ) = Im + iλ

∫ t

0

Ws(λ)H(s)dsj11 for t ∈ [0, d],

must be of the form

Wt(λ) =

[
eiλϕ1(t) 0

0 e−iλϕ2(t)

]
.

Consequently,

−i
(

∂

∂λ
Wt

)
(0)j11 =

[
ϕ1(t) 0
0 ϕ2(t)

]
=

∫ t

0

H(s)ds.
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Thus, ϕ1 and ϕ2 are absolutely continuous and

H(t) =

[
ϕ′
1(t) 0
0 ϕ′

2(t)

]
.

These functions are subject to the constraint

ϕ′
1(t) + ϕ′

2(t) = traceH(t) = 1, (19)

but are otherwise completely arbitrary, i.e., no uniqueness.

A theorem of de Branges (see [Br68] for the original proof, [DMc76] for an
adaptation of de Branges’ proof and Theorem 8.3 in [ArD12]) guarantees there
is exactly one real-valued solution H(t) under the added assumption that given
monodromy matrix W (λ) is symplectic, i.e.,[

w11 w21

w12 w22

] [
0 −1
1 0

] [
w11 w12

w21 w22

]
=

[
0 −1
1 0

]
.

This extra assumption forces ϕ1(t) = ϕ2(t) and hence (19) reduces to

ϕ′
1(t) = ϕ′

2(t) = 1/2

and thus, there is only one solution H(t) of this problem.

de Branges’ theorem is not applicable if m > 2. To at least sense the added
complexity when m = p+ q, q ≥ 1 and p > 1, it is perhaps helpful to observe that
if a ≥ 0, then eiaλ is the only entire inner function of exponential type a, whereas
if p = 2, then [

eiaλ 0
0 eibλ

]
is an entire inner mvf of exponential type a for every b ∈ [0, a].

To overcome this difficulty, in our formulation of the inverse monodromy
problem with Dima, we associate a pair of inner functions b1 of size p× p and b2
of size q × q, p + q = m, with the given monodromy matrix W ∈ E ∩ U(jpq) and
specify a chain of inner divisors {bt1, bt2} of {b1, b2} for t ∈ [0, d] in addition to W ;
see Chapter 8 of [ArD12] for details.

20. Helical extension problems

If α = α∗ ∈ Cp×p and Δ(μ) meets the constraints in (3), then it is readily checked
that the mvf

g
(α)
Δ (t) =

⎧⎨⎩ itα+
1

π

∫ ∞

−∞

{
e−iμt − 1 +

iμt

1 + μ2

}
Δ(μ)

μ2
dμ for t �= 0

0 for t = 0

enjoys the following properties:
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(1) g
(α)
Δ (t) is continuous on R.

(2) g
(α)
Δ (−t) =

{
g
(α)
Δ (t)

}∗
.

(3) g
(α)
Δ (t− s)− g

(α)
Δ (t)− g

(α)
Δ (−s) + g

(α)
Δ (0)

=
1

π

∫ ∞

−∞

(
e−iμt − 1

μ

)
Δ(μ)

(
eiμs − 1

μ

)
Ipds

Consequently, g
(α)
Δ (t) belongs to the class

Gp×p
∞ (0) of continuous p× p mvf’s g(t) on R with g(0) ≤ 0 and g(−t) = g(t)∗

such that the kernel

k(t, s) = g(t− s)− g(t)− g(−s) + g(0)

is positive in the sense of (4). The mvf’s in Gp×p
∞ (0) are called helical mvf’s.

The helical extension problem

HEP(g
(α)
Δ ; a) is to describe the set

{g ∈ Gp×p
∞ (0) : g(t) = g

(α)
Δ (t) for |t| ≤ a}.

Because of the constraints imposed on Δ in (3), this is a completely indeterminate
extension problem. This means that for each vector v ∈ Cp there exists at least
one mvf g ∈ Gp×p

∞ (0) such that

(g(t)− g
(α)
Δ (t))v �≡ 0.

Moreover, the fact that this problem is completely indeterminate guarantees that
for each a ∈ (0,∞) there is a natural way to specify a mvf Aa ∈ E ∩ U(Jp)
such that the linear fractional transformation TBa [ε] based on Ba(λ) = Aa(λ)V
that is defined by formula (16) maps {ε : ε ∈ Sp×p} onto a set of mvf’s in the
Carathéodory class Cp×p which is in one to one correspondence with the set of

solutions of the HEP(g
(α)
Δ ; a). Moreover, if Ad ∈ E ∩UrsR(Jp) for some d ∈ (0,∞),

then:

(1) The family {Aa}, 0 ≤ a ≤ d, is the fundamental solution of a canonical
integral system.

(2) The de Branges spaces B(Ea) based on the de Branges matrices

Ea(λ) =
√
(2)

[
0 Ip

]
Aa(λ)V

coincide with the spaces Z [0,a](Δ) for 0 ≤ a ≤ d.

(3) The orthogonal projection ΠZ[0,a]f of f ∈ Z [0,d](Δ) onto Z [0,a](Δ) is given
by the formula

(ΠZ[0,a]f)(ω) =

∫ ∞

−∞
KEa

μ (ω)Δ(μ)f(μ). (20)
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21. A reformulation in the Carathéodory class

The formula

c(λ) = λ2

∫ ∞

0

eiλtg(t)dt for λ ∈ C+

defines a 1:1 transformation from the class of helical mvf’s g ∈ Gp×p
∞ (0) onto mvf’s

c in the Carathéodory class Cp×p, i.e., from mvf’s of the form

g(t) =

⎧⎨⎩ −β + itα+ 1
π

∫∞
−∞

{
e−iμt − 1 +

iμt

1 + μ2

}
dσ(μ)
μ2 for t ∈ R \ {0}

0 for t = 0

with α = α∗ ∈ Cp×p, β ∈ Cp×p, β ≥ 0 and a nondecreasing p × p mvf σ that is
subject to the constraint ∫ ∞

−∞

d traceσ(μ)

1 + μ2
<∞ (21)

onto mvf’s of the form

c(λ) = iα− iλβ +
1

πi

∫ ∞

−∞

{
1

μ− λ
− μ

1 + μ2

}
dσ(μ) for λ ∈ C+,

with the same α, β and σ as for g(t). Consequently, helical extension problems can
be reformulated as extension problems in the Carathéodory class. See [ArD12] for
additional details and generalizations, and [ArD08a] for a short survey. (The latter
may be downloaded free from MSRI.) The general strategy of identifying the resol-
vent matrices of appropriately defined extension problems with the fundamental
solutions of integral or differential systems originates with M.G. Krein.
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Abstract. We prove that every matrix-valued rational function F , which is
regular on the closure of a bounded domain DP in C

d and which has the asso-
ciated Agler norm strictly less than 1, admits a finite-dimensional contractive
realization

F (z) = D + CP(z)n(I −AP(z)n)
−1B.

Here DP is defined by the inequality ‖P(z)‖ < 1, where P(z) is a direct sum
of matrix polynomials Pi(z) (so that an appropriate Archimedean condition

is satisfied), and P(z)n =
⊕k

i=1 Pi(z)⊗ Ini , with some k-tuple n of multiplic-
ities ni; special cases include the open unit polydisk and the classical Cartan
domains. The proof uses a matrix-valued version of a Hermitian Positivstel-
lensatz by Putinar, and a lurking contraction argument. As a consequence,
we show that every polynomial with no zeros on the closure of DP is a factor
of det(I −KP(z)n), with a contractive matrix K.
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1. Introduction

It is well known (see [5, Proposition 11]) that every rational matrix function that
is contractive on the open unit disk D = {z ∈ C : |z| < 1} can be realized as

F (z) = D + zC(I − zA)−1B, (1.1)

with a contractive (in the spectral norm) colligation matrix [A B
C D ]. In several vari-

ables, a celebrated result of Agler [1] gives the existence of a realization of the
form

F (z) = D + CZX (I −AZX )−1B, ZX =

d⊕
i=1

ziIXi , (1.2)

where z = (z1, . . . , zd) ∈ Dd and the colligation [A B
C D ] is a Hilbert-space unitary

operator (with A acting on the orthogonal direct sum of Hilbert spaces X1, . . . ,Xd),
for F an operator-valued function analytic on the unit polydisk Dd whose Agler
norm

‖F‖A = sup
T∈T

‖F (T )‖ ≤ 1.

Here T is the set of d-tuples T = (T1, . . . , Td) of commuting strict contractions on
a Hilbert space. Such functions constitute the Schur–Agler class.

Agler’s result was generalized to polynomially defined domains in [3, 6]. Given
a d-variable �×m matrix polynomial P, let

DP = {z ∈ C
d : ‖P(z)‖ < 1},

and let TP be the set of d-tuples T of commuting bounded operators on a Hilbert
space satisfying ‖P(T )‖ < 1. Important special cases are:

1. When � = m = d and P(z) = diag[z1, . . . , zd], the domain DP is the unit
polydisk Dd, and TP = T is the set of d-tuples of commuting strict contrac-
tions.

2. When d = �m, z = (zrs), r = 1, . . . , �, s = 1, . . . ,m, P(z) = [zrs], the domain
DP is a matrix unit ball a.k.a. Cartan’s domain of type I. In particular,

if � = 1, then DP = Bd = {z ∈ Cd :
∑d

i=1 |zi|2 < 1} and TP consists of
commuting strict row contractions T = (T1, . . . , Td).

3. When � = m, d = m(m+1)/2, z = (zrs), 1 ≤ r ≤ s ≤ m, P(z) = [zrs], where
for r > s we set zrs = zsr, and the domain DP is a (complex) symmetric
matrix unit ball a.k.a. Cartan’s domain of type II.

4. When � = m, d = m(m−1)/2, z = (zrs), 1 ≤ r < s ≤ m, P(z) = [zrs], where
for r > s we set zrs = −zsr, and zrr = 0 for all r = 1, . . . ,m. The domain
DP is a (complex) skew-symmetric matrix unit ball a.k.a. Cartan’s domain
of type III.
We notice that Cartan domains of types IV-VI can also be represented as
DP, with a linear P.

For T ∈ TP, the Taylor joint spectrum σ(T ) [20] lies in DP (see [3, Lemma
1]), and therefore for an operator-valued function F analytic on DP one defines
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F (T ) by means of Taylor’s functional calculus [21] and

‖F‖A,P := sup
T∈TP

‖F (T )‖.

We say that F belongs to the operator-valued Schur–Agler class associated with P,
denoted by SAP(U ,Y) if F is analytic on DP, takes values in the space L(U ,Y)
of bounded linear operators from a Hilbert space U to a Hilbert space Y, and
‖F‖A,P ≤ 1.

The generalization of Agler’s theorem mentioned above that has appeared
first in [3] for the scalar-valued case and extended in [6] to the operator-valued
case, says that a function F belongs to the Schur–Agler class SAP(U ,Y) if and
only if there exists a Hilbert space X and a unitary colligation[

A B
C D

]
: (Cm ⊗X )⊕ U → (C� ⊗ X )⊕ Y

such that

F (z) = D + C(P(z)⊗ IX )
(
I −A(P(z)⊗ IX )

)−1

B. (1.3)

If the Hilbert spaces U and Y are finite-dimensional, F can be treated as a
matrix-valued function (relative to a pair of orthonormal bases for U and Y). It is
natural to ask whether every rational α× β matrix-valued function in the Schur–
Agler class SAP(C

β ,Cα) has a realization (1.3) with a contractive colligation
matrix [ A B

C D ]. This question is open, unless when d = 1 or F is an inner (i.e., taking

unitary boundary values a.e. on the unit torus Td = {z = (z1, . . . , zd) ∈ Cd : |zi| =
1, i = 1, . . . , d}) matrix-valued Schur–Agler function on D

d. In the latter case, the
colligation matrix can be chosen unitary; see [13] for the scalar-valued case, and [7,
Theorem 2.1] for the matrix-valued generalization. We notice here that not every
inner function is Schur–Agler; see [9, Example 5.1] for a counterexample.

In the present paper, we show that finite-dimensional contractive realizations
of a rational matrix-valued function F exist when F is regular on the closed do-

main DP and the Agler norm ‖F‖A,P is strictly less than 1 if P =
⊕k

i=1 Pi and
the matrix polynomials Pi satisfy a certain natural Archimedean condition. The
proof has two ingredients: a matrix-valued version of a Hermitian Positivstellen-
satz [17] (see also [12, Corollary 4.4]), and a lurking contraction argument. For
the first ingredient, we introduce the notion of a matrix system of Hermitian qua-
dratic modules and the Archimedean property for them, and use the hereditary
functional calculus for evaluations of a Hermitian symmetric matrix polynomial
on d-tuples of commuting operators on a Hilbert space. For the second ingredient,
we proceed similarly to the lurking isometry argument [1, 8, 3, 6], except that we
are constructing a contractive matrix colligation instead of a unitary one.

We then apply this result to obtain a determinantal representation det(I −
KPn), where K is a contractive matrix and Pn =

⊕k
i=1(Pi ⊗ Ini), with some k-

tuple n = (n1, . . . , nk) of nonnegative integers
1, for a multiple of every polynomial

1We use the convention that if ni = 0 then the corresponding direct summand for Pn is void.
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which is strongly stable on DP. (We recall that a polynomial is called stable with
respect to a given domain if it has no zeros in the domain, and strongly stable
if it has no zeros in the domain closure.) The question of existence of such a
representation for a strongly stable polynomial (without multiplying it with an
extra factor) on a general domain DP is open.

When DP is the open unit polydisk Dd, the representation takes the form

det(I − KZn), where Zn =
⊕d

i=1 ziIni , n = (n1, . . . , nd) ∈ Zd
+ (see our earlier

work [9, 10]). In the cases of D and D2, a contractive determinantal representation
of a given stable polynomial always exists; see [16, 10]. It also exists in the case of
multivariable linear functions that are stable on D

d, d = 1, 2, . . . [9]. In addition,
we showed recently in [11] that in the matrix poly-ball case (a direct sum of Cartan
domains of type I) a strongly stable polynomial always has a strictly contractive
realization.

The paper is organized as follows. In Section 2, we prove a matrix-valued
version of a Hermitian Positivstellensatz. We then use it in Section 3 to establish
the existence of contractive finite-dimensional realizations for rational matrix func-
tions from the Schur–Agler class. In Section 4, we study contractive determinantal
representations of strongly stable polynomials.

2. Positive matrix polynomials

In this section, we extend the result [12, Corollary 4.4] to matrix-valued polyno-
mials. We will write A ≥ 0 (A > 0) when a Hermitian matrix (or a self-adjoint
operator on a Hilbert space) A is positive semidefinite (resp., positive definite).
For a polynomial with complex matrix coefficients

P (w, z) =
∑
λ, μ

Pλμw
λzμ,

where w = (w1, . . . , wd), z = (z1, . . . , zd), and wλ = wλ1

1 · · ·wλd

d , we define

P (T ∗, T ) :=
∑
λ, μ

Pλμ ⊗ T ∗λT μ,

where T = (T1, . . . , Td) is a d-tuple of commuting operators on a Hilbert space.
We will prove that P belongs to a certain Hermitian quadratic module determined
by matrix polynomials P1, . . . , Pk in w and z when the inequalities Pj(T

∗, T ) ≥ 0
imply that P (T ∗, T ) > 0.

We denote by C[z] the algebra of d-variable polynomials with complex coef-
ficients, and by Cβ×γ [z] the module over C[z] of d-variable polynomials with the
coefficients in C

β×γ . We denote by C
γ×γ [w, z]h the vector space over R consisting

of polynomials in w and z with coefficients in Cγ×γ satisfying Pλμ = P ∗
μλ, i.e.,

those whose matrix of coefficients is Hermitian. If we denote by P ∗(w, z) a poly-
nomial in w and z with the coefficients Pλμ replaced by their adjoints P ∗

λμ, then

the last property means that P ∗(w, z) = P (z, w).
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We will say that M = {Mγ}γ∈N is a matrix system of Hermitian quadratic
modules over C[z] if the following conditions are satisfied:

1. For every γ ∈ N, Mγ is an additive subsemigroup of Cγ×γ [w, z]h, i.e., Mγ +
Mγ ⊆ Mγ .

2. 1 ∈ M1.
3. For every γ,γ′∈N, P ∈Mγ , and F ∈Cγ×γ′

[z], one has F ∗(w)P (w,z)F (z)∈
Mγ′ .

We notice that {Cγ×γ[w, z]h}γ∈N is a trivial example of a matrix system of Her-
mitian quadratic modules over C[z].

Remark 2.1. We first observe that A ∈ Mγ if A ∈ Cγ×γ is such that A = A∗ ≥ 0.
Indeed, using (2) and letting P = 1 ∈ M1 and F be a constant row of size γ
in (3), we obtain that 0γ×γ ∈ Mγ and that every constant positive semidefinite
γ × γ matrix of rank 1 belongs to Mγ , and then use (1). In particular, we obtain
that Iγ ∈ Mγ . Together with (2) and (3) with γ′ = γ, this means that Mγ is a
Hermitian quadratic module (see, e.g., [19] for the terminology).

We also observe that, for each γ, Mγ is a cone, i.e., it is invariant under
addition and multiplication with positive scalars.

Finally, we observe that M respects direct sums, i.e., Mγ ⊕Mγ′ ⊆ Mγ+γ′.
In order to see this we first embed Mγ and Mγ′ into Mγ+γ′ by using (3) with
P ∈ Mγ , F = [Iγ 0γ×γ′] and P ′ ∈ Mγ′ , F ′ = [0γ′×γ Iγ′ ], and then use (1).

The following lemma generalizes [19, Lemma 6.3].

Lemma 2.2. Let M be a matrix system of Hermitian quadratic modules over C[z].
The following statements are equivalent:

(i) For every γ ∈ N, Iγ is an algebraic interior point of Mγ, i.e., RIγ +Mγ =
Cγ×γ [w, z]h.

(ii) 1 is an algebraic interior point of M1, i.e., R+M1 = C[w, z]h.
(iii) For every i = 1, . . . , d, one has −wizi ∈ R+M1.

A matrix system M = {Mγ}γ∈N of Hermitian quadratic modules over C[z]
that satisfies any (and hence all) of properties (i)–(iii) in Lemma 2.2 is called
Archimedean.

Proof. (i) ⇒ (ii) is trivial.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i). Let Aγ = {F ∈ Cγ×γ[z] : − F ∗(w)F (z) ∈ RIγ +Mγ}. It suffices
to prove that Aγ = Cγ×γ[z] for all γ ∈ N. Indeed, any P ∈ Cγ×γ [w, z]h can be
written as

P (w, z) =
∑
λ,μ

Pλμw
λzμ = rowλ[w

λIγ ][Pλμ] colμ[z
μIγ ]

= rowλ[w
λIγ ][A

∗
λAμ −B∗

λBμ] colμ[z
μIγ ] = A∗(w)A(z) −B∗(w)B(z),



128 Grinshpan, Kaliuzhnyi-Verbovetskyi, Vinnikov and Woerdeman

where
A(z) =

∑
μ

Aμz
μ ∈ C

γ×γ [z], B(z) =
∑
μ

Bμz
μ ∈ C

γ×γ [z].

If −B∗(w)B(z) ∈ RIγ +Mγ , then so is P (w, z) = A∗(w)A(z) −B∗(w)B(z).
By the assumption, zi ∈ A1 for all i = 1, . . . , d. We also have that Cγ×γ ∈ Aγ

for every γ ∈ N. Indeed, given B ∈ Cγ×γ , we have that ‖B‖2Iγ − B∗B ≥ 0. By
Remark 2.1 we obtain that ‖B‖2Iγ−B∗B ∈ Mγ , therefore −B∗B ∈ RIγ +Mγ . It
follows that Aγ = Cγ×γ [z] for all γ ∈ N if A1 is a ring over C and Aγ is a module
over C[z]. We first observe from the identity

(F ∗(w) +G∗(w))(F (z) +G(z)) + (F ∗(w) −G∗(w))(F (z) −G(z))

= 2(F ∗(w)F (z) +G∗(w)G(z))

for F,G ∈ Aγ that

− (F ∗(w) +G∗(w))(F (z) +G(z))

= −2(F ∗(w)F (z) +G∗(w)G(z)) + (F ∗(w) −G∗(w))(F (z) −G(z)) ∈ RIγ +Mγ ,

hence F + G ∈ Aγ . Next, for F ∈ Aγ and g ∈ A1 we can find positive scalars a
and b such that aIγ − F ∗(w)F (z) ∈ Mγ and b− g∗(w)g(z) ∈ M1. Then we have

abIγ − (g∗(w)F ∗(w))(g(z)F (z))

= b(aIγ − F ∗(w)F (z)) + F ∗(w)
(
(b− g(w)∗g(z))Iγ

)
F (z) ∈ Mγ ,

Therefore gF ∈ Aγ . Setting γ = 1, we first conclude that A1 is a ring over C, thus
A1 = C[z]. Then, for an arbitrary γ ∈ N, we conclude that Aγ is a module over
C[z], thus Aγ = Cγ×γ [z]. �

Starting with polynomials Pj ∈ C
γj×γj [w, z]h, we introduce the sets Mγ ,

γ ∈ N, consisting of polynomials P ∈ Cγ×γ [w, z]h for which there exist Hj ∈
Cγjnj×γ [z], for some nj ∈ N, j = 0, . . . , k, such that

P (w, z) = H∗
0 (w)H0(z) +

k∑
j=1

H∗
j (w)(Pj(w, z)⊗ Inj )Hj(z). (2.1)

Here γ0 = 1. We also assume that there exists a constant c > 0 such that c−wizi ∈
M1 for every i = 1, . . . , d. Then M = MP1,...,Pk

= {Mγ}γ∈N is an Archimedean
matrix system of Hermitian quadratic modules generated by P1, . . . , Pk. It follows
from Lemma 2.2 that eachMγ is a convex cone in the real vector space Cγ×γ [w, z]h
and Iγ is an interior point in the finite topology (where a set is open if and only if its
intersection with any finite-dimensional subspace is open; notice that a Hausdorff
topology on a finite-dimensional topological vector space is unique).

We can now state the main result of this section.

Theorem 2.3. Let Pj ∈ Cγj×γj [w, z], j = 1, . . . , k. Suppose there exists c > 0 such
that c2 − wizi ∈ M1, for all i = 1, . . . , d. Let P ∈ Cγ×γ[w, z] be such that for
every d-tuple T = (T1, . . . , Td) of Hilbert space operators satisfying Pj(T

∗, T ) ≥ 0,
j = 1, . . . , k, we have that P (T ∗, T ) > 0. Then P ∈ Mγ.
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Proof. Suppose that P �∈ Mγ . By Lemma 2.2, Iγ ± εP ∈ Mγ for ε > 0 small
enough. By the Minkowski–Eidelheit–Kakutani separation theorem (see, e.g., [14,
Section 17]), there exists a linear functional L on Cγ×γ [w, z]h nonnegative on Mγ

such that L(P ) ≤ 0 < L(Iγ). For A ∈ C1×γ [z] we define

〈A,A〉 = L(A∗(w)A(z)).

We extend the definition by polarization:

〈A,B〉 = 1

4

3∑
r=0

ir〈A+ irB,A+ irB〉.

We obtain that (C1×γ [z], 〈·, ·〉) is a pre-Hilbert space. Let H be the Hilbert space
completion of the quotient space C1×γ [z]/{A : 〈A,A〉 = 0}. Note that H is non-
trivial since L(Iγ) > 0.

Next we define multiplication operators Mzi , i = 1, . . . , d, on H. We define
Mzi first on the pre-Hilbert space via Mzi(A(z)) = ziA(z). Suppose that 〈A,A〉 =
0. Since c2 − wizi ∈ M1, it follows that A∗(w)(c2 − wizi)A(z) ∈ Mγ . Since L is
nonnegative on the cone Mγ , we have

0 ≤ L(A∗(w)(c2 − wizi)A(z))

= c2〈A,A〉 − 〈Mzi(A),Mzi(A)〉 = −〈Mzi(A),Mzi(A)〉.

Thus, 〈Mzi(A),Mzi(A)〉 = 0, yielding that Mzi can be correctly defined on the
quotient space. The same computation as above also shows that ‖Mzi‖ ≤ c on
the quotient space, and then by continuity this is true on H. Thus we obtain
commuting bounded multiplication operators Mzi, i = 1, . . . , d, on H.

Next, let us show that

Pj(M
∗,M) ≥ 0, j = 1, . . . , k,

where M = (Mz1 , . . . ,Mzd). Let h = [hr]
γj

r=1 ∈ C
γj ⊗H, and moreover assume that

hr are elements of the quotient space C1×γ [z]/{A : 〈A,A〉 = 0} (which is dense in
H). We will denote a representative of the coset hr in C1×γ [z] by hr(z) with a
hope that this will not cause a confusion. Let us compute 〈Pj(M

∗,M)h, h〉. We
have

Pj(w, z) =
∑
λ, μ

P
(j)
λμ wλzμ, P

(j)
λμ = [P

(j;r,s)
λμ ]

γj

r,s=1.

Then

Pj(M
∗,M) =

∑
λ, μ

[P
(j;r,s)
λμ M∗λMμ]

γj

r,s=1.

Now 〈
Pj(M

∗,M)h, h
〉
=

γj∑
r, s=1

〈∑
λ, μ

P
(j;r,s)
λμ M∗λMμhr, hs

〉
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=

γj∑
r, s=1

∑
λ, μ

P
(j;r,s)
λμ

〈
Mμhr,M

λhs

〉

=

γj∑
r, s=1

∑
λ, μ

P
(j;r,s)
λμ L

(
h∗
s(w)w

λzμhr(z)
)

= L
( γj∑

r,s=1

h∗
s(w)

(∑
λ, μ

P
(j;r,s)
λμ wλzμ

)
hr(z)

)

= L(h∗(w)Pj(w, z)h(z)),

which is nonnegative since h∗(w)Pj(w, z)h(z) ∈ Mγ .

By the assumption on P we now have that P (M∗,M) > 0. By a calculation
similar to the one in the previous paragraph, we obtain that

L(h∗(w)P (w, z)h(z)) > 0 for all h �= 0.

Choose now h(z) ≡ Iγ ∈ Cγ×γ [z], and we obtain that L(P ) > 0. This contradicts
the choice of L. �

3. Finite-dimensional contractive realizations

In this section, we assume that P(z) =
⊕k

i=1 Pi(z), where Pi are polynomials
in z = (z1, . . . , zd) with �i × mi complex matrix coefficients, i = 1, . . . , k. Then,
clearly, DP is a cartesian product of the domains DPi . Next, we assume that every
d-tuple T of commuting bounded linear operators on a Hilbert space, satisfying
‖P(T )‖ ≤ 1 is a norm limit of elements of TP. We also assume that the polyno-
mials Pi(w, z) = Imi −P∗

i (w)Pi(z), i = 1, . . . , k, generate an Archimedean matrix
system of Hermitian quadratic modules over C[z]. This in particular means that
the domain DP is bounded, because for some c > 0 we have c2−wizi ∈ M1 which
implies that c2− |zi| ≥ 0, i = 1, . . . , d, when z ∈ DP. We notice that in the special
cases (1)–(4) in Section 1, the Archimedean condition holds.

We recall that a polynomial convex hull of a compact setK ⊆ C
d is defined as

the set of all points z ∈ Cd such that |p(z)| ≤ maxw∈K |p(w)| for every polynomial
p ∈ C[z]. A set in Cd is called polynomially convex if it agrees with its polynomial
convex hull.

Lemma 3.1. DP is polynomially convex.

Proof. We first observe that DP is closed and bounded, hence compact. Next, if
z ∈ Cd is in the polynomial convex hull of DP, then for all unit vectors g ∈ C�

and h ∈ Cm, one has

|g∗P(z)h| ≤ max
w∈DP

|g∗P(w)h| ≤ max
w∈DP

‖P(w)‖ ≤ 1.
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Then
‖P(z)‖ = max

‖g‖=‖h‖=1
|g∗P(z)h| ≤ 1,

therefore z ∈ DP. �
Lemma 3.2. There exists a d-tuple Tmax of commuting bounded linear operators
on a separable Hilbert space satisfying ‖P(Tmax)‖ ≤ 1 and such that

‖q(Tmax)‖ = ‖q‖A,P

for every polynomial q ∈ C[z].

Proof. The proof is exactly the same as the one suggested in [18, Page 65 and
Exercise 5.6] for the special case of commuting contractions and the Agler norm
‖·‖A associated with the unit polydisk, see the first paragraph of Section 1. Notice
that the boundedness of DP guarantees that ‖q‖A,P < ∞ for every polynomial q.

�
Lemma 3.3. Let F be an α × β matrix-valued function analytic on DP. Then
‖F‖A,P < ∞.

Proof. Since F is analytic on some open neighborhood of the set DP which by
Lemma 3.1 is polynomially convex, by the Oka–Weil theorem (see, e.g., [2, Theo-
rem 7.3]) for each scalar-valued function Fij there exists a sequence of polynomials

Q
(n)
ij ∈ Cα×β[z], n ∈ N, which converges to Fij uniformly on DP. Therefore the

sequence of matrix polynomials Q(n) = [Q
(n)
ij ], n ∈ N, converges to F uniformly

on DP. Let T be any d-tuple of commuting bounded linear operators on a Hilbert
space with the Taylor joint spectrum in DP. By [3, Lemma 1], the Taylor joint
spectrum of T lies in the closed domain DP where F is analytic. By the continuity
of Taylor’s functional calculus [21], we have that

F (T ) = lim
n

Q(n)(T ).

Using Lemma 3.2, we obtain that the limit

lim
n

‖Q(n)‖A,P = lim
n

‖Q(n)(Tmax)‖ = ‖F (Tmax)‖

exists and

‖F‖A,P = sup
T∈TP

‖F (T )‖ = sup
T∈TP

lim
n

‖Q(n)(T )‖

≤ lim
n

‖Q(n)(Tmax)‖ = ‖F (Tmax)‖ < ∞. �

Theorem 3.4. Let F be a rational α × β matrix function regular on DP and with
‖F‖A,P < 1. Then there exists n = (n1, . . . , nk) ∈ Zk

+ and a contractive colligation

matrix [A B
C D ] of size (

∑k
i=1 nimi + α)× (

∑k
i=1 ni�i + β) such that

F (z) = D + CP(z)n(I −AP(z)n)
−1B, P(z)n =

k⊕
i=1

(Pi(z)⊗ Ini).
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Proof. Let F = QR−1 with detR nonzero on DP and let ‖F‖A,P < 1. Then we
have

R(T )∗R(T )−Q(T )∗Q(T ) ≥ (1− ‖F‖2A,P)R(T )∗R(T ) ≥ ε2I (3.1)

for every T ∈ TP with some ε > 0. Indeed, the rational matrix function R−1 is
regular on DP. By Lemma 3.3 ‖R−1‖A,P < ∞. Since ‖R(T )‖‖R−1(T )‖ ≥ 1, we
obtain

‖R(T )‖ ≥ ‖R−1(T )‖−1 ≥ ‖R−1‖−1
A,P > 0,

which yields the estimate (3.1).
By Theorem 2.3 there exist n0, . . . , nk ∈ Z+ and polynomials Hi with coef-

ficients in Cnimi×β , i = 0, . . . , k, (where we set m0 = 1) such that by (2.1) we
obtain

R∗(w)R(z)−Q∗(w)Q(z)

= H∗
0 (w)H0(z) +

k∑
i=1

H∗
i (w)

(
(I −P∗

i (w)Pi(z))⊗ Ini

)
Hi(z).

(3.2)

Denote

v(z) =

⎡
⎢⎢⎢⎣
(P1(z)⊗ In1)H1(z)

...
(Pk(z)⊗ Ink

)Hk(z)
R(z)

⎤
⎥⎥⎥⎦ ∈ C

(
∑k

i=1 �ini+β)×β[z],

x(z) =

⎡
⎢⎢⎢⎣
H1(z)

...
Hk(z)
Q(z)

⎤
⎥⎥⎥⎦ ∈ C

(
∑k

i=1 mini+α)×β [z].

Then we may rewrite (3.2) as

v∗(w)v(z) = H∗
0 (w)H0(z) + x∗(w)x(z). (3.3)

Let us define

V = span{v(z)y : z ∈ C
d, y ∈ C

β}, X = span{x(z)y : z ∈ C
d, y ∈ C

β},

and let {v(z(1))y(1), . . . , v(z(ν))y(ν)} be a basis for V ⊆ C
∑k

i=1 �ini+β .

Claim 1. If v(z)y =
∑ν

i=1 aiv(z
(i))y(i), then

x(z)y =

ν∑
i=1

aix(z
(i))y(i).

Indeed, this follows from

0 =

⎡
⎢⎢⎢⎣

y
−a1y

(1)

...

−aνy
(ν)

⎤
⎥⎥⎥⎦

∗ ⎡
⎢⎢⎢⎣

v(z)∗

v(z(1))∗

...

v(z(ν))∗

⎤
⎥⎥⎥⎦
[
v(z) v(z(1)) . . . v(z(ν))

]
⎡
⎢⎢⎢⎣

y
−a1y

(1)

...

−aνy
(ν)

⎤
⎥⎥⎥⎦
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=

⎡
⎢⎢⎢⎣

y
−a1y

(1)

...

−aνy
(ν)

⎤
⎥⎥⎥⎦

∗ ⎡
⎢⎢⎢⎣

H0(z)
∗ x(z)∗

H0(z
(1))∗ x(z(1))∗

...
...

H0(z
(ν))∗ x(z(ν))∗

⎤
⎥⎥⎥⎦

×
[
H0(z) H0(z

(1)) · · · H0(z
(ν))

x(z) x(z(1)) . . . x(z(ν))

]
⎡
⎢⎢⎢⎣

y
−a1y

(1)

...

−aνy
(ν)

⎤
⎥⎥⎥⎦ ,

where we used (3.3). This yields

[
H0(z) H0(z

(1)) · · · H0(z
(ν))

x(z) x(z(1)) . . . x(z(ν))

]
⎡
⎢⎢⎢⎣

y

−a1y
(1)

...
−aνy

(ν)

⎤
⎥⎥⎥⎦ = 0,

and thus in particular x(z)y =
∑ν

i=1 aix(z
(i))y(i).

We now define S : V → X via Sv(z(i))y(i) = x(z(i))y(i), i = 1, . . . , ν. By
Claim 1,

Sv(z)y = x(z)y for all z ∈
k⊕

j=1

C
�j×mj and y ∈ C

β. (3.4)

Claim 2. S is a contraction. Indeed, let v =
∑ν

i=1 aiv(z
(i))y(i) ∈ V . Then Sv =∑ν

i=1 aix(z
(i))y(i), and we compute, using (3.3) in the second equality,

‖v‖2 − ‖Sv‖2 =

⎡
⎢⎣
a1y

(1)

...

aνy
(ν)

⎤
⎥⎦
∗ ⎡
⎢⎣
v(z(1))∗

...

v(z(ν))∗

⎤
⎥⎦ [

v(z(1)) . . . v(z(ν))
]
⎡
⎢⎣
a1y

(1)

...

aνy
(ν)

⎤
⎥⎦

−

⎡
⎢⎣
a1y

(1)

...

aνy
(ν)

⎤
⎥⎦
∗ ⎡
⎢⎣
x(z(1))∗

...

x(z(ν))∗

⎤
⎥⎦ [

x(z) x(z(1)) . . . x(z(ν))
]
⎡
⎢⎣
a1y

(1)

...

aνy
(ν)

⎤
⎥⎦

=

⎡
⎢⎣
a1y

(1)

...
aνy

(ν)

⎤
⎥⎦
∗ ⎡
⎢⎣
H0(z

(1))∗

...
H0(z

(ν))∗

⎤
⎥⎦ [

H0(z
(1)) · · · H0(z

(ν))
]
⎡
⎢⎣
a1y

(1)

...
aνy

(ν)

⎤
⎥⎦ ≥ 0,

proving Claim 2.

Extending S to the contraction Sext = [A B
C D ] : C

∑k
i=1 �ini+β → C

∑k
i=1 mini+α

by setting Sext|V⊥ = 0, we now obtain from (3.4) that

AP(z)nH(z) +BR(z) = H(z), CP(z)nH(z) +DR(z) = Q(z).



134 Grinshpan, Kaliuzhnyi-Verbovetskyi, Vinnikov and Woerdeman

Eliminating H(z), we arrive at

(D + CP(z)n(I −AP(z)n)
−1B)R(z) = Q(z),

yielding the desired realization for F = QR−1. �

The following statement is a special case of Theorem 3.4.

Corollary 3.5. Let F be a rational matrix function regular on the closed bidisk D2

such that

‖F‖∞ = sup
(z1,z2)∈D2

‖F (z1, z2)‖ < 1.

Then F has a finite-dimensional contractive realization (1.2), that is, there exist
n1, n2 ∈ Z+ such that Xi = Cni , i = 1, 2, and ZX = z1In1 ⊕ z2In2 = Zn.

Proof. One can apply Theorem 3.4 after observing that on the bidisk the Agler
norm and the supremum norm coincide, a result that goes back to [4]. �

4. Contractive determinantal representations

Let a polynomial P =
⊕k

i=1 Pi and a domain DP be as in Section 3. We apply
Theorem 3.4 to obtain a contractive determinantal representation for a multiple
of every polynomial strongly stable on DP. Please notice the analogy with the
main result in [15], where a similar result is obtained in the setting of definite
determinantal representation for hyperbolic polynomials.

Theorem 4.1. Let p be a polynomial in d variables z = (z1, . . . , zd), which is
strongly stable on DP. Then there exists a polynomial q, nonnegative integers

n1, . . . , nk, and a contractive matrix K of size
∑k

i=1 mini ×
∑k

i=1 �ini such that

p(z)q(z) = det(I −KP(z)n), P(z)n =

k⊕
i=1

(Pi(z)⊗ Ini).

Proof. Since p has no zeros in DP, the rational function g = 1/p is regular on
DP. By Lemma 3.3, ‖g‖A,P < ∞. Thus we can find a constant c > 0 so that
‖cg‖A,P < 1. Applying now Theorem 3.4 to F = cg, we obtain a k-tuple n =
(n1, . . . , nk) ∈ Zk

+ and a contractive colligation matrix [A B
C D ] so that

cg(z) =
c

p(z)
= D + CP(z)n(I −AP(z)n)

−1B

=

det

[
I −AP(z)n B
−CP(z)n D

]

det(I −AP(z)n)
.

(4.1)

This shows that
det(I −AP(z)n)

p(z)
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is a polynomial. Let K = A. Then K is a contraction, and

q(z) =
det(I −KP(z)n)

p(z)

is a polynomial. �

Remark 4.2. Since the polynomial det(I −KP(z)n) in Theorem 4.1 is stable on
DP, so is q.
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[14] G. Köthe. Topologische lineare Räume. I. (German) Zweite verbesserte Auflage.
Die Grundlehren der Mathematischen Wissenschaften, Band 107 Springer-Verlag,
Berlin-New York 1966.

[15] M. Kummer, Determinantal Representations and the Bézout Matrix,
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Form Inequalities for Symmetric
Contraction Semigroups

Markus Haase

Abstract. Consider – for the generator −A of a symmetric contraction semi-
group over some measure space X, 1 ≤ p < ∞, q the dual exponent and given
measurable functions Fj , Gj : Cd → C – the statement:

Re
m∑

j=1

∫
X

AFj(f) ·Gj(f) ≥ 0

for all Cd-valued measurable functions f on X such that Fj(f) ∈ dom(Ap) and
Gj(f) ∈ Lq(X) for all j.

It is shown that this statement is valid in general if it is valid for X
being a two-point Bernoulli ( 1

2
, 1
2
)-space and A being of a special form. As

a consequence we obtain a new proof for the optimal angle of Lp-analyticity
for such semigroups, which is essentially the same as in the well-known sub-
Markovian case.

The proof of the main theorem is a combination of well-known reduction
techniques and some representation results about operators on C(K)-spaces.
One focus of the paper lies on presenting these auxiliary techniques and results
in great detail.

Mathematics Subject Classification (2010). 47A60, 47D06, 47D07, 47A07.

Keywords. Symmetric contraction semigroup, diffusion semigroup, sector of
analyticity, Stone model, integral bilinear forms, tensor products.

1. Introduction

In the recent preprint [2], A. Carbonaro and O. Dragičević consider symmetric
contraction semigroups (St)t≥0 over some measure space X = (X,Σ, μ) and prove
so-called spectral multiplier results (= functional calculus estimates) for Ap, where
−Ap is the generator of (St)t≥0 on Lp(X), 1 ≤ p <∞.

Part of this work was supported by the Marsden Fund Council from Government funding, ad-
ministered by the Royal Society of New Zealand.
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Their proof consists of three major steps. In the first one, the authors show
how to generate functional calculus estimates for the operator A = Ap from form
inequalities of the type

m∑
j=1

Re

∫
X

[AFj(f1, . . . , fd)] ·Gj(f1, . . . , fd) dμ ≥ 0, (1.1)

where Fj and Gj are measurable functions Cd → C with certain properties and
(f1, . . . , fd) varies over a suitable subset of measurable functions on X. This first
step is based on the so-called heat-flow method. In the second step, the authors
show how to find functions Fj and Gj with the desired properties by employing a
so-called Bellman function. Their third step consists in establishing the inequality
(1.1) by reducing the problem to the case that A = I− Eλ on C2, where

Eλ =

(
0 λ
λ 0

)
, (λ ∈ T).

The underlying reduction procedure is actually well known in the literature, but
has been used mainly for symmetric sub-Markovian semigroups, i.e., under the
additional assumption that all St ≥ 0. Here, the last step becomes considerably
simpler, since then one need only consider the cases A = I− E1 and A = I.

One intention with the present paper is to look more carefully at the employed
reduction techniques (Section 3) and prove a general theorem (Theorem 2.2) that
puts the above-mentioned “third step” on a formal basis. Where the authors of [2]
confine their arguments to their specific case of Bellman functions, here we treat
general functions Fj and Gj and hence pave the way for further applications.

It turns out that the heart of the matter are results about representing bilin-
ear forms (f, g) �→

∫
L Tf · g dμ as integrals over product spaces like∫

L

Tf · g dμ =

∫
K×L

f(x)g(y) dμT (x, y).

(Here, K and L are compact spaces, μ is a positive regular Borel measure on L and
T : C(K)→ L1(L, μ) is a linear operator.) These results go back to Grothendieck’s
work on tensor products and “integral” bilinear forms [9]. They are “well known” in
the sense that they could – on a careful reading – be obtained from standard texts
on tensor products and Banach lattices, such as [21, Chap. IV]. However, it seems
that the communities of those people who are familiar with these facts in their
abstract form and those who would like to apply them to more concrete situations
are almost disjoint. Our exposition, forming the contents of Section 4, can thus be
viewed as an attempt to increase the intersection of these two communities.

After this excursion into abstract operator theory, in Section 5 we turn back
to the proof of Theorem 2.2. Then, as an application, we consider the question
about the optimal angle of analyticity on Lp of a symmetric contraction semigroup
(St)t≥0. For the sub-Markovian case this question has been answered long ago,
in fact, by the very methods which we just mentioned and which form the core
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content of this paper. The general symmetric case has only recently been settled
by Kriegler in [16]. Kriegler’s proof rests on arguments from non-commutative
operator theory, but Carbonaro and Dragičević show in [2] that the result can
also be derived as a corollary from their results involving Bellman functions. We
shall point out in Section 6 below that the Bellman function of Carbonaro and
Dragičević is not really needed here, and that one can prove the general case by
essentially the same arguments as used in the sub-Markovian case.

Terminology and Notation. In this paper, X := (X,Σ, μ) denotes a general mea-
sure space. (Sometimes we shall suppose in addition that μ is a finite measure, but
we shall always make this explicit.) Integration with respect to μ is abbreviated by∫

X

f :=

∫
X

f dμ

whenever it is convenient. The corresponding Lp-space for 0 < p ≤ ∞ is denoted
by Lp(X), but if the underlying measure space is understood, we shall simply write
Lp. Whenever 1 ≤ p ≤ ∞ is fixed we denote by q the dual exponent, i.e., the unique
number q ∈ [1,∞] such that 1

p + 1
q = 1.

With the symbol M(X;Cd) (M(X) in the case d=1) we denote the space
of Cd-valued measurable functions on X, modulo equality almost everywhere. We
shall tacitly identifyM(X;Cd) withM(X)d and use the notation

f = (f1, . . . , fd)

to denote functions into Cd.

For a set M ⊆ Cd and f = (f1, . . . , fd) ∈ M(X;Cd) as above, we write
“(f1, . . . , fd) ∈ M almost everywhere” shorthand for: “(f1(x), . . . , fd(x)) ∈ M
for μ-almost all x ∈ X .” By abuse of notation, if F : Cd → C is measurable
and f ∈ M(X;Cd) we write F (f) to denote the function F ◦ f , i.e., F (f)(x) =
F (f1(x), . . . , fd(x)).

The letters K,L, . . . usually denote compact and sometimes locally compact
Hausdorff spaces. We abbreviate this by simply saying that K, L, . . . are (locally)
compact. If K is locally compact, then Cc(K) denotes the space of continuous
functions onK with compact support, and C0(K) is the sup-norm closure of Cc(K)
within the Banach space of all bounded continuous functions. IfK is compact, then
of course Cc(K) = C0(K) = C(K).

If K is (locally) compact then, by the Riesz representation theorem, the
dual space of C(K) (C0(K)) is isometrically and lattice isomorphic to M(K), the
space of complex regular Borel measures on K, with the total variation (norm) as
absolute value (norm). A (locally) compact measure space is a pair (K, ν) where
K is (locally) compact and ν is a positive regular Borel measure on K. (If K is
locally compact, the measure ν need not be finite.)

We work with complex Banach spaces by default. In particular, Lp-spaces have
to be understood as consisting of complex-valued functions. For an operator T with
domain and range being spaces of complex-valued functions, the conjugate operator
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is defined by Tf := Tf , and the real part and imaginary part are defined by

ReT := 1
2 (T + T ) and ImT := 1

2i (T − T ),

respectively. For Banach spaces E and F we use the symbol L(E;F ) to denote
the space of bounded linear operators from E to F and E′ = L(E;C) for the dual
space. The dual of an operator T ∈ L(E;F ) is denoted by T ′ ∈ L(F ′, E′).

If K is locally compact, X = (X,Σ, μ) is a measure space and T : Cc(K) →
L1(X) is a linear operator, then T ′μ denotes the linear functional on Cc(K) de-
fined by

〈f , T ′μ〉 :=
∫
X

Tf dμ (f ∈ Cc(K)).

If T is bounded for the uniform norm on Cc(K) then T ′μ is bounded too, and we
identify it with a complex regular Borel measure in M(K). If T is not bounded but
positive, then, again by the Riesz representation theorem, T ′μ can be identified
with a positive (but infinite) regular Borel measure on K.

At some places we use some basic notions of Banach lattice theory (e.g.,
lattice homomorphism, ideal, order completeness). The reader unfamiliar with this
terminology can consult [5, Chap. 7] for a brief account. However, the only Banach
lattice that appears here and is not a function space will be M(K), where K is
locally compact.

2. Main results

An absolute contraction, or a Dunford–Schwartz operator, over a measure space
X is an operator T : L1 ∩ L∞ → L1 + L∞ satisfying ‖Tf‖p ≤ ‖f‖p for p = 1 and
p = ∞. It is then well known that T extends uniquely and consistently to linear
contraction operators Tp : Lp → Lp for 1 ≤ p < ∞, and T∞ : L(∞) → L(∞), where

L(∞) is the closed linear hull of L1 ∩ L∞ within L∞. It is common to use the single
symbol T for each of the operators Tp.

An absolute contraction T is sub-Markovian if it is positive, i.e., if Tf ≥ 0
whenever f ≥ 0, f ∈ L1 ∩L∞. (Then also its canonical extension Tp to Lp, 1 ≤ p <

∞ and L(∞), p =∞, is positive.) This terminology is coherent with [20, Def. 2.12].

An absolute contraction T is called Markovian, if it satifies

f ≤ b1 =⇒ Tf ≤ b1

for every b ∈ R and f ∈ L1 ∩ L∞. (Here, 1 is the constant function with value
equal to 1.) In particular, T is positive, i.e., sub-Markovian. If the measure space
X is finite, an absolute contraction is Markovian if and only if T is positive and
T1 = 1. This is easy to see, cf. [10, Lemma 3.2].

An operator T : L1 ∩ L∞ → L1 + L∞ is symmetric if∫
X

Tf · g =

∫
X

f · Tg
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for all f, g ∈ L1 ∩ L∞. A symmetric operator is an absolute contraction if and
only if it is L∞-contractive if and only if it is L1-contractive; and in this case the
canonical extension to L2 is a bounded self-adjoint operator.

A (strongly continuous) absolute contraction semigroup over X is a family
(St)t≥0 of absolute contractions on X such that S0 = I, St+s = StSs for all t, s ≥ 0
and

‖f − Stf‖p → 0 as t↘ 0 (2.1)

for all f ∈ L1 ∩ L∞ and all 1 ≤ p <∞. It follows that the operator family (St)t≥0

can be considered a strongly continuous semigroup on each space Lp, 1 ≤ p <∞.
We shall always assume this continuity property even when it is not explicitly
mentioned. An absolute contraction semigroup (St)t≥0 is called a symmetric con-
traction semigroup (symmetric (sub-)Markovian semigroup) if each operator St,
t ≥ 0, is symmetric (symmetric and (sub-)Markovian).

Remarks 2.1.

1) A symmetric sub-Markovian semigroup is called a “symmetric diffusion semi-
group” in the classical text [23]. It appears that the “diffusion semigroups” of
operator space theory [16, Def. 2] lack the property of positivity, and hence
do not specialize to Stein’s concept in the commutative case, but rather to
what we call “symmetric contraction semigroups” here.

2) As Voigt [25] has shown, the strong continuity assumption (2.1) for p �= 2 is a
consequence of the case p = 2 together with the requirement that all operators
St are Lp-contractions.

Given an absolute contraction semigroup (St)t≥0 one can consider, for 1 ≤
p <∞, the negative generator −Ap of the strongly continuous semigroup (St)t≥0

on Lp, defined by

dom(Ap) = {f ∈ Lp : lim
t↘0

1
t (f − Stf) exists in Lp},

Apf = lim
t↘0

1
t (f − Stf).

The operators Ap are compatible for different indices p, a fact which is easily seen
by looking at the resolvent of Ap

(I +Ap)
−1f =

∫ ∞

0

e−tStf dt (f ∈ Lp, 1 ≤ p <∞).

Hence, it is reasonable to drop the index p and simply write A instead of Ap.

In order to formulate the main result, we first look at the very special case
that the underlying measure space consists of two atoms with equal mass. Let this
(probability) space be denoted by Z2, i.e.,

Z2 := ({0, 1}, 2{0,1}, ζ2).
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Then, for 1 ≤ p <∞, Lp(Z2) = C2 with norm∥∥(z1
z2

)∥∥p
p
= 1

2 (|z1|
p
+ |z2|p).

The scalar product on the Hilbert space H = L2(Z2) is(
z1
z2

)
·Z2

(
w1

w2

)
= 1

2 (z1w1 + z2w2).

Symmetric operators on L2(Z2) are represented by matrices

T =

(
a w
w b

)
with a, b ∈ R. The property that T is an absolute contraction is equivalent with
the conditions |a|+ |w| ≤ 1 and |b|+ |w| ≤ 1. Thus, the absolute contractions on
Z2 form a closed convex set

C2 :=
{(a w

w b

) ∣∣ a, b ∈ R, w ∈ C, max{|a| , |b|} ≤ 1− |w|
}
,

and it is easy to see that each matrix

Eλ :=

(
0 λ
λ 0

)
, λ ∈ T,

is an extreme point of C2. We can now formulate the desired (meta-)theorem.

Theorem 2.2 (Symmetric Contraction Semigroups). Let m, d ∈ N, 1 ≤ p < ∞
and let, for each 1 ≤ j ≤ m, Fj , Gj : Cd → C be measurable functions. For
any generator −A of a symmetric contraction semigroup over a measure space X
consider the following statement:
“For all measurable functions f ∈ M(X;Cd) such that Fj(f) ∈ dom(Ap) and
Gj(f) ∈ Lq(X) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
X

AFj(f) ·Gj(f) ≥ 0.”

Then this statement holds true provided it holds true whenever X is replaced by Z2

and A is replaced by I− Eλ, λ ∈ T.

If, in addition, the semigroup is sub-Markovian, we have an even better result.
In slightly different form (but with more or less the same method), this result has
been obtained by Huang in [12, Theorem 2.2].

Theorem 2.3 (Sub-Markovian Semigroups). Let m, d ∈ N, 1 ≤ p < ∞ and let,
for each 1 ≤ j ≤ m, Fj , Gj : C

d → C be measurable functions. For any generator
−A of a symmetric sub-Markovian semigroup over a measure space X consider the
following statement:
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“For all measurable functions f ∈ M(X;Cd) such that Fj(f) ∈ dom(Ap) and
Gj(f) ∈ Lq(X) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
X

AFj(f) ·Gj(f) ≥ 0.”

Then this statement holds true provided it holds true whenever X is replaced by Z2

and A is replaced by I− E1 and by I.

The second condition here (that the statement holds for Z2 and A = I) just
means that the scalar inequality

m∑
j=1

ReFj(x)Gj(x) ≥ 0

holds for all x ∈ Cd, cf. Lemma 5.1 below.

Finally, we suppose that the measure space X is finite and the semigroup is
Markovian, i.e., St ≥ 0 and St1 = 1 for each t ≥ 0. Then we have an even simpler
criterion.

Theorem 2.4 (Markovian Semigroups). Let m, d ∈ N, 1 ≤ p <∞ and let, for each
1 ≤ j ≤ m, Fj , Gj : Cd → C be measurable functions. For any generator −A of
a symmetric Markovian semigroup over a measure space X consider the following
statement:
“For all measurable functions f ∈ M(X;Cd) such that Fj(f) ∈ dom(Ap) and
Gj(f) ∈ Lq(X) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
X

AFj(f) ·Gj(f) ≥ 0.”

Then this statement holds true provided it holds true whenever X is replaced by Z2

and A is replaced by I− E1.

The proofs of Theorems 2.2–2.4 are completed in Section 5 below after we
have performed some preparatory reductions (Section 3) and provided some results
from abstract operator theory (Section 4).

3. Reduction steps

In this section we shall formulate and prove three results that, when combined,
reduce the proof of Theorem 2.2 to the case when X = (K,μ) is a compact measure
space, μ has full support, L∞(X) = C(K), and A = I − T , where T is a single
symmetric absolute contraction on X. These steps are, of course, well known, but
for the convenience of the reader we discuss them in some detail.
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3.1. Reduction to bounded operators

Suppose that (St)t≥0 is an absolute contraction semigroup on X with generator
−A. Then each operator −(I − Sε) is itself the (bounded) generator of a (uni-
formly continuous) absolute contraction semigroup

(
e−t(I−Sε)

)
t≥0

on X. By defi-

nition of A,
1

ε
(I− Sε)g → Ag as ε↘ 0

in Lp for g ∈ dom(Ap). We thus have the following first reduction result.

Proposition 3.1. Let m, d ∈ N, 1 ≤ p < ∞ and let, for each 1 ≤ j ≤ m, Fj , Gj :
Cd → C be measurable functions. For any generator −A of an absolute contraction
semigroup (St)t≥0 over a measure space X consider the following statement:
“For all measurable functions f ∈ M(X;Cd) such that Fj(f) ∈ dom(Ap) and
Gj(f) ∈ Lq(X) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
X

AFj(f) ·Gj(f) ≥ 0.”

Then this statement holds true provided it holds true whenever A is replaced by
I− Sε, ε > 0.

Note that in the case A = I− T , the condition Fj(f) ∈ dom(Ap) just asserts
that Fj(f) ∈ Lp.

3.2. Reduction to a finite measure space

Now it is shown that one may confine to finite measure spaces. For a given measure
space X = (X,Σ, μ), the set

Σfin := {B ∈ Σ : μ(B) <∞}
is directed with respect to set inclusion. For asymptotic statements with respect to
this directed set we use the abbreviation “B → X”. The multiplication operators

MB :M(X;Cd)→M(X;Cd), MBf := 1B · f
form a net, with MB → I strongly on Lp as B → X and 1 ≤ p <∞. It follows that
for a given absolute contraction T on X and functions f ∈ Lp(X) and g ∈ Lq(X)∫

X

(I− T )MBf · (MBg)→
∫
X

(I− T )f · g as B → X.

For given B ∈ Σfin we form the finite measure space (B,ΣB , μB), where
ΣB := {C ∈ Σ : C ⊆ B} and μB := μ|ΣB . Then we have the extension operator

ExtB :M(B;Cd)→M(X;Cd), ExtBf =

{
f on B

0 on X \B,

and the restriction operator

ResB :M(X;Cd)→M(B;Cd), ResBf := f |B.
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Note that ExtB ResB = MB and ResBExtB = I and∫
B

ResBf dμB =

∫
X

MBf dμ (f ∈ L1(X)).

A short computation yields that Res∗B = ExtB between the respective L2-
spaces. Hence, if T is a (symmetric) absolute contraction on X = (X,Σ, μ), then
the operator

TB := ResB T ExtB

is a (symmetric) absolute contraction on (B,ΣB , μB). Another short computation
reveals that∫

X

(I− T )MBf · (MBg) dμ =

∫
B

(ILp(B) − TB)(ResBf) · (ResBg) dμB

whenever f ∈ Lp(X) and g ∈ Lq(X). Finally, suppose that F : Cd → C is measur-
able and suppose that f ∈ M(X;Cd) is such that F (f) ∈ Lp(X). Then

ResB[F (f)] = F (ResBf) ∈ Lp(B).

Combining all these facts yields our second reduction result.

Proposition 3.2. Let m, d ∈ N, 1 ≤ p < ∞ and let, for each 1 ≤ j ≤ m, Fj , Gj :
Cd → C be measurable functions. For any absolute contraction T over a measure
space X = (X,Σ, μ) consider the following statement:
“For all measurable functions f ∈M(X;Cd) such that Fj(f) ∈ Lp(X) and Gj(f) ∈
Lq(X) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
X

(I− T )Fj(f) ·Gj(f) ≥ 0.”

Then this statement holds true provided it holds true whenever X = (X,Σ, μ) is
replaced by (B,ΣB , μB) and T is replaced by TB, where B ∈ Σfin.

Finally, we observe that if T is sub-Markovian (=positive) or Markovian,
then so is each of the operators TB = ResB T ExtB, B ∈ Σfin.

3.3. Reduction to a compact measure space

In the next step we pass from general finite measure spaces to compact spaces with
a finite positive Borel measure on it.

Let X = (X,Σ, μ) be a finite measure space. The space L∞(X) is a commuta-
tive, unital C∗-algebra, hence by the Gelfand–Naimark theorem there is a compact
space K, the Gelfand space, and an isomorphism of unital C∗-algebras

Φ : L∞(X)→ C(K).

In particular, Φ is an isometry. Since the order structure is determined by the C∗-
algebra structure (an element f is ≥ 0 if and only if there is g such that f = gg), Φ
is also an isomorphism of complex Banach lattices. The following auxiliary result
is, essentially, a consequence of the Stone–Weierstrass theorem.
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Lemma 3.3. In the situation from above, let M ⊆ Cd be compact and let f1, . . . , fd ∈
L∞(X) be such that (f1, . . . , fd) ∈M μ-almost everywhere. Then (Φf1, . . . ,Φfd) ∈
M everywhere on K and

Φ
(
F (f1, . . . , fd)

)
= F (Φf1, . . . ,Φfd) (3.1)

for all continuous functions F ∈ C(M).

Proof. Suppose first that M = B[0, r] := {x ∈ Cd : ‖x‖∞ ≤ r} for some r >
0. Then the condition “(f1, . . . , fd) ∈ M almost everywhere” translates into the
inequalities |fj | ≤ r1 (almost everywhere) for all j = 1, . . . , d, and hence one has
also |Φfj | ≤ rΦ1 = r1 (pointwise everywhere) for all j = 1, . . . , d. It follows that
F (Φf1, . . . ,Φfd) is well defined.

Now, the set of functions F ∈ C(M) such that (3.1) holds is a closed
conjugation-invariant subalgebra of C(M) that separate the points and contains
the constants. Hence, by the Stone–Weierstrass theorem, it is all of C(M).

For general M one can proceed in the same way provided one can assure that
(Φf1, . . . ,Φfd) ∈M everywhere on K. Let y ∈ Cd\M and let F be any continuous
function with compact support on Cd such that F = 0 on M and F (y) = 1. Let
r > 0 by so large that M ⊆ B[0, r] and consider F as a function on B[0, r]. Then
0 = Φ(0) = Φ(F (f1, . . . , fd)) = F (Φf1, . . . ,Φfd), hence y cannot be in the image
of (Φf1, . . . ,Φfd). �

By the Riesz–Markov representation theorem, there is a unique regular Borel
measure ν on K such that ∫

X

f =

∫
K

Φf dν

for all f ∈ L∞(X). It follows from Lemma 3.3 that |Φf |p = Φ(|f |p) for every
1 ≤ p <∞ and every f ∈ L∞(X). Therefore, Φ is an isometry with respect to each
p-norm. It follows that Φ extends to an isometric (lattice) isomorphism

Φ : L1(X)→ L1(K, ν).

It is shown in the Appendix that Φ, furthermore, extends canonically (and unique-
ly) to a unital ∗-algebra and lattice isomorphism

Φ :M(X)→M(K, ν).

The compact measure space (K, ν) (together with the mapping Φ) is called
the Stone model of the probability space X. Note that under the lattice isomor-
phism Φ the respective L∞-spaces must correspond to each other, whence it follows
that L∞(K,μ) = C(K) in the obvious sense.

We use the canonical extension to vector-valued functions Φ :M(X;Cd) →
M(K, ν;Cd) of the Stone model. By Theorem A.3,

Φ
(
F (f)

)
= F (Φf) ν-almost everywhere

for all measurable functions f = (f1, . . . , fd) ∈ M(X;Cd) and all measurable
functions F : Cd → C. Hence, we arrive at the next reduction result.



Form Inequalities 147

Proposition 3.4. Let m, d ∈ N, 1 ≤ p < ∞ and let, for each 1 ≤ j ≤ m, Fj , Gj :
Cd → C be measurable functions. For any absolute contraction T over a probability
space X consider the following statement:
“For all measurable functions f ∈M(X;Cd) such that Fj(f) ∈ Lp(X) and Gj(f) ∈
Lq(X) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
X

[(I− T )Fj(f)] ·Gj(f) ≥ 0.”

Then this statement holds true provided it holds true if X is replaced by (K, ν) and
T is replaced by ΦTΦ−1, where (K, ν) and

Φ :M(X)→M(K, ν)

is the Stone model of X.

As in the reduction step before, we observe that the properties of being sym-
metric, sub-Markovian or Markovian are preserved during the reduction process,
i.e., in passing from T to Φ−1TΦ.

Remark 3.5. In the late 1930s and beginning 1940s, several representation results
for abstract structures were developed first by Stone [24] (for Boolean algebras),
then by Gelfand [7, 8] (for normed algebras) and Kakutani [13, 14] (for AM - and
AL-spaces). However, it is hard to determine when for the first time there was
made effective use of these results in a context similar to ours. Halmos in his
paper [11] on a theorem of Dieudonné on measure disintegration employs the idea
but uses Stone’s original theorem. A couple of years later, Segal [22, Thm. 5.4]
revisits Dieudonné’s theorem and gives a proof based on algebra representations.
(He does not mention Gelfand–Naimark, but only says “by well-known results”.)

In our context, the idea – now through the Gelfand–Naimark theorem – was
employed by Nagel and Voigt [19] in order to simplify arguments in the proof
of Liskevich and Perelmuter [17] on the optimal angle of analyticity in the sub-
Markovian case, see Section 6 below. Through Ouhabaz’ book [20] it has become
widely known in the field, and also Carbonaro and Dragičević [2, p. 19] use this
idea.

4. Operator theory

In order to proceed with the proof of the main theorem (Theorem 2.2) we need
to provide some results from the theory of operators of the form T : C(K) →
L1(L, μ), where K and L are compact.1 For the application to symmetric contrac-
tion semigroups as considered in the previous sections, we only need the case that
C(L) = L∞(L, μ), and this indeed would render simpler some of the proofs below.
However, a restriction to this case is artificial, and we develop the operator theory
in reasonable generality.

1The case that K and L are locally compact is touched upon in some additional remarks.
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4.1. The linear modulus

In this section we introduce the linear modulus of an order-bounded operator
T : C(K) → L1(X). This can be treated in the framework of general Banach
lattices, see [21, Chapter IV, §1], but due to our concrete situation, things are a
little easier than in an abstract setting.

Let X = (X,Σ, μ) be a measure space and letK be compact. A linear operator
T : C(K) → L1(X) is called order-bounded if for each 0 ≤ f ∈ C(K) there is
0 ≤ h ∈ L1(X) such that

|Tu| ≤ h for all u ∈ C(K) with |u| ≤ f .

And T is called regular if it is a linear combination of positive operators. It is
clear that each regular operator is order-bounded. The converse also holds, by the
following construction.

Suppose that T : C(K) → L1(X) is order-bounded. Then, for 0 ≤ f ∈ C(K)
let

|T |f := sup{|Tg| : g ∈ C(K), |g| ≤ f} (4.1)

as a supremum in the lattice sense. (This supremum exists since the set on the
right-hand side is order-bounded by hypothesis and L1 is order-complete, see [5,
Cor. 7.8].)

Lemma 4.1. Suppose that T : C(K)→ L1(X) is order-bounded. Then the mapping
|T | defined by (4.1) extends uniquely to a positive operator

|T | : C(K)→ L1(X).

Moreover, the following assertions hold:

a) |Tf | ≤ |T | |f | for all f ∈ C(K).

b) ‖T ‖ ≤ ‖|T |‖,
c) T is order-bounded and

∣∣T ∣∣ = |T |.
d) If S : C(K)→ L1(X) is order-bounded, then S + T is also order-bounded, and
|S + T | ≤ |S|+ |T |.

The operator |T | : C(K)→ L1(X) whose existence is asserted in the theorem
is called the linear modulus of T .

Proof. For the first assertion, it suffices to show that |T | is additive and positively
homogeneous. The latter is straightforward, so consider additivity. Fix 0 ≤ f, g ∈
C(K) and let u ∈ C(K) with |u| ≤ f + g. Define

u1 =
fu

f + g
, u2 =

gu

f + g
,

where u1 = u2 = 0 on the set [ f + g = 0 ]. Then u1, u2 ∈ C(K), |u1| ≤ f , |u1| ≤ g
and u1 + u2 = u. Hence

|Tu| ≤ |Tu1|+ |Tu2| ≤ |T |f + |T |g



Form Inequalities 149

and taking the supremum with respect to u we obtain |T |(f + g) ≤ |T |f + |T |g.
Conversely, let u, v ∈ C(K) with |u| ≤ f and |v| ≤ g. Then, for any α ∈ C2 with
|α1| , |α2| ≤ 1 we have |α1u+ α2v| ≤ f + g, and hence

|Tu|+ |Tv| = sup
α
|α1Tu+ α2Tv| = sup

α
|T (α1u+ α2v)| ≤ |T |(f + g).

Taking suprema with respect to u and v we arrive at |T |f + |T |g ≤ |T |(f +g). The
remaining statements are now easy to establish. �

Suppose that T : C(K)→ L1(X) is order-bounded, so that |T | exists. Then,
by Lemma 4.1, also ReT and ImT are order-bounded. If T is real, i.e., if T = T ,
then clearly T ≤ |T |, and hence T = |T |− (|T |−T ) is regular. It follows that every
order-bounded operator is regular. (See also [21, IV.1, Props. 1.2 and 1.6].)

Let us turn to another characterization of order-boundedness. If T : C(K)→
L1(X) is order-bounded and |T | is its linear modulus, we denote by |T |′μ the unique
element ν ∈M(K) such that∫

K

f dν =

∫
X

|T |f for all f ∈ C(K).

It is then easy to see that T extends to a contraction T : L1(K, ν) → L1(X).
We shall see that the existence of a positive regular Borel measure ν on K with
this property characterizes the order-boundedness. The key is the following gen-
eral result, which has (probably) been established first by Grothendieck [9, p. 67,
Corollaire].

Lemma 4.2. Let X, Y be measure spaces and let T : L1(Y) → L1(X) be a bounded
operator. Then for any finite sequence f1, . . . , fn,∈ L1(Y)∫

X

sup
1≤j≤n

|Tfj| ≤ ‖T ‖
∫
Y

sup
1≤j≤n

|fj | .

Proof. By approximation, we may suppose that all the functions fj are integrable
step functions with respect to one finite partition (Ak)k. We use the variational
form

sup
1≤j≤n

|zj| = sup
{ ∣∣∣∑n

j
αjzj

∣∣∣ : α ∈ �1n, ‖α‖1 ≤ 1
}

for complex numbers z1, . . . , zn. Then, with fj =
∑

k cjk1Ak
,

sup
1≤j≤n

|Tfj| = sup
α

∣∣∣∑n

j

∑
k
αjcjkT1Ak

∣∣∣
≤ sup

α

∑
k
‖α‖1

(
sup

1≤j≤n
|cjk|

)
|T1Ak

|

=
∑

k

(
sup

1≤j≤n
|cjk|

)
|T1Ak

| .
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Integrating yields∫
X

sup
1≤j≤n

|Tfj| ≤
∑

k

(
sup

1≤j≤n
|cjk|

)
‖T1Ak

‖1

≤ ‖T ‖
∑

k

(
sup

1≤j≤n
|cjk|

)
‖1Ak

‖1

= ‖T ‖
∫
Y

∑
k

(
sup

1≤j≤n
|cjk|

)
1Ak

= ‖T ‖
∫
Y

sup
1≤j≤n

|fj | . �

We can now formulate the main result of this section.

Theorem 4.3. Let X = (X,Σ, μ) be any measure space and T : C(K) → L1(X) a
linear operator. Then the following assertions are equivalent:

(i) T is order-bounded.
(ii) T is regular.
(iii) There is a positive regular Borel measure ν ∈ M(K) such that T extends to

a contraction L1(K, ν)→ L1(X).
If (i)–(iii) hold, then

|T |′μ = min
{
ν ∈ M+(K) : ‖Tf‖L1(X) ≤ ‖f‖L1(K,ν) for all f ∈ C(K)

}
.

In particular, if 0 ≤ ν ∈ M(K) is such that T extends to a contraction
L1(K, ν)→ L1(X), then so does |T |.

Proof. The implications (i) ⇔ (ii) ⇒ (iii) have already been established. More-
over, if (i) holds then it follows from the inequality |Tf | ≤ |T ||f | that ‖Tf‖1 ≤
‖f‖L1(K,ν) with ν = |T |′μ.
On the other hand, suppose (iii) holds and that 0 ≤ ν ∈ M(K) is such that∫
X
|Tf | ≤

∫
K
|f | dν for all f ∈ C(K). Let 0 ≤ f ∈ C(K), n ∈ N and uj ∈ C(K)

with |uj | ≤ f (1 ≤ j ≤ n). Then, by Lemma 4.2,∫
X

sup
1≤j≤n

|Tuj| ≤
∫
K

sup
1≤j≤n

|uj | dν ≤
∫
K

f dν.

Now, any upwards directed and norm bounded net in L1+ is order-bounded and
converges in L1-norm towards its supremum, see [5, Thm. 7.6]. It follows that T is
order-bounded, and ∫

X

|T |f ≤
∫
K

f dν.

Consequently, |T |′μ ≤ ν, as claimed. �

Remarks 4.4.

1) Suppose that (i)–(iii) of Theorem 4.3 hold. Then |T ′μ| ≤ |T |′μ, and equality
holds if and only if T extends to a contraction T : L1(K, |T ′μ|)→ L1(X).

2) The modulus mapping T �→ |T | turns Lr(C(K),L1(X)), the set of regular
operators, into a complex Banach lattice with the norm ‖T ‖r := ‖|T |‖, see
[21, Chap. IV, §1].
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3) All the results of this section hold mutatis mutandis for linear operators T :
Cc(Y ) → L1(X), where Y is a locally compact space and Cc(Y ) is the space
of continuous functions on Y with compact support.

The modulus of a linear operator appears already in the seminal work of Kan-
torovich [15] on operators on linear ordered spaces. For operators on an L1-space
the linear modulus was (re-)introduced in [3] by Chacon and Krengel who probably
were not aware of Kantorovich’s work. Later on, their construction was generalized
to order-bounded operators between general Banach lattices by Luxemburg and
Zaanen in [18] and then incorporated by Schaefer in his monograph [21].

The equivalence of order-bounded and regular operators is of course a stan-
dard lemma from Banach lattice theory. Lemma 4.2 is essentially equivalent to
saying that every bounded operator between L1-spaces is order-bounded. This has
been realized by Grothendieck in [9, p. 66, Prop. 10]. (Our proof differs consider-
ably from the original one.) The equivalence of (i)–(iii) in Theorem 4.3 can also
be derived from combining Theorem IV.1.5 and Corollary 1 of Theorem II.8.9 of
[21]. However, the remaining part of Theorem 4.3 might be new.

4.2. Integral representation of bilinear forms

In this section we aim for yet another characterization of order-bounded operators
T : C(K) → L1(X) in the case that X = (L, μ) is a compact measure space. We
shall see that an operator T is order-bounded if, and only if, there is a (necessarily
unique) complex regular Borel measure μT on K × L such that∫

K×L

f ⊗ g dμT =

∫
L

(Tf) · g dμ for all f ∈ C(K) and g ∈ C(L). (4.2)

This result goes essentially back to Grothendieck’s characterization of “integral”
operators in [9, p. 141, Thm. 11], but we give ad hoc proofs avoiding the tensor
product theory. The following simple lemma is the key result here.

Lemma 4.5. Let K,L be compact spaces. Then, for any bounded operator T :
C(K)→ C(L) and any μ ∈M(L) there is a unique complex regular Borel measure
μT ∈ M(K × L) such that (4.2) holds. Moreover, μT ≥ 0 whenever μ ≥ 0 and
T ≥ 0.

Proof. The uniqueness is clear since C(K) ⊗ C(L) is dense in C(K × L). For the
existence, let S : C(K×L)→ C(L) be given by composition of all of the operators
in the following chain:

C(K × L) ∼= C(L; C(K))
T⊗
−→ C(L; C(L)) ∼= C(L× L)

D−→ C(L).

Here, T⊗ denotes the operator G �→ T ◦ G and D denotes the “diagonal
contraction”, defined by DG(x) := G(x, x) for x ∈ L and G ∈ C(L × L). Then
μT := S′μ satisfies the requirements, as a short argument reveals. �
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Remarks 4.6.

1) The formula (4.2) stays true for all choices of f ∈ C(K) and g a bounded
measurable function on L.

2) Our proof of Lemma 4.5 yields a formula for the integration of a general
F ∈ C(K × L) with respect to μT :∫

K×L

F (x, y) dμT (x, y) =

∫
L

(
TF (·, y)

)
(y) dμ(y).

This means: fix y ∈ L, apply T to the function F (·, y) and evaluate this at y;
then integrate this function in y with respect to μ.

3) Compare this proof of Lemma 4.5 with the one given in [20, pp. 90/91].

4) Lemma 4.5 remains valid if K and L are merely locally compact, and C( · ) is
replaced by C0( · ) at each occurrence.

Combining Lemma 4.5 with a Stone model leads to the desired general theorem.

Theorem 4.7. Let K be compact, (L, μ) a compact measure space, and T : C(K)→
L1(L, μ) a linear operator. Then the following assertions are equivalent:

(i) T is order-bounded.
(ii) T is regular.
(iii) T extends to a contraction L1(K, ν)→ L1(L, μ) for some 0 ≤ ν ∈M(K).
(iv) There is a complex regular Borel measure μT ∈ M(K × L) such that (4.2)

holds.
In this case, μT from (iv) is unique, and if ν is as in (iii), then |T |′μ ≤ ν.

Proof. It was shown in Theorem 4.3 that (i)–(iii) are pairwise equivalent.
Denote by πK : K×L→ K the canonical projection. Suppose that (iv) holds

and let ν = (πK)∗ |μT |, i.e.,∫
K

f dν =

∫
K×L

f ⊗ 1 d|μT | (f ∈ C(K)).

Then, for f ∈ C(K) and g ∈ C(L) with |g| ≤ 1,∣∣∣ ∫
L

Tf · g dμ
∣∣∣ ≤ ∫

K×L

|f | ⊗ |g| d|μT | ≤
∫
K×L

|f | ⊗ 1 d|μT | =
∫
K

|f | dν.

This implies that T extends to a contraction L1(K, ν) → L1(L, μ), whence we
have (iii).

Now suppose that (i)–(iii) hold. In order to prove (iv) define the operator
S : C(K)→ L∞(L, μ) by

Sf :=

{
Tf
|T |1 on [ |T |1 > 0 ],

0 on [ |T |1 = 0 ].

Let Φ : L1(L, μ) → L1(Ω, μ̃) be the Stone model of (L, μ) (see Section 3.3
above), and let us identify L∞(L, μ) with C(Ω) via Φ. Then S : C(K)→ C(Ω) is a
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positive operator. Hence we can apply Lemma 4.5 to S and the positive measure
(|T |1)μ̃ to obtain a positive measure ρ on K × Ω such that∫

K×Ω

f ⊗ g dρ =

∫
Ω

Sf · g d(|T |1)μ̃ =

∫
Ω

Sf · |T |1 · g dμ̃

=

∫
Ω

Tf · g dμ̃ =

∫
L

Tf · g dμ.

Finally, let μT be the pull-back of ρ to K × L via the canonical inclusion map
C(L)→ L∞(L, μ) = C(Ω). �
Remark 4.8. With a little more effort one can extend Theorem 4.7 to the case of
locally compact (and not necessarily finite) measure spaces (K, ν) and (L, μ) instead
of compact ones, cf. Remarks 4.4 and 4.6 above. Then the decisive implication
(ii)⇒(iv) is proved by passing first to open and relatively compact subsets U ⊆ K
and V ⊆ L and considering the operator TU,V : C0(U) → L1(V, μ). By modifying

our proof, one then obtains a measure μU,V
T on U×V , and finally μT as an inductive

limit. (Of course, one has to speak of Radon measures here.) Compare this to the
ad hoc approach in [6, Lemma 1.4.1].

Theorem 4.7 can also be generalized to the case that K and L are Polish (but
not necessarily locally compact) spaces and μ is a finite positive Borel measure
on L. In this case the decisive implication (ii)⇒(iv) is proved as follows: first, one
chooses compact metric models (K ′, ν′) and (L′, μ′) for the finite Polish measure
spaces (K, ν) and (L, μ), respectively, see [5, Sec. 12.3]; by a theorem of von Neu-
mann [5, App. F.3], the isomorphisms between the original measure spaces and
their models are induced by measurable maps ϕ : K ′ → K and ψ : L′ → L, say.
Theorem 4.7 yields – for the transferred operator – a representing measure on
K ′×L′, and this is mapped by ϕ×ψ to a representing measure on K ×L for the
original operator.

We now combine the integral Theorem 4.7 with the construction of the mod-
ulus. We employ the notation πL : K × L → L for the canonical projection, and
identify

L1(L, μ) = {λ ∈ M(L) : |λ| & μ}
with a closed ideal in M(L) via the Radon–Nikodým theorem.

Theorem 4.9. Suppose that K and L are compact spaces and 0 ≤ μ ∈ M(L). Then,
for any order-bounded operator T : C(K)→ L1(L, μ),

|μT | = μ|T |.

The mapping

Lr(C(K),L1(L, μ))→ M(K × L), T �→ μT

is an isometric lattice homomorphism onto the closed ideal

{ρ ∈M(K × L) : πL∗|ρ| ∈ L1(L, μ)}
of M(K × L).
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Proof. It is clear that the mapping T �→ μT is linear, injective and positive. Hence
|μT | ≤ μ|T |, and therefore πL∗ |μT | ≤ πL∗μ|T | = (|T |1)μ ∈ L1(L, μ). Conversely,

suppose that ρ ∈ M(K × L) such that πL∗ |ρ| ∈ L1(L, μ). For f ∈ C(K) consider
the linear mapping

T : C(K)→ M(L), (Tf)g :=

∫
K×L

f ⊗ g dρ.

Then |Tf | ≤ ‖f‖∞ πL∗|ρ|, hence Tf ∈ L1(L, μ). Therefore, by construction,∫
K×L

f ⊗ g dρ =

∫
L

Tf · g dμ

for f ∈ C(K) and g ∈ C(L). By Theorem 4.7, T is regular. If ρ is positive, then T
is positive, too.

The proof of the converse inequality μ|T | ≤ |μT | would now follow immedi-
ately if we used the fact (from Remark 4.4) that the modulus map turns Lr, the
set of regular operators, into a complex vector lattice. However, we want to give a
different proof here.

By a standard argument, it suffices to establish the inequality∫
L

|T |1 dμ ≤
∫
K×L

1⊗ 1 d|μT |.

To this end, define the positive measure ν on K by∫
K

f dν :=

∫
K×L

f ⊗ 1 d|μT | (f ∈ C(K)).

Given f ∈ C(K) there is a bounded measurable function h on L such that
|Tf | = (Tf)h and |h| ≤ 1. Hence,∫

L

|Tf | dμ =

∫
L

Tf · h dμ =

∫
K×L

f ⊗ h dμT ≤
∫
K×L

|f | ⊗ 1 dμT =

∫
K

|f | dν.

This means that T extends to a contraction L1(K, ν)→ L1(L, μ). By Theorem 4.3,
it follows that |T |′μ ≤ ν, hence in particular∫

L

|T |1 dμ =

∫
K

1d(|T |′μ) ≤
∫
K

1 dν =

∫
K×L

1⊗ 1 d|μT |.

This concludes the proof. �

Remark 4.10. One can avoid the use of the bounded measurable function h in the
second part of the proof of Theorem 4.9 by passing to the Stone model of L1(L, μ).

In case that T has additional properties, one can extend the defining formula
for the measure μT to some non-continuous functions.
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Theorem 4.11. Let (K, ν) and (L, μ) be compact measure spaces, and let T :
C(K) → L∞(L, μ) be a bounded operator that extends to a bounded operator
L1(K, ν)→ L1(L, μ). Then the formula∫

L

Tf · g dμ =

∫
K×L

f ⊗ g dμT (4.3)

holds for all f ∈ Lp(K, ν), g ∈ Lq(L, μ) and 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1.

Proof. We may suppose that T : L1(K, ν) → L1(L, μ) (and hence also |T |) is a
contraction. In a first step, we claim that the formula 4.3 holds for all bounded
Baire measurable functions f, g on K, L, respectively. Indeed, this follows from
a standard argument by virtue of the dominated convergence theorem and the
fact that the bounded Baire-measurable functions on a compact space form the
smallest set of functions that contains the continuous ones and is closed under
pointwise convergence of uniformly bounded sequences, see [5, Thm. E.1].

Replacing T by |T | in 4.3 we then can estimate for bounded Baire-measurable
functions f and g and 1 < p <∞∫

K×L

|f ⊗ g| dμ|T | =

∫
K×L

(|f | ⊗ 1) · (1⊗ |g|) dμ|T |

≤
(∫

K×L

|f |p ⊗ 1 dμ|T |

) 1
p ·

(∫
K×L

1⊗ |g|q dμ|T |

) 1
q

=
(∫

L

|T ||f |p dμ
) 1

p ·
(∫

L

(|T |1) · |g|q dμ
) 1

q

≤
(∫

K

|f |p dν
) 1

p ·
(∫

L

(|T |1) · |g|q dμ
) 1

q

= ‖f‖Lp(ν)
∥∥∥(|T |1) 1

q g
∥∥∥
Lq(μ)

.

It follows that if A is a ν-null Baire set of K and B is a μ-null Baire set of
L, then the sets A×L and K×B are μ|T |-null Baire sets of K ×L. Moreover, the
bilinear mapping (f, g) �→ f ⊗ g extends to a bounded bilinear mapping

Lp(K, ν)× Lq(L, μ)→ L1(K × L, μ|T |).

By interpolation, T is Lp-bounded, and hence the bilinear mapping (f, g) �→
Tf · g is a bounded bilinear mapping Lp(K, ν) × Lq(L, μ) → L1(L, μ). Now (4.3)
holds for bounded Baire-measurable functions f and g, hence by approximation
for all f ∈ Lp(K, ν) and g ∈ Lq(L, μ). (Choose sequences that approximate in norm
and almost everywhere. Observe that from the reasoning above it follows that if
fn → f ν-a.e. and gn → g μ-a.e., then fn ⊗ gn → f ⊗ g μ|T |-a.e.)

Finally, consider p = 1 (the case q = 1 being similar). If g ∈ L∞(L, μ) then,
by choosing a Baire-measurable representative for g such that ‖g‖∞ = ‖g‖L∞(L,ν)

and using the results from above, we can estimate for each f ∈ L∞(K, ν),∫
K×L

|f ⊗ g| dμ|T | =

∫
K×L

(|f | ⊗ 1) · (1⊗ |g|) dμ|T |
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≤
∫
K×L

|f | ⊗ 1 · ‖g‖∞ dμ|T | = ‖|T | |f |‖L1(L,ν) ‖g‖∞

≤ ‖f‖L1(K,ν) ‖g‖L∞(L,μ) .

The assertion then follows by approximation (almost everywhere and in norm) as
before. �

Remark 4.12. If an operator T : C(K) → L1(L, μ) factors through L∞(L, μ), it is
of course order-bounded, and hence its modulus exists. If, in addition, it factors
even through C(K), then the existence of μT follows from Lemma 4.5 directly
and one does not have to pass through the Stone model. If (L, μ) is already its
own Stone model (as is the case in the proof of Theorem 2.2 after the reduction
step in Section 3.3) then also |T | factors through C(L), and hence Lemma 4.5 is
completely sufficient to construct the measures μT and μ|T |.

Using modern tensor product terminology, we have

C(K × L) = C(K)⊗ε C(L) ⊆ C(K)⊗ε L
∞(L, μ) = C(K)⊗ε L

1(L, μ)′.

This implies (via the Stone model of (L, μ)) that an operator T : C(K) →
L1(L, μ) is “integral” (in the sense of Grothendieck) if and only if there is μT ∈
M(K ×L) such that (4.2) holds. Hence, the decisive equivalence of (ii) and (iv) in
Theorem 4.9 is essentially [9, p. 141, Thm. 11]. Schaefer incorporates these results
in his systematic study of operators between Banach lattices, see [21, IV, Theorem
5.6]. However, the property |μT | = μ|T |, essential for our application below, does
not appear there. It has been stated and proved explicitly in [2, Lemma 30], but
our proof is different.

4.3. The disintegration theorem

In this section we develop further the results of the previous section. The endpoint
will be a “disintegration” theorem for operators of the form I − T , where T is a
symmetric absolute contraction over a compact measure space.

We start with some auxiliary results.

Proposition 4.13. Let (K, ν) and (L, μ) be compact measure spaces and let T :
C(K)→ L1(L, μ) and S : C(L)→ L1(K, ν) be linear operators such that∫

L

Tf · g dμ =

∫
K

f · Sg dν (f ∈ C(K), g ∈ C(L)). (4.4)

If one of the operators T and S is order-bounded, then so is the other and (4.4)
holds with T and S replaced by |T | and |S|, respectively. Moreover, μT = r∗νS,
where r : L×K → K × L is the swapping map defined by r(x, y) = (y, x).

Proof. Suppose that S is order-bounded. Then, for f ∈ C(K) and g ∈ C(L) with
|g| ≤ 1, ∣∣∣ ∫

L

Tf · g dμ
∣∣∣ ≤ ∫

K

|f | · |Sg| dν ≤
∫
K

|f | (|S|1)dν.
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It follows that T extends to a contraction L1(K, (|S|1)ν) → L1(L, μ), hence, by

Theorem 4.3, T is order-bounded and |T |′μ ≤ (|S|1)ν. (Recall that the unit ball
of C(L) is L1-dense in the unit ball of L∞(L, μ).)

In order to prove the first of the two remaining claims, fix 0 ≤ g ∈ C(L), and
let f ∈ C(K) and u ∈ C(K) with |u| ≤ 1. Then∣∣∫

L

Tf · (gu) dμ
∣∣ = ∣∣∫

K

f · S(gu) dν
∣∣ ≤ ∫

K

|f | |S|g dν.

Taking the supremum over all these functions u, we obtain∫
L

|Tf | · g dμ ≤
∫
K

|f | |S|g dν.

This means that T extends to a contraction T : L1(K, (|S|g)ν) → L1(L, gμ).
It follows that |T |′g(gμ) ≤ (|S|g)ν, where |T |g denotes the modulus of T considered

as an operator C(K)→ L1(L, gμ). However, since L1(L, μ) “embeds” onto an ideal
of L1(L, gμ), it follows that |T |g = |T |. Putting things together we obtain∫

L

|T |f · g dν =

∫
K

f d |T |′g(gμ) ≤
∫
K

f · |S|g dν

for 0 ≤ f ∈ C(K). The converse inequality holds by symmetry, and the last
remaining statement is obtained by integrating both measures against functions
of the form f ⊗ g. �

Suppose that T : C(K) → L1(L, μ) is order-bounded. Then |μT | = μ|T | by
Theorem 4.9, hence by standard integration theory there is a μ|T |-almost every-
where unique λ ∈ L∞(K × L;μ|T |) with |λ| = 1 almost everywhere and∫

K×L

F (x, y) dμT =

∫
K×L

F (x, y)λ(x, y) dμ|T | (4.5)

for all F ∈ L1(K × L;μ|T |). This leads to the following corollary for the case that
K = L and μ = ν.

Corollary 4.14. Let (K,μ) be a compact measure space, let T : C(K) → L1(K,μ)
be an order-bounded operator, and let λ ∈ L∞(K × K,μ|T |) with |λ| = 1 almost

everywhere and such that (4.5) holds for L = K and all F ∈ L1(K × L;μ|T |).
Suppose, in addition, that T is symmetric, i.e., T satisfies∫

K

Tf · g dμ =

∫
K

f · Tg dμ (f, g ∈ C(K)).

Then |T | is symmetric, too, and

λ(x, y) = λ(y, x) for μ|T |-almost all (x, y) ∈ K2.

Proof. Note that, by hypothesis, (4.4) holds with S = T , hence it holds for T and
S replaced by |T | and |S| = |T |, respectively. It follows that |T | is symmetric and
that r∗μ|T | = μ|T |. The last assertion is now straightforward. �
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The following is the main result of this section. It has essentially been proved
by Carbonaro and Dragičević [2, pp. 22/23].

Theorem 4.15 (Disintegration). Let (K,μ) be a compact measure space, and let T
be a symmetric absolute contraction on L1(K,μ). Then∫

K

(I− T )f · g dμ =

∫
K

(I−M|T |1)f · g dμ

+

∫
K×K

∫
Z2

[
I−

(
0 λ(x, y)

λ(x, y) 0

)](
f(x)
f(y)

)
·
(
g(x)
g(y)

)
dζ2 dμ|T |(x, y)

for all f ∈ Lp(K,μ), g ∈ Lq(K,μ), 1 ≤ p ≤ ∞.

Proof. We first write I− T = (I−M|T |1) + (M|T |1 − T ) and then compute∫
K

(M|T |1 − T )f · g dμ =

∫
K

(|T |1)f · g dμ−
∫
K

Tf · g dμ

=

∫
K2

1⊗ fg dμ|T | −
∫
K2

f ⊗ g dμT =

∫
K2

1⊗ fg − (f ⊗ g)λ dμ|T |.

Since T is symmetric and
∣∣T ∣∣ = |T |, also |T | is symmetric and μ|T | is a

symmetric positive measure. Therefore, by a change of variable (x, y) �→ (y, x) in
the formula from above,∫

K

(M|T |1 − T )f · g dμ =

∫
K2

fg ⊗ 1− (g ⊗ f)λ dμ|T |.

Taking the arithmetic average of this and the previous form we obtain the claimed
formula. �

Corollary 4.16. Let (K,μ) be a compact measure space, and let T be a symmetric
sub-Markovian operator on L1(K,μ). Then∫

K

(I− T )f · g dμ

=

∫
K

(1− T1)f · g dμ+

∫
K×K

∫
Z2

(
1 −1
−1 1

)(
f(x)
f(y)

)
·
(
g(x)
g(y)

)
dζ2 dμT (x, y)

for all f ∈ Lp(K,μ), g ∈ Lq(K,μ), 1 ≤ p ≤ ∞.

5. Proof of the main results

Let us return to the proof of the main result, Theorem 2.2. By the reduction steps
from Section 3, one can suppose from the start that X = (K,μ) is a compact
measure space, A = I − T for some symmetric absolute contraction on L1(K,μ).
In particular, the Disintegration Theorem 4.15 is applicable.

Let, as in the hypothesis of Theorem 2.2, 1 ≤ p <∞, d, m ∈ N and Fj , Gj :
K → Cd be measurable functions for 1 ≤ j ≤ m. The assertion to prove is:
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For all measurable functions f ∈ M(K,μ;Cd) such that Fj(f) ∈ Lp(K,μ) and
Gj(f) ∈ Lq(K,μ) for all 1 ≤ j ≤ m:

m∑
j=1

Re

∫
K

(I− T )Fj(f) ·Gj(f) dμ ≥ 0.

and we may suppose that this assertion holds when (K,μ) is replaced by Z2, and
T is replaced by Eλ for each λ ∈ T.

Lemma 5.1. Under the given hypotheses,

Re

m∑
j=1

Fj(x)Gj(x) ≥ 0 for all x ∈ Cd. (5.1)

Proof. Note that the integral inequality is convex in T , and that it holds trivially
for T = I. Since it holds for each T = Eλ, λ ∈ T, it also holds for T = 1

2E1+
1
2E−1 =

0. Given (x1, . . . , xd) ∈ Cd, let fj := (xj , xj)
t ∈M(Z2) and inserting this into the

inequality with T = 0 on Z2 yields the claim. �
Suppose now that f ∈ M(K,μ;Cd) such that Fj(f) ∈ Lp(K,μ) and Gj(f) ∈

Lq(K,μ). We can apply the Disintegration Theorem 4.15 and obtain, for each
j = 1, . . . ,m∫

K

(I− T )Fj(f) ·Gj(f) dμ =

∫
K

(1− |T |1)Fj(f)Gj(f) dμ

+

∫
K×K

∫
Z2

(
I− Eλ(x,y)

)(Fj(f(x))
Fj(f(y))

)
·
(
Gj(f(x))
Gj(f(y))

)
dζ2 dμ|T |(x, y).

Now sum over j and take the real part. Finally, apply Lemma 5.1 for the first
summand and the hypothesis over Eλ(x,y) for the second to conclude that the
result has to be ≥ 0. Hence, Theorem 2.2 is completely proved.

The corresponding results for symmetric sub-Markovian and Markovian semi-
groups (Theorem 2.3, Theorem 2.4) are proved similarly. (Note that by the reduc-
tion steps in Section 3 one only needs to show the assertion for the case that
A = I − T where T is a symmetric absolute contraction on a compact measure
space (K, ν), and T is sub-Markovian or Markovian, respectively.)

In the sub-Markovian case (Theorem 2.3), the hypothesis tells in particular
that the statement is true for T = 0 on Z2, hence (5.1) holds. Now apply Corollary
4.16 and proceed as before.

In the Markovian case, one has T1 = 1 and the first summand in the dis-
integration formula of Corollary 4.16 vanishes. This leads to Theorem 2.4. (Note
that in the Markovian case, (5.1) is not a necessary condition any more.)

6. Application: The sector of analyticity

Let (St)t≥0 be an absolute contraction semigroup over a measure space X, and
let 1 < p < ∞. As a consequence of the Lumer–Phillips theorem, the semigroup
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(St)t≥0 extends to an analytic contraction semigroup on Lp(X) defined on the
sector

Σϕ := {z ∈ C \ 0 : |arg z| < ϕ}
(where 0 < ϕ ≤ π

2 ) if and only if

Re

∫
X

e±ϕi(Af) · f |f |p−2 ≥ 0 (6.1)

for all f ∈ dom(Ap). For some time it had been an open question whether, in the
case that (St)t is a symmetric contraction semigroup, inequality (6.1) must hold
for the angle ϕ = ϕp, where

ϕp := arccos
∣∣∣1− 2

p

∣∣∣ = arctan
2
√
p− 1

|p− 2| (6.2)

for 1 < p <∞. Such a result had been first established by Bakry [1] for a certain
subclass of sub-Markovian symmetric semigroups and later extended to all sub-
Markovian symmetric semigroups by Liskevich and Perelmuter [17]. That proof
was subsequently improved by Nagel and Voigt [19] and in that form became part
of Chapter 3 in Ouhabaz’ book [20]. The best general result for all symmetric
contraction semigroups had for a long time been the one by Cowling [4], when
Kriegler finally settled the case with a positive answer in [16]. Carbonaro and
Dragičević showed in [2, Remark 35] that the optimal angle can be obtained also
from their results.

We shall see in this section that the general symmetric case reduces to the
same scalar inequality as the sub-Markovian case. We apply Theorem 2.2 with

d = m = 1, F (x) = x and G(x) = e±iϕx |x|p−2
(G(0) = 0). This yields the

inequality

Re
(
e±iϕ

(
1 −λ
−λ 1

)(
z
w

)
·Z2

(
z |z|p−2

w |w|p−2

))
≥ 0

for all choices of z, w ∈ C and λ ∈ T. (Recall that ·Z2 denotes the sesquilinear
inner product on L2(Z2).) If we replace w by λw in this inequality, we obtain the
equivalent inequality

Re
(
e±iϕ

(
1 −1
−1 1

)(
z
w

)
·Z2

(
z |z|p−2

w |w|p−2

))
≥ 0.

For w = 0 the inequality reduces to |z|p cosϕ ≥ 0, which poses no further restric-
tion on ϕ. For w �= 0 we can replace z by wz and find the equivalent inequality

Re
(
e±iϕ

(
1 −1
−1 1

)(
z
1

)
·Z2

(
z |z|p−2

1

))
≥ 0,

i.e.,

Re
(
e±iϕ(z − 1)(z |z|p−2 − 1)

)
≥ 0.

Reformulating this as an inequality between real and imaginary part and
letting ϕ = ϕp as above reduces to the inequality (2.1) in [17] which is proven
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there. (Actually, our argument shows that the proof can be simplified since there
is only one complex variable to deal with.)

Corollary 6.1 (Kriegler). Let −A be the generator of a symmetric contraction
semigroup S = (St)t≥0 over some measure space X, and let 1 < p < ∞. Then S
extends to an analytic semigroup of contractions on Lp(X) on the sector Σϕp.

Appendix: On homomorphisms of probability spaces

Suppose that X = (X,Σ, μ) and X′ = (X ′,Σ′, μ′) are probability spaces and

Φ : L1(X)→ L1(X′)

is a one-preserving isometric lattice homomorphism.2 This means that Φ is an
isometric embedding for the L1-norms, Φ(1) = 1 and |Φf | = Φ |f | for all f ∈ L1(X).

The positivity of Φ implies in particular that Φ(f) = Φf for all f ∈ L1(X).
Finally, ∫

X

f =

∫
X′

Φf

for all f ∈ L1(X), since this is true for all f ≥ 0.

In this appendix we show how to (canonically) extend Φ to a homomorphic
(as lattices and ∗-algebras) embedding

Φ :M(X)→M(X′)

where M(X) andM(X′) denote the spaces of all measurable C-valued functions
modulo almost everywhere equality on X and X ′, respectively. Note that M(X)
is a complete metric space with respect to the metric

dX(f, g) :=

∫
X

|f − g|
1 + |f − g| .

The following lemma is the key property.

Lemma A.1. In the situation from above, Φ restricts to an embedding of C∗-
algebras Φ : L∞(X)→ L∞(X′). Moreover, for any f ∈ L1(X),

μ[ |f | > 0 ] = μ′ [ |Φf | > 0 ]

In particular, [ f = 0 ] is a μ-null set if and only if [ Φf = 0 ] is a μ′-null set.

Proof. It is clear that Φ restricts to a one-preserving isometric lattice homomor-
phism between the respective L∞-spaces. So only the multiplicativity Φ(fg) =
(Φf)(Φg) is to be shown. This is well known, see, e.g., [5, Chap. 7], but we repeat
the argument for the convenience of the reader. By bilinearity, it suffices to consider
f, g ≥ 0. Then, by polarization, it suffices to consider f = g, which reduces the
problem to establish that Φ(f2) = (Φf)2. Now, for any x ≥ 0, x2 = supt≥0 2tx−t2.

2In [5, Chap. 12], this is called a Markov embedding. It is the functional-analytic analogue of a
factor map (=homomorphism in the category of probability spaces) X′ → X.
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Hence, f2 = supt≥0 2tf − t21 in the Banach lattice sense. But Φ is a lattice ho-
momorphism and Φ1 = 1, therefore

Φ(f2) = Φ
(
sup
t≥0

2tf − t21
)
= sup

t≥0
2t(Φf)− t21 = (Φf)2.

The remaining statement follows from:

μ[ |f | > 0 ] = lim
n→∞

∫
X

(n |f | ∧ 1) = lim
n→∞

∫
X′

Φ(n |f | ∧ 1)

= lim
n→∞

∫
X′

n |Φf | ∧ 1 = μ′ [ |Φf | > 0 ] . �

Let f ∈ M(X). Then the function e := 1
1+|f | has the property that e, ef ∈

L∞(X). Moreover, by Lemma A.1, [ Φe = 0 ] is a μ′-null set. Hence, Φe is an in-
vertible element in the algebraM(X′), and we can define

Φ̂f :=
Φ(ef)

Φe
∈ M(X′).

Lemma A.2. The so-defined mapping Φ̂ :M(X)→M(X′) has the following prop-
erties:

a) Φ̂ is an extension of Φ.

b) Φ̂ is a unital ∗-algebra and lattice homomorphism.

c)

∫
X′

Φ̂f =

∫
X

f whenever 0 ≤ f ∈ M(X).

d) Φ̂ is an isometry with respect to the canonical metrics dX and dX′ .

e) If Φ is bijective then so is Φ̂.

f) The mapping Φ̂ :M(X)→M(X′) is uniquely determined by the property that

it extends Φ and it is multiplicative, i.e., satisfies Φ̂(fg) = Φ̂f · Φ̂g for all
f, g ∈ M(X).

Proof. a) and b) This is straightforward and left to the reader.
c) By the monotone convergence theorem,∫

X

f = sup
n∈N

∫
X

(f ∧ n1) = sup
n∈N

∫
X

Φ(f ∧ n1) = sup
n∈N

∫
X′

Φ̂(f ∧ n1)

= sup
n∈N

∫
X′
(Φ̂f ∧ n1) =

∫
X′

Φ̂f.

d) Follows from b) and c).
e) Suppose that L∞(X′) ⊆ ran(Φ) and let g ∈ M(X′) be arbitrary. Then, by
Lemma A.1, there are e, h ∈ L∞(X) such that

Φe =
1

1 + |g| and Φh =
g

1 + |g| = g Φe.
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Again by Lemma A.1, μ[ e = 0 ] = 0, which is why we can define f := h
e ∈M(X).

It follows that Φf = g.
f) Suppose that Ψ : M(X) → M(X′) is multiplicative and extends Φ. Let f ∈
M(X) and define e := 1

1+|f | as before. Then f, ef ∈ L∞(X) and hence

Φe ·Ψf = Ψe ·Ψf = Ψ(ef) = Φ(ef).

Since Φe is an invertible element inM(X′) (as seen above), it follows that

Ψf =
Φ(ef)

Φe
= Φ̂f

as claimed. �

By abuse of notation, we write Φ again instead of Φ̂. It is clear that Φ allows
a further extension to Cd-valued functions by

Φ(f) = Φ(f1, . . . , fd) := (Φf1, . . . ,Φfd) for f = (f1, . . . , fd) ∈M(X;Cd).

Now we are well prepared for the final result of this appendix.

Theorem A.3. Let X and X′ be probability spaces, and let Φ : L1(X) → L1(X′)
be a one-preserving isometric lattice isomorphism, with its canonical extension
Φ :M(X;Cd)→M(X′;Cd), d ∈ N. Then

Φ
(
F (f)

)
= F (Φf) almost everywhere (A.3)

for every Borel measurable function F : Cd → C and every f ∈M(X;Cd).

Proof. By linearity we may suppose that F ≥ 0. Next, by approximating F ∧ n1↗
F , we may suppose that F is bounded. Then F is a uniform limit of positive simple
functions, hence we may suppose without loss of generality that F = 1B, where B
is a Borel set in Cd. In this case, (A.3) becomes

Φ
(
1[ (f1,...,fd)∈B ]

)
= 1[ (Φf1,...,Φfd)∈B ] almost everywhere.

Let B be the set of all Borel subsets of Cd that satisfy this. Then B is a Dynkin
system, so it suffices to show that each rectangle is contained in B. Since Φ is
multiplicative, this reduces the case to d = 1, f is real valued and B = (a, b]. Now
[ a < f ≤ b ] = [ a < f ]∩[ b < f ]

c
, which reduces the situation to B = (a,∞). Now

1[ a<f ] = L1- lim
n→∞

n(f − a1)+ ∧ 1,

and applying Φ concludes the proof. �

Remarks A.4.

1) As a consequence of Theorem A.3, Φ |f |p = |Φf |p for any f ∈ M(X) and
p > 0, so Φ restricts to an isometric isomorphism of Lp-spaces for each p > 0.

2) The extension of the original L1-isomorphism Φ to M(X) is uniquely deter-
mined by the requirement that Φ is continuous for the metrics dX and dX′ .
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3) One can extend Φ to a lattice homomorphism

Φ :M(X; [0,∞])→M(X′; [0,∞])

by defining Φf := τ−1 ◦ Φ(τ ◦ f), where τ : [0,∞] → [0, 1] is any order-
preserving bijection. Using this one can then show that Φ maps almost every-
where convergent sequences to almost everywhere convergent sequences.
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The Isomorphism Problem for Complete
Pick Algebras: A Survey

Guy Salomon and Orr Moshe Shalit

Abstract. Complete Pick algebras – these are, roughly, the multiplier algebras
in which Pick’s interpolation theorem holds true – have been the focus of much
research in the last twenty years or so. All (irreducible) complete Pick algebras
may be realized concretely as the algebras obtained by restricting multipliers
on Drury–Arveson space to a subvariety of the unit ball; to be precise: every
irreducible complete Pick algebra has the form MV = {f ∣∣

V
: f ∈ Md}, where

Md denotes the multiplier algebra of the Drury–Arveson space H2
d , and V is

the joint zero set of some functions in Md. In recent years several works were
devoted to the classification of complete Pick algebras in terms of the complex
geometry of the varieties with which they are associated. The purpose of this
survey is to give an account of this research in a comprehensive and unified
way. We describe the array of tools and methods that were developed for this
program, and take the opportunity to clarify, improve, and correct some parts
of the literature.

Mathematics Subject Classification (2010). 46E22, 46J15, 47A13, 47L30.

Keywords.Nonself-adjoint operator algebras, reproducing kernel Hilbert spaces,
multiplier algebras, complete Pick spaces.

1. Introduction

1.1. Motivation and background

Consider the following two classical theorems.

Theorem A (Gelfand, [18]). Let X and Y be two compact Hausdorff spaces. The
algebras of continuous functions C(X) and C(Y ) are isomorphic if and only if X
and Y are homeomorphic.

Theorem B (Bers, [7]). Let U and V be open subsets of C. The algebras of holo-
morphic functions Hol(U) and Hol(V ) are isomorphic if and only if U and V are
biholomorphic.

The second author was partially supported by ISF Grant no. 474/12, by EU FP7/2007-2013
Grant no. 321749, and by GIF Grant no. 2297-2282.6/20.1.
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The common theme of these two theorems is that an appropriate algebra
of functions on a space encapsulates in its algebraic structure every aspect of
the topological/complex-geometric structure of the space. The problem that we
are concerned with in this paper has a very similar flavour. Let Md denote the
algebra of multipliers on Drury–Arveson space – precise definitions will be given in
the next section, for now it suffices to say thatMd is a certain algebra of bounded
analytic functions on the unit ball Bd ⊆ Cd. For every analytic variety V ⊆ Bd

one may define the algebra

MV = {f
∣∣
V
: f ∈Md}.

The natural question to ask is: in what ways does the variety V determine the
algebra MV , and vice versa? In other words, if MV and MW are algebraically
isomorphic, can we conclude that V and W are “isomorphic” in some sense? Con-
versely, if V and W are, say, biholomorphic, can we conclude that the algebras are
isomorphic?

As we shall explain below,MV is also an operator algebra: it is the multiplier
algebra of a certain reproducing kernel Hilbert space on V , and it is generated by
the multiplication operators [Mzih](z) = zih(z) (it will be convenient to denote
henceforth Zi = Mzi). Thus one can ask: do the Banach algebraic or operator
algebraic structures ofMV encode finer complex-geometric aspects of V ?

These questions in themselves are interesting, natural, nontrivial, and study-
ing them involves a collection of tools combining function theory, complex geom-
etry and operator theory. However, it is worth noting that there are routes, other
than analogy with Theorems A and B, that lead one to study the structure and
classify the algebrasMV described above.

One path that leads to considering the algebras MV comes from non-self-
adjoint operator algebras: it is the study of operator algebras universal with respect
to some polynomial relations. For simplicity consider the case in which V = ZBd

(I)
is the zero set of a radical and homogeneous polynomial ideal I � C[z1, . . . , zd],
where

ZBd
(I) = {λ ∈ Bd | p(λ) = 0 for all p ∈ I}.

ThenMV is the universal wot-closed unital operator algebra, that is generated
by a pure commuting row contraction T = (T1, . . . , Td) satisfying the relations in
I (see [26, 30]). This means that

1. The d-tuple of operators (Z1, . . . , Zd), given by multiplication by the coordi-
nate functions, is a pure, commuting row contraction satisfying the relations
in I, and it generatesMV ;

2. For any such tuple T , there is a unital, completely contractive and wot-

continuous homomorphism from MV into Alg
wot

(1, T ) determined by
Zi �→ Ti.

In general (when V is not necessarily the variety of a homogeneous polynomial
ideal) it is a little more complicated to explain the universal property of MV .
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Roughly,MV is universal for tuples “satisfying the relations” in JV = {f ∈Md |
f(λ) = 0 for all λ ∈ V }.

Thus the algebras MV are an operator algebraic version of the coordinate
ring on an algebraic variety, and studying the relations between the structure of
MV and the geometry of V can be considered as rudimentary steps in developing
“operator algebraic geometry”.

A different road that leads one to consider the collection of algebrasMV runs
from function theory, in particular from the theory of Pick interpolation. Let H
be a reproducing kernel Hilbert space on a set X with kernel k. If x1, . . . , xn ∈ X
and A1, . . . , An ∈Mk(C), then one may consider the problem of finding a matrix-
valued multiplier F : X →Mk(C) which has multiplier norm 1 and satisfies

F (xi) = Ai , i = 1, . . . , d.

This is called the Pick interpolation problem. It is not hard to show that a neces-
sary condition for the existence of such a multiplier is that the following matrix
inequality hold:

[(1− F (xi)F (xj)
∗)K(xi, xj)]

n
i,j=1 ≥ 0. (1.1)

G. Pick showed that for the Szegő kernel k(z, w) = (1− zw̄)−1 the condition (1.1)
is also a sufficient condition for the existence of a solution to this problem [25].
Kernels for which condition (1.1) is a sufficient condition for the existence of a
solution to the Pick interpolation problem have come to be called complete Pick
kernels, and their multiplier algebras complete Pick algebras. We refer the reader
to the monograph [2] for thorough introduction to Pick interpolation and complete
Pick kernels. The connection to our problem is the following theorem, which states
that under a harmless irreducibility assumption all complete Pick algebras are
completely isometrically isomorphic to one of the algebrasMV described above.

Theorem C (Agler–McCarthy, [1]). Let H be a reproducing kernel Hilbert space
with an irreducible complete kernel k. Then there exists d ∈ N ∪ {∞} and there is
an analytic subvariety V ⊆ Bd such that the multiplier algebra Mult(H) of H is
unitarily equivalent toMV .

In fact the theorem of Agler–McCarthy says much more: the Hilbert space
H can (up to some rescaling) be considered as a Hilbert space of functions on V ,
which is a subspace of the Drury–Arveson space. Since we require this result only
for motivation, we do not go into further detail.

Thus, by studying the algebrasMV in terms of the complex-geometric struc-
ture of V one may hope to obtain a structure theory of irreducible complete Pick
algebras. In particular, we may hope to use the varieties as complete invariants of
irreducible complete Pick algebras up to isomorphism – be it algebraic, isometric
or spatial. This is why we call this study The Isomorphism Problem for Complete
Pick Algebras.
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1.2. About this survey

The goal of this survey is to present in a unified way the main results on the
isomorphism problem for complete Pick algebras obtained in recent years. We do
not provide all the proofs, but we do give proofs (or at least an outline) to most key
results, in order to highlight the techniques involved. We give precise references so
that all omitted details can be readily found by the interested reader. We also had
to omit some results, but all results directly related to this survey may be found
in the cited references.

Although one may treat the case where V ⊆ Bd and W ⊆ Bd′ where d and d′

might be different, we will only treat the case where d = d′. It is easy to see that
this simplification results in no real loss.

This paper also contains some modest improvements to the results appearing
in the literature. In some cases we unify, in others we simplify the proof somewhat,
in one case we were able to extend a result from d < ∞ to d = ∞ (see Theorem
4.8). There is also one case where we correct a mistake that appeared in an earlier
paper (see Remark 4.4).

Furthermore, we take this opportunity to call to attention a little mess that
resides in the literature, and try to set it right. (The reader may skip the following
paragraph and return to it after reading Section 2.5.) The results we review in
this survey are based directly on results in the papers [4, 5, 10, 15, 16, 20, 23].
The papers [10, 16] relied in a significant way on many earlier results of Davidson
and Pitts [12, 13, 14], and in particular on [12, Theorem 3.2]. The content of that
theorem, phrased in the language of this survey, is that over every point of V there
lies a unique character in the maximal ideal space M(MV ), and moreover that
there are no characters over points of Bd \ V . Unfortunately, at the time that the
papers [10, 16] were in press it was observed by Michael Hartz that [12, Theorem
3.2] is true only under the assumption d <∞, a counter example shows that it is
false for d = ∞ (see the example on the first page of [11], or Example 2.4 in the
arXiv version of [10]).

Luckily, the main results of [10, 16] survived this disaster, but significant
changes in the arguments were required, and some of the results survived in a
weaker form. The paper [10] has an erratum [11], and [16] contains some corrections
made in proof. However, thorough revisions of the papers [10, 16] appeared on the
arXiv, and when we refer to these papers we refer to the arXiv versions. We direct
the interested reader to the arXiv versions.

1.3. Overview of main results

Sections 2 and 3 contain some basic results which are used in all of the classification
schemes. The main results are presented in Sections 4, 5 and 6, which can be read
independently after Sections 2 and 3. Some open problems are discussed in the
final section.

The following table summarizes what is known and what is not known re-
garding the isomorphism problem of the algebrasMV , where V is a variety in a
finite-dimensional ball. (In some cases the result holds for d =∞, see caption.)
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2. Notation and preliminaries

2.1. Basic notation

It this survey, d always stands for a positive integer or∞ = ℵ0. The d-dimensional
Hilbert space over C is denoted by Cd (when d = ∞, Cd stands for �2), and Bd

denotes the open unit ball of Cd. When d = 1, we usually write D instead of Bd.

2.2. The Drury–Arveson space

Let H2
d be the Drury–Arveson space (see [29]). H2

d is the reproducing Hilbert space
on Bd, the unit ball of Cd, with kernel functions

kλ(z) =
1

1− 〈z, λ〉 for z, λ ∈ Bd.

We denote byMd the multiplier algebra Mult(H2
d) of H

2
d .

2.3. Varieties and their reproducing kernel Hilbert spaces

We will use the term analytic variety (or just a variety) to refer to the common zero
set of a family of H2

d -functions. If E is a set of functions on Bd which is contained
in H2

d , let

V (E) := {λ ∈ Bd : f(λ) = 0 for all f ∈ E}.

On the ther hand, if S is a subset of Bd let

HS := {f ∈ H2
d : f(λ) = 0 for all λ ∈ S},

and

JS := {f ∈ Md : f(λ) = 0 for all λ ∈ S}.

Proposition 2.1 ([16], Proposition 2.1). Let E be a subset of H2
d , and let V = V (E).

Then

V = V (JV ).

Given an analytic variety V , we also define

FV := span{kλ : λ ∈ V }.

This Hilbert space is naturally a reproducing kernel Hilbert space of functions
living on the variety V .

Proposition 2.2 ([16], Proposition 2.3). Let S ⊆ Bd. Then

FS := span{kλ : λ ∈ S} = FV (HS) = FV (JS).

2.4. The multiplier algebra of a variety

The reproducing kernel Hilbert space FV comes with its multiplier algebraMV =
Mult(FV ). This is the algebra of all functions f on V such that fh ∈ FV for all
h ∈ FV . A standard argument shows that each multiplier determines a bounded
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linear operator Mf ∈ B(FV ) given by Mfh := fh. We will usually identify the
function f with its multiplication operatorMf . We will also identify the subalgebra
of B(FV ) consisting of the Mf ’s and the algebra of functionsMV (endowed with
the same norm). We let Zi denote both the multiplier corresponding to the ith
coordinate function z �→ zi, as well as the multiplication operator it gives rise to.
In some cases, for emphasis, we write Zi

∣∣
V

instead of Zi.
Now consider the map from Md into B(FV ) sending each multiplier f to

PFV Mf |FV . One verifies that this map coincides with the map f �→ f |V and
therefore its kernel is JV . Thus, the multiplier norm of f |V , for f ∈ Md, is
‖f + JV ‖ = ‖PFV Mf |FV ‖. The complete Nevanlinna–Pick property then implies
that this map is completely isometric onto MV . This gives rise to the following
proposition.

Proposition 2.3 ([16], Proposition 2.6). Let V be an analytic variety in Bd. Then

MV = {f |V : f ∈ Md}.
Moreover the mapping ϕ :Md →MV given by ϕ(f) = f |V induces a completely
isometric isomorphism and weak-∗ continuous homeomorphism of Md/JV onto
MV . For any g ∈ MV and any f ∈ Md such that f |V = g, we have Mg =

PFV Mf |FV . Given any F ∈ Mk(MV ), one can choose F̃ ∈ Mk(Md) so that

F̃ |V = F and ‖F̃‖ = ‖F‖.
In the above proposition we referred to the weak-∗ topology in MV ; this is

the weak-∗ topology whichMV naturally inherits from B(FV ) by virtue of being
a wot-closed (hence weak-∗ closed) subspace. The fact thatMV is a dual space
has significant consequences for us. It is also useful to know the following.

Proposition 2.4 ([16], Lemma 3.1). Let V be a variety in Bd. Then the weak-∗ and
the weak-operator topologies onMV coincide.

2.5. The character space of MV

Let A be a unital Banach algebra. A character on A is a nonzero multiplicative lin-
ear functional. The set of all characters on A, endowed with the weak-∗ topology,
is called the character space of A, and will be denoted by M(A). It is easy to check
that a character is automatically unital and continuous with norm 1. If further-
more A is an operator algebra, then its characters are automatically completely
contractive [24, Proposition 3.8].

The algebras we consider are semi-simple commutative Banach algebras, thus
one might expect that the maximal ideal space will be a central part of the classifi-
cation. However, these algebras are not uniform algebras; moreover, the topological
space M(MV ) can be rather wild. Thus the classification does not use M(MV )
directly, but rather a subset of characters that can be identified with a subset of
Bd and can be endowed with additional structure.

Let V be a variety in Bd. Since (Z1, . . . , Zd) is a row contraction, it holds
that

‖(ρ(Z1), . . . , ρ(Zd))‖ ≤ 1 for all ρ ∈M(MV ).
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The map π : M(MV )→ Bd, given by

π(ρ) = (ρ(Z1), . . . , ρ(Zd)),

is continuous as a map from M(MV ), with the weak-∗ topology, into Bd (endowed
with the weak topology, in case d = ∞). Since π is continuous, π(M(MV )) is a
compact subset of the closed unit ball. For every λ ∈ π(M(MV )), the set π

−1{λ} ⊆
M(MV ) is called the fiber over λ.

For every λ ∈ V , the fiber over λ contains the evaluation functional ρλ, which
is given by

ρλ(f) = f(λ) , f ∈ MV .

The following two results are crucial for much of the analysis of the algebrasMV .

Proposition 2.5 ([16], Proposition 3.2). V can be identified with the wot-contin-
uous characters of MV via the correspondence λ↔ ρλ.

Proposition 2.6 ([16], Proposition 3.2). If d <∞, then

π(M(MV )) ∩ Bd = V,

and for every λ ∈ V the fiber over λ, that is π−1{λ}, is a singleton.

2.6. Metric structure in M(MV )

Let ν ∈ Bd, and let Φν be the automorphism of the ball that exchanges ν and 0
(see [28, p. 25]):

Φν(z) :=
ν − Pνz − sνQνz

1− 〈z, ν〉 ,

where

Pν =

{ 〈z,ν〉
〈ν,ν〉ν if ν �= 0,

0 if ν = 0
, Qν = I − Pν , and sν = (1− ‖ν‖2) 1

2 .

If μ ∈ Bd is another point, the pseudohyperbolic distance between μ and ν is defined
to be

dph(μ, ν) := ‖Φν(μ)‖ = ‖Φμ(ν)‖.

One can check that the pseudohyperbolic distance defines a metric on the open
ball.

The following proposition will be useful in the sequel. Among other things it
will imply that the metric structure induced on V by the pseudohyperbolic metric
is an invariant ofMV .



The Isomorphism Problem for Complete Pick Algebras 175

Proposition 2.7 ([16], Lemma 5.3). Let V be a variety in Bd.

(a) Let μ ∈ ∂Bd and let ϕ ∈ π−1(μ). Suppose that ψ ∈ M(MV ) satisfies ‖ψ −
ϕ‖ < 2. Then ψ ∈ π−1(μ).

(b) If μ, ν ∈ V , then

dph(μ, ν) =
‖ρμ − ρν‖

sup‖f‖≤1

∣∣∣1− f(μ)f(ν)
∣∣∣ .

As a result,

dph(μ, ν) ≤ ‖ρμ − ρν‖ ≤ 2dph(μ, ν).

3. Weak-∗ continuous isomorphisms

Let V and W be two varieties in Bd. We say that V and W are biholomorphic
if there exist holomorphic maps F : Bd → Cd and G : Bd → Cd such that
G ◦ F |V = idV and F ◦G|W = idW . If furthermore the coordinate functions of F
are multipliers, then we say that V and W are multiplier biholomorphic.

In this section we will see that in the finite-dimensional case, if there is a weak-
∗ continuous isomorphism between two multiplier algebras MV and MW , then
V and W are multiplier biholomorphic. We start with the following proposition,
which is a basic tool in the theory.

Proposition 3.1 ([16], Proposition 3.4). Let V and W be two varieties in Bd, and
let ϕ :MV → MW be a unital homomorphism. Then ϕ gives rise to a function
Fϕ : W → Bd by

Fϕ = π ◦ ϕ∗|W .

Moreover, there exist multipliers F1, F2, . . . , Fd ∈ M such that

Fϕ = (F1|W , F2|W , . . . , Fd|W ).

Furthermore, if ϕ is completely bounded or d <∞, then Fϕ extends to a holomor-
phic function defined on Bd.

Here and below ϕ∗ is the map from M(MW ) into M(MV ) given by ϕ∗(ρ) =
ρ ◦ ϕ for all ρ ∈MW .

Proof. Proposition 2.5 gives rise to the following commuting diagram

{
wot-continuous

characters of MW

}
M(MW ) M(MV )

{
wot-continuous

characters of MV

}

W π(M(MW )) π(M(MV )) V

ϕ∗

λ
↔

ρ
λ

π π

λ
↔

ρ
λ
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and the composition of the thick arrows from W to π(M(MV )) ⊆ Bd yields the
map Fϕ. Now since ϕ(Zi) ∈ MW = {f |W : f ∈ M}, there is an element Fi ∈M
such that ϕ(Zi) = Fi|W and ‖Fi‖ = ‖ϕ(Zi)‖. Thus, for every λ ∈W ,

Fϕ(λ) = π(ϕ∗(ρλ))

= (ϕ∗(ρλ)(Z1), ϕ
∗(ρλ)(Z2), . . . , ϕ

∗(ρλ)(Zd))

= (ϕ(Z1)(λ), ϕ(Z2)(λ), . . . , ϕ(Zd)(λ))

= (F1|W (λ), F2|W (λ), . . . , Fd|W (λ)) .

It remains to show that if ϕ is completely bounded or d < ∞ then (F1, . . . , Fd)
defines a function Bd → Cd. If d <∞ it is of course clear. If d =∞ and ϕ is com-
pletely bounded then the norm of (ϕ(Z1), ϕ(Z2), . . .) is finite, and the Fi’s could
have been chosen such that ‖(MF1 ,MF2 , . . .)‖ = ‖ (ϕ(Z1), ϕ(Z2), . . .) ‖. Hence,
with this choice of the Fi’s, (F1, F2, . . . ) defines a function B∞ → �2. �

Remark 3.2. When d = ∞ and ϕ is not completely bounded, we cannot even
say that the map Fϕ : W → Bd, in the above proposition, is a holomorphic
map. The reason is that by definition a holomorphic function on a variety should
be extendable to a holomorphic function on an open neighborhood of the variety.
However, it is not clear whether there exists a choice of the Fi’s and a neighborhood
of W such that for any λ in this neighborhood (F1(λ), F2(λ), . . . ) belongs to �2.

Chasing the diagram in the proof of Proposition 3.1 shows that whenever
ϕ∗ takes weak-∗ continuous characters ofMW to weak-∗ continuous characters of
MV , Fϕ maps W into V . Therefore, if ϕ is a weak-∗ continuous unital homomor-
phism, then Fϕ(W ) ⊆ V . This, together with the observation that the inverse of
a weak-∗ continuous isomorphism is weak-∗ continuous, gives rise to the following
corollary.

Corollary 3.3 ([16], Corollary 3.6). Let V and W be varieties in Bd. If ϕ :MV →
MW is a unital homomorphism that preserves weak-∗ continuous characters, then
Fϕ(W ) ⊆ V and ϕ is given by

ϕ(F ) = f ◦ Fϕ, f ∈MV . (3.2)

Moreover, if there exists a weak-∗ continuous isomorphism ϕ :MV →MW , then
Fϕ(W ) = V , Fϕ−1(V ) = W , and there are multipliers F1, . . . , Fd, G1, . . . , Gd ∈M
such that

Fϕ = (F1|W , . . . , Fd|W ), and Fϕ−1 = (G1|V , . . . , Gd|V ).

Proof. It remains only to verify (3.2), the rest follows from the discussion above.
If f ∈MV and λ ∈W , we find

ϕ(f)(λ) = ϕ∗(ρλ)(f) = ρFϕ(λ)(f) = f ◦ Fϕ(λ),

as required. �
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When d <∞, we obtain the following result.

Corollary 3.4 ([16], Corollary 3.8). Let V and W be varieties in Bd for d < ∞.
If there exists a weak-∗ continuous isomorphism ϕ :MV →MW , then V and W
are multiplier biholomorphic.

The converse does not hold; see Example 5.7 (see also Corollary 6.9). We
conclude this section with the following assertion which is a direct result of Propo-
sition 2.7(b) together with the fact that isomorphisms are automatically bounded.

Corollary 3.5 ([10], Theorem 6.2). Suppose F : W → V is a biholomorphism which
induces (by composition) an isomorphism ϕ : MV → MW . Then F must be bi-
Lipschitz with respect to the pseudohyperbolic metric, i.e., there is a constant c > 0
such that

c−1dph(μ, ν) ≤ dph(F (μ), F (ν)) ≤ cdph(μ, ν).

The converse does not hold; see [10, Example 6.6].

4. Isometric, completely isometric, and unitarily implemented
isomorphisms

Let V and W be two varieties in Bd. We say that V and W are conformally
equivalent if there exists an automorphism of Bd (that is, a biholomorphism from
Bd into itself) which maps V onto W . In this section we will see that if V and
W are conformally equivalent then MV and MW are (completely) isometrically
isomorphic (in fact, unitarily equivalent). When d < ∞ the converse also holds,
and morally speaking it also holds for d =∞. In fact, when d =∞ it may happen
that MV and MW are unitarily equivalent but V and W are not conformally
equivalent. This, however, can only be the result of an unlucky embedding of V
and W into B∞, and is easily fixed.

4.1. Completely isometric and unitarily implemented isomorphisms

Proposition 4.1 ([16], Proposition 4.1). Let V and W be varieties in Bd. Let F
be an automorphism of Bd that maps W onto V . Then f �→ f ◦ F is a unitarily
implemented completely isometric isomorphism of MV onto MW ; i.e., Mf◦F =
UMfU

∗. The unitary U∗ is the linear extension of the map

U∗kw = cwkF (w) for w ∈ W,

where cw = (1− ‖F−1(0)‖2) 1
2 kF−1(0)(w).

The proof in [16] relies on Theorem 9.2 of [15], which uses Voiculescu’s con-
struction of automorphisms of the Cuntz algebra. For the convenience of the reader
we give here a slightly different proof.

Proof. Let F be such an automorphism, and set α = F−1(0). We first show that
the linear transformation defined on reproducing kernels by kw �→ cwkF (w) extends

to be a bounded operator of norm 1. First note that c−1
w = (1−‖α‖2)− 1

2 (1−〈w,α〉),
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so c−1
w (as a function of w) is a multiplier. The transformation formula for ball

automorphisms [28, Theorem 2.2.5], shows that

kF (w)(F (z)) = c−1
w c−1

z kw(z) for w, z ∈ Bd.

Now,

〈cwkF (w), czkF (z)〉 = cwczkF (w)(F (z)) = kw(z) = 〈kw, kz〉.
Thus, the linear transformation kw �→ cwkF (w) extends to an isometry. We denote
by U its adjoint. A short calculation shows that

Uh = (1− ‖α‖2) 1
2 kα · (h ◦ F ) for h ∈ H2

d .

We have already noted that U∗ is an isometry, and since its range is evidently
dense we conclude that U is a unitary.

Finally, we show that conjugation by U implements the isomorphism between
MV andMW given by composition with F . For f ∈MV and w ∈ W ,

UM∗
fU

∗kw = UM∗
f cwkF (w) = f(F (w))UcwkF (w) = (f ◦ F )(w)kw.

Therefore, Mf◦F is a multiplier on FW and Mf◦F = UMfU
∗. �

Before discussing the converse direction, we recall a few definitions on affine
sets. The affine span (or affine hull) of a set S ⊆ Cd is the set aff(S) := λ +
span(S−λ) for λ ∈ S. This is independent of the choice of λ. An affine set is a set
A with A = aff(A). The dimension dim(A) of an affine set A is the dimension of
the subspace A− λ for λ ∈ A, and the codimension codim(A) is the dimension of
the quotient space Cd/A− λ for λ ∈ A. Both definitions, again, are independent
of the choice of λ. By the affine dimension (resp. codimension) of a subset S ⊆ Cd

we mean the dimension (resp. codimension) of aff(S). Furthermore, we use the
term affine subset of Bd for any intersection A ∩ Bd, where A is affine in Cd. By
[28, Proposition 2.4.2], automorphisms of the ball map affine subsets of the ball to
affine subsets of the ball. Therefore, we obtain the following lemma.

Lemma 4.2. Let V and W be varieties in Bd and let F be an automorphism of Bd

that maps W onto V . Then, F (aff(V ) ∩ Bd) = aff(W ) ∩ Bd. In particular, aff(V )
and aff(W ) have the same dimension and the same codimension.

Proof. The first argument is clear, so it suffices to show that an automorphism
of the ball preserves dimensions and codimensions of affine subsets. Indeed, as F
is a diffeomorphism, its differential at any point of the ball is an invertible linear
transformation. Let A be an affine subset of Bd and let λ ∈ A. Let TλBd

∼= Cd be
the tangent space of Bd at λ, and let TλA ∼= A−λ be the tangent space of A at λ.
As A is a submanifold of Bd, we may think of TλA as a subspace of TλBd. Hence,
the invertible linear transformation dFλ maps the subspace TλA onto TF (λ)F (A).
We conclude that TλA and TF (λ)F (A) must have the same dimension and the
same codimension. �
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Proposition 4.1 and Lemma 4.2 imply, in particular, that if there is an auto-
morphism of the ball which sends W onto V , then V and W must have the same
affine codimension, and this automorphism gives rise to a completely isometric iso-
morphism ofMV ontoMW (by precomposing this automorphism). The converse
is also true: any completely isometric isomorphism of MV onto MW , for V and
W varieties in the ball having the same affine codimension, arises in this way.

Proposition 4.3. Let V and W be varieties in Bd, with the same affine codimension
or with d < ∞. Then every completely isometric isomorphism ϕ : MV → MW

arises as composition ϕ(f) = f ◦ F where F is an automorphism of Bd mapping
W onto V .

Proof. Recall that Proposition 3.1 assures the existence of a holomorphic map F :
Bd → Bd representing ϕ

∗∣∣
W
. A deep result of Kennedy and Yang [22, Corollary 6.4]

asserts thatMV andMW have strongly unique preduals. It then follows that every
isometric isomorphism between these algebras, is also a weak-∗ homeomorphism.
Thus, by Corollary 3.3, F (W ) ⊆ V and ϕ(f) = f ◦F . (We note that if d <∞, then
we may argue differently: first one shows using the injectivity of ϕ that F (Bd) ⊆ Bd,
and then one uses the assertion V = π(M(MV ))∩Bd of Proposition 2.6 to obtain
that ϕ preserves weak-∗ continuous characters.) Similarly, ϕ−1 :MW →MV gives
rise to a holomorphic map G : Bd → Bd such that G(V ) ⊆W and ϕ−1(g) = g ◦G.
It is clear that F ◦G|V = id|V and G ◦ F |W = id|W , and so F (W ) = V .

By Proposition 4.1 and Lemma 4.2, we may assume that V and W both
contain 0, and that F (0) = 0. Some technical several-complex-variables arguments,
which we will not present here, now show that F |spanW∩Bd

is an isometric linear
transformation that maps spanW ∩ Bd onto spanV ∩ Bd (see [16, Lemma 4.4]). In
particular, spanW and spanV have the same dimension. Since they also have the
same codimension, we may extend the definition of F |spanW∩Bd

to a unitary map
on Cd. This yields the desired automorphism. �

Remark 4.4. The original statement of Proposition 4.3 (which appears in [16,
Theorem 4.5]) does not include the requirement that V andW have the same affine
codimension. Example 4.5 below shows that this requirement is indeed necessary
(for the case d = ∞). Nonetheless, it is clear that up to an isometric embedding
of the original infinite ball into a “larger” one, the original statement does hold.
For example, if we replace V and W with their images under the embedding
U : (z1, z2, . . . ) �→ (z1, 0, z2, 0, . . . ), then both V and W have an infinite affine
codimension, and it is now true that MV and MW are completely isometrically
isomorphic if and only if V and W are conformally equivalent.

Example 4.5. Let V = B∞ and W = {(z1, z2, z3, . . . ) ∈ B∞ : z1 = 0}. Let
F : W → V be defined by

F (0, z2, z3, . . . ) = (z2, z3, . . . ).

Then F is a biholomorphism which cannot be extended to an automorphism of
B∞. Let ϕ : MV → MW be defined by ϕ(f) = f ◦ F . Then ϕ is a completely
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isometric isomorphism ofMV ontoMW , which does not arise as a precomposition
with an automorphism of the ball. The reason is of course that V has an affine
codimension 0 while W has an affine codimension 1.

Combining Propositions 4.1 and 4.3 yields the following result.

Theorem 4.6 ([16], Theorem 4.5). Let V and W be varieties in Bd, with the same
affine codimension or with d < ∞. Then MV is completely isometrically iso-
morphic to MW if and only if there exists an automorphism F of Bd such that
F (W ) = V . In fact, under these assumptions, every completely isometric isomor-
phism ϕ : MV → MW arises as composition ϕ(f) = f ◦ F where F is such an
automorphism. In this case, ϕ is unitarily implemented by the unitary sending the
kernel function kw ∈ FW to a scalar multiple of the kernel function kF (w) ∈ FV .

If V and W are not assumed to have the same affine codimension, then every
completely isometric isomorphism ϕ : MV → MW arises as composition with
U∗ ◦ F ◦ U , where F ∈ Aut(Bd) and U is the isometry from Remark 4.4, and is
unitarily implemented.

4.2. Isometric isomorphisms

By Theorem 4.6 the conformal geometry of V is completely encoded by the op-
erator algebraic structure MV (and vice versa). It is natural to ask whether the
Banach algebraic structureMV also encodes some geometrical aspect of V . It turns
out that within the family of irreducible complete Pick algebras, every isometric
isomorphism ofMV andMW is actually a completely isometric isomorphism, and
the results of the previous section apply.

Lemma 4.7. Let V and W be varieties in Bd, and suppose that ϕ :MV →MW is
an isometric isomorphism. Then ϕ∗ maps W onto V and preserves the pseudohy-
perbolic distance.

Proof. The first assertion was obtained in the proof of Proposition 4.3. It then
follows that ϕ is implemented by composition with ϕ∗∣∣

W
. Using this together

with Proposition 2.7 (b), one obtains the second assertion. �
The following theorem appears in [16, Proposition 5.9] with the additional

assumption that d <∞. Here we remove this restriction.

Theorem 4.8 ([16], Proposition 5.9). Let V and W be varieties in Bd. Then ev-
ery isometric isomorphism ofMV ontoMW is completely isometric, and thus is
unitarily implemented.

Proof. Without the loss of generality we may assume that V and W have the same
affine codimension by embedding the original ball in a larger one, if needed (see
Remark 4.4). Let ϕ be an isometric isomorphism of MV onto MW . By Lemma
4.7, ϕ∗ maps W onto V and preserves the pseudohyperbolic distance. Let F = Fϕ.

As above, we may assume that 0 belongs to both V and W , and that
F (0) = 0. Let w1, w2, . . . ∈ W be a sequence spanning a dense subset of spanW .
For every p ≥ 1 let vp = F (wp) = ϕ∗(wp). Put rp := ‖wp‖ = dph(wp, 0).
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Then ‖vp‖ = dph(vp, 0) = rp. For every p let hp(z) := 〈z, vp
rp
〉. This is a con-

tinuous linear functional (restricted to V ), and thus lies in MV . Furthermore,
since (Z1, Z2, . . . , Zd) is a row contraction it follows that ‖hp‖MV ≤ 1, and so
‖ϕ(hp)‖MW ≤ 1.

Now, let w be an arbitrary point in W , set v = F (w) ∈ V , and fix p ≥
1. Since, ϕ(hp) is a multiplier of norm at most 1 which satisfies ϕ(hp)(0) = 0,
ϕ(hp)(wp) = hp(vp) and ϕ(hp)(w) = hp(v), we have by a standard necessary
condition for interpolation [2, Theorem 5.2] that⎡⎢⎣1 1 1

1 1
1−〈v,vp〉
1−〈wp,w〉

1
1−〈v,vp〉
1−〈w,wp〉

1−|〈v,vp/rp〉|2
1−〈w,w〉

⎤⎥⎦ ≥ 0.

Examining the determinant we find that
1−〈v,vp〉
1−〈w,wp〉 = 1. Therefore,

〈v, vp〉 = 〈w,wp〉 for all p.

In particular, we obtain 〈vi, vj〉 = 〈wi, wj〉 for all i, j. Therefore, there is a unitary
operator U : spanW → spanV such that Uwi = vi for all 1 ≤ i ≤ k. Since
codim(spanW ) = codim(spanV ), it can be extended to a unitary operator U
on Cd. From here one shows that F agrees with the unitary U , and hence ϕ
is implemented by an automorphism of the ball. Thus, by Proposition 4.1, ϕ is
completely isometric and is unitarily implemented. �

5. Algebraic isomorphisms

We now turn to study the algebraic isomorphism problem. It is remarkable that,
under reasonable assumptions, purely algebraic isomorphism implies multiplier
biholomorphism. Throughout this section we will assume that d <∞.

5.1. Varieties which are unions of finitely many irreducible varieties
and a discrete variety

Let V be a variety in the ball. We say that V is irreducible if for any regular
point λ ∈ V , the intersection of zero sets of all multipliers vanishing on a small
neighborhood V ∩ Bε(λ) is exactly V . We say that V is discrete if it has no
accumulation points in Bd. We will see that if V and W are two varieties in Bd

(d <∞), which are the union of finitely many irreducible varieties and a discrete
variety, then wheneverMV andMW are algebraically isomorphic, V and W are
multiplier biholomorphic.

Remark 5.1. The definition of irreducibility given in the previous paragraph is not
to be confused with the classical notion of irreducibility (that is, that there is no
non-trivial decomposition of the variety into subvarieties). Nonetheless, whenever
a variety V is irreducible in the classical sense, it is also irreducible in our sense
(see, e.g., [19, Theorem, H1]).
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We open this section with two observations. The first is that every homo-
morphism between multiplier algebras is norm continuous. A general result in the
theory of commutative Banach algebras, says that every homomorphism from a
Banach algebra into a commutative semi-simple Banach algebra is norm contin-
uous [9, Proposition 4.2]. As MW is easily seen to be semi-simple, it holds that
every homomorphism fromMV toMW is norm continuous.

The second observation relates to isolated characters of a multiplier algebra.
Suppose that ρ is an isolated point in M(MV ). By Shilov’s idempotent theorem
[8, Theorem 5], there is a function 0 �= f ∈ MV such that every character except
ρ annihilates f . As f �= 0, there is λ ∈ V such that f(λ) �= 0. And so, ρ ∈ π−1(V ).
Thus, when d <∞ any isolated character of a multiplier algebra is an evaluation.
This gives rise to the following proposition.

Proposition 5.2 ([16], Lemma 5.2). Let V and W be varieties in Bd, with d <∞.
Let ϕ : MV → MW be an algebra isomorphism. Suppose that λ is an isolated
point in W . Then ϕ∗(ρλ) is an evaluation functional at an isolated point in V .

From the first observation above, together with Proposition 2.7, we obtain:

Proposition 5.3. Let V and W be a varieties in Bd, with d <∞, and let ϕ :MV →
MW be a homomorphism. Let U be a connected subset of W . Then ϕ∗(π−1(U))
is either a connected subset of π−1(V ) (with respect to the norm topology induced
byM∗

V ) or contained in a single fiber of the corona M(MV ) \ π−1(V ).

Proposition 5.4 ([16], Corollary 5.4). Let V and W be varieties in Bd, d < ∞,
and assume that each one is the union of a discrete variety and a finite union of
irreducible varieties. Suppose that ϕ is an algebra isomorphism ofMV ontoMW .
Then ϕ∗ must map W onto V .

Proof. Let us write V = DV ∪ V1 ∪ · · · ∪ Vm and W = DW ∪W1 ∪ · · · ∪Wn, where
DV and DW are the discrete parts of V and W , and Vi,Wj are all irreducible
varieties of dimension at least 1. By Proposition 5.2 ϕ∗ maps DW onto DV .

First let us show that if W1, say, is not mapped entirely into V then it is
mapped into a single fiber of the corona M(MV )\π−1(V ). Suppose that λ is some
regular point of W1 mapped to a fiber of the corona. Without loss of generality,
we may assume it is the fiber over (1, 0, . . . , 0). Then the connected component
of λ in W1 is mapped into the same fiber, by the previous proposition. If there
exists another point μ ∈ W1 which is mapped into V or into another fiber in the
corona, then by the previous proposition, the whole connected component of μ is
mapped into V or into the other fiber. The function h = ϕ(Z1|V )− 1|W vanishes
on the component of λ, but does not vanish on the component containing μ. This
contradicts the fact that W1 is irreducible.

Thus, to show that W1 is mapped into V we must rule out the possibility
that it is mapped into a single fiber of the corona. Fix λ ∈ W1 \

⋃n
i=2 Wi. For

each 2 ≤ i ≤ n, there is a multiplier hi ∈ Md vanishing on Wi and satisfying
hi(λ) �= 0. Moreover, since DW is a variety, there is a multiplier k vanishing on
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DW and satisfying k(λ) �= 0. Hence, h := k
∏n

i=2 hi belongs toMW and vanishes
on DW ∪

⋃n
i=2 Wi but not on W1. Therefore ϕ

−1(h) is a non-zero element ofMV .
Now suppose that ϕ∗(W1) is contained in a fiber over a point in ∂Bd, say

(1, 0, . . . , 0). Since (Z1 − 1)|V is never zero, we see that (Z1 − 1)|V ϕ−1(h) is not
the zero function. However, (Z1 − 1)|V ϕ−1(h) vanishes on ϕ∗(W1). Therefore,
ϕ((Z1 − 1)|V ϕ−1(h)) vanishes on W1 and on DW ∪

⋃n
i=2 Wi, contradicting the

injectivity of ϕ. We deduced that W1 is mapped into V . Replacing the roles of V
and W shows that ϕ∗ must map W onto V . �

From Proposition and 5.4 and Corollary 3.3 we obtain the following.

Theorem 5.5 ([16], Theorem 5.6). Let V and W be varieties in Bd, with d < ∞,
which are each a union of finitely many irreducible varieties and a discrete variety.
Let ϕ be an algebra isomorphism ofMV ontoMW . Then there exist holomorphic
maps F and G from Bd into Cd with coefficients in Md such that

(a) F |W = ϕ∗|W and G|V = (ϕ−1)∗|V ,
(b) G ◦ F |W = idW and F ◦G|V = idV ,
(c) ϕ(f) = f ◦ F for f ∈MV , and
(d) ϕ−1(g) = g ◦G for g ∈ MW .

Theorem 5.5 shows in particular that every automorphism ofMd =MBd
is

implemented as composition by a biholomorphic map of Bd onto itself, i.e., a con-
formal automorphism of Bd. Proposition 4.1 shows that these automorphisms are
unitarily implemented (hence, completely isometric). Thus, we obtain the following
corollary.

Corollary 5.6 ([16], Corollary 5.8). Every algebraic automorphism of Md for d
finite is completely isometric, and is unitarily implemented.

The converse of Theorem 5.5 does not hold.

Example 5.7. Let

V =

{
1− 1

n2
: n ∈ N

}
and W =

{
1− e−n2

: n ∈ N
}
.

Since they both satisfy the Blaschke condition, they are analytic varieties in D

(recall that {an ∈ C : n ∈ N} satisfies the Blaschke condition if
∑

(1− |an|) <∞).
Let B(z) be the Blaschke product with simple zeros at points in W . Define

h(z) = 1− e
1

z−1 and g(z) =
log(1− z) + 1

log(1 − z)

(
1− B(z)

B(0)

)
.

Then g, h ∈ H∞ =MD and they satisfy

h ◦ g|W = idW and g ◦ h|V = idV .

However, by the corollary in [21, p. 204], W is an interpolating sequence and V is
not. This implies thatMW is algebraically isomorphic to �∞ while V is not (see
[16, Theorem 6.3]). Thus,MV andMW cannot be isomorphic.
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5.2. Homogeneous varieties

Let V be a variety in the ball. We say that V is a homogeneous variety if it is the
common vanishing locus of homogeneous polynomials.

We wish to apply Theorem 5.5 to homogeneous varieties in Bd, d < ∞.
It is well known that every algebraic variety can be decomposed into a finite
union of irreducible varieties, but caution is required, since the well-known result is
concerned with irreducibility in another sense than the one we used in Section 5.1.
However, one may show that a homogeneous algebraic variety which is irreducible
(in the sense of algebraic varieties) is also irreducible in our sense.

Proposition 5.8. Every homogeneous variety in the ball is a union of finitely many
irreducible varieties.

Proof. Let V be a homogeneous variety and let V = V1 ∪ · · · ∪ Vn be its decom-
position into algebraic irreducible homogeneous varieties (in the sense of algebraic
varieties). We will show that every Vi is irreducible in our sense. By [19, Theorem
E19, Corollary E20], once we remove the set of singular points S(Vi), the con-
nected components of Vi \ S(Vi) are such that their closures are varieties. Since
S(Vi) is a homogeneous variety, these connected components are invariant under
nonzero scalar multiplication so their closures are homogeneous varieties. Thus,
if there was more than one connected component we would obtain an algebraic
decomposition of the variety Vi, so Vi\S(Vi) is connected. By the identity principle
[19, Theorem, H1], the Vi’s are irreducible in our sense. �

Thus we obtain the following theorem (the original proof of this theorem was
somewhat different – see [15, Section 11]).

Theorem 5.9 ([15], Theorem 11.7(2)). Let V and W be homogeneous varieties in
Bd, d <∞. IfMV andMW are algebraically isomorphic, then there is a multiplier
biholomorphism mapping W onto V .

The rest of this subsection is devoted towards the converse direction. Re-
markably, a stronger result than the converse holds: it turns out that the existence
of a biholomorphism from W onto V implies that the algebras are isomorphic.

We will start by showing that whenever a homogeneous variety W ⊆ Bd

is the image of homogeneous variety V ⊆ Bd under a biholomorphism, then it
is also the image of V under an invertible linear transformation. To see this, we
first need to present the notion of the singular nucleus of a homogeneous variety.
Lemma 4.5 of [15] and its proof say that a homogeneous variety V in Cd is either
a linear subspace, or has singular points, and that whenever it is not a linear
subspace, the set of singular points S(V ) (also known as the singular locus) of V is
a homogeneous variety. Since the dimension of S(V ) must be strictly less than the
dimension of V , there exists a smallest integer n such that S(. . . (S(S(V ))) . . . ) (n
times) is empty. The set

N(V ) := S(. . . (S(S(V ))) . . . )︸ ︷︷ ︸
n−1 times
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is called the singular nucleus of V . By the above discussion, it is a subspace of Cd.
By basic complex differential geometry, a biholomorphism of V onto W must map
N(V ) onto N(W ).

The following lemma – which seems to be of independent interest – was used
implicitly in [15], but in fact does not appear anywhere in the literature. The proof
follows closely the proof of [15, Proposition 4.7].

Lemma 5.10. Let V and W be two biholomorphically equivalent homogeneous vari-
eties in Bd. Then there exists a biholomorphism F of V onto W that maps 0 to 0.

Proof. Let G be a biholomorphism of V onto W . If N(V ) = N(W ) = {0}, then
G(0) = 0, and we are done. Otherwise,N(V )∩Bd andN(W )∩Bd are both complex
balls of the same dimension, say d′ ≤ d. As G takes N(V ) ∩ Bd onto N(W ) ∩ Bd,
we may think of G as an automorphism of Bd′ . We can find two discs D1 ⊆ N(V )
and D2 ⊆ N(W ) such that G(D1) = D2 (see [15, Lemma 4.6]). Define

O(0;V ) := {z ∈ D1 : z = F (0) for some automorphism F of V }
and

O(0;V,W ) :=
{
z ∈ D2 : z = F (0) for some biholomorphism

F of V onto W

}
.

Since homogeneous varieties are invariant under multiplication by complex num-
bers, it is easy to check that these sets are circular, that is, for every μ ∈ O(0;V )
and ν ∈ O(0;V,W ), it holds that Cμ,D1 := {z ∈ D1 : |z| = |μ|} ⊆ O(0;V ) and
Cν,D2 := {z ∈ D2 : |z| = |ν|} ⊆ O(0;V,W ).

Now, as G(0) belongs to O(0;V,W ), we obtain that C := CG(0),D2
⊆

O(0;V,W ). Therefore, the circle G−1(C) is a subset of O(0;V ). As O(0;V ) is
circular, every point of the interior of the circle G−1(C) is a subset of O(0;V ).
Thus, the interior of the circle C must be a subset of O(0;V,W ). We conclude
that 0 ∈ O(0;V,W ). �

Proposition 5.11. Let V and W be two biholomorphically equivalent homogeneous
varieties in Bd. Then there is a linear map on Cd which maps V onto W .

Sketch of proof. By Lemma 5.10, V and W are biholomorphically equivalent via
a 0 preserving biholomorphism; i.e., there exist two holomorphic maps F and G
from Bd into Cd such that G ◦ F |V = idV and F ◦G|W = idW . Cartan’s unique-
ness theorem says that if there exists a 0 preserving biholomorphism between two
bounded circular regions, then it must be a restriction of a linear transformation;
see [28, Theorem 2.1.3]. Now, V and W are indeed circular (since they are homo-
geneous varieties) and bounded, but do not have to be “regions” (their interior
might be empty). Nevertheless, it turns out that adapting the proof of Cartan’s
uniqueness theorem to the setting of varieties, rather than regions, does work (see
[15, Theorem 7.4]). Thus, there exists a linear map A : Cd → Cd which agrees
with F on V . �
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Up to now we have seen that ifMV andMW are isomorphic, then V and W
are biholomorphically equivalent; and we have seen that if V and W are biholo-
morphically equivalent, then there is a linear map sending V onto W , and it is not
hard to see that this map can be taken to be invertible. To close the circle, one
needs to show that whenever there is an invertible linear transformation mapping
a homogeneous variety W ⊆ Bd onto a homogeneous variety V ⊆ Bd, we have that
MV andMW are similar. In [15, Section 7], this statement was proved for a class
of varieties which satisfy some extra assumptions (e.g., irreducible varieties, union
of two irreducible components, hypersurfaces, and for the case d ≤ 3). Later on,
in [20] it was shown that these extra assumptions are superfluous, and that the
statement holds for all homogeneous varieties. The main difficulty was in proving
the following lemma.

Lemma 5.12 ([20]). Let V and W be homogeneous varieties in Bd, d <∞, If there
is a linear transformation A : Cd → Cd that maps W bijectively onto V , then the
map CA∗ : FW → FV , given by

CA∗kλ = kAλ for λ ∈W,

is a bounded linear transformation from FW into FV .

We omit the proof of Lemma 5.12. The crucial step in its proof is to show
that whenever V1, . . . , Vn are subspaces of Cd, the algebraic sum of the associated
Fock spaces

F(V1) + · · ·+ F(Vn) ⊆ F(Cd)

is closed. In fact, most of [20] is devoted to proving this crucial step.

Theorem 5.13. Let V and W be homogeneous varieties in Bd, d < ∞. If there is
an invertible linear transformation A ∈ GLd(C) that maps W onto V , then the
map ϕ :MV →MW , given by

ϕ(f) = f ◦A for f ∈MV ,

is a completely bounded isomorphism, and when regarding MV andMW as oper-
ator algebras acting on FV and FW , respectively, ϕ is given by

ϕ(Mf ) = (CA∗)∗Mf(C
−1
A∗ )

∗ for f ∈ MV .

Thus, MV andMW are similar.

Proof. By Lemma 5.12, both CA∗ and C(A−1)∗ are bounded, and it is clear that

C(A−1)∗ = (CA∗)−1. A calculation shows that Mf◦A = (CA∗)∗Mf(C
−1
A∗ )∗. �

We sum up the results of Theorems 5.11, 5.9 and 5.13 as follows.

Theorem 5.14 ([15, 20]). Let V and W be homogeneous varieties in Bd with d <∞.
Then the following are equivalent:

(a) MV andMW are similar.
(b) MV andMW are algebraically isomorphic.
(c) V and W are biholomorphically equivalent.
(d) There is an invertible linear map on Cd which maps W onto V .
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If a linear map A maps V onto W this means that A is length preserving on
the homogeneous varieties Ṽ and W̃ , where Ṽ is the homogeneous variety such that
V = Ṽ ∩Bd, and likewise W̃ . This does not mean that A is isometric (as Example
5.16 shows), but it is true that A is isometric on the span of every irreducible
component of W [15, Proposition 7.6]. Combining this fact with Proposition 4.1
we obtain the following result, which sharpens Corollary 5.6 substantially.

Theorem 5.15 ([15], Theorem 8.7). Let V and W be homogeneous varieties in Bd,
d <∞, such that W is either irreducible or a non-linear hypersurface. IfMV and
MW are isomorphic, then they are unitarily equivalent.

Example 5.16. Suppose that V andW are each given as the union of two (complex)
lines. There is always a linear map mapping W onto V that is length preserving
on W , thusMV andMW are algebraically isomorphic. On the other hand, these
algebras will be isometrically isomorphic if and only if the angle between the two
lines is the same in each variety.

The case of three lines is also illuminating: it reveals how the algebra Alg(1, Z)
and its wot-closure, the algebra MV , each encodes different geometrical infor-
mation. Indeed, suppose that V = span{v1} ∪ span{v2} ∪ span{v3} and W =
span{w1}∪ span{w2}∪ span{w3}, where vi, wj are all unit vectors in C2 spanning
distinct lines. There always exists a bijective linear map from W onto V : indeed,
define

A : w1 �→ a1v1 , w2 �→ a2v2,

and choose a1, a2 so that w3 = b1w1+b2w2 is mapped to v3. One only has to choose
a1, a2 such that a1b1v1 + a2b2v2 = v3. It follows that the algebras Alg(1, Z

∣∣
V
) and

Alg(1, Z
∣∣
W
) are isomorphic (the latter two algebras are easily seen to be isomorphic

to the coordinate rings of the varieties).
On the other hand, if we require the linear map A to be length preserving

on W , then |a1| = |a2| = 1. If v3 = c1v1 + c2v2, then for such a map to exist we
will need a1b1 = c1 and a2b2 = c2. This is possible if and only if |b1| = |c1| and
|b2| = |c2|. Thus the algebrasMV andMW in this setup are rarely isomorphic.

5.3. Finite Riemann surfaces

In seeking a the converse of Theorem 5.5, it is natural to restrict attention to
certain well-behaved classes of varieties. In the previous subsection it was shown
that the converse of Theorem 5.5 holds within the class of homogeneous varieties.
In this subsection we concentrate on generic one-dimensional subvarieties of Bd,
d <∞.

A connected finite Riemann surface Σ is a connected open proper subset of
some compact Riemann surface such that the boundary ∂Σ is also the boundary of
the closure and is the union of finitely many disjoint simple closed analytic curves.
A general finite Riemann surface is a finite disjoint union of connected ones.

Let Σ be a connected finite Riemann surface and let a ∈ Σ be some base-
point. Let ω be the harmonic measure with respect to a, i.e., the measure on ∂Σ
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with the property that

u(a) =

∫
∂Σ

u(ζ)dω(ζ)

for every function u that is harmonic on Σ and continuous on Σ. We denote by
H2(Σ) the closure in L2(ω) of the space A(Σ) := Hol(Σ)∩C(Σ). In case that Σ is
not connected we let H2(Σ) be the direct sum of the H2 spaces of the connected
components.

The multiplier algebra of H2(Σ) is H∞(Σ), the bounded analytic functions
on Σ. Note that the norm in H2(Σ) depends on the choice of base-point a, but the
norm in H∞(Σ) does not, as it is the supremum of the modulus on Σ; for more
details see [3].

We say that a proper holomorphic map G from a finite Riemann surface Σ
into a bounded open set U ⊆ Cd is a holomap if there is a finite subset Λ of Σ
with the property that G is non-singular and injective on Σ \Λ. We say that G is
transversal at the boundary if

〈DG(ζ), G(ζ)〉 �= 0 for all ζ ∈ ∂Σ.

The first result on this problem [4] showed that if G : D → W is a biholo-
morphic unramified C2-map that is transversal at the boundary, then there is an
isomorphism of multiplier algebras fromMD = H∞(D) toMW (the assumptions
appearing in [4] are slightly weaker – they only required C1 and did not ask for the
map to be unramified – but it seems that one needs a little more; see [5, p. 1132]).
This was extended to planar domains in [5, Section 2.3.6], and to finite Riemann
surfaces in [23]. Later, it was proved that a holomorphic C1 embedding of a finite
Riemann surface is automatically transversal at the boundary [10, Theorem 3.3].
Combining this automatic transversality result with [23, Theorem 4.2] we obtain:

Theorem 5.17 ([4, 5, 10, 23]). Let Σ be a finite Riemann surface and W a variety
in Bd. Let G : Σ→ Bd be a holomap that maps Σ onto W , is C2 up to ∂Σ, and is
one-to-one on ∂Σ. Then the map

α : h �→ h ◦G for h ∈ FW

is an isomorphism from FW onto H2
G(Σ) := H2(Σ) ∩ {h ◦ G : h ∈ Hol(W )}.

Consequently, the map f �→ f ◦ G implements an isomorphism of MW onto
H∞

G (Σ) := H∞(Σ) ∩ {h ◦G : h ∈ Hol(W )}.

The main idea of the proof goes back to [4]. One first shows that α, given by
the formula h �→ h◦G, is a well-defined bounded and invertible map from FW onto
H2

G(Σ), by computing α∗ and αα∗, and showing that αα∗ is an injective Fredholm
operator. The key trick is to break up αα∗ as the sum of a Toeplitz operator
and a Hilbert-Schmidt operator (see [23, Theorem 4.2] for details). Being positive
and Fredholm, injectivity implies invertibility, and the first claim in the theorem
follows. A straightforward computation then shows that the asserted isomorphism
betweenMW and H∞

G (Σ) is the similarity induced by α.
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Corollary 5.18. Let Σ be a finite Riemann surface, and let V and W be varieties
in Bd such that W = G(Σ), where G : Σ→ Bd is a holomap which is C2 on Σ and
is one-to-one on ∂Σ. Let F : W → V be a biholomorphism that extends to be C2

and one-to-one on W . Then the map ϕ :MV →MW , given by

ϕ(f) = f ◦ F for f ∈MV ,

is an isomorphism.

As an application of the above results, we give the following theorem on
extension of bounded holomorphic maps from a one-dimensional subvariety of
the ball to the entire ball (under rather general assumptions). Such an extension
theorem is difficult to prove using complex-analytic techniques, and it is pleasing
to obtain it from operator theoretic considerations.

Corollary 5.19 ([4] and [23], Corollary 4.12). Let W be as in Theorem 5.17. Then
MW = H∞(W ), and the norms are equivalent. Consequently, every h ∈ H∞(W )
extends to a multiplier inMd, and in particular to a bounded holomorphic function
on Bd. Moreover, there exists a constant C such that for all h ∈ H∞(W ), there is

an h̃ ∈Md such that h̃
∣∣
W

= h and ‖h̃‖∞ ≤ ‖h̃‖Md
≤ C‖h‖∞.

5.4. A class of counter-examples

In the last two subsections we saw classes of varieties, for which (well-behaved)
biholomorphism of the varieties implies isomorphism of the multiplier algebras. We
now turn to exhibiting a class of examples that show that, in general, biholomor-
phism of the varieties does not imply that the multiplier algebras are isomorphic.
In particular, these examples show that biholomorphic varieties need not be mul-
tiplier biholomorphic.

Proposition 5.20. Suppose that G : D→ Bd is a proper injective holomorphic map
which extends to a differentiable map on D∪ {−1, 1} such that the extension, also
denoted by G, satisfies G(1) = G(−1). If V = G(D) is a variety, then G−1 �∈ MV .
In particular, the embedding

MV →MD = H∞, f �→ f ◦G
is not surjective.

One way to prove this proposition is to observe that such a map G can
not be bi-Lipschitz with respect to the pseudohyperbolic metric, and then invoke
Corollary 3.5 (see [10, Remark 6.3] for details). For an alternative proof, we refer
the reader to [10, Theorem 5.1].

Example 5.21. Fix r ∈ (0, 1), and let

b(z) =
z − r

1− rz
.

Note that b(1) = 1 and b(−1) = −1. Define

G(z) =
1√
2

(
z2, b(z)2

)
.



190 G. Salomon and O.M. Shalit

It is not hard to verify that this map is a biholomorphism satisfying the hypotheses
of Proposition 5.20. Therefore, MV � H∞(V ), and G−1 is not a multiplier. By
Corollary 6.4 below we obtain thatMV is not isomorphic toMD = H∞.

6. Embedded discs in B∞
6.1. Some general observations

In this section we will examine multiplier algebrasMV where V = G(D) ⊆ Bd is
a biholomorphic image of a disc via a biholomorphism G : D→ Bd. The case that
interests us most is d =∞.

Theorem 6.1 ([10], Theorem 2.5). Let V and W be two varieties in Bd, biholo-
morphic to a disc via the maps GV and GW , respectively. Furthermore, assume
that

(a) for every λ ∈ V , the fiber π−1{λ} is the singleton {ρλ}, and
(b) π(M(MV )) ∩ Bd = V .

If ϕ : MV → MW is an algebra isomorphism, then F = Fϕ|W is a multiplier
biholomorphism F : W → V , such that ϕ(f) = f ◦ F for all f ∈MV .

Here F = Fϕ is the function provided by Proposition 3.1. By saying that
F is a multiplier biholomorphism we mean that (i) F = (F1, F2, . . .) where every
Fi ∈ MW , i.e., is a multiplier, and (ii) F is holomorphic on W , in the sense that

for every λ ∈ W there is a ball Bε(λ) and a holomorphic function F̃ : Bε(λ) →
Cd such that F

∣∣
Bε(λ)∩W

= F̃
∣∣
Bε(λ)∩W

. We require slightly different terminology

(compared to Section 3) because we are dealing with d =∞, and we are not making
any complete boundedness assumptions (see Remark 3.2). For more details about
holomorphic maps in this setting of discs embedded in B∞ see [10, Section 2].

Proof. We assume that d = ∞. There are two issues here: we need to prove that
F is a biholomorphism, and that F (W ) = V in the isomorphic case. For the first
issue, let α = (αi)

∞
i=1 ∈ �2. Then

〈F ◦GW (z), α〉 =
∞∑
i=1

αihi(z),

where hi(z) := Fi ◦GW (z). As characters are completely contractive, we have

∞∑
i=1

|hi(z)|2 = ‖F (GW (z))‖2 = ‖ρGW (z)(ϕ(Z|W ))‖2 ≤ ‖Z|W‖2 = 1.

Thus,
∑∞

i=1 αihi converges uniformly onW since by the Cauchy–Schwartz inequal-
ity,

∞∑
n=N

|αnhn(z)| ≤
( ∞∑

n=N

|αn|2
) 1

2

N→∞−−−−→ 0.
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Therefore, 〈F ◦ GW (·), α〉 is holomorphic for all α, and it follows that F is holo-
morphic (see [10, Section 2]).

We now show that the injectivity of ϕ implies that F is not constant, and that
this implies F (W ) ⊆ B∞. Suppose that F is the constant function λ (λ ∈ Bd).
Then for every i we have ϕ(λi − Zi|V ) = λi − Fi = 0. By the injectivity of ϕ,
Zi|V = λi, which is impossible as V is not a singleton. Thus, F is not constant.
If μ = F (λ) lies in ∂B∞ for some λ ∈ W , then 〈F ◦ GW (·), μ〉 is a holomorphic
function into D, which is equal to 1 at λ. The maximum modulus principle would
then imply that this function is constant, so this cannot happen.

In view of the previous paragraph, F (W ) ⊆ B∞. Since for every λ ∈ W ,
ϕ∗(ρλ) ∈ π−1{F (λ)} ⊆ π−1B∞, by the assumptions (a) and (b), we conclude that
F mapsW into V , and therefore (by Corollary 3.3) that ϕ(f) = f◦F . In particular,
ϕ is weak-∗ continuous, and so (as ϕ is an isomorphism) ϕ−1 is weak-∗ continuous
too. Thus, both ϕ∗ and (ϕ−1)∗ map point evaluations to point evaluations. We
conclude that F is a biholomorphism, mapping W onto V . �
Remark 6.2. We do not know when precisely conditions (a) and (b) in the above
theorem hold. We do not have an example in which they fail. We do know that
if a variety V in B∞ is the intersection of zero sets of a family of polynomials (or
more generally, elements in M∞ that are norm limits of polynomials) then (b)
holds (see [10, Proposition 2.8]).

By a familiar result [21, p. 143] the automorphisms of H∞ are the maps

Cθ(h) := h ◦ θ for some Möbius map θ (i.e., θ(z) = λ
(

z−a
1−az

)
for a ∈ D, and

λ ∈ ∂D). If G is a biholomorphic map of the disc onto a variety V in Bd, then
one can transfer the Möbius maps to conformal automorphisms of V by sending
θ to G ◦ θ ◦ G−1. Since this can be reversed, these are precisely the conformal
automorphisms of V . We say thatMV is automorphism invariant if composition
with all these conformal maps yields automorphisms ofMV .

Proposition 6.3. Let V and W be two varieties in Bd, biholomorphic to a disc via
the maps GV and GW , respectively. Assume that V satisfies the conditions (a) and
(b) of Theorem 6.1. Let ϕ :MV → MW be an algebra isomorphism. Then there
is a Möbius map θ such that the diagram

MV MW

H∞ H∞

ϕ

CGV CGW

Cθ

commutes.

The proof follows by Theorem 6.1 and the above discussion. We omit the
details.
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Suppose that the automorphism θ can be chosen to be the identity, or equiv-
alently, that CF , where F = GV ◦G−1

W , is an isomorphism ofMV ontoMW . Then
we will say thatMV andMW are isomorphic via the natural map.

Corollary 6.4. Let V and W be two varieties in Bd, biholomorphic to a disc via the
maps GV and GW , respectively. Assume that V satisfies the conditions (a) and (b)
of Theorem 6.1. If MV or MW is automorphism invariant, then MV and MW

are isomorphic if and only if they are isomorphic via the natural map CF , where
F = GV ◦G−1

W . In particular, ifMV is isomorphic to H∞, then CGV implements
the isomorphism.

6.2. A special class of embeddings

We now consider a class of embedded discs in B∞. The principal goal is to exhibit
a large class of multiplier biholomorphic discs in B∞ for which we may classify
the obtained multiplier algebras. Though this goal is not obtained fully, we are
able to tell when one of these multiplier algebras is isomorphic to H∞ := H∞(D).
Moreover, we obtain an uncountable family of embeddings of the disc into B∞
such that all obtained multiplier algebras are mutually non-isomorphic, while the
one-dimensional varieties associated with them are all multiplier biholomorphic to
each other, via a biholomorphism that extends continuously and one-to-one up to
the boundary.

Let (bn)
∞
n=1 be an �2-sequence of norm 1 and b1 �= 0. Define G : D→ B∞ by

G(z) = (b1z, b2z
2, b3z

3, . . . ) for z ∈ D.

Then G : D→ G(D) ⊆ B∞ is a biholomorphism with inverse b−1
1 Z1|G(D) and these

maps are multipliers. Moreover, G(D) is a variety because the conditions on the
sequence (bn) (namely, that it has norm 1 and that b1 �= 0) imply that

V := V ({bnzn1 − bn1zn : n ≥ 2}) = G(D).

It is easy to see that any two varieties arising this way are multiplier biholomorphic.

Remark 6.5. One may also consider embeddings similar to the above but with the
difference that

∑
|bn|2 < 1, and the results obtained are in some sense analogous to

what we describe here, but also contain some surprises. Since the varieties involved
are technically different from those on which we concentrate in this survey, we do
not elaborate; the reader is referred to [10, Section 8].

Define a kernel on D by

kG(z, w) =
1

1− 〈G(z), G(w)〉 for z, w ∈ D,

and let HG be the Hilbert function space on D with reproducing kernel kG. Then
we can define a linear map U : FV → HG by Uh = h ◦G. Since

〈kG(z), kG(w)〉 =
1

1− 〈G(z), G(w)〉 = 〈(kG)z, (kG)w〉 for all z, w ∈ D,
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it follows that UkG(z) = (kG)z extends to a unitary map of FV onto HG. Hence
composition with G determines a unitarily implemented completely isometric iso-
morphism CG :MV → Mult(HG). Therefore, we can work with multiplier algebras
of Hilbert function spaces on the disc rather than the algebrasMV itself.

Now write

kG(z, w) =
1

1−
∑∞

n=1 |bn|2(zw)n
=:

∞∑
n=0

an(zw)
n

for a suitable sequence (an)
∞
n=0. A direct computation shows that the sequence

(an) satisfies the recursion

a0 = 1 and an =
n∑

k=1

|bk|2an−k for n ≥ 1.

Moreover, 0 < an ≤ 1 for all n ∈ N.
Due to the special form of the kernel kG, we may compute the multiplier

norm of monomials in HG.

Lemma 6.6 ([10], Lemma 7.2). For every n ∈ N, it holds that

‖zn‖2Mult(HG) = ‖zn‖2HG
=

1

an
.

We now compare between two varieties embedded discs V and W as above.
We let (bVn )

∞
n=1 and (bWn )∞n=1 be two �2-sequence of norm 1 and bV1 �= 0 �= bW1 , and

define GV , GW : D→ B∞ by

GV (z) = (bV1 z, b
V
2 z

2, bV3 z
3, . . . ) and GW (z) = (bW1 z, bW2 z2, bW3 z3, . . . ).

As before, we consider also the sequences (aVn )
∞
n=0 and (aWn )∞n=0 which satisfy

kGV (z, w) =

∞∑
n=0

aVn (zw)
n and kGW (z, w) =

∞∑
n=0

aWn (zw)n.

Theorem 6.7 ([10], Proposition 7.5). The algebras MV and MW are isomorphic
via the natural map of composition with GV ◦ G−1

W if and only if the sequences
(aVn ) and (aWn ) are comparable, i.e., if and only if there is some c > 0 such that
c−1|aVn | ≤ |aWn | ≤ c|aVn | for all n.

Furthermore, if π−1{λ} = {ρλ} for every λ ∈ W andMW is automorphism
invariant, then MV and MW are isomorphic if and only if they are isomorphic
via the natural map.

Proof. If (aVn ) and (aWn ) are comparable, then by Lemma 6.6 the norms inHGV and
HGW of the orthogonal base {zn : n ∈ N} are comparable. Thus, the identity map is
an invertible bounded operator between HGV and HGW . Therefore, Mult(HGV ) =
Mult(HGW ), so thatMV andMW are isomorphic via the natural map.

Conversely, if MV and MW are isomorphic via the natural map then
Mult(HGV ) = Mult(HGW ). Therefore the identity map is an isomorphism be-
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tween these two semisimple Banach algebras, so the isomorphism is topological.
By Lemma 6.6, the sequences (aVn ) and (aWn ) are comparable.

If if π−1{λ} = {ρλ} for every λ ∈ W and MW is automorphism invariant,
then by Corollary 6.4, this is equivalent toMV being isomorphic toMW via any
isomorphism. �

Corollary 7.4 of [10] states that if MW is automorphism invariant and
supn≥1(a

W
n /aWn−1) < ∞, then π−1{λ} = {ρλ} for every λ ∈ W . This gives rise to

examples in which the second part of Theorem 6.7 is meaningful. For example, the
following corollary follows by the above by setting (bW1 , bW2 , bW3 , . . . ) = (1, 0, 0, . . . ),
and noting that aWn = 1 for all n ∈ N.

Corollary 6.8. MV is isomorphic to H∞ if and only if the sequence (aVn ) is bounded
below.

In terms of the sequence (bn) the result reads as follows.

Corollary 6.9. Let V = G(D) where G(z) = (b1z, b2z
2, b3z

3, . . . ), where ‖(bn)‖	2 =
1 and b1 �= 0. Then MV is isomorphic to H∞ if and only if

∞∑
n=1

n|bn|2 <∞.

Proof. By the Erdős–Feller–Pollard theorem (see [17, Chapter XIII, Section 11])
we know that

lim
n→∞

an =
1∑∞

n=1 n|bn|2
,

where 1/∞ = 0. Hence, (an) is bounded below if and only is the series converges.
�

Example 6.10 ([10], Example 7.9). For every s ∈ [−1, 0], consider the reproducing
kernel Hilbert spaces Hs with kernel

ks(z, w) =

∞∑
n=0

(n+ 1)s(zw)n for z, w ∈ D.

It is shown in [10] that these kernels arise from embeddings as above, and also
that these embeddings satisfy all the conditions of Theorem 6.7. We have that
asn = (n + 1)s in this case, and obviously the sequences

(
(n + 1)s

)∞
n=0

and
(
(n +

1)s
′)∞

n=0
are not comparable for s �= s′. Thus the family of algebras Mult(Hs) is

an uncountable family of multiplier algebras of the type we consider which are
pairwise non-isomorphic. Note that all these algebras live on varieties that are
multiplier biholomorphic via a biholomorphism that extends continuously to the
boundary.
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7. Open problems

Though we have accumulated a body of satisfactory results, and although we
have a rich array of examples and counter examples, the isomorphism problem for
irreducible Pick algebras is far from being solved. We close this survey by reviewing
some open problems.

7.1. Finite unions of irreducible varieties

Theorem 5.5 implies that in the case where V and W are finite unions of irre-
ducible varieties in Bd (for d <∞), we have that ifMV andMW are isomorphic
then V and W are multiplier biholomorphic. It is not known whether the converse
holds. We did see an example of multiplier biholomorphic varieties which are infi-
nite unions of irreducible varieties but with non-isomorphic multiplier algebras; see
Example 5.7. We also saw an example (Example 5.21) of biholomorphic irreducible
varieties, with non-isomorphic multiplier algebras; this, however, was not a multi-
plier biholomorphism. And so the question, whether a multiplier biholomorphism
of varieties which are a finite union of irreducible ones implies that the multiplier
algebras are isomorphic, remains unsolved for d <∞ (for d =∞ the answer is no,
see Example 6.10).

7.2. Maximal ideal spaces of multiplier algebras

As we remarked in the introduction, in the case d = ∞ there are multiplier al-
gebrasMV for which there are points in π−1B∞ ⊆ M(MV ) which are not point
evaluations; similarly, there are also multiplier algebras MV with characters in
fibers over points in B∞ \ V [10, Example 2.4]. Nevertheless, when we restrict
attention to “sufficiently nice” varieties, it might be the case that the characters
over the varieties do behave appropriately, in the sense that for every λ ∈ V the
fiber π−1{λ} is the singleton {ρλ}, and π(M(MV )) ∩ B∞ = V . In particular, it
will be interesting to obtain such a result for the family of discs embedded in B∞
by G(z) = (b1z, b2z

2, . . .) as in Section 6.2. This will amount to obtaining a better
understanding of the maximal ideal space of the algebras Mult(HG).

7.3. The correct equivalence relation

Theorem 5.5 says (under some assumptions) that ifMV andMW are isomorphic
then V and W are multiplier biholomorphic. We have seen a couple of counter
examples showing that the converse is not true, but to clarify the nature of the
obstruction let us point out the following: multiplier biholomorphism is not an
equivalence relation, while, on the other hand, isomorphism is an equivalence re-
lation; see [10, Remark 6.7]. This leads to the problem: describe the equivalence
relation ∼= on varieties given by “V ∼= W iff MV is isomorphic to MW ” in com-
plex geometric terms.

7.4. Structure theory

The central problem dealt with up to now was the isomorphism problem: when
areMV andMW isomorphic (or isometrically isomorphic)? For isometric isomor-
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phisms the problem is completely resolved: the structure of the Banach algebra
MV is completely determined by the conformal structure of V . As for algebraic iso-
morphisms, we know that the biholomorphic structure of V is an invariant of the al-
gebraMV . This opens the door for a profusion of delicate questions on how to read
the (operator) algebraic information from the variety, and vice versa. For example,
how is the dimension of V reflected inMV ? If V is a finite Riemann surface with
m handles and n boundary components, what in the algebraic structure of MV

reflects the m handles and the n boundary components? What about algebraic-
geometric invariants, such as number of irreducible components or degree?

7.5. Embedding dimension

A particular question in the flavour of the above broad question, is this: given an
irreducible complete Pick algebra A, what is the minimal d ∈ {1, 2, . . . ,∞} such
that A is isomorphic toMV , with V ⊆ Bd? This question is interesting – and the
answer is unknown – even for the case of the multiplier algebra of the well-studied
Dirichlet space D (see [6]).

7.6. Other algebras. Norm closed algebras of multipliers

The isomorphism problem makes sense on many natural algebras, for examples,
one may wonder whether, given two varieties V,W ⊆ Bd, is it true that the algebra
H∞(V ) is (isometrically) isomorphic toH∞(W ) precisely when V is biholomorphic
to W? Answering this question will require an understanding of the maximal ideal
spaces of the bounded analytic functions of a variety.

Another natural class of algebras is given by the norm closures of the poly-
nomials inMV ,

AV = C[z]
‖·‖MV .

(These algebras are sometimes referred to as the continuous multipliers on FV ,
but this terminology is misleading since in general AV � C(V ) ∩MV ; see [29,
Section 5.2].) In fact, the isomorphism problem was studied in [15] first for the
algebras AV . It was later realized that the norm closed algebras present some
delicate difficulties; see [16, Section 7]. In fact, subtleties arise already in the case
d = 1; see [16, Section 8].

7.7. Approximation and Nullstellensatz

One of the problems in studying the isomorphism problem for the norm closed
algebras AV is the following (see [16, Section 7] for an explanation of how these
issues relate). Denote by Ad the norm closed algebra generated by the polynomials
inMd. Let V ⊆ Bd be a variety, and assume that d <∞, and that V is determined
by polynomials. Consider the following ideals KV = {p ∈ C[z] : p

∣∣
V

= 0}, IV =

{f ∈ Ad : f
∣∣
V
= 0}, and JV = {f ∈ Md : f

∣∣
V
= 0}. A natural question is whether

IV is the norm closure of KV , and whether JV is the wot-closure of IV . In other
words, we know that every f ∈ IV is the norm limit of polynomials, but does the
fact that f vanishes on V imply that it can be approximated in norm using only
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polynomials from KV ? Likewise, is every function in JV the limit of a bounded
and pointwise convergent sequence of polynomials in KV (or functions in IV )?

It is very natural to conjecture that the answer is yes, and this was indeed
proved for homogeneous ideals; see [16, Corollary 6.13] (see also [27, Corollary
2.1.31] for the wot case). As may be expected, this approximation result is closely

related to an analytic Nullstellensatz:
√
I = I(V (I)) (here I is some norm closed

ideal in Ad, V (I) is the zero locus of the ideal I, I(V (I)) is the ideal of all

functions in Ad vanishing on V (I), and
√
I is an appropriately defined radical;

see [16, Theorem 6.12] and [27, 2.1.30]). However, we understand very little about
these issues in the non-homogeneous case.

Note added in proof. In the time that passed since this survey was written, a
few papers appeared on the isomorphism problem for complete Pick algebras. We
mention the papers:

1. M. Hartz, On the isomorphism problem for multiplier algebras of Nevanlinna–
Pick spaces, Canad. J. Math. (to appear), arXiv:1505.05108 (2015).

2. M. Hartz and M. Lupini, The classification problem for operator algebraic
varieties and their multiplier algebras, arXiv:1508.07044 (2015).

3. J.E. McCarthy and O.M. Shalit, Spaces of Dirichlet series with the Complete
Pick property, Israel J. Math. (to appear), arXiv:1507.04162 (2015).
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The Stationary State/Signal Systems Story

Olof J. Staffans

Abstract. We give an introduction to the theory of linear stationary s/s
(state/signal) systems in continuous time. A s/s system has a state space
which plays the same role as the state space of an ordinary i/s/o (input/state/
output) system, but it differs from an i/s/o systems in the sense that the in-
teraction signal which connects the system to the outside world has not been
divided a priori into one part which is called the “input” and another part
which is called the “output”. The class of s/s systems can be used to model,
e.g., linear time-invariant circuits which may contain both lumped and dis-
tributed components. To each s/s system corresponds in general an infinite
number of i/s/o systems which differ from each other by the choice of how the
interaction signal has been divided into an input part and output part. Each
such i/s/o system is called an i/s/o representation of the given s/s system.

We begin by giving an introduction to the time domain theory for i/s/o
and s/s systems, then continue by taking a brief look at the frequency domain
theory for i/s/o and s/s systems, and end with a short overview of the notions
of passivity and conservativity of i/s/o and s/s systems. In all cases the s/s
results that we present can be formulated in such a way that they do not
depend on any particular i/s/o representation of the s/s system, but it is still
true that there is a strong connection between the central properties of a s/s
system and the corresponding properties of its i/s/o representations.
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1. Introduction to state/signal systems

1.1. Input/state/output systems in the time domain

A “well-posed” linear stationary discrete time i/s/o (input/state/output) system
is of the form

Σi/s/o :

{
x(n+ 1) = Ax(n) +Bu(n),

y(n) = Cx(n) +Du(n),
n ∈ Z+. (1.1)

Here the input u, the state x, and the output y take their values in three Hilbert
spaces, the input space U , the state space X , and the output space Y, respectively,
Z+ = {0, 1, 2, . . .}, and A, B, C, and D, are bounded linear operators with the
appropriate domain and range spaces. These operators are called as follows: A is
the main operator, B is the control operator, C is the observation operator, and D
is the feed-through operator. By a future trajectory of Σi/s/o we mean a sequence[ x
u
y

]
defined on Z+ with values in

[X
U
Y

]
which satisfies (1.1) for all n ∈ Z+.

If we here replace the discrete time axis Z+ by the continuous time axis R+ =
[0,∞) and at the same time replace the first equation in (1.1) by the corresponding
differential equation, then we get a bounded linear stationary continuous time i/s/o
system of the form

Σi/s/o :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
t ∈ R+. (1.2)

The input u, the state x, and the output y still take their values in the Hilbert
spaces U , X , and Y, respectively, and the main operator A, the control operator
B, the observation operator C, and the feed-through operator D are still bounded
linear operators. By a classical future trajectory of Σi/s/o we mean a triple of

functions
[ x
u
y

]
which satisfies (1.2) for all t ∈ R+, with x continuously differentiable

with values in X and [ uy ] continuous with values in
[ U
Y
]
.

Unfortunately, typical stationary i/s/o systems modelled by partial differen-
tial equations are not bounded in the sense that even if it might be possible to
describe the dynamics of the system with an equation of the type (1.2), the opera-
tors A, B, C, and D need not be bounded. For this reason a more general version
of (1.2) is needed. Clearly, equation (1.2) can be rewritten in the form

Σi/s/o :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, (1.3)

where S is the bounded block matrix operator S = [ A B
C D ]. We get a much more

general class of linear stationary continuous time i/s/o systems by simply allowing
the operator S in (1.3) bo be unbounded (but still closed) and rewriting (1.3) in
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the form

Σi/s/o :

⎧⎪⎨⎪⎩
[
x(t)
u(t)

]
∈ dom

(
S
)
,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+. (1.4)

This class of systems covers “all” the standard models from mathematical physics.
We call S the generator of Σi/s/o. Usually the domain dom(S) of S is assumed to

be dense in [XU ].

Definition 1.1.

(i) By a regular (continuous time stationary) i/s/o (input/state/output) node
we mean a colligation Σi/s/o = (S;X ,U ,Y), where X , U , and Y are Hilbert

spaces, and S : [XU ]→
[X
Y
]
is a closed linear operator with dense domain.

(ii) The main operator A of Σi/s/o (or of S) is defined by

dom (A) := {x ∈ X |[ x0 ] ∈ dom (S)} ,
Ax :=

[
1X 0

]
S [ x0 ] , x ∈ dom(A) .

(1.5)

Here
[
1X 0

]
stands for the operator which maps [ xy ] ∈

[ X
Y
]
into x.

(iii) By a classical future trajectory of Σi/s/o we mean a triple of functions
[ x
u
y

]
which satisfies (1.4) for all t ∈ R+, with x continuously differentiable with
values in X and [ uy ] continuous with values in

[ U
Y
]
.

(iv) By a generalized future trajectory of Σi/s/o we mean a triple of functions
[ x
u
y

]
which is the limit of a sequence

[ xn
un
yn

]
of classical future trajectories of Σi/s/o

in the sense that xn → x in C(R+;X ) and [ un
yn ]→ [ uy ] in L2

loc(R
+;

[ U
Y
]
).

(v) By a regular (time domain) i/s/o system system we mean an i/s/o node
Σi/s/o = (S;X ,U ,Y) together with the sets of all classical and generalized
future trajectories of Σ.

Above C(R+;X ) stands for the space of continuous function on R+ with val-
ues in X , and convergence in C(R+;X ) means uniform convergence on each finite
subinterval of R+. The space L2

loc(R
+;
[ U
Y
]
) consists of functions which belong lo-

cally to L2 over R+ with values in
[ U
Y
]
, and convergence in L2

loc(R
+;
[ U
Y
]
) means

convergence in L2 on each finite subinterval of R+.
Note that if S is bounded, then S has a block matrix decomposition S =

[ A B
C D ], and (1.4) is equivalent to (1.2).

1.2. State/signal systems in the time domain

The idea behind the definition of a s/s (state/signal) system is to remove the
distinction between the “input” and the “output” of an i/s/o system. This can
be done in several ways. One way is to define the signal space to be the product
W =

[ U
Y
]
of X and Y, and to replace the input u and the output y by the combined

i/o (input/output) signal w = [ uy ]. After that one absorbs the “output” equation
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in (1.4) into the domain of a new operator F (whose domain will no longer be
dense in [XU ]), and rewrites (1.4) in the form

Σ:

⎧⎪⎨⎪⎩
[

x(t)
w(t)

]
∈ dom

(
F
)
,

ẋ(t) = F
([

x(t)
w(t)

])
,

t ∈ R+, (1.6)

dom (F ) =
{[

x0

[u0
y0 ]

]
∈ [ XW ]

∣∣∣ [ x0
u0 ] ∈ dom(S) , y0 =

[
0 1Y

]
S [ x0

u0 ]
}
,

F
[

x0

[u0
y0 ]

]
=
[
1X 0

]
S [ x0

u0
] ,

where
[
0 1Y

]
stands for the operator which maps [ xy ] ∈

[X
Y
]
into y. Note that

(1.6) can be regarded as a special case of (1.4) with U = W and Y = {0}, apart
from the fact that dom (F ) need no longer be dense in [ XW ].

We can also go one step further and replace the operator F in (1.6) by its
graph V = gph (F ). More precisely, we still take W =

[ U
Y
]
, define the node space

K to be K =
[ X

X
W

]
, and rewrite (1.6) in the form

Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V, t ∈ R+. (1.7)

The generating subspace V = gph (F ) of Σ can alternatively be interpreted as a
reordered version of the graph of the original generator S in (1.4):

V =

{[
z0
x0

[u0
y0 ]

]
∈ K

∣∣∣∣ [ x0
u0 ] ∈ dom (S) , [ z0y0 ] = S [ x0

u0 ]

}
=

{[
z0
x0

[u0
y0 ]

]
∈ K

∣∣∣∣ [ x0

[u0
y0 ]

]
∈ dom(F ) , z0 = F

[
x0

[ u0
y0 ]

]}
.

(1.8)

Definition 1.2.

(i) By a s/s (state/signal) node we mean a colligation Σ = (V ;X ,W), where X
and W are Hilbert spaces and V is a closed subspace of the product space

space K =
[ X

X
W

]
.

(ii) By a classical future trajectory of Σ we mean a pair of functions [ xw ] which
satisfies (1.7) for all t ∈ R+, with x continuously differentiable with values in
X and w continuous with values in W .

(iii) By a generalized future trajectory of Σ we mean a pair of functions [ xw ] which
is the limit of a sequence [ xn

wn
] of classical future trajectories of Σ in the sense

that xn → x in C(R+;X ) and wn → w in L2
loc(R

+;W).
(iv) By a (time domain) s/s system system we mean an s/s node Σ = (V ;X ,W)

together with the sets of all classical and generalized future trajectories of Σ.

It is also possible to go in the opposite direction, i.e., to start with a state/
signal system of the type (1.7), and to rewrite it into an i/s/o system of the type
(1.4) under some additional “regularity” assumptions on the generating subspace
V . In this case we start by decomposing the signal spaceW (which now is supposed
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to be an arbitrary Hilbert space with no particular structure) into a direct sum
W = U �Y, and try to rewrite (1.7) into the form (1.4) with U as input space and
Y as output space, for some closed operator S with dense domain. This will not be
possible for every possible decomposition W = U � Y. The closedness of S is not
a problem (since the graph of S can be “identified” with V after the permutation
of some of the components of V ), but the existence of a (single-valued) operator
S with dense domain is more problematic. This is equivalent to the following two
conditions on V and on the decomposition W = U � Y:
(i) if

[ z
0
y

]
∈ V and y ∈ Y, then [ zy ] = 0,

(ii) the projection onto the second component of V and U along the first compo-
nent of V and Y is dense in [XU ].

The first of these conditions means that the z-component and the y-component of

a vector
[ z

x
u+y

]
∈ V is determined uniquely by x and u, and the second conditions

says that the map from [ xu ] to [
z
y ] should have dense domain. If these two conditions

hold, and if we denote the linear map from [ xu ] to [ zy ] by S, then S is the generator
of a regular i/s/o node Σi/s/o, and V has the graph representation

V :=

⎧⎨⎩
⎡⎣z
x
w

⎤⎦ ⊂
⎡⎣XX
W

⎤⎦∣∣∣∣∣∣
[

x

PY
U w

]
∈ dom (S) and

[
z

PU
Y w

]
= S

[
x

PY
U w

]⎫⎬⎭ . (1.9)

Here PY
U is the projection onto U along Y, and PU

Y is the complementary projection.

Definition 1.3. Let Σ = (V ;X ,W) be a s/s node. By a regular i/s/o representation
of Σ we mean a regular i/s/o node Σi/s/o = (S;X ,U ,Y), where U � Y is a direct
sum decomposition of W and V and S are connected to each other by (1.9).

Not every s/s node has a regular i/s/o representation. It is not difficult to see
that if Σ = (V ;X ,W) has a regular i/s/o representation, then Σ must be “regular”
in the following sense:

Definition 1.4. A s/s node Σ = (V ;X ,W) is regular if it satisfies the following two
conditions:

(i)
[
z
0
0

]
∈ V ⇒ z = 0;

(ii) The projection of V onto its middle component is dense in X .
The two conditions (i) and (ii) above have the following interpretations: (i)

means that ẋ(t) in (1.7) is determined uniquely by x(t) and w(t), and (ii) permits
the set of all initial states x(0) of a classical future trajectory [ xw ] of Σ to be dense
in the state space X
Theorem 1.5. Every regular i/s/o node has at least one (and usually infinitely
many) regular i/s/o representations.

The proof of this theorem is found in [AS16, Chapter 2].
If a s/s node Σ = (V ;X ,W) has a bounded i/s/o representation, then V must

satisfy the stronger conditions (i)–(iii) listed below:
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Definition 1.6. A s/s node Σ = (V ;X ,W) is bounded if it satisfies the following
conditions:

(i)
[
z
0
0

]
∈ V ⇒ z = 0;

(ii) For every x0 ∈ X there exists some [ z0w0 ] ∈ [ XW ] such that
[

z0
x0
w0

]
∈ V .

(iii) The projection of V onto its second and third components is closed in [ XW ].

The interpretation of condition (i) in Definition 1.6 is the same as in Definition
1.4. This condition is equivalent to the condition that V has a graph representation

V =
{[

z
x
w

]
∈
[ X

X
W

]∣∣∣ [ xw ] ∈ dom (F ) and z = F [ xw ]
}

(1.10)

for some closed operator F : [ XW ]→ X . Condition (iii) says that dom(F ) is closed
in [ XW ], and hence by the closed graph theorem, F is continuous. In other words,

ẋ(t) in (1.7) depends continuously on
[

x(t)
w(t)

]
. Finally, condition (ii) permits every

x0 ∈ X to be the initial state x(0) of some classical future trajectory [ xw ] of Σ.

Theorem 1.7. Every bounded s/s node has at least one (and usually infinitely many)
bounded i/s/o representations.

Also the proof of this theorem is found in [AS16, Chapter 2].

As we noticed above, a s/s node Σ cannot have a regular i/s/o representation
unless Σ is regular. From time to time it is useful to also study s/s nodes which
are not regular. In that case it is still possible to obtain i/s/o representations, but
these will no longer be regular. Instead they will be i/s/o nodes of the following
type:

Definition 1.8.

(i) By a (continuous time stationary) i/s/o (input/state/output) node we mean
a colligation Σi/s/o = (S;X ,U ,Y), where X , U , and Y are Hilbert spaces,

and S : [XU ]→
[X
Y
]
is a closed multi-valued linear operator.

(ii) The (multi-valued) main operator A of Σi/s/o (or of S) is defined by

dom (A) := {x ∈ X |[ x0 ] ∈ dom(S)} ,
z ∈ Ax⇔ z ∈

[
1X 0

]
S [ x0 ] , x ∈ dom (A) .

(1.11)

(iii) By a classical future trajectory of Σi/s/o we mean a triple of functions
[ x
u
y

]
which satisfies

Σi/s/o :

⎧⎪⎨⎪⎩
[
x(t)
u(t)

]
∈ dom

(
S
)
,[

ẋ(t)
y(t)

]
∈ S

[
x(t)
u(t)

]
,

t ∈ R+, (1.12)

with x continuously differentiable with values in X and [ uy ] continuous with
values in

[ U
Y
]
.
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(iv) By a generalized future trajectory of Σi/s/o we mean a triple of functions
[ x
u
y

]
which is the limit of a sequence

[ xn
un
yn

]
of classical future trajectories of Σi/s/o

in the sense that xn → x in C(R+;X ) and [ un
yn ]→ [ uy ] in L2

loc(R
+;

[ U
Y
]
).

(v) By a (time domain) i/s/o system system we mean an i/s/o node Σi/s/o =
(S;X ,U ,Y) together with the sets of classical and generalized future trajec-
tories of Σi/s/o.

See, e.g., [AS16] for a short introduction to the notion of a multi-valued linear
operator.

Definition 1.9. Let Σ = (V ;X ,W) be a s/s node. By an i/s/o representation of
Σ we mean an i/s/o node Σi/s/o = (S;X ,U ,Y), where U � Y is a direct sum
decomposition of W and V and S are connected to each other by

V :=

⎧⎨⎩
⎡⎣z
x
w

⎤⎦ ⊂
⎡⎣XX
W

⎤⎦∣∣∣∣∣∣
[

x

PY
U w

]
∈ dom (S) and

[
z

PU
Y w

]
∈ S

[
x

PY
U w

]⎫⎬⎭ . (1.13)

See [AS16, Chapter 2] for a more detailed description of this class of non-
regular i/s/o nodes and i/s/o representations.

1.3. Various notions for state/signal systems

The definition of a (regular or non-regular) i/s/o representation of a (regular or
non-regular) s/s node immediately implies the following results:

Lemma 1.10. Let Σ = (V ;X ,W) be a s/s node, and let Σi/s/o = (S;X ,U ,Y) be an
i/s/o representation of Σ. Then [ xw ] is a classical or generalized future trajectory

of Σ if and only if

[ x
PY

U w

PU
Y w

]
is a classical or generalized future trajectory of Σi/s/o.

Thanks to Lemma 1.10, it is possible to extend all those notions for i/s/o
systems that can be expressed in terms of properties of classical or generalized
future trajectories of i/s/o systems to the s/s case. In this way it is possible to
introduce and study, e.g., the following notions for s/s systems:

• driving variable and output nulling representations of s/s systems,
• existence and uniqueness of classical and generalized trajectories of s/s sys-
tems,
• well-posedness of s/s systems,
• s/s systems of boundary control type,
• controllability and observability of s/s systems,
• stability, stabilizability, and detectability of s/s systems,
• past, future, and two-sided time domain behaviors of s/s systems,
• frequency domain analysis of s/s systems,
• external equivalence of s/s systems,
• intertwinements of s/s systems.
• similarities and pseudo-similarities of s/s systems,
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• restrictions, projections, compressions, and dilations of s/s systems,
• minimal s/s systems,
• the dual and the adjoint of a s/s system,
• passive past, future, and two-sided time domain behaviors,
• passive frequency domain behaviors,
• optimal and ∗-optimal s/s systems (available storage and required supply),
• passive balanced s/s systems,
• energy and co-energy preserving s/s systems,
• controllable energy-preserving and observable co-energy preserving realiza-
tions of passive signal bundles,
• quadratic optimal control and KYP-theory for s/s systems,
• s/s systems with extra symmetries (reality, reciprocity, real-reciprocity),
• relationships between the symmetries of a s/s system and the symmetries of
its i/s/o representations,
• s/s versions of the de Branges complementary spaces of type H and D.
Some of these notions are discussed in [AS16], some of them are discussed in

the other articles listed in the reference list, and some of them still remain to be
properly developed.

In this article we shall still take a closer look at

• i/s/o and s/s systems in the frequency domain,
• The characteristic node and signal bundles of a s/s system,
• J -passive and J -conservative i/s/o systems,
• passive and conservative s/s systems,
• passive signal bundles,
• conservative realizations of passive signal bundles.

2. State/signal systems in the frequency domain

2.1. Input/state/output systems in the frequency domain

Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node, and let
[ x
u
y

]
be a classical future

trajectory of Σi/s/o. If x, ẋ, u, and y in (1.4) are Laplace transformable, then it
follows from (1.4) (since we assume S to be closed) that the Laplace transforms
x̂, û, and ŷ of x, u, and y satisfy the i/s/o resolvent equation (with x0 := x(0))

Σ̂i/s/o :

⎧⎪⎨⎪⎩
[
x̂(λ)
û(λ)

]
∈ dom (S) ,[

λx̂(λ)− x0

ŷ(λ)

]
∈ S

[
x̂(λ)
û(λ)

] (2.1)

for all those λ ∈ C for which the Laplace transforms converge (to see this it suffices
to multiply by (1.4) by e−λt and integrate by parts in the ẋ-component). If Σi/s/o

is regular, or more generally, if S is single-valued, then we may replace the second
inclusion “∈” in (2.1) by the equality “=”
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Definition 2.1. Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node.

(i) λ ∈ C belongs to the resolvent set ρ(Σi/s/o) of Σi/s/o if for every x0 ∈ X and

for every û(λ) ∈ U there is a unique pair of vectors
[
x̂(λ)
ŷ(λ)

]
∈
[ X
Y
]
satisfying

the i/s/o resolvent equation (2.1). This set is alternatively called the i/s/o
resolvent set of S and denoted by ρi/s/o(S).

(ii) For each λ ∈ ρ(Σi/s/o) we define the i/s/o resolvent matrix Ŝ(λ) of Σi/s/o at

λ to be the linear operator
[

x0

û(λ)

]
→

[
x̂(λ)
ŷ(λ)

]
.

Since S is assumed to be closed, also Ŝ(λ) is closed (see [AS16, Chapter 5] for
details). Therefore by the closed graph theorem, for each λ ∈ ρ(Σi/s/o) the i/s/o
resolvent matrix Ŝ(λ) is a bounded linear operator. In particular, this implies that
Ŝ(λ) has a block matrix representation

Ŝ(λ) =

[
Â(λ) B̂(λ)
Ĉ(λ) D̂(λ)

]
, λ ∈ ρ(Σi/s/o), (2.2)

where each of the components Â(λ), B̂(λ), Ĉ(λ), and D̂(λ) is a bounded linear
operator with the appropriate domain and range space. Thus, if λ ∈ ρ(Σi/s/o),
then (2.1) holds if and only if[

x̂(λ)
ŷ(λ)

]
=

[
Â(λ) B̂(λ)
Ĉ(λ) D̂(λ)

] [
x0

û(λ)

]
. (2.3)

Conversely, if there exist four bounded linear operators Â(λ), B̂(λ), Ĉ(λ), and
D̂(λ) with the appropriate domain and ranges spaces such that (2.1) is equivalent
to (2.3), then λ ∈ ρ(Σi/s/o), and the operator Ŝ(λ) defined by (2.2) is the i/s/o
resolvent matrix of Σi/s/o at the point λ.

Definition 2.2. The components Â, B̂, Ĉ, and D̂ of the i/s/o resolvent matrix Ŝ
are called as follows:

(i) Â is the s/s (state/state) resolvent function of Σi/s/o,
(ii) B̂ is the i/s (input/state) resolvent function of Σi/s/o,
(iii) Ĉ is the s/o (state/output) resolvent function of Σi/s/o,
(iv) D̂ is the i/o (input/output) resolvent function of Σi/s/o.

The state/state resolvent function Â is the usual resolvent of the main opera-
tor A of Σi/s/o. Here the resolvent set of A and the resolvent of A is defined in the
same way as in Definition 2.1 with U = Y = {0}, i.e., λ belongs to the resolvent set
ρ(A) of A if it is true for every x0 ∈ X that there exists a unique zλ ∈ X such that
λzλ − x0 ∈ Azλ, in which case the bounded linear operator which maps x0 into
zλ is called the resolvent of A (evaluated at λ). This operator is usually denoted
by (λ − A)−1 since it is the (single-valued) inverse of the (possibly multi-valued)
operator λ−A.

The i/o resolvent function D̂ is known in the literature under different names,
such as “the transfer function”, or “the characteristic function”, or “the Weyl
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function”. In operator theory the i/s resolvent function B̂ is sometimes called the
Γ-field.

The fact that (2.1) and (2.3) are equivalent to each other leads to the following
graph representations of S and S − [ λ 0

0 0 ] which will be needed later:

Lemma 2.3. Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node with ρ(Σi/s/o) �= ∅. Then
for each λ ∈ ρ(Σi/s/o) the graph of (S − [ λ 0

0 0 ]) has the representation

gph

(
S −

[
λ 0
0 0

])
= rng

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
−1X 0
Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (2.4)

where Ŝ =
[
Â B̂
Ĉ D̂

]
is the i/s/o resolvent matrix of Σi/s/o, and the graph of S has

the representation

gph
(
S
)
= rng

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

λÂ(λ)− 1X λB̂(λ)
Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (2.5)

Definition 2.1 above is both natural and simple, and it may be surprising
that in the case where S is single-valued and densely defined the above definition
is equivalent to the condition that S is a so-called “operator node” in the sense of
[Sta05].

Definition 2.4 ([Sta05, Definition 4.7.2]). By an operator node (in the sense of
[Sta05]) on a triple of Hilbert spaces (X ,U ,Y) we mean a linear operator S : [XU ]→[X
Y
]
with the following properties:

(i) S is closed.
(ii) The main operator A of S has dense domain and nonempty resolvent set.
(iii)

[
1X 0

]
S can be extended to a bounded linear operator

[
A−1 B

]
: [XU ]→

X−1, where X−1 is the so-called extrapolation space induced by A (i.e., the
completion of X with respect to the norm ‖x‖X−1 = ‖(α − A)−1x‖X where
α is some fixed point in ρ(A)).

(iv) dom (S) =
{
[ xu ] ∈

[ U
Y
]∣∣A−1x+Bu ∈ X

}
.

Theorem 2.5. An operator S : [XU ] →
[ X
Y
]
is an operator node in the sense of

Definition 2.4 if and only if dom(S) is dense in [XU ] and ρi/s/o(S) �= ∅. Moreover,
if ρi/s/o(S) �= ∅, then ρi/s/o(S) = ρ(A) where A is the main operator of S.

The proof of this theorem is given in [AS16, Chapter 5].

As the following lemma shows, it is possible to use the s/s resolvent function
Â to check the regularity of an i/s/o system Σi/s/o = (S;X ,U ,Y) with nonempty
resolvent set.
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Lemma 2.6. Let Σi/s/o = (S;X ,U ,Y) be a i/s/o node with ρ(Σi/s/o) �= ∅, with
main operator A, and with and s/s resolvent function Â. Then

(i) The following conditions are equivalent:
(a) S is single-valued;
(b) A is single-valued;
(c) Â(λ) is injective for some λ ∈ ρ(Σi/s/o) (or equivalently, for all λ ∈

ρ(Σi/s/o)).
(ii) Also the following conditions are equivalent:

(a) dom (S) is dense in
[ U
Y
]
;

(b) dom (A) is dense in X ;
(c) Â(λ) has dense range for some λ ∈ ρ(Σi/s/o) (or equivalently, for all

λ ∈ ρ(Σi/s/o)).

In particular, Σi/s/o is a regular i/s/o system if and only if A is single-valued and
has dense domain, or equivalently, if and only if Â(λ) is injective and has dense
range for some λ ∈ ρ(Σi/s/o) (or equivalently, for all λ ∈ ρ(Σi/s/o)).

The proof of this lemma is given in [AS16, Chapter 5].
The i/s/o resolvent matrix has the following properties:

Lemma 2.7. Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node with ρ(Σi/s/o) �= ∅. Then
the resolvent set ρ(Σi/s/o) of Σi/s/o is open, the i/s/o resolvent matrix Ŝ of Σi/s/o

is analytic on ρ(Σi/s/o), and it satisfies the i/s/o resolvent identity

Ŝ(λ)− Ŝ(μ) = Ŝ(μ)

[
(μ− λ) 0

0 0

]
Ŝ(λ) = Ŝ(λ)

[
(μ− λ) 0

0 0

]
Ŝ(μ) (2.6)

for all μ, λ ∈ ρ(Σi/s/o). In terms of the components of the i/s/o resolvent matrix

Ŝ =
[
Â B̂
Ĉ D̂

]
the above identity can be rewritten into the equivalent form

Â(λ) − Â(μ) = (μ− λ)Â(μ)Â(λ) = (μ− λ)Â(λ)Â(μ),

B̂(λ) − B̂(μ) = (μ− λ)Â(μ)B̂(λ) = (μ− λ)Â(λ)B̂(μ),

Ĉ(λ)− Ĉ(μ) = (μ− λ)Ĉ(μ)Â(λ) = (μ− λ)Ĉ(λ)Â(μ),

D̂(λ)− D̂(μ) = (μ− λ)Ĉ(μ)B̂(λ) = (μ− λ)Ĉ(λ)B̂(μ).

(2.7)

The proof of this lemma is given in [AS16, Chapter 5].
Motivated by Lemma 2.7 we make the following definition.

Definition 2.8. Let Ω be an open subset of the complex plane C. An analytic

B(
[ U
Y
]
;
[ X
Y
]
)-valued function Ŝ =

[
Â B̂
Ĉ D̂

]
defined in Ω is called an i/s/o pseudo-

resolvent in (X ,U ,Y; Ω) if it satisfies the identity (2.6) for all μ, λ ∈ Ω.

Thus, the i/s/o resolvent matrix Ŝ =
[
Â B̂
Ĉ D̂

]
of an i/s/o node Σi/s/o =

(S;X ,U ,Y) with ρ(Σi/s/o) �= ∅ is an i/s/o pseudo-resolvent in ρ(Σi/s/o).
In [Opm05] Mark Opmeer makes systematic use of the notion of an i/s/o

pseudo-resolvent, but instead of calling Ŝ an i/s/o pseudo-resolvent he calls Ŝ a
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“resolvent linear system”, and calls Â the “pseudo-resolvent”, B̂ the “incoming
wave function”, Ĉ the “outgoing wave function”, and D the “characteristic func-
tion” of the resolvent linear system Ŝ. In the same article he also investigates what
can be said about time domain trajectories (in the distribution sense) of resolvent
linear systems satisfying some additional conditions. One of these additional set
of conditions is that Ω should contain some right half-plane and that Ŝ should
satisfy a polynomial growth bound in this right half-plane.

The converse of Lemma 2.7 is also true in the following form.

Theorem 2.9. Let Ω be an open subset of the complex plane C. Then every i/s/o
pseudo-resolvent Ŝ in (X ,U ,Y; Ω) is the restriction to Ω of the i/s/o resolvent of
some i/s/o node Σi/s/o = (S;X ,U ,Y) satisfying ρ(Σi/s/o) ⊃ Ω. The i/s/o node
Σi/s/o is determined uniquely by Ŝ(λ) where λ is some arbitrary point in Ω, and
Ŝ has a unique extension to ρ(Σi/s/o). This extension is maximal in the sense that
Ŝ cannot be extended to an i/s/o pseudo-resolvent on any larger open subset of C.

See [AS16, Chapter 5] for the proof.

Theorem 2.9 is well known in the case where the system has no input and
no output (so that S is equal to its main operator A), and where Â(λ) is injective
and has dense range for some λ ∈ Ω; see, e.g., [Paz83, Theorem 9.3, p. 36]. A
multi-valued version of this theorem, still with no input and output, is found in
[DdS87, Remark, pp. 148–149].

2.2. State/signal systems in the frequency domain

Let Σ = (V ;X ,W) be a s/s node, and let [ xw ] be a classical future trajectory of Σ.
If x, ẋ, and w in (1.7) are Laplace transformable, then it follows from (1.7) (since
we assume V to be closed) that the Laplace transforms x̂, and ŵ x and w satisfy
(with x0 := x(0))

Σ̂ :

⎡⎣λx̂(λ) − x0

x̂(λ)
ŵ(λ)

⎤⎦ ∈ V (2.8)

for all those λ ∈ C for which the Laplace transforms converge (to see this it
suffices to multiply by (1.4) by e−λt and integrate by parts in the ẋ-component).
This formula can be rewritten in the form⎡⎣ x0

x̂(λ)
ŵ(λ)

⎤⎦ ∈ Ê(λ) :=

⎡⎣−1X λ 0
0 1X 0
0 0 1W

⎤⎦V. (2.9)

Definition 2.10. The family of subspaces Ê : {Ê(λ) | λ ∈ C} of K =
[ X

X
W

]
defined

in (2.9) is called the characteristic node bundle of the s/s node Σ = (V ;X ,W).

The characteristic node bundle is a special case of a vector bundle:
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Definition 2.11. Let Z be a Hilbert vector space.

(i) By a vector bundle in Z we mean a family of subspaces G = {G(λ)}λ∈dom(G)

of Z parameterized by a complex parameter λ ∈ dom(G) ⊂ C.
(ii) For each λ ∈ dom(G), the subspace G(λ) of Z is called the fiber of G at λ.
(iii) The vector bundle G is analytic at a point λ0 ∈ dom(G) if there exists a

neighborhood O(λ0) of λ0 and some direct sum decomposition Z = U � Y
of Z such that the restriction of G to O(λ0) is the graph of an analytic
B(U ;Y)-valued function in O(λ0).

(iv) The vector bundle G is analytic if dom(G) is open and G is analytic at every
point in dom(G).

(v) The vector bundle G is entire if G is analytic in the full complex plane C.

Lemma 2.12. The characteristic node bundle Ê of a s/s node Σ = (V ;X ,W) is an

entire vector bundle in the node space K =
[ X

X
W

]
.

This is easy to see (and proved in [AS16, Chapter 1]).

Lemma 2.13. Let Σ = (V ;X ,W) be a s/s node with the i/s/o representation
Σi/s/o = (S;X ,U ,Y), suppose that λ ∈ ρ(Σi/s/o). Denote the characteristic node

bundle of Σ by Ê and the i/s/o resolvent matrix of Σi/s/o by Ŝ =
[
Â B̂
Ĉ D̂

]
. Then V

and Ê(λ) have the representations

V = rng

⎛⎝⎡⎣1X − λÂ(λ) −λB̂(λ)
Â(λ) B̂(λ)
IY Ĉ(λ) IU + IYD̂(λ)

⎤⎦⎞⎠ , (2.10)

Ê(λ) = rng

⎛⎝⎡⎣ 1X 0
Â(λ) B̂(λ)
IY Ĉ(λ) IU + IYD̂(λ)

⎤⎦⎞⎠ , (2.11)

where IU and IY are the injection operators IU : U ↪→W and IY : Y ↪→W.

This follows from (1.13), Lemma 2.3, and (2.9) (see [AS16, Chapter 5] for
details).

Note that (2.11) can be interpreted as a graph representation of Ê(λ) over
the first copy of X and the input space U . It follows from Lemma 2.13 that V (and
Ê(λ)) are determined uniquely by the decomposition W = U � Y and the i/s/o
resolvent matrix Ŝ of Σi/s/o evaluated at some arbitrary point λ ∈ ρ(Σi/s/o).

In i/s/o systems theory one is often interested in the “pure i/o behavior”,
which one gets by “ignoring the state”. More precisely, one takes the initial state
x0 = 0, and looks at the relationship between the input u and the output y,
ignoring the state x. If we in the frequency domain setting take x0 = 0 and ignore
x̂, then the full frequency domain identity (2.3) simplifies into ŷ(λ) = D̂(λ)û(λ),
where D̂(λ) is the i/o resolvent function of Σi/s/o.

The same procedure can be carried out in the case of a s/s system: We take
x0 = 0 and ignore the values of x̂(λ) in (2.8). Then it follows from (2.9) that
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ŵ(λ) ∈ F̂(λ), where

F̂(λ) =

⎧⎨⎩w ∈ W

∣∣∣∣∣∣
⎡⎣0
z
w

⎤⎦ ∈ Ê(λ) for some z ∈ X

⎫⎬⎭ . (2.12)

Definition 2.14. Let Σ = (V ;X ,W) be a s/s node. The family of subspaces F̂ :

{F̂(λ) | λ ∈ C} of W defined by (2.12) is called the characteristic signal bundle
of Σ.

Whereas the characteristic node bundle Ê of Σ is an entire vector bundle,
the same is not true for the signal bundle F̂ of Σ. Even the dimension of the fibers
F̂(λ) may change from one point to another. However, the following result is true:

Lemma 2.15. If Σi/s/o = (S;X ,U ,Y) is an i/s/o representation of the s/s node
Σ = (V ;X ,W) with ρ(Σi/s/o) �= ∅, then for each λ ∈ ρ(Σi/s/o) the fibers of the
characteristic signal bundle F̂ of Σ have the graph representation

F̂(λ) =
{
w ∈ W

∣∣PU
Y w = D̂(λ)PY

U
}
, λ ∈ ρ(Σi/s/o). (2.13)

This follows from Lemma 2.13.

Lemma 2.16. Let Σ = (V ;X ,W) be a s/s node with the i/s/o representation
Σi/s/o = (S;X ,U ,Y), suppose that λ ∈ ρ(Σi/s/o). Denote the characteristic node
bundle of Σ by Ê. Then, for each λ ∈ ρ(Σi/s/o) the fiber Ê(λ) of Ê is a closed

subspace of K =
[ X

X
W

]
, and it has the following properties:

(i)
[
0
x
0

]
∈ Ê(λ)⇒ x = 0;

(ii) For every z ∈ X there exists some [ xw ] ∈ [ XW ] such that
[

z
x
w

]
∈ Ê(λ).

(iii) The projection of Ê(λ) onto its first and third components is closed in [ XW ].

This follows from Lemma 2.13.
Another equivalent way of formulating Lemma 2.16 is to say that for each

λ ∈ ρ(Σi/s/o) the fiber Ê(λ) becomes a bounded s/s node after we interchange the
first and the second component of Ê(λ).

Definition 2.17. Let Σ = (V ;X ,W) be a s/s node with node bundle Ê. Then the
resolvent set ρ(Σ) of Σ consists of all those points λ ∈ C for which conditions
(i)–(iii) in Lemma 2.16 hold.

Theorem 2.18. Let Σ = (V ;X ,W) be a s/s node. Then ρ(Σ) is the union of the
resolvent sets of all i/s/o representations of Σ.

See [AS16, Chapter 5] for the proof.

Lemma 2.19. The characteristic signal bundle F̂ of a s/s node Σ is analytic in ρ(Σ).

This follows from Definition 2.11, Lemma 2.15, and Theorem 2.18.
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3. Passive and conservative i/s/o and s/s systems

In this section we have, for simplicity, restricted the discussion to the regular case,
i.e., the case where both the s/s system and its i/s/o representations are regular.
As shown in [AS16], the extension to the non-regular case is straightforward.

3.1. J -passive and J -conservative i/s/o systems

Definition 3.1. Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o node.

(i) Σi/s/o is (forward) solvable if it is true that for every [ x0
u0

] ∈ dom (S) there

exists at least one classical future trajectory
[ x
u
y

]
of Σi/s/o with

[
x(0)
u(0)

]
= [ x0

u0
].

(ii) The adjoint of Σi/s/o is the i/s/o node Σ∗
i/s/o = (S∗;X ,Y,U), where S∗ is

the adjoint of S.

Definition 3.2. Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o node with adjoint
Σ∗

i/s/o = (S∗;X ,Y,U), and suppose that both Σi/s/o and Σ∗
i/s/o are solvable.

(i) Σi/s/o is scattering conservative if all its classical future trajectories
[ x
u
y

]
satisfy the balance equation

‖x(t)‖2X +

∫ t

0

‖y(s)‖2Y ds = ‖x(0)‖2X +

∫ t

0

‖u(s)‖2U ds, t ∈ R+, (3.1)

and the adjoint system Σ∗
i/s/o has the same property. If the above conditions

hold with the equality sign in (3.1) by “≤” then Σi/s/o is scattering passive.
(ii) Let Ψ: Y → U be a unitary operator. Then Σi/s/o is Ψ-impedance conserva-

tive if all its classical future trajectories (u, x, y) satisfy the balance equation

‖x(t)‖2X = ‖x(0)‖2X + 2�
∫ t

0

〈u(s),Ψy(s)〉U ds, t ∈ R+, (3.2)

and the adjoint system Σ∗
i/s/o has the same property with Ψ replaced by Ψ∗.

If the above conditions hold with the equality sign in (3.1) by “≤” then Σi/s/o

is Ψ-impedance passive.
(iii) Let JU and JY be signature operators in U respectively Y (i.e., JU = J ∗

U =

J −1
U and JY = J ∗

Y = J −1
Y ). Then Σi/s/o is (JU , JY)-transmission conserva-

tive if all its classical future trajectories (u, x, y) satisfy the balance equation

‖x(t)‖2X +

∫ t

0

〈y(s), JYy(s)〉Y ds

= ‖x(0)‖2X +

∫ t

0

〈u(s), JUu(s)〉U ds, t ∈ R+,

(3.3)

and the adjoint system Σ∗
i/s/o has the same property with (JU , JY) replaced

by (JY , JU ). If the above conditions hold with the equality sign in (3.1) by
“≤” then Σi/s/o is (JU , JY)-transmission passive.
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The three different balance equations in Lemma 3.3 can all be written in the
common form

‖x(t)‖2X = ‖x(0)‖2X +

∫ t

0

〈[
u(s)
y(s)

]
,J

[
u(s)
y(s)

]〉
U⊕Y

ds, t ∈ R+, (3.4)

where J is a signature operator in the product space
[ U
Y
]
:

(i) J = Jscat =
[
1U 0
0 −1Y

]
in the scattering case,

(ii) J = Jimp =
[

0 Ψ
Ψ∗ 0

]
in the Ψ-impedance case,

(iii) J = Jtra =
[
JU 0
0 −JY

]
in the (JU ,JY)-transmission case.

It is also possible of combine the three different parts of Definition 3.2 into one
general definition. In that definition we need two different signature operators, one
in the space

[ U
Y
]
, and the other in the space

[ Y
U
]
. The connection between these

two operators is the following: If J is a signature operator in
[ U
Y
]
, then we define

the operator J∗ by

J∗ =

[
0 −1Y
1U 0

]
J
[

0 1U
−1Y 0

]
. (3.5)

It is easy to see that J∗ is a signature operator in
[ Y
U
]
whenever J is a signature

operator in
[ U
Y
]
and that (J∗)∗ = J .

Definition 3.3. Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o node with adjoint
Σ∗

i/s/o = (S∗;X ,Y,U), and suppose that both Σi/s/o and Σ∗
i/s/o are solvable. Let

J be a signature operator in
[ U
Y
]
, and define J∗ by (3.5). Then Σi/s/o is J -

conservative if all its classical future trajectories
[ x
u
y

]
satisfy the balance equation

(3.4), and the adjoint system Σ∗
i/s/o has the same property with J replaced by J∗.

If the above conditions hold with the equality sign in (3.4) by “≤” then Σi/s/o is
J -passive.

The reader is invited to check that Definition 3.2 can indeed be interpreted
as a special case of Definition 3.3 (with the appropriate choice of J = Jscat,
J = Jimp, or J = Jtra).

Formula (3.4) treats the input u and the output y in an equal way: the oper-
ator J is simply a signature operator in the signal space W =

[ U
Y
]
, and it defines

a Krĕın space inner product in W . From the point of view of (3.4) it does not
matter if u is the input and y the output, or the other way around, or if neither u
nor y is the input or output.

It is well known that one can pass from a Ψ-impedance or (JU , JY)-transmis-
sion passive or conservative i/s/o system to a scattering passive or conservative
i/s/o system by simply reinterpreting which part of the combined i/o signal [ uy ] is
the input, and which part is the input.
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(i) If Σi/s/o is Ψ-impedance conservative, and if we take the new input and
output to be [

uscat

yscat

]
= 1√

2

[
1U Ψ
Ψ∗ −1Y

] [
uimp

yimp

]
,

then the resulting i/s/o system is scattering conservative.
(ii) If Σi/s/o is (JU , JY)-transmission conservative, and if we take the new input

and output to be [
uscat

yscat

]
=

[
PU+ PY−

PU− PY+

] [
utra

ytra

]
,

where (PU+ , PU−) and (PY+ , PY−) are complementary projections onto the
positive and negative subspaces of JU and JY , respectively, then the resulting
i/s/o system is again scattering conservative.

The two transforms described above have the following common interpretation:
We decompose the Krĕın spaceW =

[ U
Y
]
with the J -inner product into a positive

part and an orthogonal negative part (= a fundamental decomposition), and choose
the input to be the positive part of w = [ uy ] and the output to be the negative
part of w. Of course, these transformations lead to new dynamic equations with
new generators Sscat, which can be explicitly derived from the original generators
Simp and Stra, but the formulas for Sscat tend to be complicated, especially when
Simp and Stra are unbounded. For this reason it makes sense to reformulate the
J -passivity and J -conservativity conditions described above into a state/signal
setting.1

3.2. Passive and conservative state/signal systems

Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o system, and let Σ = (V ;X ,
[ U
Y
]
) be

the s/s system induced by Σi/s/o, i.e., the generating subspace V of Σ is given by
(1.8). If Σi/s/o is J -passive or J -conservative for some signature operator J in[ U
Y
]
, then what does this tell us about the s/s system Σ?
First of all, the solvability condition of Σi/s/o implies an analogous condition

for Σ:

Definition 3.4. A s/s node Σ = (V ;X ,W) is (forward) solvable if it is true that

for every
[

z0
x0
w0

]
∈ V there exists at least one classical future trajectory [ xw ] of Σ

satisfying

[
ẋ(0)
x(0)
w(0)

]
=
[

z0
x0
w0

]
.

It follows from Definitions 3.1 and 3.4 and Lemma 1.10 that if Σi/s/o is a
regular i/s/o representation of a s/s node Σ, then Σ is solvable if and only if Σi/s/o

is solvable.
By Lemma 1.10,

[ x
u
y

]
is a classical future trajectory of Σi/s/o if and only if [ xx ]

is a classical future trajectory Σ, where w = [ uy ]. Thus, if Σi/s/o is J -conservative,

1This was the primary motivation for the development of the s/s systems theory in the first
place.
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then every classical future trajectory
[

x

[ uy ]

]
of Σ satisfies (3.4). If instead Σi/s/o

is J -passive, then every classical future trajectory
[

x

[uy ]

]
of Σ satisfies (3.4) with

“=” replace by “≤”.
Up to this point we have throughout assumed that the signal space W of a

s/s node is a Hilbert space, but it follows from (3.4) that in the study of passive
and conservative systems it more natural to allow W to be a Krĕın space, i.e., to
allow the inner product in W to be indefinite. More precisely, we let W be the
product space

[ U
Y
]
equipped with the Krĕın space inner product[[

u1

y1

]
,

[
u2

y2

]]
W

=

〈[
u1

y1

]
,J

[
u2

y2

]〉
U⊕Y

,

[
u1

y1

]
,

[
u2

y2

]
∈
[
U
Y

]
. (3.6)

With this notation (3.4) becomes

‖x(t)‖2X = ‖x(0)‖2X +

∫ t

0

[w(s), w(s)]W ds, t ∈ R+. (3.7)

Differentiating (3.7) with respect to t we get

d

dt
‖x(t)‖2X = [w(t), w(t)]W , t ∈ R+,

or equivalently,

−〈ẋ(t), x(t)〉X − 〈x(t), ẋ(t)〉X + [w(t), w(t)]W = 0, t ∈ R+. (3.8)

In particular, this equation is true for t = 0. If we assume that Σ is solvable (or
equivalently, Σi/s/o is solvable), then it follows from (3.8) that

−〈z0, x0〉X − 〈x0, z0〉X + [w0, w0]W = 0,
[

z0
x0
w0

]
∈ V. (3.9)

We can make also the node space K =
[ X

X
W

]
into a Krĕın space by introducing the

following node inner product in K:[[
z1
x1
w1

]
,
[

z2
x2
w2

]]
K
= −(z1, x2)X − (x1, z2)X + [w1, w2]W ,

[
z1
x1
w1

]
,
[

z2
x2
w2

]
∈ K. (3.10)

Clearly (3.9) says that V ⊂ V [⊥], where

V [⊥] :=
{[

z∗
x∗
w∗

]
∈ K

∣∣∣ [[ z∗
x∗
w∗

]
,
[

z0
x0
w0

]]
K
= 0 for all

[
z0
x0
w0

]
∈ V

}
. (3.11)

In other words, V is a neutral subspace of K. If Σi/s/o is J -passive instead of
J -conservative, then the same argument shows that[[

z0
x0
w0

]
,
[

z0
x0
w0

]]
K
≥ 0 for all

[
z0
x0
w0

]
∈ V,

i.e., V is a nonnegative subspace of K.
Above we have used only one half of Definition 3.3, namely the half with

refers to the i/s/o representation Σi/s/o itself, and not the half which refers to the
adjoint i/s/o node Σ∗

i/s/o. By adding the conditions imposed on Σ∗
i/s/o to the above

argument it is possible to show that
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(i) Σi/s/o is J -conservative if and only if Σ satisfies V = V [⊥] (i.e., V is a
Lagrangian subspace of K), and

(ii) Σi/s/o is J -passive if and only if V is a maximal nonnegative subspace of K
(i.e., V is nonnegative, and it is not strictly contained in any other nonneg-
ative subspace of K).

This motivates the following definition:

Definition 3.5.

(i) By a conservative s/s system Σ we mean a regular s/s system whose signal
space W is a Krĕın space, and whose generating subspace V is a Lagrangian
subspace of the node space K (with respect to the inner product (3.10)).

(ii) By a passive s/s system Σ we mean a regular s/s system whose signal spaceW
is a Krĕın space, and whose generating subspace V is a maximal nonnegative
subspace of the node space K (with respect to the inner product (3.10)).

Thus, in particular, every conservative s/s system is also passive.
Note that Definition 3.5 does not explicitly require that Σ must be solvable,

which was assumed in the derivation of (3.9). However, it turns out that this
condition is redundant in Definitions 3.5, i.e., the regularity of Σ combined with
either the condition V = V [⊥] or the assumption that V is maximal nonnegative
implies that Σ is solvable.

3.3. Passive and conservative realizations

In i/s/o systems theory one is often interested in the “converse problem” of finding
a “realization” of a given analytic “transfer function” ϕ with some “additional
properties”. By a realization we mean an i/s/o system whose i/o resolvent function
coincides with ϕ is some specified open subset Ω of C. For example,

(i) ϕ is a “Schur function” over C+, and one wants to construct a scattering
conservative realization Σi/s/o of ϕ,

(ii) ϕ is a “positive real function” over C+, and one wants to construct an
impedance conservative realization Σi/s/o of ϕ.

(iii) ϕ is a “Potapov function” over C+, and one wants to construct a transmission
conservative realization Σi/s/o of ϕ.

In the state/signal setting all these three problems collapse into one and the same
problem: Given a passive signal bundle over C+ (this notion will be defined in
Definition 3.7 below), we want to construct a conservative s/s realization of this
signal bundle, i.e., a conservative s/s system Σ with C+ ⊂ ρ(Σ) such that the given
passive signal bundle coincides with the characteristic signal bundle F̂ of Σ in C+.

Theorem 3.6. Let Σ be a passive s/s system with signal space space W and char-
acteristic signal bundle F̂. Then

(i) C+ ⊂ ρ(Σ) (and hence F̂ is analytic in C+),
(ii) for each λ ∈ C+ the fiber F̂(λ) of F̂ is a maximal nonnegative subspace of W.

See [AS16] for the proof of this theorem.
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Definition 3.7. By a passive signal bundle in a Krĕın (signal) spaceW we mean an
analytic signal bundle Ψ in C+ with the property that for each λ ∈ C+ the fiber
Ψ(λ) is a maximal nonnegative subspace of W .

This leads us to the following problem:

Problem 3.8 (Conservative state/signal realization problem). Given a passive sig-
nal bundle Ψ, find a conservative s/s system Σ such that the characteristic signal
bundle of Σ coincides with Ψ in C+.

One such construction is carried out in [AKS11]. The setting in [AKS11] is
different from the one described here, but it follows from [AKS11], e.g., that every
passive signal bundle Ψ has a “simple” conservative s/s realization, and that such
a realization is unique up to a unitary similarity transformation in the state space.
Here “simplicity” means that the system is minimal within the class of conservative
s/s systems, i.e., a conservative s/s system is simple if and only if it does not have
any nontrivial conservative compression.

4. A short history

I first met Dima (Prof. Damir Arov) at the MTNS conference 1998 in Padova where
he gave a plenary talk on “Passive Linear Systems and Scattering Theory”. Five
years later, in the fall of 2003, Dima came to work with me in Åbo for one month,
and that was the beginning of our joint stationary state/signal systems story. We
decided to “join forces” to study the relationship between the (external) reciprocal
symmetry of a conservative linear system and the (internal) symmetry structure
of the system in three different settings, namely the scattering, the impedance,
and the transmission setting. Instead of writing three separate papers with three
separate sets of results and proofs we wanted to rationalize and to find some
“general setting” that would cover the “common part” of the theory. The basic plan
was to first develop the theory in such a “general setting” as far as far as possible,
before discussing the three related symmetry problems mentioned above in detail.

After a couple of days we realized that the “behavioral approach” of [BS06]
seemed to provide a suitable “general setting”. This setting gave us a natural
mathematical model for a “linear time-invariant circuit” which may contain both
lumped and distributed components.

To make the work more tractable from a technical point of view we decided to
begin by studying the discrete time case. As time went by the borderline between
the “general theory” and the application to the original symmetry problem kept
moving forward. Our first paper had to be split in two because it became too long.
Then the second part had to be split in two because it became too long, then the
third part had to be split in to, and so on. Every time the paper was split into two
the original symmetry problem was postponed to the second unfinished half, and
our “general solution” to the symmetry problem was not submitted until 2011.
By that time we had published more than 500 pages on the s/s systems theory in
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13 papers (in addition to numerous conference papers). The specific applications
of our symmetry paper to the scattering, impedance, and transmission settings is
still “work in progress”.

In 2006 Mikael Kurula joined the s/s team, and together with him we begun
to also study the continuous time problem. See the reference list for details.

Since 2009 Dima and I have spent most of our common research time on
writing a book on linear stationary systems in continuous time. It started out as a
manuscript about s/s systems in discrete time. In 2012 we shifted the focus to s/s
systems in continuous time. After one more year the manuscript was becoming too
long to be published as a single volume, so we decided to split the book into two
volumes. A partial preliminary draft of the first volume of this book is available
as [AS16].
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Dichotomy, Spectral Subspaces and
Unbounded Projections
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Abstract. The existence of spectral subspaces corresponding to the spectrum
in the right and left half-plane is studied for operators on a Banach space
where the spectrum is separated by the imaginary axis and both parts of
the spectrum are unbounded. This is done under different assumptions on
the decay of the resolvent along the imaginary axis, including the case of
bisectorial operators. Moreover, perturbation results and an application are
presented.
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1. Introduction

Let S be a linear operator on a Banach space X such that a strip around the
imaginary axis belongs to the resolvent set of S, i.e.,{

λ ∈ �
∣∣ |Reλ| ≤ h

}
⊂ �(S)

for some h > 0. The problem we want to address is the separation of the spectrum
of S along the imaginary axis: Do there exist closed invariant subspaces X+ and
X− which correspond to the part of the spectrum in the open right and left half-
plane, respectively:

σ(S|X+) = σ(S) ∩�+, σ(S|X−) = σ(S) ∩�−.

There are two simple cases where such a separation is possible:

(i) If X is a Hilbert space and S is a selfadjoint or normal operator, then the
spectral calculus yields projections onto the spectral subspaces corresponding
to �+ and �−.

This article was presented as a semiplenary talk by the author at the IWOTA 2014 in Amsterdam.

It is based on joint work with Monika Winklmeier [16].
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(ii) In the Banach space setting, if one of the parts σ(S) ∩�+ or σ(S) ∩�− of
the spectrum is bounded, then there is the associated Riesz projection

P =
−1
2πi

∫
Γ

(S − λ)−1 dλ.

The integration contour Γ is positively oriented and such that it contains
the bounded part of the spectrum in its interior. P then projects onto the
spectral subspace corresponding to the bounded part.

Here we will consider the case that X is a Banach space and both parts of the
spectrum are unbounded. There have been several articles devoted to this problem,
in particular [1, 2, 7, 11, 16]. We present some results from these publications, with
a focus on the recently published [16].

In Section 2 we start with general theorems on the existence of the invari-
ant subspaces X±. If the projections associated with X± are bounded, then the
operator S is called dichotomous, but we will see that the case of unbounded pro-
jections is possible and can be handled too; in fact, this will later allow for a more
general perturbation result. In Section 3 the spectral separation problem is stud-
ied for bisectorial and almost bisectorial operators. Such operators have a certain
decay of the resolvent along the imaginary axis, which leads to simplifications in
the existence results for X±. The final Section 4 contains perturbation results for
dichotomy and an application involving a Hamiltonian block operator matrix from
control theory.

2. Dichotomy and unbounded spectral projections

We will consider the following general setting: X is a Banach space, S is a densely
defined, closed operator on X , and there exists h > 0 such that{

λ ∈ �
∣∣ |Reλ| ≤ h

}
⊂ �(S). (1)

Moreover, we denote by�+ and�− the open right and left half-plane, respectively.

Definition 2.1. (i) The operator S is called dichotomous if there exists a decom-
position X = X+ ⊕X− into closed, S-invariant subspaces X± such that

σ(S|X+) ⊂ �+, σ(S|X−) ⊂ �−.

(ii) S is called strictly dichotomous if in addition

sup
λ∈�∓

‖(S|X± − λ)−1‖ <∞.

(iii) Finally, S is exponentially dichotomous if it is dichotomous and −S|X+ and
S|X− generate exponentially stable semigroups.

From the definition it is immediate that exponential dichotomy implies strict
dichotomy which in turn implies dichotomy. Moreover, exponential dichotomy is
equivalent to S being the generator of an exponentially stable bisemigroup [2].
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If S is dichotomous, then S decomposes with respect to X = X+ ⊕X−, i.e.,
the domain of S decomposes as

D(S) = (D(S) ∩X+)⊕ (D(S) ∩X−), (2)

see [11, Lemma 2.4]. As a consequence, S admits the block operator representation

S =

(
S|X+ 0
0 S|X−

)
,

the spectrum satisfies

σ(S) = σ(S|X+) ∪ σ(S|X−), (3)

and the subspaces X± are also (S − λ)−1-invariant. Note that in both (2) and
(3) the non-trivial inclusion is “⊂”. Finally there are the bounded complementary
projections P± associated with X = X+ ⊕X− which project onto X± and satisfy
I = P+ + P−.

The concept of an exponentially dichotomous operator was introduced in 1986
by Bart, Gohberg and Kaashoek [2]. In this and subsequent papers they applied
it, e.g., to canonical factorisation of matrix functions analytic on a strip and to
Wiener–Hopf integral operators. Perturbation results for exponential dichotomy
and applications to Riccati equations were studied by Ran and van der Mee [10, 14].
For a comprehensive account on exponential dichotomy and its applications, see
the monographs [3, 13].

Building up on the central spectral separation result from [2] (Theorem 2.5
in the present article), plane dichotomy was studied in 2001 by Langer and Tretter
[7] for the special class of bisectorial operators. There, and in the following works
[6, 11], perturbation results were derived and applied to Dirac and Hamiltonian
block operator matrices and associated Riccati equations.

A different approach to the problem of spectral separation can be found in
[5]: here complex powers of bisectorial operators are used to obtain equivalent
conditions for dichotomy.

We consider now the question of uniqueness of the decomposition X = X+⊕
X− of a dichotomous operator. It is easy to see that the eigenvector part of such
a decomposition is always unique:

Lemma 2.2. Let S be dichotomous with respect to X = X+ ⊕X−. Then:

(i) If x is a (generalized) eigenvector of S with eigenvalue λ ∈ �±, then x ∈ X±.
(ii) Suppose that S has a complete system of generalized eigenvectors. Then the

spaces X± are uniquely determined as

X± = span{x ∈ X |x (gen.) eigenvector corresp. to λ ∈ �±}.

On the other hand, there are simple examples of dichotomous operators whose
decomposition is not unique:

Example 2.3. Let S be a linear operator with σ(S) = ∅, e.g., the generator of
a nilpotent semigroup. Then S is trivially dichotomous with respect to the two
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choices
X+ = X, X− = {0},

and
X+ = {0}, X− = X.

From this, an example with non-empty spectrum is readily obtained by taking the
direct sum S = S0⊕S+⊕S− where σ(S0) = ∅ and σ(±S±) ⊂ {Reλ ≥ h}, h > 0.

The notion of strict dichotomy (Definition 2.1(ii)) has been introduced in [16]
in order to ensure the uniqueness of the decomposition X = X+ ⊕ X−. For the
stronger condition of exponential dichotomy, this uniqueness was already obtained
in [2].

Lemma 2.4 ([16, Lemma 3.7]). Let S be strictly dichotomous with respect to the
decomposition X = X+ ⊕ X−. Then X± are uniquely determined as X± = G±
where

G± =
{
x ∈ X

∣∣ (S − λ)−1x has a bounded analytic extension to �∓
}
. (4)

We remark that the subspaces G± are well defined for any operator satisfying
i� ⊂ �(S), and that G+ ∩G− = {0} always.

Having dealt with the uniqueness of the subspaces X±, we turn now to the
existence of dichotomous decompositions. In their paper from 1986, Bart, Gohberg
and Kaashoek obtained the following fundamental result:

Theorem 2.5 ([2, Theorem 3.1]). Suppose that S satisfies the condition

sup
|Reλ|≤h

‖(S − λ)−1‖ <∞. (5)

If the expression

Px =
1

2πi

∫ h+i∞

h−i∞

1

λ2
(S − λ)−1S2x dλ, x ∈ D(S2), (6)

defines a bounded linear operator on X, then S is dichotomous with P+ = P .

Remark 2.6.

(i) The integral is well defined since (S−λ)−1 is uniformly bounded on the strip
{|Reλ| ≤ h}.

(ii) As we assumed S to be densely defined and 0 ∈ �(S), the subspace D(S2) is
dense in X , and so P has a unique bounded extension to X as soon as it is
bounded on D(S2).

(iii) If S is bounded then a simple calculation shows that the above expression for
P reduces to the formula for the Riesz projection for the spectrum in �+.

(iv) There is an analogous formula for the projection P−:

P−x =
−1
2πi

∫ −h+i∞

−h−i∞

1

λ2
(S − λ)−1S2x dλ, x ∈ D(S2).

(v) The proofs in [6, 7, 11] which show that certain operators remain dichotomous
after a perturbation are all based on Theorem 2.5.
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There are simple examples where the operator P from the previous theorem
will be unbounded.

Example 2.7. On the sequence space X = �2 we consider the block diagonal oper-
ator

S =

⎛⎜⎝S1

S2

. . .

⎞⎟⎠ , Sn =

(
n 2n2

0 −n

)
.

Eigenvectors of the block Sn for the eigenvalues λ = n and λ = −n, respectively,
are

vn+ =

(
1
0

)
and vn− =

(
−n
1

)
;

the corresponding spectral projections are

Pn+ =

(
1 n
0 0

)
, Pn− =

(
0 −n
0 1

)
.

Moreover, straightforward calculations show that σ(S) = � \ {0} and
sup

|Reλ|≤ 1
2

‖(S − λ)−1‖ <∞,

i.e., S satisfies condition (5) of Theorem 2.5. However, the projections of the blocks
Pn+ and Pn− are unbounded in n and consequently the projections P+ and P− for
the whole operator S will be unbounded, too. In particular, S is not dichotomous
and the integral expression (6) in Theorem 2.5 will yield an unbounded operator
P . Note here that the precise reasoning uses Lemma 2.2: If S were dichotomous,
then the eigenvectors of S corresponding to λ = ±n would belong to X±, and
hence P± would contain Pn± and had to be unbounded. So S is not dichotomous
and thus P from (6) must be unbounded.

Motivated by the last example, we look at properties of unbounded projec-
tions. The following definition and basic facts can be found in [1].

Definition 2.8. A linear operator P : D(P ) ⊂ X → X is called a (possibly un-
bounded) projection if

R(P ) ⊂ D(P ) and P 2 = P,

i.e., P is a linear projection in the algebraic sense on the vector space D(P ).

A projection P yields a decomposition of its domain,

D(P ) = R(P )⊕ kerP,

and the complementary projection is given by

Q = I − P, D(Q) = D(P ).

On the other hand, for every pair of linear subspaces X1, X2 ⊂ X such that
X1 ∩ X2 = {0}, i.e., X1 ⊕ X2 ⊂ X , there is a corresponding projection P with
D(P ) = X1 ⊕X2, R(P ) = X1, and kerP = X2.
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A projection P is closed if and only if R(P ) and kerP are closed subspaces.
In this case, P is bounded if and only if R(P ) ⊕ kerP is closed.

It turns out that under condition (5) the integral formula (6) from the the-
orem of Bart, Gohberg and Kaashoek always defines a closed projection and that
the associated subspaces are invariant and correspond to the parts of the spectrum
in �+ and �−, even if S is not dichotomous:

Theorem 2.9 ([16, Theorem 4.1]). Let sup|Reλ|≤h ‖(S − λ)−1‖ <∞. Then:

(i) There exist closed complementary projections P± = S2A± where A± ∈ L(X)
are given by

A± =
±1
2πi

∫ ±h+i∞

±h−i∞

1

λ2
(S − λ)−1 dλ. (7)

(ii) D(S2) ⊂ D(P±) and

P± =
±1
2πi

∫ ±h+i∞

±h−i∞

1

λ2
(S − λ)−1S2x dλ, x ∈ D(S2).

(iii) The subspaces X± = R(P±) are closed, S- and (S − λ)−1-invariant,

σ(S|X± ) ⊂ �±, σ(S) = σ(S|X+) ∪ σ(S|X−),

sup
λ∈�∓

‖(S|X± − λ)−1‖ <∞.

(iv) S is strictly dichotomous if and only if P+ is bounded.

Remark 2.10.

(i) One can also show that always R(P±) = G±, with G± defined in (4).
(ii) The theorem implies that all dichotomous operators obtained via the Bart–

Gohberg–Kaashoek theorem, in particular those in [6, 7, 11], are in fact
strictly dichotomous.

(iii) The fact that the projections P± are always closed will play an important
role in the proof of the perturbation results in Section 4, see Remark 4.2.

The proof of Theorem 2.9 is based on the following construction of closed
projections which commute with an operator:

Lemma 2.11 ([16, Lemma 2.3]). Let S be a closed operator such that 0 ∈ �(S) and
let A1, A2 ∈ L(X) with

A1 +A2 = S−2, A1A2 = A2A1 = 0,

AjS
−1 = S−1Aj , j = 1, 2.

Then the operators Pj = S2Aj are closed, complementary projections, their ranges
Xj = R(Pj) are S- and (S − λ)−1-invariant,

σ(S) = σ(S|X1) ∪ σ(S|X2),

D(S2) ⊂ D(Pj) and Pjx = AjS
2x, x ∈ D(S2).
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Proof. It is clear that Pj is closed. Since Aj commutes with S−1 we have

SAjx = AjSx for all x ∈ D(S). (8)

If x ∈ D(P1), i.e., A1x ∈ D(S2), then A2P1x = S2A2A1x = 0. Hence A1P1x =
S−2P1x ∈ D(S2) and so P1x ∈ D(P1) with P 2

1 x = P1x, i.e., P1 is a projection.
The identity A1 + A2 = S−2 implies that P2 is the projection complementary
to P1. From (8) it follows that (S − λ)−1Aj = Aj(S − λ)−1 for all λ ∈ �(S).
Hence X1 = kerP2 = kerA2 is invariant under S and (S − λ)−1, similarly for X2.
Moreover (8) yields D(S2) ⊂ D(Pj) and Pjx = AjS

2x for x ∈ D(S2). Finally we
show

�(S) = �(S|X1) ∩ �(S|X2).

The inclusion “⊂” is trivial, so let λ ∈ �(S|X1) ∩ �(S|X2). If (S − λ)x = 0, then
Sx ∈ D(S2) ⊂ D(Pj) and PjSx = S3Ajx = SPjx. Therefore (S|Xj − λ)Pjx =
Pj(S − λ)x = 0 and thus Pjx = 0. We obtain x = 0, so S − λ is injective. To
show that it is also surjective, set T = (S|X1 − λ)−1A1 + (S|X2 − λ)−1A2. Then
(S − λ)T = A1 +A2 = S−2 from which we conclude that (S − λ)S2T = I. �

The proof of Theorem 2.9 now proceeds as follows: The operators A± defined
by (7) satisfy A+ + A− = S−2, A+A− = A−A+ = 0 and A±S

−1 = S−1A±.
The previous lemma thus yields the closed projections P± and the invariance
properties of X±. An explicit integral formula for (S|X±−λ)−1 on �∓ then implies
σ(S|X±) ⊂ �± and, in conjunction with an application of the Phragmén-Lindelöf

theorem, the boundedness of ‖(S|X± − λ)−1‖ on �∓. This finally yields the strict
dichotomy of S (when P+ is bounded).

Remark 2.12. Theorem 2.9 and its proof use and combine existing results and ideas
from the papers by Bart, Gohberg and Kaashoek [2] and Arendt and Zamboni [1]:

(i) The definition of A± along with the identities A+ +A− = S−2 and A+A− =
A−A+ = 0 can be found in [2]. Also the integral representation of (S|X± −
λ)−1 on �∓ and the spaces G± from (4) are taken from this paper.

(ii) In [1] unbounded projections of the form P± = SB± were constructed for the
case of bisectorial S, where the bounded operators B± satisfy B++B− = S−1

and B+B− = B−B+ = 0.

What is genuinely new here compared to [1, 2], is the invariance ofX± under S and
the fact that the decomposition of the spectrum σ(S) = σ(S|X+) ∪ σ(S|X−) also
holds in the absence of dichotomy. Again we remark here that the inclusion “⊂”
is non-trivial.

3. Bisectorial and almost bisectorial operators

In this section we look at the spectral separation problem for the special classes of
bisectorial and almost bisectorial operators. This will lead to certain simplifications
as well as additional results compared with the general setting of Section 2.
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Figure 1. Resolvent sets of bisectorial and almost bisectorial operators

Definition 3.1. Let i� ⊂ �(S). Then S is called bisectorial if

‖(S − λ)−1‖ ≤ M

|λ| , λ ∈ i� \ {0}, (9)

with some constant M > 0. The operator S is called almost bisectorial if there
exist M > 0, 0 < β < 1 such that

‖(S − λ)−1‖ ≤ M

|λ|β , λ ∈ i� \ {0}. (10)

Note that here we only consider bisectorial operators satisfying 0 ∈ �(S). If
S is bisectorial with 0 ∈ �(S), then S is also almost bisectorial for any 0 < β < 1.
On the other hand, an estimate (10) with β < 1 already implies that 0 ∈ �(S).

If S is bisectorial, then a bisector θ ≤ | argλ| ≤ π − θ belongs to the resol-
vent set and estimate (9) actually holds on this bisector. Similarly, if S is almost
bisectorial, then (10) holds on a parabola shaped region, see Figure 1. For more
details about bisectorial and almost bisectorial operators, see [1, 13, 16].

If i� ⊂ �(S) and S is (almost) bisectorial, then estimate (5) holds and hence
Theorem 2.9 applies. Moreover, its assertions may be simplified and strengthened:

Theorem 3.2 ([16, Theorem 5.6]). Let S be (almost) bisectorial with i� ⊂ �(S).
Then the closed projections P± satisfy P± = SB± with B± ∈ L(X),

B± =
±1
2πi

∫ ±h+i∞

±h−i∞

1

λ
(S − λ)−1 dλ.

The inclusion D(S) ⊂ D(P±) holds and P±x = B±Sx for x ∈ D(S). Moreover,
the restrictions ±S|X± are (almost) sectorial, i.e., an estimate

‖(S|X± − λ)−1‖ ≤ M

|λ|β , λ ∈ �∓,

holds. Here the constants M and β are the same as for S in Definition 3.1. (β = 1
if S is bisectorial.)
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We note that the integral defining B± is well defined due to the resolvent
estimates (9) and (10), respectively.

One may ask whether the resolvent decay of a bisectorial or almost bisectorial
operator already implies that it is dichotomous, i.e., that P± are bounded. This is
not the case:

Example 3.3. Let us modify Example 2.7 by taking for Sn the matrix

Sn =

(
n 2n1+p

0 −n

)
.

For 0 < p < 1 we then obtain that S is almost bisectorial with

‖(S − λ)−1‖ ≤ M

|λ|1−p
, λ ∈ i� \ {0}.

The eigenvectors of Sn are now

vn+ =

(
1
0

)
and vn− =

(
−np

1

)
,

and the corresponding spectral projections are

Pn+ =

(
1 np

0 0

)
, Pn− =

(
0 −np

0 1

)
.

Again, P± are unbounded and S is not dichotomous.

If in the last example we take p = 0, then S is bisectorial, the projections
P± are bounded, and S is strictly dichotomous. But even in the bisectorial case,
S may fail to be dichotomous. An example was given by McIntosh and Yagi [9],
[16, Example 8.2].

There is yet another integral representation for the projections P± in the
(almost) bisectorial setting:

Corollary 3.4 ([16, Corollary 5.9]). If S is (almost) bisectorial, then

P+x− P−x =
1

πi

∫ i∞′

−i∞
(S − λ)−1x dλ, x ∈ D(S).

Here the prime denotes the Cauchy principal value at infinity. In particular, the
integral exists for all x ∈ D(S).

In a Krein space setting with J-accretive, bisectorial S, such an integral
representation has been used in [7, 11] to derive that the subspaces X+ and X−
are J-nonnegative and J-nonpositive, respectively.

4. Perturbation results

We present two perturbation results for dichotomy: one in the general setting of
Section 2 and one for (almost) bisectorial operators.
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Theorem 4.1 ([16, Theorem 7.1]). Let S, T be densely defined operators such that
S is strictly dichotomous and T is closed. Suppose there exist h,M, ε > 0 such that

(i) {λ ∈ � | |Reλ| ≤ h} ⊂ �(S) ∩ �(T ),

(ii) ‖(S − λ)−1 − (T − λ)−1‖ ≤ M

|λ|1+ε
for |Reλ| ≤ h,

(iii) D(S2) ∩ D(T 2) ⊂ X is dense.

Then T is strictly dichotomous.

Sketch of the proof. The strict dichotomy of S implies that the corresponding pro-
jection PS

+ is bounded and, moreover, that ‖(S − λ)−1‖ is bounded for |Reλ| ≤ h
(with a possibly smaller constant h > 0). From (ii) it follows that ‖(T − λ)−1‖ is
also bounded for |Reλ| ≤ h. Hence Theorem 2.9 applies to T and yields a closed
projection PT

+ . For x ∈ D(S2) ∩D(T 2) one gets

PS
+x− PT

+x =
1

2πi

∫ h+i∞

h−i∞

1

λ2

(
(S − λ)−1S2x− (T − λ)−1T 2x

)
dλ

=
1

2πi

∫ h+i∞

h−i∞

(
(S − λ)−1x− (T − λ)−1x

)
dλ.

By (ii) this last integral converges in the uniform operator topology, and thus
PS
+ − PT

+ is bounded on D(S2)∩D(T 2). Since PS
+ is bounded, we obtain that PT

+

is bounded on D(S2)∩D(T 2). Now this is a dense subset of X and PT
+ is a closed

operator, so we conclude that PT
+ ∈ L(X) and hence T is strictly dichotomous. �

Remark 4.2.

(i) Assumption (iii) allows for situations where D(S) �= D(T ), i.e., it is not
required that T = S +R with R : D(S)→ X .

(ii) Theorem 4.1 generalizes a similar result for exponentially dichotomous oper-
ators [2, Theorem 5.1], where ε = 1 and D(T 2) ⊂ D(S2) were assumed.

(iii) The proof shows that since we know that PT
+ is closed, it suffices to show the

boundedness of PT
+ on any dense subspace of D(T 2) ⊂ D(PT

+ ). This allows us
to use assumption (iii) instead of the much more restrictive D(T 2) ⊂ D(S2)
from [2].

As before, when considering (almost) bisectorial operators, some conditions
can be simplified.

Theorem 4.3 ([16, Theorem 7.3]). Let S, T be densely defined operators such that
S is (almost) bisectorial and strictly dichotomous and T is closed. Suppose there
exist M, ε > 0 such that

(i) i� ⊂ �(T ),

(ii) ‖(S − λ)−1 − (T − λ)−1‖ ≤ M

|λ|1+ε
for λ ∈ i� \ {0},

(iii) D(S) ∩ D(T ) ⊂ X is dense.

Then T is (almost) bisectorial (with the same β as for S) and strictly dichotomous.
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A special case of this theorem was proved in [11]. There S was assumed to
be bisectorial, D(T ) = D(S), T = S+R, and the perturbation R : D(S)→ X was
p-subordinate to S. This means that there exist 0 ≤ p < 1 and c > 0 such that

‖Rx‖ ≤ c‖x‖1−p‖Sx‖p, x ∈ D(S).
For such a perturbation, assumption (ii) of Theorem 4.3 holds with ε = 1− p.

Finally, we look at an application from systems theory [16, Example 8.8]. We
consider the so-called Hamiltonian operator matrix

T =

(
A −BB∗

−C∗C −A∗

)
with unbounded control and observation. The Hamiltonian is connected to the
control algebraic Riccati equation

A∗Π+ΠA−ΠBB∗Π+ C∗C = 0.

An operator Π is a solution of the Riccati equation, at least formally, if and only if
the graph subspace of Π is invariant under the Hamiltonian. For more information
on the optimal control problem see, e.g., [4, 15]. The aim here is to derive conditions
for the dichotomy of T and then use it to construct invariant graph subspaces.

The setting is as follows: A is a sectorial operator on the Hilbert space X
and 0 ∈ �(A). We consider the interpolation spaces Xs ⊂ X ⊂ X−s, 0 < s ≤ 1,
associated with A: Take X1 = D(A) equipped with the graph norm and let X−1

be the completion of X with respect to the norm ‖A−1x‖. For s < 1, Xs and
X−s are obtained by complex interpolation between X1, X and X−1, see, e.g., [8,
Chapter 1]. For A∗ the corresponding spaces are Xd

s ⊂ X ⊂ Xd
−s. The spaces Xs

and Xd
−s are dual with respect to the pivot space X : The inner product on X

extends to a sesquilinear form on Xs × Xd
−s by which the dual space X ′

s can be

identified withXd
−s. Similarly,Xd

s is dual toX−s. More details on this construction

can be found in [12, §§2.9, 2.10, 3.4]. For selfadjoint A, the spaces Xs and Xd
s

coincide with the domains of the fractional powers of A, see [17, §3].
Now the control and observation operators B and C are assumed to be

bounded linear operators B : U → X−s, C : Xs → Y where s < 1/2 and U, Y
are additional Hilbert spaces. The aim is to make sense of T as an operator on
V = X×X and then to show that it is strictly dichotomous. The difficulty is that
by the above duality relations, C∗C : Xs → Xd

−s and BB∗ : Xd
s → X−s, i.e., for

s > 0, BB∗ and C∗C map out of the space X . (This is what is meant here by
unbounded control and observation.) We decompose T as

T = S +R, S =

(
A 0
0 −A∗

)
, R =

(
0 −BB∗

−C∗C 0

)
.

Then S is bisectorial and strictly dichotomous on V = X×X . The perturbation R
is a bounded operator R : Vs → V−s where Vs = Xs×Xd

s , V−s = X−s×Xd
−s. The

operator S can be extended to an operator S : V1−s → V−s, so that T = S + R
is well defined as an operator on V−s. To consider T as an operator on V , we set
D(T ) = {x ∈ V1−s |Tx ∈ V }.
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One can now check that the conditions of Theorem 4.3 are satisfied: Using
perturbation and interpolation arguments, one can derive that λ ∈ �(T ) and ‖(S−
λ)−1 − (T − λ)−1‖ ≤ M/|λ|1+ε for λ ∈ i� with |λ| large enough and ε = 1 − 2s.
The structure of T then implies that i� ⊂ �(T ). For more details on this see [16].
In a typical setting from systems theory, B and C are boundary operators. In this
case D(T ) �= D(S), but D(S)∩D(T ) is in fact dense in V . Therefore Theorem 4.3
implies that T is bisectorial and strictly dichotomous.

In the next step, one now wants to show that the invariant subspaces V+

and V− of T are graph subspaces. The idea is to use the same approach as in
[11, 17]: The symmetry of the Hamiltonian with respect to an indefinite inner
product implies that V+ and V− are neutral subspaces for this inner product.
Neutrality together with an approximate controllability condition then yields the
graph subspace property. The details will be presented in a forthcoming paper.
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[15] M. Weiss, G. Weiss. Optimal control of stable weakly regular linear systems. Math.
Control Signals Systems, 10(4) (1997), 287–330.

[16] M. Winklmeier, C. Wyss. On the Spectral Decomposition of Dichotomous and Bisec-
torial Operators. Integral Equations Operator Theory, (2015), 1–32.

[17] C. Wyss, B. Jacob, H.J. Zwart. Hamiltonians and Riccati equations for linear sys-
tems with unbounded control and observation operators. SIAM J. Control Optim., 50
(2012), 1518–1547.

Christian Wyss
Fachgruppe Mathematik und Informatik
Bergische Universität Wuppertal
Gaußstr. 20
D-42097 Wuppertal, Germany
e-mail: wyss@math.uni-wuppertal.de

mailto:wyss@math.uni-wuppertal.de

	Contents
	Preface
	My Way in Mathematics: From Ergodic Theory Through Scattering to J-inner Matrix Functions and Passive Linear Systems Theory
	Contents
	1. My master’s thesis on entropy in the metrical theory of dynamical systems (1956–57). Entropy by Kolmogorov and Sinai. K-systems
	2. My first thesis “Some problems in the metrical theory of dynamical systems” (1964)
	3. From scattering to the Nehari problem. Joint research with V.M. Adamjan and M.G. Krein (1967–71)
	4. From scattering and Nehari problems to the Darlington method, bitangential interpolation and regular J-inner matrix functions. My second thesis: linear stationary passive systems with losses
	5. Development of the theory of passive systems by my graduate students
	6. Joint research with B. Fritzsche and B. Kirstein on J-inner mvf ’s (1989–97)
	7. Joint research on passive scattering theory with M.A. Kaashoek (and D. Pik) with J. Rovnjak (and S. Saprikin)
	8. Joint research with Olof J. Staffans (and M. Kurula) on passive time-invariant state/signal systems theory (2003–2014)
	9. Joint research with Harry Dym on the theories of J-inner mvf ’s and de Branges spaces and their applications to interpolation, extrapolation and inverse problems and prediction (1992-2014)
	References

	Generic rank-K Perturbations of Structured Matrices
	1. Introduction
	2. Preliminaries
	3. Jordan structure under rank-K perturbations
	4. Sign characteristic under rank-K perturbations
	5. Conclusion
	Acknowledgement

	References

	The Krein–von Neumann Realization of Perturbed Laplacians on Bounded Lipschitz Domains
	1. Introduction
	2. Schrödinger operators on bounded Lipschitz domains
	3. Boundary conditions for the Krein–von Neumann realization
	4. Spectral asymptotics of the Krein–von Neumann extension
	References

	The Spectral Problem for the Dispersionless Camassa–Holm Equation
	1. Background
	2. A Hilbert space
	3. Spectral theory
	4. Jost solutions
	5. Inverse spectral theory
	6. Proofs of Theorem 5.3 and Corollary 5.4
	Appendix: Some technical lemmas
	References

	Schatten Class Integral Operators Occurring in Markov-type Inequalities
	1. Introduction and result
	2. Proof of Theorem 1.2
	3. Auxiliary results and an example
	4. Proof of Theorem 1.3
	References

	Twenty Years After
	1. Genesis, or, how it all began
	2. Autumn 1992
	3. A version of the 1992 problem
	4. Reproducing Kernel Hilbert Spaces
	5. Examples of RKHS’s
	6. Entire de Branges matrices
	7. de Branges spaces B(E)
	8. A special subclass of de Branges matrices
	9. de Branges spaces are of interest
	10. Example 1, Δ(μ) = Ip
	11. Example 2, αIp ≤ Δ(μ) ≤ βIp for some β ≥ α > 0
	12. Spectral densities in the Wiener algebra
	13. 1993–2011
	14. Entire J-inner mvf ’s
	15. Canonical systems
	16. Linear fractional transformations
	17. Subclasses of E ∩U◦(J) with J = ±Im
	18. A pleasing RK result
	19. A simple inverse monodromy problem
	20. Helical extension problems
	21. A reformulation in the Carathéodory class
	Acknowledgement

	References

	Matrix-valued Hermitian Positivstellensatz, Lurking Contractions, and Contractive Determinantal Representations of Stable Polynomials
	1. Introduction
	2. Positive matrix polynomials
	3. Finite-dimensional contractive realizations
	4. Contractive determinantal representations
	References

	Form Inequalities for Symmetric Contraction Semigroups
	1. Introduction
	2. Main results
	3. Reduction steps
	3.1. Reduction to bounded operators
	3.2. Reduction to a finite measure space
	3.3. Reduction to a compact measure space

	4. Operator theory
	4.1. The linear modulus
	4.2. Integral representation of bilinear forms
	4.3. The disintegration theorem

	5. Proof of the main results
	6. Application: The sector of analyticity
	Appendix: On homomorphisms of probability spaces
	Acknowledgement

	References

	The Isomorphism Problem for Complete Pick Algebras: A Survey
	1. Introduction
	1.1. Motivation and background
	1.2. About this survey
	1.3. Overview of main results

	2. Notation and preliminaries
	2.1. Basic notation
	2.2. The Drury–Arveson space
	2.3. Varieties and their reproducing kernel Hilbert spaces
	2.4. The multiplier algebra of a variety
	2.5. The character space of MV
	2.6. Metric structure in M(MV )

	3. Weak-* continuous isomorphisms
	4. Isometric, completely isometric, and unitarily implemented isomorphisms
	4.1. Completely isometric and unitarily implemented isomorphisms
	4.2. Isometric isomorphisms

	5. Algebraic isomorphisms
	5.1. Varieties which are unions of finitely many irreducible varieties and a discrete variety
	5.2. Homogeneous varieties
	5.3. Finite Riemann surfaces
	5.4. A class of counter-examples

	6. Embedded discs in B∞
	6.1. Some general observations
	6.2. A special class of embeddings

	7. Open problems
	7.1. Finite unions of irreducible varieties
	7.2. Maximal ideal spaces of multiplier algebras
	7.3. The correct equivalence relation
	7.4. Structure theory
	7.5. Embedding dimension
	7.6. Other algebras. Norm closed algebras of multipliers
	7.7. Approximation and Nullstellensatz

	References

	The Stationary State/Signal Systems Story
	1. Introduction to state/signal systems
	1.1. Input/state/output systems in the time domain
	1.2. State/signal systems in the time domain
	1.3. Various notions for state/signal systems

	2. State/signal systems in the frequency domain
	2.1. Input/state/output systems in the frequency domain
	2.2. State/signal systems in the frequency domain

	3. Passive and conservative i/s/o and s/s systems
	3.1. J-passive and J-conservative i/s/o systems
	3.2. Passive and conservative state/signal systems
	3.3. Passive and conservative realizations

	4. A short history
	References

	Dichotomy, Spectral Subspaces and Unbounded Projections
	1. Introduction
	2. Dichotomy and unbounded spectral projections
	3. Bisectorial and almost bisectorial operators
	4. Perturbation results
	References




