
1

Diagnosis of the Significance of Inconsistencies in

Object-Or iented Designs: A Framework and I ts Exper imental

Evaluation

(Draft)

George Spanoudakis, Hyoseob Kim

Department of Computing, City University

Northampton Square, London, EC1V 0HB

E-mail: (gespan|hkim)@soi.city.ac.uk

ABSTRACT: This paper presents: (a) a framework for assessing the significance of

inconsistencies which arise in object-oriented design models that describe software systems from

multiple perspectives, and (b) the findings of a series of experiments conducted to evaluate it. The

framework allows the definition of significance criteria and measures the significance of

inconsistencies as beliefs for the satisfiability of these criteria. The experiments conducted to

evaluate it indicate that criteria definable in the framework have the power to create elaborate

rankings of inconsistencies in models.

KEYWORDS: diagnosis of inconsistencies, UML, OCL, Dempster-Shafer beliefs

1. Introduction

The need to describe complex software systems from different design perspectives, such as

those of the static structure and the interactions of the components of a system, may result in the

construction of many partial system design models (or simply "models" henceforth). These models

may be constructed independently by different designers, may advocate specific modelling angles

and may reflect disparate perceptions of these designers. As a result, they may be inconsistent with

each other.

Inconsistencies occur when partial models refer to common aspects of the system under

development and make assertions which violate consistency rules applicable to these aspects

(Hunter and Nuseibeh, 1998; Spanoudakis and Finkelstein, 1996; Spanoudakis and Zisman 2001).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

As an example consider an object-oriented design model that consists of an object interaction

diagram and a class diagram. Assume also a consistency rule requiring that for any message

received by an object in the interaction diagram, an operation with the same signature as the

message must have been defined for one of the classes of the object in the class diagram. In this

model an inconsistency would arise if there was a message with no counterpart operation, thus

violating the above consistency rule.

Inconsistencies are inevitable in software development (Schwanke and Kaiser, 1998). And,

although they will have to be settled eventually, they may need to be tolerated temporarily to give

designers a chance to work independently developing their own parts of a model without the need

for continual reconciliation (Hunter and Nuseibeh, 1998; Spanoudakis and Finkelstein, 1996). In

settings providing freedom for groupwork, it is important to be able to diagnose the significance

of an inconsistency in order to decide when and with what degree of priority it has to be settled. In

one of the experiments reported in Section 5.1, we detected 90 violations of the consistency rule

mentioned above. In such cases having a mechanism to assess the significance of inconsistencies

and order them by this significance would be undoubtedly useful.

In this paper, we describe a framework that we have developed to support the assessment of

the significance of inconsistencies in object-oriented software design model expressed in UML

(OMG, 1999) and present the main findings of a set of experiments that we conducted to evaluate

it. A description of the framework at an earlier stage of its development is given in (Spanoudakis

and Kasis, 2000).

The main premise of the framework is that the significance of an inconsistency depends on

the significance of the model elements that give rise to it for the model. The framework defines a

set of characteristics which indicate the significance of the main kinds of elements in UML

models. The assessment of whether or not an element has a particular characteristic in a model is

approximate; the framework incorporates belief functions measuring the extent to which it may be

believed from its modelling that an element has the characteristic. The need for approximate

reasoning arises because it cannot be guaranteed that the model provides a consistent, complete

and accurate description of the system it describes at the different stages of its evolution. In

addition, it cannot be guaranteed that the element will retain the characteristic in the next version

of the model.

3

The framework presented in this paper has been developed as part of a semi-automated

method that we have developed to assist software developers in managing inconsistencies in

object-oriented software design models, called "reconciliation". Reconciliation supports the entire

range of the activities of what has been termed in the literature as "inconsistency management",

including the detection of overlaps and inconsistencies in software models, the diagnosis of the

significance of inconsistencies, and the handling of detected inconsistencies (Finkelstein et al.,

1996; Spanoudakis and Zisman, 2001). A full description of this method is however beyond the

scope of this paper and can be found in (Spanoudakis and Finkelstein, 1997; Spanoudakis and

Kim, 2001).

The rest of this paper is structured as follows. In Section 2, we introduce the characteristics

which indicate the significance of model elements and the belief functions associated with them.

In Section 3, we establish a scheme for expressing consistency rules and significance criteria

which determine the characteristics that the elements which violate these rules must have for the

violations to be significant. In Section 4, we give an example of how to use these criteria to

evaluate the significance of inconsistencies and rank them. In Section 5, we present the results of

an experimental evaluation of the framework. In Section 6, we overview related work in Section 7

we summarize the framework and present directions for further work on it. The paper has also an

appendix which overviews the statistics used in the rank correlations discussed in Section 5.2.

2. Character istics of significant model elements

The UML models assumed by our framework can be composed of any number of class and

sequence diagrams. Class diagrams specify the static structure of, and the relationships between

the classes of a system. Classes can have attributes, operations, and be related by associations and

generalisation (Is-a) relations. Sequence diagrams specify interactions between the instances of

these classes (the terms "sequence diagram" and "interaction" are used synonymously in the rest of

the paper). An interaction consists of a set of messages exchanged between objects to deliver part

of the functionality of a system. A complete description of the semantics of these kinds of UML

model elements is beyond the scope of this paper and may be found in (OMG, 1999).

In our framework, the significance of the above kinds of UML model elements is indicated by

six characteristics: the genericity and coordination capacity of classes, the functional essentiality

4

of attributes and association ends, the charactericity of operations, and the functional dominance

and coordinating capacity of messages. These characteristics are described below.

2.1 Class gener icity

In software models, classes with numerous subclasses normally specify interfaces (i.e. sets of

operation signatures) for groups of services which are provided by their subclasses and the internal

state of the instances of these subclasses which is required to realise the services. In effect, such

generic classes provide a basis for specifying clients capable of using the services without

knowing the exact class which provides them. An inconsistency involving the specification of a

generic class is significant since it may affect both its subclasses and the clients that use its

services.

Figure 1. UML class diagram for a library system

The belief to the genericity of a class in our framework is measured as the likelihood of an

arbitrary class in a model being a subclass of it:

Definition 1: The belief to the genericity of a class c in a model M (denoted by the predicate gen-

c(c)) is defined as:

SearchByAuthor

execute()

SearchByTitle

execute(argname) : return

DeleteItemCommand

execute()

InsertItemCommand

execute()

Keyword
(from ApplicationClasses)

SearchCommand

execute()

+key

DatabaseCommand

execute()

Statement
(from ApplicationClasses)

DBHandler
(from ApplicationClasses)+imp

SearchByKeyword

execute()

SForm
(from ApplicationClasses)

+sform

TextField
(from ApplicationClasses)

Implementor
(from ApplicationClasses)

Command

execute()
getImp() : Implementor1..1

-imp

1..1

SMenu
(from ApplicationClasses)

5

m1(gen-c(c)) = |c.Sub*| / | AllClasses(M) − { c} |1

m1(¬gen-c(c)) = 1 − m1(gen-c(c))

where

• AllClasses(M) is the set of all the classes in model M

• c.Sub* is transitive closure of the subclasses of c

Figure 1 shows a generalisation hierarchy of command classes for a library system (see

Section 2.2 below) which has been modeled following the command pattern in (Gamma et al.,

1995). The degrees of belief in the genericity of the command classes Command,

SearchCommand, and SearchByKeyoword in this hierarchy generated by m1 (assuming that the

classes in Figure 1 are the only classes of the model involved) are: m1(gen-c(Command)) = 0.5,

m1(gen-c(SearchCommand)) = 0.21, m1(gen-c(SearchByKeyword)) = 0

2.2 Coordination capacity of classes

Some classes in the design of a system may have a coordination capacity, that is they may

exist to coordinate interactions between other classes. Coordinating classes are very important in a

design since they encapsulate protocols of interactions between the classes they coordinate and,

thus, they appear in numerous design patterns (e.g. mediator, observer, facade (Gamma et al.,

1995)). An inconsistency involving a coordinating class is important since it is likely to affect all

the classes and the interactions which are coordinated by this class.

A common characteristic of coordinating classes across all the different coordination patterns

that they may realise is that they send messages to or receive messages from all the classes that

they coordinate. Drawing upon this observation, we measure the belief to the coordination

capacity of a class c in a set of interactions S as the likelihood that an arbitrary class in S will be

communicating with c:

Definition 2: The belief to the coordination capacity of a class c in a subset S of the interactions of

a model (denoted by the predicate coord-c(c,S)) is defined as:

m2(coord-c(c,S)) = |Com(c,S)|/|Classes(S)−{ c} |

m2(¬coord-c(c,S)) = 1 − m2(coord-c(c, S))

where

1 The expression |S| denotes the cardinality of the set S.

6

• Com(c,S) is the set of the classes whose instances send messages to or receive messages from

the instances of c in the interactions of the set S excluding c

• Classes(S) is the set of the classes which appear as receivers or senders of messages in the

interactions of S.

As an example of using m2 to measure the coordinating capacity of classes consider the

sequence diagrams of Figures 2 and 3.

The sequence diagram of Figure 2 shows an interaction between the classes of the library

system whose static class structure was specified in Figure 1. This interaction takes place to allow

the user to select one of the search options available from the system. More specifically, the

system offers the options of searching by keywords in the title, author or the keywords associated

with library items. A search menu (SMenu) is used to activate the various search options offered

by the system. These options are modeled (and operationalised) by the command classes

SearchByKeyword, SearchByAuthor, and SearchByTitle (in the sense of command classes in

(Gamma et al., 1995)).

Figure 2. I1 - Interaction for selecting a search option

The sequence diagram of Figure 3 shows the interaction that takes place when the system is

used to search for library items by keywords. As shown in the diagram, when the command class

SearchByKeyword. is activated to execute the operation execute(), it displays a search form (see

message setVisible(True)), set itself as a listener of events related to a text field of this form (see

message addActionListener(sbk)), gets the contents of the text field (see message getText()) when

it is notified that the user has typed something in it (see message actionPerformed(event)),

 : User
 : SMenu : SearchByKeyword : SearchByTitle : SearchByAuthor

2: execute()

1: selects_search_option
[search_option = searchByKeyword]

3: execute()

[search_option = searchByTitle]

4: execute()
[search_option = searchByAuthor]

7

constructs a string representing an SQL query (see message formQuery()), and invokes an

operation in the class DBHandler (i.e., a database driver) to execute this query (see message

executeQuery(String,OCol)).

Figure 3. I2 - Interaction for searching by keywords

According to Definition 2, the beliefs in the coordination capacity of the classes

SearchByKeyword, DBHandler, SMenu in the diagram I2 are:

(i) m2(coord-c(SearchByKeyword,{ I2})) = 0.8

since Com(SearchByKeyword,{ I2}) = { SMenu, SForm, TextField, DBHandler} and

Classes({ I2}) = { SMenu, SearchByKeyword, SForm, TextField, DBHandler,

Statement}

(ii) m2(coord-c(DBHandler,{ I2})) = 0.4

since Com(DBHandler,{ I2}) = { Statement, SearchByKeyword}) and Classes({ I2}) is as in (i)

above

(iii) m2(coord-c(SMenu,{ I2})) = 0.2

since Com(SMenu,{ I2}) = { SearchByKeyword} and Classes({ I2}) is as in (i) above

These beliefs reflect the strong coordination capacity of SearchByKeyword in the entire

interaction, the moderate coordination capacity of DBHandler for only a part of the interaction and

the almost negligible coordination capacity of SMenu.

 : SMenu : SForm : DBHandler : Statement
 : User

 : TextFieldsbk : SearchBy
Keyword

1: execute()
2: setVisible(True)

6: getKeywords() 7: getText()

8: formQuery()

9: executeQuery(String,OCol)
10: executeQuery()

11: toObjCol(result)

3: addActionListener(sbk)

5: actionPerformed(event)

4: types_keywords

8

Note however that, the above beliefs change if both diagram I1 and diagram I2 are taken into

account. In this case, we have:

(i) m2(coord-c(SearchByKeyword, { I1,I2})) = 0.571

since Com(SearchByKeyword,{ I1,I2}) = { SMenu, SForm, TextField, DBHandler}) and

Classes({ I1,I2}) = { SMenu, SearchByKeyword, SearchByTitle, SearchByAuthor, SForm,

TextField, DBHandler, Statement}

(ii) m2(coord-c(SMenu, { I1,I2})) = 0.428

since Com(SMenu,{ I1,I2}) = { SearchByKeyword, SearchByAuthor, SearchByTitle})

and Classes({ I1,I2}) is as in (i) above

(iii) m2(coord-c(DBHandler, { I1,I2})) = 0.285

since Com(DBHandler, { I1,I2}) = { Statement, SearchByKeyword} and Classes({ I1,I2}) is as

in (i) above

The new beliefs are affected by the high coordination capacity of the class SMenu in I1, the

low coordination capacity of the class SearchByKeyword in I1 and the lack of any coordination

capacity of the class DBHandler in I1.

2.3 Functional essentiality of attr ibutes and association ends

Attributes and association ends may provide the only channels for sending messages between

the instances of the classes connected to them. Consider, for instance, an interaction where an

instance of a class ci sends a message to an instance of another class cj. Unless ci has an attribute

or an association end whose type is the class cj (and therefore its instances have a means of

holding references to the instance of cj) or the message has an argument of type cj, the instance of

ci will not be able to identify and send the message to the instance of cj.

Note also that in cases where ci has more than one attributes or navigable association ends of

type cj it is impossible to identify from the model which of these attributes or association ends is

used by the sender of the message2. Nevertheless, it is plausible to assume that the more the

messages sent by the instances of ci (or its subclasses) to instances of the type of an attribute or

association end a and the fewer the other attributes or association ends of ci having the same type

as a, the higher the chance that at least one of these messages is dispatched through a and thus the

9

higher the functional essentiality of a for the class ci. Drawing upon this observation, we define

the belief to the functional essentiality of attributes and association end as follows:

Definition 3: The belief to the functional essentiality of an attribute or association end a for a

class c in a model M (denoted by the predicate fessen-a(a,c)) is defined as:

m3(fessen-a(a,c)) =

1 − (1−1/(|Rel(a,c)| +1))|Mes(a, c, M)|

m3(¬fessen-a(a,c)) = 1 − m3(fessen-a(a,c))

where

• Mes(a,c,M) is the set of those messages sent by the instances of c (or its subclasses) to instances

of the type of the attribute or the association end a which do not have an argument of the same

type as a

• Rel(a,c) is the set of the attributes and navigable association ends defined in or inherited by the

class c that have the same type as a

m3 measures the likelihood of the instances of c sending messages to objects that constitute

the value of the attribute or association end a. In Definition 3, the cardinality of Rel(a,c) is

increased by one to account for the possibility of sending the message to an instance of c that is

created within the method that implements the operation invoked by the message. This is

necessary since this creation might not be evident from the interaction itself.

According to Definition 3, the beliefs to the functional essentiality of the association end

sform and the attribute key for the class SearchByKeyword in Figure 1 − given the sequence

diagram of Figure 2 − are 0.75 and 0, respectively. These beliefs reflect the fact that sform is likely

to be the association end used to identify the receivers of at least one of the messages in the

diagram sent to instances of SearchByKeyword. Unlike it, the attribute key does not appear to have

any functional role for SForm since no messages are sent to instances of its type (that is the class

Keyword).

An inconsistency involving a functionally essential attribute or association end is significant

because it may affect the ability of the objects to request the execution of operations.

2 The graphical syntax of UML for sequence diagrams does not allow the specification of the
exact attribute or association end whose value is used as the receiver of a message in an
interaction.

10

2.4 Operation character icity

An operation overridden by most of the classes in its scope, that is the set of the classes which

introduce or inherit it in a model, is significant for the design of a system because it constitutes a

basic kind of behaviour which must be provided by objects of different types (even if realised in

different ways by these objects). We refer to this characteristic of operations as "operation

charactericity" and define the belief to it as follows:

Definition 4: The belief to the charactericity of an operation o in a model M (denoted by the

predicate char-o(o)) is defined as

m4(char-o(o)) =

Πc ε Oclasses(o) |Ov(o,c)∪{ c} | / | c.Sub*∪{ c} |

m4(¬char-o(o)) = 1 − m4(char-o(o))

where

• Oclasses(o) is the set of the most general superclasses of the class of o which define an

operation with the same signature as o

• Ov(o,c) is the set of the subclasses of c which override o

m4 measures the likelihood of an arbitrary class in each of the possible scopes of an operation

overriding it.

According to Definition 4, the beliefs to the charactericity of the operations execute() and

getImp() in the class diagram of Figure 1 are 0.875 and 0.125, respectively. The former belief

measure reflects the fact that execute() is an operation that has to be defined in every command

class (since it is used to trigger the execution of these commands (Gamma et al., 1994)) but

implemented differently by each of these command classes. Unlike it, the operation getImp(),

which returns the object that implements a command, has a single implementation in the abstract

command class Command. The fact that getImp() is not overridden by any of the different

command classes in the Is-a hierarchy of Figure 1 indicates the relatively insignificant functional

role of it for these classes.

11

2.5 Coordination capacity of messages

Messages in interactions are exchanged between objects to invoke operations in these objects.

These operations may: (a) provide part of the internal functionality of the object, or (b) coordinate

the interaction of a group of other objects by invoking other operations in them, combining the

data that the latter operations may generate, and eventually notifying the combined outcome of the

interaction to the object that invoked them.

The operations of the latter kind (and therefore the messages invoking them) are more critical

for the design of the system than those of the former kind. This is because they realise the

protocols of the required coordination between objects. Note, however, that in a UML design

model, the only evidence about the operations invoked when a specific operation is executed

comes from the messages dispatched by the message that invokes the operation. Also, depending

on the elaboration stage of a model, the messages which appear in sequence diagrams may not

have counterpart operations defined for the classes of their receivers (or their superclasses) in the

class diagrams. To cope with these phenomena, we have defined the coordination capacity as a

characteristic of messages:

Definition 5: The belief to the coordination capacity of a message m in a subset S of the

interactions of a model M (denoted by the predicate coord-m(m,S)) is defined as:

m5(coord-m(m,S)) = |Dsig(m,S)|/ |Asig(m,S)| if Asig(m,S) ≠ ∅

m5(coord-m(m, S)) = 0 if Asig(m,S) = ∅

m5(¬coord-m(m,S)) = 1 − m5(coord-m(m,S))

where

• Dsig(m,S) is the set of the signatures of the messages directly dispatched by m in the

interactions of S

• Asig(m,S) is the set of the signatures of the messages which are directly or indirectly dispatched

by m in the interactions of S

m5 measures the likelihood of an arbitrary message x in the transitive closure of the messages

dispatched by a message m being directly (as opposed to indirectly) dispatched by m.

According to Definition 5, the beliefs to the coordination capacity of the messages execute(),

12

actionPerformed(event) and setVisible(True) in the interaction of Figure 3 are:

− m5(coord-m(execute(),{ I2})) = 1

since

Asig(execute(),{ I2}) = { setVisible(True), addActionListener(sbk)} and

Dsig(execute(),{ I2}) = { setVisible(True), addActionListener(sbk)}

− m5(coord-m(actionPerformed(event),{ I2})) = 0.5

since

Asig(actionPerformed(event),{ I2}) = { getKeywords(), getText(), formQuery(),

executeQuery(String,OCol), executeQuery(),

toObjCol(result)} and

Dsig(actionPerformed(event),{ I2}) = { getKeywords(),formQuery(),

executeQuery(String,OCol)}

− m5(coord-m(setVisible(True),{ I2})) = 0

since

Asig(setVisible(True),{ I2}) = { } and

Dsig(setVisible(True), { I2}) = { }

These beliefs indicate that execute() has a co-ordination capacity in the start of the interaction

I2 where it displays the search form and registers the command class SearchByKeyowrd as a

listener to the text field that the user may use to type in the keywords, actionPerformed(event) has

some co-ordination capacity in the part of the interaction that executes the search, and

setVisible(True) has no coordination capacity.

2.6 Functional dominance of messages

We consider messages that invoke operations triggering a substantial part of the behaviour of

objects in an interaction as being functionally dominant in it. In our framework, the basic belief to

the functional dominance of a message m in an interaction is defined as the likelihood of an

arbitrary message in it being dispatched by m as shown below:

Definition 6: The belief to the functional dominance of a message m in a set of interactions S of a

model M (denoted by the predicate fdom-m(m,S)) is defined as:

m6(fdom-m(m,S)) = (|Asig(m,S)|+1)/|Sg(m,S)|

13

m6(¬fdom-m(m,S)) = 1 − m6(fdom-m(m,S))

where

− Sg(m,S) is the set of the signatures of the messages in the interactions of set S which are sent

and received by the classes (not actors) in the interactions of S excluding the signature of m.

According to Definition 6, the beliefs to the functional dominance of the messages execute(),

actionPerformed(event), and executeQuery(String,OCol) in the sequence diagram I2 are:

− m6(fdom-m(execute(),{ I2})) = 0.22

Asig(execute(),{ I2}) = { setVisible(True), addActionListener(sbk)} and

Sg(execute(),{ I2}) = { setVisible(True), addActionListener(sbk), actionPerformed(event),

getKeywords(), getText(), formQuery(),

executeQuery(String,OCol), executeQuery(), toObjCol(result)}

− m6(fdom-m(actionPerformed(event),{ I2})) = 0.66

since

Asig(actionPerformed(event),{ I2}) = { getKeywords(), getText(), formQuery(),

executeQuery(String,OCol), executeQuery(),

toObjCol(result)} and

Sg(actionPerformed(event),{ I2}) = { execute(), setVisible(True), addActionListener(sbk),

getKeywords(), getText(), formQuery(),

executeQuery(String,OCol), executeQuery(),

toObjCol(result)}

− m6(fdom-m(executeQuery(String,OCol),{ I2})) = 0.22

since

Asig(executeQuery(String,OCol),{ I2}) = { executeQuery(), toObjCol(result)} and

Sg(executeQuery(String,OCol),{ I2}) = { execute(), setVisible(True),

addActionListener(sbk), actionPerformed(event),

getKeywords(), getText(), formQuery(),

executeQuery(), toObjCol(result)}

These belief measures reflect the fact that the message actionPerformed(event) triggers a

substantial part of the entire interaction while the other two messages trigger only small parts of it.

14

3. Specification of consistency rules and significance cr iter ia

As we discussed in Section 1, we define an inconsistency as a violation of a specific

consistency rule. To assess the significance of inconsistencies, our framework introduces a scheme

for specifying significance criteria and associating them with consistency rules. These criteria

define the characteristics that the elements involved in the violation of a rule should have for the

violation to be significant.

We express consistency rules using the Object Constraint Language (OCL) which is defined

as part of (OMG, 1999) and significance criteria using a subset of OCL and the predicates

introduced in Section 2, and wrap them in UML objects related as indicated in the extension of the

UML meta-model that we have made and is shown in Figure 4.

Figure 4. Consistency rules and significance criteria

As shown in Figure 4, each consistency rule is associated with a specific UML model

element, called the "context" of the rule. Consequently, the OCL expression that specifies the rule

can make references to all the named structural and behavioural features of its context as well as to

the associations and generalisations which may relate it to other model elements. The classes of a

UML model along with built-in OCL types which represent primitive data types and collections of

values/objects (for example Set (OMG, 1999)) are the legitimate types for the OCL expressions

written for it.

An OCL expression specifies conditions over the values of the features it references using the

standard logical operators "and", "or", "implies" and "not" and the set operators "forall" and

"exists". The semantics of these set operators are the same as the semantics of the universal and

existential quantifier of predicate calculus. Thus, an expression of the form set->forall(x | OCL-

+context

{ordered}

ModelElement

name : Name

SignificanceCriterion

expression : S-expression

ConsistencyRule

expression : OCL_Expression

1..1

0..*

1..1

0..*

0..*

1..1

+criterion 0..*

+rule
1..1

15

condition-over-x) and set->exists(x | OCL-condition-over-x) becomes true if OCL-condition-over-

x is true for all or at least one of the elements of set, respectively.

As an example of specifying consistency rules using OCL consider a rule requiring that for

every message in a sequence diagram there must be either an association or an attribute between

its sender and its receiver navigable from the former to the latter class. This rule can be defined in

the context of the UML meta-class Message (i.e., the class of all the messages which appear in the

interactions of a model, see Figure 5) using OCL as follows3:

Figure 5. UML model elements (adopted from (OMG, 1999))

Rule 1

context: Message

expression:

self.action.oclIsTypeOf(CallAction) implies self.sender.feature−−−−>exists(a

a.oclIsTypeOf(Attribute) and

(a.type = self.receiver) or Association.allInstances−>exists(r  r.connection−−−−>exists(e1, e2 

(e1 <> e2) and (e1.type = self.sender) and (e2.type = self.receiver) and (e2.isNavigable = True)))

3 In OCL and S-expressions strings in boldface and Italics are reserved OCL keywords and names
established in the UML meta-model, respectively. The keyword self in these expressions refers to
an instance of the class that constitutes the context of the consistency rule and consequently the
context of the S-expression that defines a criterion associated with it.

Interaction

Action

Message *

0..1

*

+activator
0..1

**

+predecessor

**
1..*

1

+message
1..*

1
+action

*

1

*

1

ModelElement
name : Name

CallAction
Operation

+operation

1* 1*

Association

Feature

ClassifierRole

1

*+sender

1

*
*

1
*

+receiver1

Classifier
*0..1

+feature

{ordered} *

+owner

0..1

Multiplicity

MultiplicityRange
lower : Integer
upper : UnlimitedInteger+range

1..*

1

1..*

1

Attribute
(from Core)

AssociationEnd
isNavigable : Boolean
ordering : OrderingKind
aggregation : AggregationKind
targetScope : ScopeKind
multiplicity : Multiplicity
changeability : ChangeableKind
visibility : VisibilityKind

2..*

1

+connection2..*

1

*

1

*

+type
1

16

A significance criterion in our framework is specified by a significance expression (S-

expression) and must be associated with a consistency rule (see Figure 4). The S-expression

specifies a logical combination of the characteristics which the model elements giving rise to the

violation of the rule (or other model elements connected to them) are required to have for the

inconsistency to be significant. These characteristics are specified by using the special predicates

defined in Section 2. An S-expression has the same context as the consistency rule associated with

the criterion it defines and, therefore, it can reference any named feature in the closure of the

features of the model elements which are reachable from this context.

Atomic S-expression Belief Type validity
condition

gen-c(elem) Bel(gen-c(elem)) =
m1(gen-c(elem))

elem.type = Class

fessen-a(elem1,elem 2) Bel(fessen-a(elem1,elem 2)) =
m3(fessen-a(elem1,elem 2))

elem1.type = Attribute
OR
elem1.type =
AssociationEnd AND
elem2.type = Class

char-o(elem) Bel(char-o(elem)) =
m4(char-o(elem))

elem.type = Operation

coord-c(elem1,elem 2) Bel(coord-c(elem1,elem 2)) =
m2(coord-c(elem1,elem 2))

elem1.type = Class
AND
elem2.type = Set
(Interaction)

coord-m(elem1,elem2) Bel(coord-m(elem1,elem 2)) =
m5(coord-m(elem1,elem 2))

elem1.type = Message
AND
elem2.type = Set
(Interaction)

fdom-m(elem1,elem2) Bel(fdom-m(elem1, elem2)) =
m6(fdom-m(elem1, elem2))

elem1.type = Message
AND
elem2.type = Set
(Interaction)

Table 1. Syntactic forms, typing conditions and beliefs for valid atomic
S-Expressions

Tables 1 and 2 present the syntactic forms of the S-expressions definable in our framework

and the typing conditions that these expressions have to satisfy in order to be valid. More

specifically, Table 1 presents the syntactic forms of, and the type validity conditions for the so-

called "atomic S-expressions" (these are expressions consisting of only one of the predicates

introduced in Section 2). The type validity condition determines the valid type(s) for the

element(s) that the predicate of an expression refers to. Table 2 presents the syntactic forms of, and

the validity conditions for "non atomic S-expressions" (these are logical combinations of atomic

17

S-expressions). Thus, for instance, according to Table 1 the S-expression gen-c(elem) is valid only

if the type of the model element denoted by elem is the UML meta-class Class. The complete

grammar for S-expressions is given in (Spanoudakis, 1999).

As an example of specifying a significance criterion consider the case where the violations of

Rule-1 above should be considered significant only if they are caused by messages which are

functionally dominant and have coordinating capacity in their interactions. This criterion of

significance can be specified as follows:

Criterion

Rule: Rule-1

S-expression:

fdom-m(self, self.interaction)

and coord-m(self, self.interaction)

In the S-expression of this criterion, "self" refers to the instances of the context of Rule-1, that

is the UML meta-class Message. By using the special predicates fdom-m and coord-m, this S-

expression specifies that the message that violates the rule must be functionally dominant and

have a coordinating capacity in the interaction (sequence diagram) it belongs to (that is the value

of the feature: self.interaction).

Non atomic S-Expression Belief Validity condition
p1 and…and pn Bel(andi=1,…,n pi) =

Π i=1,…,n Bel (pi)
pi : valid atomic S-
expression
(forall i=1,…,n)

Non
quantified

expressions
p1 or …or pn Bel(ori=1,…,n pi) =

ΣJ⊆{ 1,…,n}(-1)|J| +1

Bel(andiεJpi)

pi : valid atomic S-
expression
(forall i=1,…,n)

elem->exists(x |
OCL-exp-over-
x
and se(x))

ΣJ⊆S (-1)|J| + 1Bel(andxεJ

se(x))

where
S = { x | (x ε elem) and
OCL-exp-over-x =
True}

elem.type =
Set(ModelElement)
AND
se(x): is a valid non
quantified
S-expression over x

Quantified
expressions

elem->forall(x |
OCL-exp-over-
x
and se(x))

Πx ε elem Bel(se(x))
 If elem->forall(x |
 OCL-exp-over-x)
 = True)
0 If elem->forall(x |
 OCL-exp-over-x)
 = False)

elem.type =
Set(ModelElement)
AND
se(x): is a valid non
quantified
S-expression over x

18

Table 2. Syntactic forms of and validity conditions for non atomic S-Expression

To assess the significance of the violations of a specific consistency rule, we compute degrees

of belief for the satisfiability of the S-expression of the criterion associated with the rule by the

elements of the model which this expression refers to. These elements are related to the model

elements that gave rise to the violation of the rule as specified by the S-expression. Subsequently,

the violations of the rule are ranked in descending order of these degrees of belief.

Tables 1 and 2 show the formulas used to compute the degrees of belief for the different forms

of atomic and non-atomic S-expressions. These formulas are derived using the axioms of the

Dempster-Shafer theory of evidence (Shafer, 1975) as we prove in (Spanoudakis, 1999) Their

derivation is based on the fact that − as we have also proven in (Spanoudakis, 1999) − the belief

functions introduced in Section 2 satisfy the axiomatic foundation of Dempster-Shafer basic

probability assignments (Shafer , 1975).

In the following section, we give an example of computing degrees of belief for the

satisfiability of significance criteria and ranking inconsistencies according to them.

4. Example

As an example of detecting and assessing the significance of inconsistencies in our

framework, consider the UML model consisting of the class and sequence diagram shown in

Figures 1 and 3, respectively. These diagrams are inconsistent with respect to Rule-1 in Section 3

since there are no attributes and/or associations between the sender and the receiver of the

following messages: execute(), getText(), executeQuery(String,OCol).

If the significance of these inconsistencies is assessed according to Criterion-1 in Section 3,

the inconsistencies caused by the messages execute() and executeQuery(String,OCol) become the

ones with the highest significance, followed by the inconsistency caused by the message getText().

This is because the degrees of belief about the satisfiability of Criterion-1 by each of these

messages are (according to the belief functions of Tables 1 and 2):

1) Bel(fdom-m(execute(),{ I2}) and coord-m(execute(),{ I2})) =

m6(fdom-m(execute(),{ I2}) × m5(coord-m(execute(),{ I2})) = 0.22 × 1 = 0.22

19

2) Bel(fdom-m(executeQuery(String,OCol),{ I2}) and

coord-m(executeQuery(String,OCol),{ I2})) =

m6(fdom-m(executeQuery(String,OCol), { I2})) ×

m5(coord-m(executeQuery(String,OCol),{ I2})) = 0.22 × 1 = 0.22

3) Bel(fdom-m(getText(),{ I2}) and coord-m(getText(),{ I2})) =

m6(fdom-m(getText(),{ I2})) × m5(coord-m(getText(),{ I2})) = 0 × 0 = 0

5. Exper imental evaluation

To evaluate our framework, we implemented the belief functions defined in Section 2 using

the scripting language of the CASE tool Rational Rose (Rational, 1998) (a tool supports UML)

and conducted a series of preliminary experiments using this implementation.

M ODEL

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Classes 19 26 23 14 25 18 25 40 12 16 74 13 43 39 55

No. of Seq. Diagrams 3 4 4 2 4 3 12 9 8 8 3 3 12 13 6

No. of Messages 68 24 32 43 51 44 155 92 87 115 65 36 133 186 185

No. of Associations 82 91 68 29 31 38 79 60 17 17 187 30 198 97 230

Producer a a a a a a a a a a a a a b a

Legend: a MSc student

b Group of MSc students

Table 3. Size of models used in experimental evaluation

Our experiments were aimed at testing:

a) whether the satisfiability measures calculated for significance criteria definable in the

framework are of sufficient diversity for producing elaborate rankings of inconsistencies, and

b) whether the rankings of significance produced by the criteria of our framework are compliant

with rankings of significance produced by those who developed the models and/or other

expert developers when the same criteria are taken into account.

In these experiments, we used 15 UML models produced by postgraduate students doing an

MSc course in Object-Oriented Software Systems in the Department of Computing at City

20

University. Measures of the size of each of these models are shown in Table 3. The findings of

these experiments are discussed below.

5.1 First Set of Exper iments: Design, Results and Discussion

The objective of our first set of experiments was to establish whether the criteria definable in our

framework can produce elaborate rankings of significance of inconsistencies. To conduct this

experiment, we checked each of the different models against three consistency rules:

(i) The consistency rule Rule-1 defined in Section 3. Recall that this rule requires that for every

message in an interaction there must be either an association or an attribute between the class

of its sender and the class of its receiver navigable from the former to the latter class.

(ii) A consistency rule requiring that the class of the receiver of a message in an interaction

defines or inherits an operation with the same signature as the message. This rule is defined in

OCL as follows:

Rule-2

context: Message

S-expression: self.action.oclIsTypeOf(CallAction) implies

self.receiver.feature−−−−>exists(o:Operation

(self.action.operation = o))

(iii) A consistency rule requiring that the lower multiplicity bound of an association end that is

attached to a class whose instances receive at least one message from instances of the class

attached to the other end of its association must be greater or equal to 1. This rule is specified

in OCL as follows:

Rule-3

context: AssociationEnd

S-expression: self.association−−−−>exists(a:Association| a.connection−−−−>exists(e1, e2 | (e1 =

self) and (e1 <> e2) and (e1.type = c1) and (c1.oclIsTypeOf(Classifier)) and

(e2.type = c2) and (c2.oclIsTypeOf(Classifier)) and (c2.message−−−−>exists(m:

Message | m.receiver = c1)))) implies (self.mutliplicity.range.lower >= 1)

21

Cr iter ion S-Expression M eaning
Criterion

1
fdom-m(self, self.interaction) The message has functional

dominance in the sequence diagram
it appears.

Criterion
2

coord-m(self, self.interaction) The message has a co-ordinating
capacity in the sequence diagram it
appears.

Criterion
3

coord-c(self.receiver, self.interaction) The receiver class of a message has a
co-ordinating capacity in the specific
sequence diagram that includes the
message.

Criterion
4

coord-c(self.sender, self.interaction) The sender class of a message has a
co-ordinating capacity in the specific
sequence diagram that includes the
message.

Criterion
5

coord-m(self, self.interaction) or
coord-c(self.receiver,self.interaction)
or
coord-c(self.sender, self.interaction)

The message or its receiver class or
its sender class has a co-ordinating
capacity in the specific sequence
diagram.

Criterion
6

fessen-a(self,
self.association.oppositeend.type)

The association end is functionally
essential for the class attached to the
other end of its association.

Table 4. Criteria used to assess the significance of the violations of Rule 1 and 2.

The significance of the violations of Rule-1 was assessed using the criteria 1 and 2 in Table 4.

The significance of the violations of Rule-2 was assessed using the criteria 2, 3, 4 and 5 in Table 4.

The significance of the violations of Rule-3 was assessed using the criterion 6 in Table 4.

Belief measures for the satisfiability of each of these criteria by the inconsistencies in the

different models were computed and used to rank these inconsistencies as we did with the

inconsistencies in the example of Section 4. More specifically, the inconsistencies caused by

elements believed to satisfy a criterion to the same extent (i.e. giving rise to equal belief measures)

were classified in the same category. The different categories of inconsistencies were then ranked

in descending order of the criterion satisfiability beliefs computed for their elements.

Tables 5, 6 and 7 present statistics of the belief measures computed for the satisfiability of the

criteria by the model elements violating the rules. The columns of each of these tables indicate the

different models used in the experiments. The rows are grouped under the different criteria used to

assess the significance of the inconsistencies. The tables show the number of the inconsistencies

detected with respect to the rule in each model (see row Ninc) and, for each criterion: (1) the

number of the different categories of significance generated by the criterion (see rows Nc), (2) the

22

completeness ratio of the ranking generated by the criterion RC = Nc/Ninc (see rows RC), (3) the

mean value of the beliefs for the satisfiability of the criterion (see rows Mb), (4) the median value

of the beliefs for the satisfiability of the criterion (see rows Medianb), (5) the standard deviation of

the beliefs for the satisfiability of the criterion (see rows sb), (6) the standard deviation of the

number of inconsistencies in each category of the ranking (see rows sic), and (7) the relative

variability of the beliefs for the satisfiability of the criterion (see rows sb/mb).

M ODELRule 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ninc 20 2 7 5 34 19 82 39 32 16 18 6 49 111 41
Criter ion 1
Nc 5 2 4 4 9 6 21 11 16 12 7 2 10 30 13
RC 0.25 1 0.57 0.8 0.26 0.32 0.26 0.28 0.5 0.75 0.39 0.33 0.20 0.27 0.32
Mb 0.06 0.15 0.19 0.1 0.2 0.11 0.08 0.4 0.17 0.28 0.07 0.02 0.05 0.11 0.07
Medianb 0.04 0.15 0.17 0.05 0.08 0.08 0.04 0.38 0.09 0.18 0.04 0 0 0 0.03
sb 0.04 0.07 0.1 0.09 0.29 0.13 0.04 0.29 0.14 0.26 0.06 0.04 0.12 0.23 0.1
sic 3.08 0 0.5 0.5 2.99 2.56 4.32 2.46 1.55 0.49 2.44 2.82 10.27 13.66 2.82
sb / Mb 0.64 0.47 0.54 0.88 1.46 1.14 0.53 0.73 0.81 0.93 0.92 2 2.4 2.09 1.43
Criter ion 2
Nc 2 1 2 3 6 2 6 9 8 5 4 2 6 11 5
RC 0.1 0.5 0.29 0.6 0.18 0.11 0.07 0.23 0.25 0.31 0.22 0.33 0.12 0.1 0.12
Mb 0.1 0 0.29 0.25 0.2 0.26 0.24 0.49 0.29 0.53 0.19 0.17 0.27 0.27 0.7
Medianb 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 1
sb 0.31 0 0.49 0.43 0.37 0.45 0.38 0.39 0.39 0.44 0.34 0.4 0.44 0.43 0.41
sic 11.3 0 2.12 1.15 9.54 6.36 20.8 4.66 5.81 2.28 5.69 2.82 13.27 22.72 9.31
sb / Mb 3.08 0 1.71 1.73 1.9 1.72 1.59 0.8 1.34 0.82 1.82 2.35 1.63 1.59 0.58

Table 5. Statistics for the rankings of the violations of Rule-1

The main statistic to look at in Tables 5-7 is the ranking completeness ratio (RC). When this

ratio is 1 then the criterion used can fully order the inconsistencies detected. The mean value of

the RC-ratios in the experiments that we conducted was MRC= 0.40 or, equivalently, the criteria

used produced distinct significance categories with 2.5 (= 1/MRC) inconsistencies in each category

on average. Thus, it may be argued that on average the criteria used in our first set of experiments

were capable of producing elaborate rankings of significance.

It has also to be appreciated that the above mean value of the RC-ratios resulted from a set of

experiments in which 5 out of the 6 significance criteria used were atomic S-expressions (Criteria

1, 2, 3, 4 and 6) concerned with single characteristics of model elements. Evidently from the

statistics for Criterion 5 in Table 6, in the only case where we used a significance criterion

referring to a logical combination of characteristics of elements giving rise to inconsistencies, the

23

resulted RC-ratios were significantly higher: the mean value of the RC-ratios for Criterion 5 was

0.54.

M ODELRule 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ninc 8 11 1 7 26 35 90 39 7 14 65 0 16 30 131
Criter ion 2
Nc 1 4 1 3 9 4 9 4 7 3 14 0 8 11 13
RC 0.13 0.36 1 0.43 0.35 0.11 0.1 0.1 1 0.21 0.22 0 0.5 0.37 0.1
Mb 0 0.24 0 0.44 0.17 0.3 0.11 0.02 0.41 0.13 0.33 0 0.57 0.21 0.39
Medianb 0 0 0 0.09 0 0 0 0 0.38 0 0.11 0 0.75 0.17 0.4
sb 0 0.37 0 0.52 0.32 0.45 0.26 0.05 0.3 0.33 0.4 0 0.46 0.17 0.41
sic 0 2.87 0 1.15 4.94 10.4 23 16.8 0 6.35 7.99 0 2.45 2.05 16.9
sb / Mb 0 1.52 0 1.19 1.86 1.49 2.34 3.22 0.73 2.56 1.2 0 0.81 0.81 1.05
Criter ion 3
Nc 3 3 1 3 11 7 15 6 5 5 9 0 6 8 14
RC 0.38 0.27 1 0.43 0.42 0.2 0.17 0.15 0.71 0.36 0.14 0 0.37 0.27 0.11
Mb 0.17 0.26 0.29 0.21 0.25 0.29 0.21 0.28 0.39 0.27 0.22 0 0.42 0.38 0.28
Medianb 0.11 0.17 0.29 0.25 0.18 0.29 0.15 0.25 0.42 0.29 0.18 0 0.43 0.37 0.25
sb 0.13 0.16 0 0.07 0.19 0.16 0.16 0.2 0.08 0.13 0.12 0 0.10 0.1 0.21
sic 2.08 1.71 0 2.31 1.75 3.11 5.63 5.75 0.55 1.92 5.45 0 3.14 2.53 11.4
sb / Mb 0.72 0.6 0 0.31 0.73 0.54 0.77 0.73 0.22 0.5 0.53 0 0.24 0.26 0.75
Criter ion 4
Nc 3 3 1 3 11 8 17 8 5 7 8 0 6 8 13
RC 0.38 0.27 1 0.43 0.42 0.23 0.19 0.21 0.71 0.5 0.12 0 0.37 0.27 0.1
Mb 0.33 0.29 0.14 0.27 0.48 0.47 0.42 0.57 0.2 0.6 0.31 0 0.22 0.22 0.46
Medianb 0.44 0.25 0.14 0.25 0.56 0.57 0.46 0.63 0.08 0.58 0.27 0 0.17 0.14 0.5
sb 0.16 0.14 0 0.15 0.22 0.18 0.2 0.17 0.26 0.25 0.15 0 0.10 0.2 0.23
sic 2.08 1.53 0 2.31 1.91 3.93 4.95 6.27 0.55 1.91 4.12 0 2.65 2.76 8.16
sb / Mb 0.47 0.49 0 0.55 0.46 0.39 0.46 0.29 1.29 0.41 0.47 0 0.45 0.91 0.5
Criter ion 5
Nc 4 8 1 4 17 14 36 11 7 8 33 0 9 22 31
RC 0.5 0.73 1 0.57 0.65 0.4 0.4 0.28 1 0.57 0.51 0 0.56 0.73 0.24
Mb 0.46 0.6 0.39 0.69 0.68 0.72 0.58 0.69 0.75 0.77 0.63 0 0.73 0.5 0.53
Medianb 0.51 0.63 0.39 0.62 0.72 0.72 0.59 0.72 0.68 0.88 0.59 0 0.9 0.48 0.62
sb 0.19 0.25 0 0.31 0.2 0.22 0.22 0.15 0.14 0.18 0.25 0 0.3 0.17 0.36
sic 0.82 0.52 0 0.96 1.07 2.41 2.24 4.2 0 1.04 2.36 0 2.33 0.79 7.2
sb / Mb 0.4 0.42 0 0.45 0.28 0.3 0.37 0.22 0.19 0.24 0.39 0 0.41 0.34 0.68

Table 6. Statistics for the rankings of the violations of Rule-2

An analysis of the RC-ratios shown in Tables 5, 6 and 7 showed that their distribution

had a positive skewness (degree of skewness = 0.93, MedianRC = 0.35 < MRC). This

distribution is shown in Figure 6. Also the standard deviation of the RC-values was: sRC =

0.27. These statistics indicate that further experimentation is needed to confirm the argument

24

about the power of the framework to produce elaborate rankings of inconsistencies. This is

because in 50 per cent of the cases the RC-ratio was lower than 0.35 and there was a relative

high deviation of these values from their average.

M ODELRule 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ninc 1 10 5 9 1 2 10 8 12 10 14 7 23 7 19
Criter ion 6
Nc 1 3 5 4 1 2 5 3 6 3 5 4 8 3 8
RC 1 0.33 0.66 0.44 1 1 0.5 0.37 0.5 0.33 0.36 0.57 0.35 0.42 0.42
Mb 0.99 0.41 0.55 0.63 0.5 0.93 0.55 0.62 0.70 0.65 0.64 0.45 0.70 0.66 0.61
Medianb 0.99 0.44 0.55 0.5 0.5 0.93 0.58 0.5 0.70 0.75 0.5 0.5 0.75 0.75 0.75
sb 0 0.11 0.26 0.18 0 0.08 0.18 0.19 0.20 0.24 0.20 0.35 0.23 0.16 0.37
sic 0 0.58 0.57 1.5 0 0 1 2.08 1.55 4.04 2.38 0.95 2.36 1.15 1.5
sb / Mb 0 0.27 0.47 0.29 0 0.09 0.33 0.31 0.28 0.37 0.31 0.78 0.33 0.24 0.61

Table 7. Statistics for the rankings of the violations of Rule-3

Figure 6. Distribution of RC-ratio values.

To explore further the differences in the RC-ratio values, we analysed the correlation of these

values with: (a) different measures of the size of the models (in particular, the number of classes

(NClasses) and messages (NMessages)), (b) the number of the inconsistencies detected in each case

(Ninc), and (c) the relative variability of the belief measures computed for the satisfiability of the

criteria (i.e., Sb/Mb).

The correlation coefficients calculated by this analysis are shown in Table 8. The most

prominent result of this analysis was that the RC-ratios were found to be negatively correlated

with the number of the inconsistencies (Ninc); the correlation coefficient between these measures

Histogram

0

5

10

15

20

25

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

RC-ratios

F
re

q
u

en
cy

Frequency

25

and the RC-ratios was −0.46, as shown in Table 8.

NClasses NMessages Ninc Sb/M b RC
NClasses 1
NMessages 1
Ninc 0.48 0.62 1
Sb/M b 0.05 0.11 1
RC -0.27 -0.26 -0.46 -0.37 1

Table 8. Correlation of RC-ratios with model size, inconsistency and belief variability measures

Our explanation of this phenomenon is the following. The number of the inconsistencies

(Ninc) was found to be positively correlated with the model size: its correlation coefficient with the

number of model classes (Nclasses) was 0.48 and its correlation coefficient with the number of

model messages (Nmessages) was 0.62. This was expected as larger models are more likely to breach

consistency rules. What we were also expecting in the case of larger models, however, was that the

variability of the belief measures computed for the satisfiability of the used significance criteria

(i.e., the ratios Sb/Mb) would also be higher. And, higher variability of the belief measures was

expected to lead to finer grain distinctions in the significance rankings. This expectation did not

turn out to be correct. As shown in Table 8, the Sb/Mb ratio had only a very weak positive

correlation with the size of the model: its correlation coefficient with the number of model classes

(Nclasses) was 0.05 and its correlation coefficient with the number of model messages (Nmessages) was

0.11. The weak correlation between Sb/Mb and the different measures of the size of the models is

explained by the fact that the criteria used in our experiments were concerned with only specific

parts of a model (e.g. specific interactions) and, therefore, they were not affected by the overall

size of the models. Clearly, further experimentation is needed to explore under what circumstances

higher RC-ratios can be obtained.

5.2 Second Set of Exper iments: Design, Results and Discussion

In the second set of experiments, we tried to establish whether the rankings of inconsistencies

produced by the criteria definable in the framework: (a) preserve the order of rankings of

significance produced by humans, and (b) are as elaborate as the latter rankings. To conduct this

set of experiments, we selected randomly:

• 4 of the models used in the first set of experiments, and

• 12 different inconsistencies detected with respect to Rule 1 (see Section 3) in each of these

models

26

A ranking of the inconsistencies in each model was produced by the degrees of belief to the

satisfiability of the following criterion (framework ranking of significance):

Criterion-7

Rule: Rule-2

S-expression: (fdom-m(self, self.interaction) and coord-m(self, self.interaction)) or

coord-c(self, self.receiver)

Criterion 7 was used to spot as significant inconsistencies caused by messages which had a

co-ordinating capacity and were functionally dominant in an interaction or which were invoking

operations in classes with a co-ordinating capacity in it.

Subsequently, the author of each model was asked to indicate the significance of the same

inconsistencies in his/her model on the scale 1-10, with "1" denoting that the inconsistency had no

significance at all and "10" denoting that the inconsistency was very significant. The authors were

prompted to use Criterion 7. The significance scores given by the authors were used to rank the

inconsistencies of each model (author ranking of significance). The same models and

inconsistencies were also given to an expert who have had a Ph.D. in Computer Science and 8

years of experience in object-oriented modelling. The expert was also asked to indicate the

significance of inconsistencies using the same scale and following the instructions given to the

authors. The significance scores given by the expert produced a third ranking of significance of

the inconsistencies in each model (expert ranking of significance).

The author and expert rankings of the inconsistencies in each model were correlated with the

corresponding system rankings using the Kendall's tau (τ) coefficient for rankings with ties (Hays,

1969). Kendall’s τ coefficient is defined as the difference between the probability of two rankings

agreeing about a pair and the probability of two rankings disagreeing about a pair

τ = Pr (two rankings agree about a pair) − Pr (two rankings disagree about a pair)

Table 9 shows the main statistics computed from the correlation of the rankings. More

specifically, it shows:

� the τ coefficients for the correlation of the author ranking with the system ranking (τa)

27

and the correlation of the expert ranking with the system ranking (τe)

� the values of the statistic S (i.e. the number of agreements minus the number of

disagreements of two rankings) used in the calculation of τ for the correlation of the

author ranking with the system ranking (Sa) and the correlation of the expert ranking with

the system ranking (Se), and

� the values of the ratio z = S/σs (σs is an estimate of the standard deviation of the values of

the statistic S calculated as described in the appendix of the paper) for both correlations

In Appendix 1, we give the formulas for and an example of calculating these statistics.

Statistics M ODEL
7 8 9 11

τa -0.284 -0.253 0.174 0.53
Sa -10 -14 7 32
za -1.08 -1.03 0.65 2.10

τe 0.112 0.279 0.098 0.51
Se 6 14 4 25
ze 0.447 1.1 0.371 1.96

Table 9. Kendall’s Rank Correlations Statistics

As shown in Table 9, the rankings produced by the assessments of significance given by the

authors had a negative correlation with the rankings produced by the system for two of the models

(models 7 and 8) and a positive correlation for the other two models (models 9 and 11). The

rankings produced by the assessments of significance given by the expert had a positive

correlation with the rankings produced by the system for all the four models. Note, however, that

only in the case of model 11 the detected positive correlations were found to be statistically

significant (a = 0.05). The test for the statistical significance of the correlations was based on the z

ratio which is known to have a normal distribution4.

M ODEL

7 8 9 11

RCf 0.66 0.66 0.75 0.42

RCa 0.25 0.33 0.25 0.42

RCe 0.33 0.25 0.27 0.25

Table 10. RC-ratios of human- and framework-based rankings of significance

4 For rankings with ties, the z-ratio has the normal distribution only if the two rankings show the same distribution of ties.

28

Our second set of experiments also showed that the rankings of significance produced by the

human subjects were not as elaborate as those produced by the framework. This can be observed

from the completeness (RC) ratios of the different rankings which are shown in Table 10. The

completeness ratios in this table also show that the statistically significant positive correlations

between the framework and the subject rankings emerged only in the case of model 11 where the

completeness ratio of the framework ranking (RCf) was relatively closer to the completeness ratio

of the rankings produced by the human subjects (RCa and RCe).

The second set of experiments has shown that the framework tends to create more elaborate

rankings of significance than developers and that the rankings it creates are not always in

agreement with rankings of significance produced by developers. These results, however, are by

no means conclusive and need to be confirmed by further experimentation.

6. Related work

Work related to the framework discussed in this paper falls into two broad strands of research

in the field of software engineering. The first of these strands is concerned with the problem of

managing inconsistencies in software models. The second strand includes research work on

software metrics.

6.1 Related work on inconsistency management

A substantial body of research has been concerned with the problem of detecting and

resolving inconsistencies between software system specifications (Emmerich et al., 1999;

Finkelstein et al., 1994; Hunter and Nuseibeh 1998; Spanoudakis and Finkelstein 1996; Schwanke

and Kaiser 1988; Lamsweerde et al., 1998; Heitmeyer et al., 1995; Robinson and Fickas 1994;

Robinson and Pawlowski 1999). Those interested may find a survey of the field in (Spanoudakis

and Zisman, 2001). However, only few strands of work in this general area have been concerned

with the particular problem of diagnosing the significance of inconsistencies.

Emmerich et al (1999) have developed a framework for managing the compliance of software

documentation artifacts with consistency rules which realise document representation standards. In

their framework, software designers can write scripts to implement diagnostic checks to assess the

importance and the difficulty of making a document compliant with the rule it violates.

29

Hunter and Nuseibeh (1998) treat diagnosis as the identification of the "possible sources" of

an inconsistency. In their work, this source is defined in terms of a set ∆ of all the formulas in a

software model and a subset P of ∆ which contains the formulas used in the proof of an

inconsistency (i.e. the derivation of the empty clause (⊥) from the formulas in ∆). More

specifically, the possible source of an inconsistency is defined as any subset S of P whose formulas

belong to ∆ and for which the set of formulas P − S is a set of consistent formulas. Their work

supports the identification of the set S.

Robinson and Pawlowski (1998) suggest the use of two simple measures as estimates of the

impact of conflicting requirement statements, namely the requirement "contention" and "average

potential conflict". The contention of a requirement statement in their DealScribe system is

computed as the ratio of the number of the very conflicting or conflicting relations over the total

number of relations that this statement has with other requirements statements. The average

potential conflict of a statement is measured as the average of the subjective probabilities of

conflict that have been associated with all the conflicting and very conflicting relations that have

been asserted for it. Robinson and Pawlowski (1998) claim that the contention measure has been

found to be very effective in ranking conflicting requirements in terms of significance and

attempting their resolution in the derived order.

Kotonya and Sommerville (1996) in their VORD method also expect the stakeholders to

provide weights that indicate the order of importance of their requirements models. These weights

are subsequently used to establish the importance of conflicts between these requirements.

6.2 Related work on software metr ics

Software metrics similar to some of the metrics defined in our framework have been proposed

in the literature but have not been used to assess the significance of inconsistencies in software

models.

More specifically, the depth of inheritance tree (DIT) (Chidamber and Kemerer, 1994) and the

class hierarchy nesting level (Lorenz, 1993) are similar to m1. Note, however, that unlike m1, DIT

treats as generic classes which have no subclasses. Such classes are not as important as classes that

m1 would spot as generic since they have no subclasses that could be affected by inconsistencies

30

involving them.

Class coupling (CBO) (Chidamber and Kemerer, 1994) and the number of collaborating

classes (NCC) (Jacobson et al., 1995) are similar to m2. The difference between m2 and CBO and

NCC is that m2 provides a relative measure of inter-class collaboration in a specific set of system

interactions.

An idea similar to that underpinning the definition of the functional essentiality of attributes

and association ends (belief function m3) underpins the construction of the so-called "method-to-

variable connection matrix" (MVCM) in (Tegarden et al., 1995) which is used to record (and

subsequently count) references to object variables by specific methods. The main difference

between m3 and the MVCM is that m3 is not applicable to attributes with primitive values (as

opposed to object-values), and that m3 establishes the potential of using an attribute/association

end to identify the receiver of a message dispatched in a method as opposed to using its value in

any possible way in a method.

Finally, it has to be appreciated that what clearly differentiates the metrics used in our

framework from the above software metrics is their common underlying axiomatic interpretation

as D−S beliefs. This, as discussed in (Spanoudakis, 1999), provides a sound basis for deriving the

beliefs for the significance criteria presented in Section 3.

7. Summary and future work

In this paper, we presented a framework for assessing the significance of inconsistencies in

design models of software systems expressed in UML. This assessment is based on criteria that

software designers can specify to establish combinations of characteristics that the model elements

which are involved in an inconsistency should have for the inconsistency to be significant. The

framework offers a predefined set of such characteristics which are indicative of the impact that an

inconsistency that involves a particular model element may have for the model as a whole (see for

example the characteristics of class genericity and operation charactericity) or selected parts of it

(see for example the characteristics of class and message coordinating capacity).

We have also presented results of a series of experiments conducted to evaluate the

framework. The main observations from these experiments were that: (a) it is possible to define

31

criteria in the framework that generate elaborate rankings of significance of inconsistencies, (b)

the rankings which are generated by the framework based on particular criteria tend to be more

elaborate than rankings of significance that developers generate when prompted to use the same

criteria, and (c) the rankings of significance produced by the framework tend to have a positive

correlation with rankings of significance produced by experienced developers and a negative

correlation with rankings of significance produced by less experienced developers.

An important issue which relates to the use of the presented framework is how to use the

rankings of significance produced by it in making decisions about the handling the

inconsistencies. This issue is addressed by the Reconciliation method in the context of which the

diagnostic framework has been developed. Reconciliation incorporates an explicit model of the

process of managing inconsistencies which defines: (a) the circumstances under which the

significance of inconsistencies which arise as violations of particular consistency rules may be

assessed, and (b) alternative ways of handling inconsistencies depending on their significance.

Developers can specify this process model in a way that tailors the inconsistency management

process to the needs of specific software development projects. They may, for instance, define this

process model so as to allow inconsistencies whose significance is below a preset value to be

temporarily unresolved and to require inconsistencies whose significance exceeds another preset

value to be fully resolved. The process model may also be specified so as to require the handling

of inconsistencies in decreasing significance order. The ability to specify the process model along

with the ability to specify the criteria for the assessment of violations of individual consistency

rules makes the activities of diagnosing and handling inconsistencies fully tailorable to the needs

of specific projects when using Reconciliation. More details on the specification and enactment of

the process model of the method may be found in (Spanoudakis and Kim, 2001).

On going work on the framework presented in this paper focuses on its further experimental

evaluation. We are also investigating the possibility of expanding it with additional characteristics

of model elements as well as with characteristics of entire fragments of models (as opposed to

individual model elements) which are related to inconsistencies.

Acknowledgements

The authors would like to thank the British Engineering and Physical Sciences Research

Council (EPSRC) for partially funding the work presented in this paper (IMOOSD project,

32

EPSRC grant No. GR/M57422). They also wish to thank Sylvia Mwenya for carrying out some of

the experiments whose results have been analysed in this paper, and Dr. Patricio Letelier

(University of Valencia) for participating in the experiment described in Section 5.2.

References

Chidamber, S., Kemerer, C., 1994. A Metrics Suite for Object Oriented Design, IEEE Transactions

on Software Engineering, 20(6), 476-493.

Emmerich, W., et al., 1999. Managing Standards Compliance. IEEE Transactions on Software

Engineering 25(6), pp. 836-851.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., and Nuseibeh, B., 1994. Inconsistency

Handling In Multi-Perspective Specifications, IEEE Transactions on Software Engineering,

20(8), 569-578.

Finkelstein, A., Spanoudakis, G.., Till D., 1996. Managing Interference, Joint Proceedings of the

Sigsoft ‘96 Workshops – Viewpoints ‘96, ACM Press, 172-174.

Gamma E., et al., 1995. Design Patterns: Elements of Reusable Object-Oriented Software,

Addison Wesley.

Hays, W., 1969. Statistics, 3rd Edition, Holt International, SBN 03 910025.

Heitmeyer, C., Labaw, B., Kiskis, D., 1995. Consistency Checking of SCR-Style Requirements

Specifications, Proceedings of the 2nd Int. Symposium on Requirements Engineering, IEEE

CS Press, 56-63.

Hunter, A., Nuseibeh, B., 1998. Managing Inconsistent Specifications: Reasoning, Analysis and

Action, ACM Transactions in Software Engineering and Methodology, 7(4), pp. 335-367

Jacobson I., et al., 1995. Object-Oriented Software Engineering: A Use Case Driven Approach,

Addison-Wesley.

Kotonya, G., Sommerville I., 1996. "Requirements Engineering with Viewpoints". Software

Engineering Journal, vol. 11, n. 1, January, 5-18.

Lamsweerde, A., Darimont, A., Letier, E., 1998. Managing Conflicts in Goal-Driven

Requirements Engineering, IEEE Transactions on Software Engineering, Special Issue on

Inconsistency Management, November 1998

Lorenz, M., 1993. Object-Oriented Software Development: A Practical Guide, Prentice Hall.

Nuseibeh, B., Easterbrook, S., Russo, A., 2000. Leveraging Inconsistency in Software

Development, IEEE Computer, 33(4), 24-29.

OMG, 1999. OMG Unified Modelling Language Specification, V. 1.3a. Available

33

from:ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf.

Rational, 1998. Rational Rose '98: Extensibility Reference Manual. See also:

http://www.rational.com/products/rose/index.jtmpl

Robinson, W., Fickas, S., 1994. Supporting Multiple Perspective Requirements Engineering,

Proceedings of the 1st Int. Conference on Requirements Engineering, IEEE CS Press, 206-

215

Robinson, W., Pawlowski, S., 1999. "Managing Requirements Inconsistency with Development

Goal Monitors", IEEE Transactions on Software Engineering 25(6).

Rosch, E. et al., 1976. Basic Objects in Natural Categories, Academic Press.

Schwanke, W., Kaiser, E., 1988. Living with Inconsistency in Large Systems, Proceedings of the

Int. Workshop on Software Version and Configuration Control, 98-118

Shafer, G., 1975 A Mathematical Theory of Evidence, Princeton University Press.

Spanoudakis, G., Finkelstein, A., 1996. Managing Interference, Proceedings of the SIGSOFT '96

Workshops, ACM Publications, 172-174

Spanoudakis, G., Towards an Evidential Significance Diagnosis Framework for Elements of UML

Software Models, Technical Report, Technical Report Series, City University, Department of

Computing, 1999

Spanoudakis, G., Kasis, K. 2000. An Evidential Framework for Diagnosing the Significance of

Inconsistencies in UML Models, Proceedings of the International Conference on Software:

Theory and Practice, World Computer Congress 2000, Bejing, China, ISBN 7-5053-6110-4,

152-162

Spanoudakis, G., Zisman, A. 2001. Management of inconsistencies in software engineering: a

survey of the state of the art. Handbook of Software Engineering and Knowledge

Engineering, Vol. 1, World Scientific Pub. Co, (to appear).

Spanoudakis, G.., Kim H., 2001. Reconciliation of Object Interaction Models, Proceedings of the

7th International Conference on Object Oriented Information Systems (OOIS '01), Calgary

Canada, (to appear).

Tegarden, P., Sheetz, S., Monarchi, D., 1995. A Software Complexity Model of Object-Oriented

Systems, Decision Support Systems: The International Journal, 13, 241-262.

Appendix: Calculation of Kendall’s ττττ coefficient (for rankings with ties)

The formula used to calculate τ for two rankings r1 and r2 with n and k distinct and fully ordered

ranking categories that have ties is:

34

τ = (S+ − S−) / ((((N / 2) (N − 1)) − T1) (((N / 2) (N − 1)) − T2))
½ (1)

where

• N is the total number of ranked items in each ranking

• S+ is the number of agreements in the two rankings computed by the formula:

S+ = Σi=1…n, j=1,…,k cij Σu=i+1…n, w=j+1,…,k cuw

The subscripts indicate the order of categories within a ranking (e.g., the category denoted by

the subscript 2 is below the category denoted by the subscript 4 in a ranking).

• S− is the number of disagreements in the two rankings computed by the formula:

S− = Σi=1…n, j=1,…,k cij Σu=i+1…n, w= 1,…,j−1 cuw

• cij(cuw) is the number of the items in category i(u) of ranking r1 and category j(w) of ranking r2

• T1 = Σi=1…n ci (ci − 1) / 2, ci is the number of the items in category i of ranking r1.

• T2 = Σj=1…k cj (cj − 1) / 2, cj is the number of the items in category j of ranking r2.

The ratio z is calculated according to the following formulas:

Z = S/σs (2)

where

• S = S+ − S−

• σs is an estimate of the standard deviation of S calculated by the formula:

σs = ((N(N−1)(2N + 5) − Σi=1…n ci (ci −1)(2ci +5) − Σj=1…k cj (cj −1)(2cj+5))/18

+ [Σi=1…n ci (ci −1)(ci −2)] [Σj=1…k cj (cj −1)(cj−2)] / (9N(N−1)(N−2))

+ [Σi=1…n ci (ci −1)] [Σj=1…k cj (cj −1)] / (2N(N−1)))1/2

As an example of calculating the above statistics consider the rankings produced for the 12

inconsistencies of model 11, shown in Table A1. Each inconsistency is denoted by the sequence

diagram of the model in which the message that gave rise to it appeared (see column Sequence

Diagram), the name of the receiver class of the message and the signature of the message (see

column Receiver-class.message-signature), and the name of the class that sent the message (see

column Sender-Class). The table also shows the significance scores that the author of the model

gave to each of the inconsistencies (see column Siga), the rank of the significance category of each

inconsistency according to the author’s significance scores (see column ra), the beliefs to the

35

satisfiability of Criterion 6 (see Section 5.2) by each of the inconsistencies (see column Bel), and

the rank of the significance category of each inconsistency according to these belief measures (see

column rf),

Sequence diagram Receiver-class.message-signature Sender-class Sig
a

r a Bel r f

AccountTransferSD AccountQueryBuilder.28.createUpdate(sr
cAccount,destAccount)

 TransactionManager 6 3 .320 6

AccountTransferSD TransactionQueryBuilder.24.[1st time]
createQuery(lastTranNo)

 NextTranNo 9 5 .320 5

RequestStatementSD StatementReqForm.9.displayDefaults
(accNoList,fromDate,toDate)

 StatementManager 6 3 .231 4

RequestStatementSD StatementReqForm.9.displayDefaults
(accNoList,fromDate,toDate)

 StatementManager 6 3 .231 4

RequestStatementSD AccountManager.6.getAccList (uRefNo) StatementManager 6 3 .207 3
AccountTransferSD DatabaseManager.15.executeQuery() AccountQueryBuilder 3 1 .182 2
AccountTransferSD DatabaseManager.25.executeQuery() TransactionQueryBuild 3 1 .182 2
AccountTransferSD DatabaseManager.7.[!exists]create AccountQueryBuilder 4 2 .182 2
AccountTransferSD DatabaseManager.8.executeQuery() AccountQueryBuilder 3 1 .182 2
RequestStatementSD TransactionTextBox.20.create

(tranText)
 Statement 8 4 .154 1

RequestStatementSD DatabaseManager.14.executeQuery() TransactionQueryBuild 3 1 .154 1
RequestStatementSD DatabaseManager.8.executeQuery() AccountQueryBuilder 3 1 .154 1

Table A1. Author and framework rankings of sample of inconsistencies in model 11

Based on rankings ra and rf, the values of Kendall’s rank correlation statistics are:

S+ = 36 T1 = 16 S = 28 σs = 13.3

S− = 8 T2 = 11 τ = 0.53 z = 2.1

