
Composing Transformation Operations Based on
Complex Source Pattern Definitions

Arda Goknil1, N. Yasemin Topaloglu2

 Department of Computer Engineering, Ege University, Izmir, Turkey
1arda.goknil@ege.edu.tr, 2yasemin.topaloglu@ege.edu.tr

Abstract. Rule composition and decomposition is a hot research topic within
the context of model transformation. Mostly, transformation rules are
considered as atomic parts of the transformation and rule composition has been
the focus of recent research in the model transformation area. In our approach,
we consider the transformation operations such as add, delete and update
operations as the atomic parts of the transformation and the synthesis of these
operations constitutes a single transformation rule. Defining complex and
hierarchical source pattern definitions requires approaches and techniques
about the composition and decomposition of these operations. In this paper, we
discuss the problem statement and present an example case in which operation
composition is required.

1 Introduction

Rule-based model transformation languages are the core technologies for operating
the transformations between models on different abstraction levels in current Model
Driven Engineering (MDE) approaches, such as Model Driven Architecture (MDA)
[4] and Model Integrated Computed (MIC) [6]. In these languages, transformation
rules are considered as the atomic elements of the transformation process.

Implementing large and complex transformations require complex and hierarchical
pattern definitions to query models. In this context, complex pattern definitions mean
that the pattern elements are tightly coupled and the relations between them are
derived from the domain, not from the meta associations of the source metamodels.
The coupling between the model elements is defined in the problem domain instead
of metamodels. For instance, the relation between the UML Class and UML Attribute
model elements in a proposed UML2JAVA transformation is derived from the UML
metamodel. Complex source patterns include variation points and coupled elements
hierarchically. Transformation rules which query these models should contain
multiple operations and multiple pattern elements. In our approach, we consider the
transformation operations such as add, delete and update operations as the atomic
parts of the transformation and the collaboration between them constitutes a
transformation rule.

In this paper, we highlight the need of transformation languages that support
operation composition for complex pattern definitions. The paper is organized as
follows. In Section 2, we discuss the transformations with operation definitions. In

Section 3, we present a sample transformation for composing transformation
operations. Section 4 includes the conclusions.

2 Transformations with Operation Definitions

In transformation between two different metamodels, rules have simple definitions
for transforming one model element in the source model into one or more model
elements in the target model. This approach is called one-many mapping. In [7], the
term mapping is defined as a synonym for correspondence between the elements of
two metamodels, while the mapping specification precedes the transformation
definition. Especially, transformation platforms which combine weaving and
transformation, execute the transformations with one-many mapping. In
transformations generated by mapping two different metamodels, the model elements
are loosely coupled and the relations between them are derived from the source
metamodel. The implicit rule calls defined in [1] solve the problem about integration
and execution order of mapping rules. Composition approaches are mainly concerned
about rule composition.

Since entities and the relations between these entities in the pattern definition are
derived from the problem domain, they constitute the hierarchical complex source
patterns. The rule structure requires complex pattern mapping within a single rule
instead of one-many pattern element mapping within multiple rules. For instance, the
relations between the pattern elements are defined by the problem domain in a
proposed multiple inheritance-single inheritance (MI2SI) transformation [2] as a part
of UML2JAVA transformation. In such a transformation operated by one-many
mapping, the mechanism needs helper rules to define relations between the elements
of the pattern. These helper rules make the problem definition more complex and
incomprehensible. Transforming by pattern mapping takes the source pattern and
transforms it into the target pattern by using less number of rules than one-many
model element mapping uses. However, in this case, rules need multiple operations to
transform one pattern into another one. Multiple operations in a transformation rule
are given by Figure-1.

Figure-1. Multiple Operations in a Single Transformation Rule.

There are some issues to be considered in transforming by pattern mapping. Like
rule composition, operation composition is required to manage and to organize the
transformation operations defined between the complex pattern definitions. In Figure-
1, the r1 rule has four operations named o1, o2, o3 and o4. The organization of the
operations in the rule can be considered within the parallel of rule organization. The
same problems about rule integration and organization occur in the operation
organization and integration. There must be implicit operation calls in the rule to
collaborate operations according to the relations between the pattern elements.

3 A Sample Transformation for Composing Transformation
Operations

In this section, we explore the cases derived from the problem statements depicted in
Section 2 over a sample pattern definition of multiple inheritance for a proposed
multiple inheritance (MI) to single inheritance (SI) transformation. Although some
programming languages include only single inheritance, defining a class by inheriting
from more than one class is needed in a system design frequently. We consider UML
models as the platform independent models which support multiple inheritance and
Java programming language as our platform specific model which supports only
single inheritance. The MI2SI transformation is a good example for complex pattern
definitions because both source and target patterns contain multiple hierarchies and
the transformation has multiple add, delete and update operations between MI and SI.

We consider the two alternatives as the representative cases of multiple inheritance
(MI) since they can constitute the basis to generate other MI cases. In the first case,
the inheritance hierarchy is composed of only one level and it is the simplest case of
MI. The second case adds one more level to the inheritance hierarchy and called
“diamond inheritance” [5].

Figure-2. Transforming Multiple Inheritance to Single Inheritance with Role

Aggregation.

In the hierarchy of multiple inheritance, we named the classes as GrandParent,
Parent and Child classes. The GrandParent class is at the top of the hierarchy and the
Child class is at the bottom. The Parent classes are the middle level classes which are
the subclasses of the GrandParent class and super classes of the Child class. Figure-2
depicts the MI2SI transformation with role aggregation given in [2]. In Figure-2, one
of the inheritance links is replaced by an aggregation link. The newly added abstract
class named A/C is called AbstractDiscriminatedClass and the Parent classes in the
MI which are the subclasses of the A/C class are now called the
ConcreteDiscriminatedClass instead of Parent class.

The problem here is how to identify the rules between these two complex pattern
definitions in the transformation definition. Decomposition satisfies the requirements
for this identification. Kurtev [3] defined some rule decomposition approaches
according to the target and source pattern. In source-driven approach [3], rules for
every model element in the source pattern are defined. The rules for the MI2SI
transformation are shown below:

GrandParentRule (Source[GrandParentClass],
 Constraint[GrandParentClass, ParentClass, ChildClass],
 Target[GrandParentJClass, AbstractJClass])

ParentRule (Source[ParentClass],
 Constraint[ParentClass, GrandParentClass, ChildClass],
 Target[ParentJClass, ConcreteDiscriminatedJClass])

ChildRule (Source[ChildClass],
 Constraint[ChildClass, GrandParentClass, ParentClass],
 Target[ChildJClass])

This transformation contains three rules. Each rule defines a source model element

in its source part but each rule has the full definition of constraints to query the whole
source pattern in the model. For instance, the GrandParentClass in the source part of
GrandParentRule needs the full constraint definition of the source pattern to match in
the model because the constraint part requires constraints of other source pattern
elements related to the GrandParentClass to bind the appropriate model element. The
helper rules are required in the constraint part to define the relationships between the
pattern elements. In the GrandParentRule, we need to call two helper rules for the
relation between the GrandParentClass, ParentClass and the ChildClass. The same
helper rules and constraint repetitions are required for other rules named the
ParentRule and the ChildRule. This kind of rule decomposition makes the definition
more complex. We chose the composition of rules according to the source and target
pattern mapping instead of rule decomposition.

MI2SIRule (Source[GrandParentClass, ParentClass, ChildClass, GPFeature],
 Constraint[GrandParent, Parent, Child, GPFeature],
 Target[GrandParentJClass, ParentJClass, ChildJClass,
 ConcreteDiscriminatedJClass, AbstractDiscriminatedJClass,
 GPJFeature, CDJFeature])

MI2SIRule maps the multiple inheritance source pattern and the single inheritance
target pattern. The source and target parts of this rule include all pattern elements and
the constraint part of the rules defines all relation and cardinality constraints of these
pattern elements at once. In this kind of rule structure, we need to define the
transformation operations which are the atomic parts of the transformation definition.
There is a need of operation composition to organize and manage the appropriate
operations within a single rule. Transformation languages should also support explicit
definition of operation structures in rules. Every single operation should be able to
map a number of source model elements to a number of target model elements.

MI2SIRule (Source[GrandParentClass, ParentClass, ChildClass],
 Constraint[GrandParent, Parent, Child],
 Target[GrandParentJClass, ParentJClass, ChildJClass,
 ConcreteDiscriminatedJClass,AbstractDiscriminatedJClass]
 Operation1[Type: Add, GPP_Generalization],
 Operation2[Type: Delete, PC_Generalization],
 Operation3[Type: Add, AbstractDiscriminatedJClass],
 Operation4[Type: Add, GPA_Aggregation],
 Operation5[Type: Add, AC_Generalization])

Another issue in the operation composition is the reuse of transformation

definitions. OMI2SIRule depicts the transformation from one level multiple
inheritance to single inheritance. Source pattern elements of the MI2SIRule except the
GrandParentClass constitute the pattern elements of OMI2SIRule.

OMI2SIRule (Source[ParentClass, ChildClass],
 Constraint[Parent, Child],
 Target[ParentJClass, ChildJClass]
 Operation1[Type: Delete, PC_Generalization],
 Operation2[Type: Add, ParentFeaturetoChild])

We must decompose the constraint part of the rule structure to reuse the pattern

elements and constraints of the MI2SIRule in the OMI2SIRule. The composed
constraint structure of the MI2SIRule prevents the reuse of constraints for the
ParentClass and ChildClass pattern elements. MI2SIRule2 is the rule whose
constraints are decomposed for every pattern element in the source part of MI2SIRule.

MI2SIRule2(Source[GrandParentClass, ParentClass, ChildClass],
 ConstraintGP[GrandParent], ConstraintP[Parent],
 ConstraintC[Child],
 Target[GrandParentJClass, ParentJClass, ChildJClass,
 ConcreteDiscriminatedJClass,AbstractDiscriminatedJClass]
 Operation1[Type: Delete, GPP_Generalization],
 Operation2[Type: Delete, PC_Generalization],
 Operation3[Type: Add, AbstractDiscriminatedJClass],
 Operation4[Type: Add, GPA_Aggregation],
 Operation5[Type: Add, AC_Generalization])

As shown briefly in the above example, decomposing a transformation into
operations and composing operations according to the complex pattern mapping
make the transformation definitions more expressive. In addition, reusing the
operations to constitute new rules is trivial.

4 Conclusion

In this paper, we discuss the need of operation composition and the general operation
structure in transformation rules that transformation languages should support.
Transformation languages should have additional features in their rule structures that
provide operation composition. Composing operations within transformation rules
will enable us to query and transform complex pattern definitions in a more
expressive way.

References

1. Czarnecki, K., Helsen, S. Classification of Model Transformation Approaches.
OOPSLA2003 Workshop on Generative Techniques in the Context of MDA, USA,
2003

2. Dao, M., Huchard, M., Libourel, T., Pons, A., Villerd, J.: Proposals for Multiple to
Single Inheritance Transformation. In Proceedings of the 3rd International Workshop
on Mechanisms for Specialization, Generalization and Inheritance MASPEGHI 2004
(Workshop ECOOP 2004), Oslo Norway, June 2004

3. Kurtev, I.: Adaptability of Model Transformations, PhD Thesis, University of
Twente, 240p, ISBN 90-365-2184-X

4. OMG: MDA Guide Version 1.0.1. The Object Management Group, Document
Number: omg/2003-06-01 (2003)

5. Sebesta, R.: Concepts of Programming Languages. Addison-Wesley Publishing,
2002.

6. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer, Apr. 1997,pp.
110-112

7. Lopes, D., Hammoudi, S., Bezivin, J., Jouault, F.: Mapping Specification in MDA:
From Theory to Practice. INTEROP-ESA'2005

	Figure-1. Multiple Operations in a Single Transformation Rul
	Figure-2. Transforming Multiple Inheritance to Single Inheri

