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Abstract
Sound source localization (SSL) is used in various applications such as industrial noise-control,
speech detection in mobile phones, speech enhancement in hearing aids and many more. Newest
video conferencing setups use SSL. The position of a speaker is detected from the difference in the
audio waves received by a microphone array. After detection the camera focuses onto the location
of the speaker. The human brain is also able to detect the location of a speaker from auditory
signals. It uses, among other cues, the difference in amplitude and arrival time of the sound wave at
the two ears, called interaural level and time difference. However, the substrate and computational
primitives of our brain are different from classical digital computing. Due to its low power
consumption of around 20 W and its performance in real time the human brain has become a
great source of inspiration for emerging technologies. One of these technologies is neuromorphic
hardware which implements the fundamental principles of brain computing identified until today
using complementary metal-oxide-semiconductor technologies and new devices. In this work we
propose the first neuromorphic closed-loop robotic system that uses the interaural time difference
for SSL in real time. Our system can successfully locate sound sources such as human speech. In a
closed-loop experiment, the robotic platform turned immediately into the direction of the sound
source with a turning velocity linearly proportional to the angle difference between sound source
and binaural microphones. After this initial turn, the robotic platform remains at the direction of
the sound source. Even though the system only uses very few resources of the available hardware,
consumes around 1 W, and was only tuned by hand, meaning it does not contain any learning at
all, it already reaches performances comparable to other neuromorphic approaches. The SSL
system presented in this article brings us one step closer towards neuromorphic event-based
systems for robotics and embodied computing.

1. Introduction

Large progress has been made in improving algorithms and systems that perform sound source localization
(SSL) since the breakthrough of machine learning. Recent approaches are able to precisely detect multiple
dynamic sound sources using microphone arrays and deep neural networks [1]. However, most of these
approaches use a large number of static microphones, large artificial neural networks and run on classical
computing hardware such as central processing units (CPUs) and graphics processing units (GPUs) [1, 2].
Those systems are usually not very well suited for edge computing or robotic tasks due to their high power
consumption, high latency or space-consuming hardware. In this paper we develop a compact, low-power
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and low latency approach for SSL using neuromorphic hardware. This approach is, very much like the
vertebrate auditory apparatus, embodied in the real world. Embodied systems can exploit the physical and
chemical properties of the environment to actively extract relevant information. For example, an active
movement strategy of the robot can improve its SSL performance. The localization error increases for larger
sound source angles [3]. By actively turning towards the direction of the sound source the angle and the
localization error decreases. Dávila-Chacón et al [3] and Chan et al [4] have used an active motion strategy
to increase the SSL accuracy. However, most computation was performed on conventional hardware leading
to a large overhead and high latency. In contrast, we are aiming at a low-power, low-latency hardware
implementation of SSL. Neuromorphic hardware and event-based sensors, which are inspired by the
working principles of the brain, aim at sparse, fast and power-efficient computation. By using neuromorphic
hardware components we can develop a system highly suitable for robotic applications. In contrast to the
conventional frame-based approach, event-driven computing only samples changes in the sensory input
leading to a much sparser representation of the environment, free of redundancies [5, 6]. Spiking neural
networks (SNNs), one building block of neuromorphic computing, extract relevant information from
event-based data in a network of spiking neurons and synapses. These local computational units integrate,
filter and translate rate, spike-timing and spatio-temporal information in a mostly nonlinear way [7]. One
advantage of event-based sensors and SNNs is their ability to extract and process precise spike timing
information which is highly relevant for SSL based on interaural time difference (ITD). ITD is the difference
in arrival time of an auditory wave at the two microphones of a binaural auditory sensor. A recently proposed
model for spatio-temporal computation in SNNs is the time difference encoder (TDE) proposed by Milde
et al in [8]. This building block translates the time difference between events coming from two different
input channels into a burst of output spikes. The applicability of this model for temporal encoding in vision
and touch has already been demonstrated in [8–12]. The TDE has been implemented in mixed digital/analog
sub-threshold complementary metal-oxide-semiconductor (CMOS) hardware [8], only consuming between
1.4 nW (static) and 500 µW (dynamic) [13]. Its most recent field programmable gate array (FPGA)
implementation uses 179 lookup tables and 140 registers, hardware resources comparable to other neuron
models on FPGA [13]. We aim at developing a hardware system by combining the neuromorphic auditory
sensor (NAS), an FPGA implementation of an artificial cochlea, the TDE on FPGA and a compact SNN on
SpiNNaker to perform SSL based on the ITD. A great variety of binaural SSL approaches can be found in the
literature. These can be divided between software and hardware implementations, which can be both either
open-loop or closed-loop. A detailed review on SSL in robotic systems is given in [14]. A variety of
neuromorphic open-loop approaches for event-based SSL have been proposed [15–20]. A neuromorphic
software example [4] presents closed-loop audio-visual neuromorphic sensory fusion on a sound-localizing
robot with adaptive ITD for robot navigation. In that case, all the processing is performed in Matlab, which
limits the real-time capabilities of the system. Focusing on neuromorphic hardware solutions, very few can
be found. For example [21], presents an open-loop implementation of a bio-inspired model of SSL on the
IBM TrueNorth platform. Regarding neuromorphic closed-loop SSL hardware implementations [22],
presents an FPGA-based system using interaural level difference (ILD) on a single NAS channel to drive a
robotic head towards pure tone audio cues. The ILD is the difference in amplitude of a sound wave reaching
the microphones of a binaural cochlea caused by the accoustic shadow of the robotic head. In this article we
propose, to our knowledge, the first neuromorphic closed-loop robotic hardware system that uses the ITD
for SSL in real time. Our system is one out of very few approaches with a fully spiking sensor-to-actuator
pipeline. The main contributions of this work include the following:

• The ITD based SSL network, a new bio-inspired approach.
• Implementation of the SSL network on an event-based neuromorphic hardware closed-loop system.
• The full characterization of the closed-loop system in a real-world static SSL task, with a standard deviation
of 4.2, 7.9 and 16.9◦ for 250 Hz, 500 Hz and human speech respectively.

• Comparison to other neuromorphic approaches.

The paper is organized as follows: section 2 introduces the different hardware components and the SNN
developed in this article. Section 3 gives an overview of the two experiments conducted: an 180 degrees
sweep of the sound source and a closed-loop static SSL task. Section 4 presents the results of the two
experiments. Finally, in section 5, the results are compared with other approaches and the model’s further
development as well as its suitability for robotics and embedded systems application is discussed.
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2. Methodology

2.1. NAS
The NAS [6] is a spike-based digital audio sensor inspired by Lyon’s model of the biological cochlea [23],
implemented on FPGA. This sensor decomposes incoming audio signals into their frequency components as
the inner hair cells do in the human ear, producing a stream of address events (AEs) [24]. It was
implemented using a spike-based low-pass filter (SLPF) bank with a cascade topology [25]. Each SLPF
represents a frequency range, and its output consists of a stream of AEs. In this work, we used a 64-channel
binaural NAS generated with OpenNAS [26]5 implemented on an AER-Node board, which has a Spartan-6
FPGA [27]. The 64 channels were configured so that they correspond to frequency bands that are distributed
along the whole range of the human hearing (20 Hz–20 kHz, approximately [28]).

2.2. Spiking neural network architecture (SpiNNaker)
SpiNNaker [29] is a massively-parallel multicore computing system in which very large SNNs can be
deployed and simulated in real time. A 4-node SpiNN-3 machine, which consists of 72 200 Hz ARM968
processor cores, was used. It has a 100 Mbps Ethernet connection for the communication between the
computer and the board. A PyNN-based [30] software package called sPyNNaker [31] is used for design and
simulation purposes. SpiNN-3 contains two spiNNlinks [32]. The first spiNNlink was used to connect the
FPGA, on which the NAS and TDEs are implemented, to the SNN. The second spiNNlink was used to
connect the SNN to the FPGA for motor control (see figure 2).

2.3. TDE
The TDE model [8] encodes the time difference between two input events occurring at different input
channels in a short burst of output spikes. The time difference is conveyed in the number of spikes as well as
the instantaneous firing rate. The model consists of two inputs, the facilitatory gain (fac) and the trigger
synapse (trig), as well as one spiking output shown in figure 1(a). Upon the arrival of an event at the
facilitatory input, an exponentially decaying facilitatory variable, the gain, is set to its maximum amplitude.
The arrival of an event at the trigger synapse shortly after an event at the facilitatory synapse (i.e. small time
difference∆t) leads to the generation of an excitatory postsynaptic current (EPSC) (see figure 1(b)). The
EPSC amplitude is proportional to the value of the facilitatory variable at the arrival of the trigger event.
Hence, the amplitude of the EPSC is inversely proportional to the time difference. A leaky integrate and fire
(LIF) neuron integrates the postsynaptic current from the trigger synapse in its membrane potential (Vmem).
A digital output pulse (also called spike) is generated when Vmem reaches the spiking threshold θspike. As it
can be seen in figure 1(e), the number of output pulses is inversely proportional to the time difference
between the two input events. When the time difference is much longer than the facilitatory time constant,
no EPSC is generated and therefore there are no output spikes. For negative time differences (an event occurs
at the trigger synapse shortly before an event at the facilitatory input, as in figure 1(d)) no output spikes
occur. The TDE is a direction-selective module.

2.4. SSL system
The SSL system depicted in figure 2 consists of a binaural microphone, three hardware boards and a pan-tilt
unit. The 3Dio binaural microphone receives auditory stimuli at its right and left artificial ears which are
150 mm apart. The shape of the ear and the two white disks on each side of the microphone increase the ITD
between the two microphones by modulating the minimum distance of a sound wave reaching both ears.
The left and right microphone output are sent to the left and right channels of the NAS implementation on
the AERNode FPGA board respectively. The NAS converts the auditory input into events and extracts the
different frequency components from the events. The NAS output consists of 64 frequency channels per ear.
A phase-lock stage was implemented on the same FPGA to retrieve only the timing information of the NAS
output. The NAS and phase-lock filter are explained in more detail in section 2.5.1. The phase-lock output of
channel 32 is sent to the four left-right and four right-left sensitive TDEs implemented on the same
AERNode board. The TDE output is forwarded through a SpiNNlink connector to a SpiNN-3 board which
includes the subsequent SNN components. An input population of one-to-one connected LIF neurons
receives the events from the TDEs. This population is necessary due to software constraints in the SpiNNaker
communication fabric. It simply forwards the TDE spikes from the FPGA to the SpiNNaker board. The TDE
input is further processed by the Time to Rate Network, Ring Attractor Network and Center Detector
Network in subsequent order. The spikes of the Center Detector Network are sent to the motor control board

5 https://github.com/RTC-research-group/OpenNAS. Retrieved 26 May 2023.
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Figure 1. TDE operating principle. (a) TDE basic composition. Input received by the trigger (trig) synapse is gated through the
facilitatory (fac) synapse. Gain depends on time difference. (b)–(d) TDE response for small, large and negative time differences.
(e) TDE response curve.

Figure 2. Neuromorphic closed-loop SSL system. Sound waves are received by the two microphones of the binaural microphone.
The microphone outputs are connected to the first AERnode FPGA board. On the FPGA board the NAS, phase-lock filter and
TDEs encode the ITD information of the auditory signal into a spiking rate. The TDE output is further processed in the Time to
Rate Network, Ring Attractor Network and Center Detector Network on a SpiNNaker board. The identifier of the spiking neuron
in the Center Detector Network is passed to another AERnode board. This board decodes the identifier into a PWM signal that
drives the pan-tilt-unit to the estimated position.

(another AERNode board), which decodes the identifier of the spiking neuron into a pulse width modulation
signal. This signal is received by the motor of the pan-tilt unit controlling the yaw angle. The different
network components are further elaborated in the following section.

2.5. SSL network
Our SSL network does not contain any learning. The model was engineered and tuned by hand. The network
consists of three sub-networks. The first sub-network, the Time to Rate Network (figure 3, section 2.5.1),
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Figure 3. Time to Rate Network. The NAS converts auditory signals from the left and right microphone into events. The events
from the left NAS channel excite the facilitatory synapses of the neurons in the left TDE population (white arrow). Events from
the right NAS channel project onto the trigger synapses of the left TDE population (grey arrow). For the right TDE population it
is the other way around. Each TDE population consists of four TDEs with four different facilitatory time constants. The time
constants are depicted as triangles inside the TDE symbols. The TDE of each population with the largest facilitatory time constant
excites both output neurons (OUT). The other three TDEs of each population inhibit the opposing output neuron. This
mechanism leads to an activation function of the output neurons inversely proportional to the TDEs response.

encodes the ITD in the NAS output into a spiking rate proportional to the angle of the sound source. The left
and right output neurons of the Time to Rate network are excitatory all-to-all connected to the left and right
input-population of the second sub-network, the Ring Attractor Network (figure 5(a), section 2.5.2). A
stronger input to the left input-population drives the activity bump of the Ring Attractor Network to the left
and vice versa. Hence, the activity bump in the network moves towards the direction of the sound-source
driven by the difference in the TDE activity. The third sub-network, the Center Detector Network
(figure 5(b), section 2.5.3), filters the activity of the Ring Attractor Network to remove jitter in the
movement-behavior of the pan-tilt unit. The spikes of the Center Detector Network are sent to the motor
control board which decodes the identifier of the spiking neuron into a position of the pan-tilt unit. Next, the
three sub-networks are explained in detail.

2.5.1. Time to rate network (figure 3)
The two microphones used in this setup encode the sensed auditory signals in electronic signals and send
these to the left and right channel of the NAS respectively. The NAS converts the auditory signals into events
with an event rate proportional to the amplitude of the input [33]. As part of the NAS an event-based
cascade filter bank separates the different frequency components of the event-based signal into 64 frequency
channels per ear. We only use one NAS output channel per ear with a maximum response close to 500 Hz.
We chose 500 Hz, because ITD-based SSL with a human-inspired binaural microphone only works for
frequencies lower than 1 kHz. The NAS cascade filter bank design of the channels also passes through signals
with a lower rate than the main frequency, but with a weaker amplitude. Hence, we could use the same
frequency channel for all subsequent experiments. Before sending the events into the Time to Rate network a
phase-lock filter is applied to the events. Each channel has two different types of events, positive events which
are generated by the positive phase of an auditory signal and negative events generated by the negative phase.
The phase-lock filter detects the point in time when the signal switches from positive to negative events,
similar to an auditory signal crossing the zero threshold. Every time the signal switches from positive to
negative events a single spike is elicited by the phase-lock filter. Ambiguities arise in the estimate of the
temporal difference when the ITD is larger than half the frequency of the signal, in our case the frequency of
the phase-lock filter events. Therefore, we reduce the output frequency to the minimum possible by
performing the zero crossing only in one direction. Due to the phase-lock filter the spikes only inherit timing
information which is necessary for computing the ITD. The output of the two phase-lock filtered event
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Figure 4. Relation between sound source angle, ITD, TDE output rate and Time to Rate Network output Rate. (a) Angle between
a sound source Sa−d and the binaural microphone M. (b) A small angle θ1 between sound source and microphones leads to a
small ITD∆t1 which encodes in a high TDE spike rate. The ITD increases with larger angles while TDE spike rate decreases
inversely proportional. (c) The output of the Time to Rate Network is proportional to the angle of the sound source. An angle
increasing from θ1 to θ3 leads to an increasing ITD from∆t1 to∆t3 which leads to an increasing spike rate.

signals is send to two TDE populations. One TDE population is left-right connected, that means it receives
facilitatory input from the left cochlea output and trigger input from the right cochlea output. That way only
signals which reach first the left and then the right ear elicit a response in the TDE output. The response is
maximum at ITDs close to zero (see figure 4). The other TDE population is right-left connected, responding
to auditory signals closer to the right ear.

The difference in spiking activity between the two TDE populations reaches its maximum at time
differences close to zero (sound source in front of the 3Dio binaural microphone). For example, when a
sound source is located to the right of the microphones, first the right microphone and shortly after the left
microphone receive an auditory signal (see figure 4(a)). The right-left connected TDE population elicits a
response while the left-right connected population is silent. The closer the position of the sound source to
the middle between the two microphones, the stronger is the response of the right-left connected TDE
population, while the other population remains silent (see figures 4(a) and (b)). Hence, the response
difference reaches its maximum at time differences slightly bigger than zero, and decays back to zero for time
differences much bigger than the facilitatory time constant τfac. This response profile is not suitable for the
generation of the required motor action. Ideally a big angle should lead to a big difference in TDE left and
right response. This proportional translation from angle to rate-difference can easily be converted into a
motor action, for example using a ring attractor to turn the actuator into the direction of the sound source.
The working principle of a ring attractor is explained in the next section in detail. Because of this unfit
transfer function of the TDEs, we designed a Time to Rate Network shown in figure 3, which translates the
TDE response into the desired output profile. The desired network output shown in figure 4(c) is exactly
opposite to the TDE response profile shown in figure 4(b). The required output is proportional to the ITD,
the TDE output is inversely proportional. Therefore, the required spiking activity can be obtained by
inverting the TDE response. The easiest way to invert the TDE signal is by subtracting the signal from a fixed
offset. In spiking neurons this operation can be done on the synaptic level by subtracting excitatory (fixed
offset) and inhibitory (input signal) currents from each other. In our Time to Rate network we perform this
synaptic operation on two output LIF neurons (see figure 3). The two neurons receive excitatory input from
one left-right connected and one right-left connected TDE(l3,r3) with a large τfac (440 us on FPGA). This
excitatory input drives the neurons into an active state which serves as baseline activity. Three left-right
connected TDE(l0−l2) and three right-left connected TDE(r0−r2) with smaller τfac (68us, 190us and 320us on
FPGA) are inhibiting the right and left output neuron respectively. This operation results in a nonlinear
inversion of the output neuron activity. Inhibition between the two output neurons silences the activity of
the less excited neuron. The spiking response of the output neurons is proportional to the azimuth angle of
the sound source as shown in the closed-loop experiment and therefore well suited for motor control as
explained in the following.

2.5.2. Ring attractor network (figure 5(a))
The ring attractor is a model of neural computation which closely resembles structures found in vertebrates
as well as in insects [34, 35]. A typical realization of a ring attractor network is depicted in figure 5(a) and
consists of four neural populations all connected in a ring-like structure, called input right (INright), input left
(INleft), direction right (DIRdr) and direction left (DIRdl). A bump of spiking activity is self-maintained in all
four populations due to recurrent excitatory connections (see figure 5(a)). This bump represents the relative
angular orientation of the vertebrate or insect in its environment. In this article we use the ring attractor to
update the current angular position of a pan-tilt-unit. We are using an adapted version of the fruit fly
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Figure 5. Ring Attractor Network and Center Detector Network. (a) Ring Attractor Network. Direction population neurons
(DIR) are one-to-one connected to input neurons. Neurons of right input population (INright) are i+ 1 connected to left and
right direction population. Left input population neurons (INleft) are i− 1 connected to left and right direction population. Only
a few connections are shown for clarity. Direction population is all-to-all inhibitory connected to both input populations.
Excitatory Poisson input spike trains (POIS) to the input populations maintain the bump in the Network. (b) Excitatory weight
kernel from neuron 32 of Ring Attractor Network to all neurons of Center Detector Network. Same weight kernel is repeated for
all neurons of the Ring Attractor Network. This filter amplifies spiking activity at the center of the ring attractor bump.

inspired ring attractor from [35] (see figure 5(a)). Our Ring Attractor Network is designed in a semicircle
configuration with open ends since it only represents an angular range of 180◦. Neurons of the two direction
populations DIRdr and DIRdl are connected in a one-to-one fashion to the corresponding neurons in the two
input populations INright and INleft respectively. The right/left input neurons project back to the direction
neurons of both populations DIRdr and DIRdl with excitatory connections to the first neighbor on the
right/left side. Figure 5(a) exemplifies the pattern of connectivity between the direction neuron population
and the input populations. Neuron dr1 is one-to-one connected to neuron right1 which is connected to
neurons dr2 and dl2 in the direction population. This pattern is then repeated across the ring attractor
topology, with neuron dr2 connected to right2 and so on. This connection profile causes a chain of excitation
going to the right side through the right input population and vice versa. All-to-all inhibition from the
direction neurons to the input neurons stops the excitatory wave from travelling further. The excitatory wave
only travels until the point where the all-to-all inhibition is approximately as strong as the wave of excitation.
This configuration leads to a bump of activity in the Ring Attractor Network. The activity is maintained by
Poisson spike input trains (POIS) projecting onto the input populations. Hence, every neuron in the input
population receives excitatory spike trains with a Poisson distributed spike rate around 10 Hz. As long as the
spike rate in all four populations is balanced and no external input is received, the bump of activity remains
at the same location in the network. When one of the two input populations receives additional excitatory
spike trains from an external source, the target neurons reach a more excited state. The all-to-all inhibition
from the direction neurons to the input neurons does not prevent the wave of excitation from travelling
anymore. The excitatory bump starts to move, to the left or to the right when either the left or right input
population are excited respectively. The movement velocity of the bump is proportional to the difference in
input rate received by the left and right input population. The left and right input population receive all to all
excitatory input from the left and right Time to Rate network output neuron respectively. Since each step of
conversion from sound source angle to rate (Time to Rate network) to velocity (Ring Attractor Network) is
proportional, the ring attractor bump moves with a velocity proportional to the angle of the sound source.
Hence, the spiking rate of our Time to Rate Network is converted into a well defined movement towards the
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sound-source. While no sound is perceived by the system, the input to the Ring Attractor Network is close to
zero. Therefore, the bump of spiking activity maintains its current position in the ring attractor. When a
sound signal causes a rate difference between the left and right Time to Rate Network output neurons, which
are connected to the left and right Ring Attractor Network input populations respectively, this difference
drives the Ring Attractor Network bump into the direction of the sound-source.

2.5.3. Center detector network (figure 5(b))
Our motor control board (see section 2.4) translates the identifier of a spiking neuron into a position of the
pan-tilt unit. However, the bump of activity in a ring attractor is typically spread over several neurons. Its
width and movement characteristics are defined by the ratio of recurrent excitation and inhibition. On one
side weak inhibition increases the width of the bump. In this case only very little excitation from an external
source is needed to overcome the inhibition and move the bump into one direction. The weaker the
inhibition the faster the bump can move. However, if the inhibition is too weak and the network receives
strong excitatory input, the network tends to completely overcome the inhibition and all neurons remain
active all the time, the network is unstable. On the other hand, strong inhibition decreases the width of the
bump since the excitatory wave can no longer travel as far. Therefore more excitation is required to overcome
the inhibition and move the bump. At some point the inhibition is too strong so that even the highest
biologically reasonable input frequency of around 500 Hz cannot move the bump anymore. Hence, in this
work we tuned the network to find the right trade off between movement velocity and network stability. This
results in a bump which is typically spread over five to ten neurons. Due to these fluctuations in the spiking
id, the pan-tilt unit tends to shake when the Ring Attractor Network is directly connected to the motor
control board. To overcome this problem we designed a neuron-based filter called the Center Detector
Network which extracts the center of the bump from the Ring Attractor Network output. Additionally, the
activity is stabilized by this network as it acts as a low pass filter on the input. The neurons of the Ring
Attractor Network are connected to the neurons of the Center Detector Network with the weight distribution
shown in figure 5(b). This connectivity profile enhances the activity of the neuron in the center of an activity
bump through lateral excitation. We connected the Center Detector Network population in a winner-take-all
(WTA) fashion in order to maintain only the activity of the neurons at the center of the bump. The neurons
are recurrently all-to-all connected to a global inhibitory neuron. This neuron reduces the activity of all
neurons so that only the winning neuron at the center of the bump remains active. The spiking activity of
this neuron updates the position of the pan-tilt unit through the motor control board. Each neuron in the
Center Detector Network corresponds to one specific angular orientation of the pan-tilt unit. Hence, the
number of neurons in the Ring Attractor Network and subsequent Center Detector Network determine the
spatial resolution of the whole system. We chose a population size of 64 neurons in the Center Detector
Network corresponding to an angular range of 180◦. This leads to a spatial resolution of∼2.8◦ per neuron. A
decrease in the number of neurons would lead to a lower spatial resolution and therefore lower precision of
the system, a faster angular velocity of the bump and a reduced number of required computational units.
Depending on the application the right trade off between these factors can be chosen.

3. Experiments

We conducted two different types of experiments. The system was tested with an open-loop sound source
sweep and a closed-loop static SSL task.

3.1. Pure-tone response
In this section the open-loop response of the Time to Rate network was evaluated using synthesized and real
world data. In the first experiment, two POIS trains representing the left and right output of the NAS were
synthesized. The time difference between each spike pair was sampled from a Gaussian distribution with a
mean similar to the ITD ranging from−800 to 800 µs and a standard deviation of 40 µs. To replicate the
rather noisy nature of the sensory system we added random spikes with a mean frequency of 500 Hz to the
synthesized POIS trains. The Time to Rate Network was implemented in the NEST simulation platform. The
TDE is implemented as a current-based LIF neuron with linear currents and linearly decaying membrane
potential. Four left-right connected and four right-left connected TDEs with varying τfac (440, 315, 190 and
63 µs, respectively) received the synthesized spike-trains.

In a second experiment we characterized the performance of the Time to Rate Network using
neuromorphic hardware in a physical setup (see figure 2). The NAS receives binaural auditory input from a
3Dio microphone placed on a pan-tilt unit. The left and right 500 Hz channels of the NAS are sending events
to four right-left connected and four left-right connected TDEs on FPGA with different time constants
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(440, 315, 190 and 63 µs, respectively). The digital TDE variables change linearly and the model does not
include a membrane potential. The TDE spikes are sent to the SpiNNaker board. The TDEs are not directly
implemented on the SpiNNaker processor for several reasons. Since the ITD lies typically in the range of tens
of microseconds and the smallest time step supported by the SpiNNaker board is one millisecond, the
processor cannot detect such small time differences. Furthermore, having the NAS and TDEs on the same
FPGA enables a much faster and more parallel communication, which increases the response speed of the
system and keeps the error in timing low. The SpiNNaker board includes the remaining parts of the Time to
Rate Network. In this open-loop experiment, we perform a 180◦ horizontal, anti-clockwise turn of the
pan-tilt unit. A speaker playing a 500 Hz pure tone was placed at the distance of 50 cm from the 3Dio
microphone.

3.2. Closed-loop localization
In this experiment we investigate the movement velocity and precision of the SSL system in a closed-loop
setup. A speaker playing different pure tones and words from the Google speech command dataset [36] is
placed in front of the robotic binaural cochlea depicted in figure 2, 50 cm distant. The pan-tilt unit is
initialized at nine different angles from−100 to 80◦. A constant POIS train holds the initial position of the
pan-tilt unit for the first ten seconds. After this initialization time, the difference in TDE activity moves the
pan-tilt unit towards the sound source direction. The movement characteristics in dependency of the angular
difference and the localization error are measured for the following 110 s. An HD webcam is placed above the
pan-tilt unit and a red stripe is mounted onto the hardware setup to track the angular position of the pan-tilt
unit through color tracking and shape detection using Python’s OpenCV library.

4. Results

4.1. Pure-tone response
4.1.1. TDE
The TDE encodes the time difference between events anti-proportionally in the number of output spikes.
Figure 6 shows how the TDE response profile looks like when using synthesized POIS trains and real
auditory input. In figure 6(a) the response of four simulated left-right sensitive TDEs with varying τfac to
synthesized POIS trains is shown. Data points with brighter color refer to longer τfac. The TDEs show no
response for a stimulus with anti-preferred time difference. They jump to a maximum of close to 500 Hz at a
time difference of zero microseconds. The response decays for larger positive time differences. The decay is
slower for larger τfac. This response profile shows the same characteristics than the theoretical TDE response
curve shown in figure 1. Figure 6(b) is similar to (a) only that we added 500 Hz noise to the input signal. The
noise increases the overall response of the TDEs. Figure 6(c) shows the response of left-right sensitive (red)
and right-left sensitive (blue) TDEs to synthesized POIS trains with Gaussian distributed time differences
with a 40 ms standard deviation and 500 Hz noise. The Gaussian distribution of time differences leads to a
smoother transition from anti-preferred to preferred time differences. While the response maximum still
stays at the preferred time difference the response profile almost resembles a Gaussian distribution. The
response maximum shifts to higher time differences for larger τfac. This simulated behavior looks very similar
to the response of the TDEs on FPGA to a sound source sweep shown in figure 6(d). A 500 Hz pure tone was
played by a speaker in front of the setup shown in figure 2, 50 cm distant. The pan-tilt unit performed a 180◦

anti-clockwise sweep of the 3Dio microphones in steps of 22.5◦. Starting at two seconds run time, the pan tilt
unit is moving to its next location every four seconds. During the occurrence of a turn every four seconds,
starting at second two, the response of all TDEs increases suddenly and the difference between left and right
sensitive TDEs drops almost to zero. This response can be explained by the sound of the motor placed below
the 3Dio microphones. The motor sound, which arrives at the same time at both ears, causes a strong
response of the TDEs due to a time difference close to zero. This motor noise causes a kind of saccadic
movement scheme in closed-loop configuration.

4.1.2. Time to rate network
As stated in section 2.5.1 the response profile of the TDE is not very well suited to drive a motor towards a
sound source location since the difference between left and right TDE response has its maximum close to an
ITD of zero. Hence, we developed a compact Time to Rate Network which translates the TDE response into a
profile proportional to the angle of the sound source. The architecture of this network is elaborated in
section 2.5.1.

The response of the Time to Rate Network to synthesized spike trains and a sound source sweep with a
500 Hz sound input are depicted in figures 7(a)–(d) respectively. The response of the right output to POIS
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Figure 6. TDEs response to different ITDs. (a) Response of right-left connected leaky integrate and fire TDEs with linear decaying
current and membrane potential simulated in Nest receiving computer generated Poisson spike trains with ITDs between−800
and 800 µs. (b) Similar to (a) with 500 Hz noise. (c) Similar to (a) with left-right and right-left connected TDEs with 500 Hz
noise and Gaussian distributed time differences with a standard deviation of 40 µs. (d) Response of linear TDEs on AER-Node
FPGA board to an anti-clockwise 180◦ turn of the binaural microphones around the yaw axis (mediated over three trials).
A speaker is placed 50 cm distant in front of the microphones playing a 500 Hz constant pure tone. Starting from−90◦ (two
seconds) the pan-tilt unit turns the microphones to the next position 22.5◦ apart every four seconds.

trains with precise time differences is shown in figure 7(a). The output is zero for negative time differences
and jumps to its maximum at time differences larger zero. It slightly decays for larger time differences. The
jump at around 500 µs is caused by the WTA mechanism between the left and right output neuron. From 0
to 400 µs the right output neuron is more active and suppresses the activity of the left neuron through
inhibition (see supplementary material figure A.1). For time differences larger 400 µs both output neurons
receive exactly the same input so that the WTA mechanism does not apply. Both neurons stay active at an
intermediate level of activity reducing each other’s activity due to slight inhibition. When adding random
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Figure 7. Response of the Time to Rate Network output to different ITDs inputs with different amounts and types of noise.
(a) Response of right output LIF neuron in the Nest simulator to computer generated Poisson spike trains with ITDs between
−800 and 800 µs. (b) Similar to (a) with 500 Hz noise. (c) Similar to (a) with right and left Time to Rate Network output with
500 Hz noise and Gaussian distributed time differences with a standard deviation of 40 µs. (d) Response of Time to Rate Network
output on a SpiNN-3 board to shift of sound source location as described in figure 6.

spikes with a frequency of 500 Hz as shown in figure 7(b) the response becomes more irregular especially for
large time differences. The response of the right and left output to POIS trains with 500 Hz noise and
Gaussian distributed time differences is shown in figure 7(c). The response of the simulated output neurons
increases linearly until a time difference of approximately 600 µs. For larger time differences, the output
frequency decays slightly. The response of the Time to Rate Network on SpiNNaker is similar, only that
activity increases linearly over the whole 180◦ range (figure 7(d)). A decrease in response difference during
the motor turns can be observed. The output of the Time to Rate Network is very well suited to drive an
actuator into the direction of a sound source since its response is proportional to the sound source angle. The
performance of the whole closed-loop system is evaluated in the subsequent experiment.

4.2. Closed-loop localization
We evaluated the response of our closed-loop system shown in figure 2 in a real world SSL task. A speaker
playing a constant 250 Hz beep, 500 Hz beep or random words from the Google speech command dataset
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Figure 8. Azimuth angle of robotic platform. (a) Angle of robotic platform when playing a 250 Hz or 500 Hz pure tone or speech
from a speaker 50 cm distant. Speaker location are zero, 270 and 180◦. (b) Turning response with different starting angles for the
first 15 s playing a 500 Hz input sound located around 270◦. Legend shows deviation of start angle from sound source position.

was placed at 50 cm distance from the pan-tilt unit. The pan-tilt unit was initialized at nine different angles
relative to the sound source angle (−100,−77.5,−55,−32.5,−10, 12.5, 35, 57.5 and 80◦). In a first initial
turn the pan-tilt unit moves towards the direction of the sound source. After this turn it oscillates around the
sound source direction. The full duration of the experiment lasting 110 s is depicted in figure 8(a). The angle
of the robotic platform and its standard deviation averaged over nine repetitions is displayed for 250 Hz,
500 Hz and human speech. The precision with which the pan-tilt unit faces the direction of the sound source
decreases with increasing frequency and it is lowest for the speech command dataset (see figure 8(a): increase
of standard deviation from 250 Hz to 500 Hz to speech). We calculated two values, the standard deviation of
the rolling mean and the average of the rolling standard deviation. For 250 Hz, the standard deviation of the
rolling mean starting at five seconds run time amounts 1.24◦ with an average rolling standard deviation of
4.2; for 500 Hz, 2.6◦ with a standard deviation of 7.9; and, for the speech dataset, 5.5◦ with a standard
deviation of 16.9. Figure 8(b) displays single runs of the same experiment shown in figure 8(a) for a
frequency of 500 Hz. The different starting angles of the pan-tilt unit and the first initial turn are visible. The
sound source is located at an angle of 270◦. In all nine cases the pan-tilt unit finishes its first initial turn
towards the sound source during the first five seconds. The turning velocity of the pan-tilt unit stands in a
clear linear relationship to the starting angle of the actuator as can be seen in figure 9. A large azimuth angle
leads to a large Time to Rate Network output frequency. The high frequency difference causes the ring
attractor bump and the corresponding Center Detector Network spikes to move along the ring of neurons
with a high velocity. This leads to a fast turn of the pan-tilt unit into the coarse direction of the sound. For
smaller angles a small output frequency leads to a slow movement of the ring attractor bump, Center
Detector Network spikes and pan-tilt unit which corrects the angular deviation in a more precise manner
without a lot of strong movements over the target location. This linear translation from sound source angle
to Time to Rate Network output (see figure 10) to velocity of the ring attractor bump and Center Detector
Network to velocity of the robotic platform (see figure 9) leads to a robust performance of the neuromorphic
system. In figure 11 we analyze the closed-loop network dynamics of the system for a single run. At the
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Figure 9. Start angle dependent turning velocity of pan-tilt unit for 500 Hz sound computed from data in figure 8(a). Mean
velocity is calculated from a time window starting at time point zero with a duration between one and five seconds. Different
colors refer to different time window size.

beginning of the experiment, the binaural cochlea is placed approximately−100◦ to the right of the speaker.
TDE(l0−l3) (b) show a strong spiking response while TDE(r0−r3) (a) are almost silent. The left Time to Rate
network output neuron is strongly active, close to its maximum spiking activity of 500 Hz (h), since it receives
excitatory input from TDE(r3,l3) but very little inhibitory input from TDE(r0−r2). In contrast, the right Time
to Rate network output (g) is inhibited by TDE(l0−l2). This rate difference in the output starts moving the
Ring Attractor Network bump (c) to the left. The Center Detector Network (f) moves with the bump but
with a much lower spiking activity at the center of the Ring Attractor Network bump. The pan-tilt unit (i)
starts moving towards the sound-source-angle. When the pan-tilt unit reaches an angle of approximately
−50◦ the activity of TDE(r0−r3) starts rising (a). This behavior matches the open-loop response profile in
figure 6(d). Similarly the response of TDE(r0−r3) starts rising at approximately−45◦ reaching its maximum
response between 22.5 and 67.5◦. The increase in right TDE response leads to a slow almost linear decrease
in the left Time to Rate Network output from 50 until zero degrees azimuth angle (h). The same response
profile can be observed in the open-loop experiment in figure 7(d). Due to the decrease in spiking activity the
movement velocity of the pan-tilt unit (i) slows down close to the angle of the sound source. This causes a
smooth convergence of the pan-tilt unit towards the speaker direction. Therefore, our approach successfully
encodes ITD into rate difference and rate difference into velocity. The system only requires very limited
hardware resources so that it could be implemented on compact and energy efficient extreme edge platforms.
The system can align itself with the direction of the sound source within seconds using only the information
provided by the ITD. The ring attractor architecture is able to transform this information into the
appropriate motor action. The physical system is already operating at its maximum speed. In figure 12 the
velocity profile of the pan-tilt unit from the run in figure 11 is shown. The figure includes the initialization
phase of the experiment (negative time). From second−12 until−8 the robotic platform turns to its initial
position of−110◦ with its maximum velocity of around±38◦ per second. From−8 until 0 s the robot is
fixed at its start position. At second 0 the pan-tilt unit is released and starts moving towards the direction of
the sound source reaching a velocity of up to 33◦ per second. This velocity is very close to the maximum
velocity of±38◦ per second. This demonstrates that the approach uses almost the whole dynamic range of
the physical system leading to a latency of around five seconds. The movement velocity of the pan-tilt unit in
the range of seconds is the limiting factor of the closed loop system. Only by moving to a different pan-tilt
unit with higher velocities we can further improve the response time, enabling real-time capable SSL for
robotics. Finally this work sets an important cornerstone in the context of embodied computation in fully
SNNs. The system is one out of a handful of approaches which use events and spikes from the sensors to the
actuators to perform closed loop tasks (for detailed reviews see [37, 38]). These approaches enable us to
better understand the full potential of spike based computing for embodied systems.
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Figure 10. Response of the Time to Rate Network output neurons right minus left for different angles of the pan-tilt unit
extracted from the closed-loop experiments.

Figure 11. Network response for an example of closed-loop localization. Sound-source position is initialized 100◦ to the left of
the system. (a), (b) Firing rate of four right and left TDEs. Response of left TDEs is much stronger at the beginning.
(c), (d) Spiking rate of output neurons. While activity of the right output neurons stays low left output neuron starts close to
500 Hz, the possible maximum spiking frequency. At angles smaller than 50◦ it starts decaying almost linearly. (e) Rasterplot of
one population of the Ring Attractor Network. Bump of spiking activity moves from top to center over time. (f) Rasterplot of
Center Detector Network. Each bar is a single event. (g) Azimuth angle between robotic platform and sound source.

5. Discussion and conclusions

Our SSL system can successfully locate and track sound sources with low frequency components such as
human speech. In a closed-loop experiment, the binaural cochlea turned into the direction of the sound
source with a turning velocity linearly proportional to the angle difference between sound source and
pan-tilt unit. After this initial turn, the binaural cochlea stays at the direction of the sound source.

The robotic system developed by Escudero et al [22] reaches in closed-loop a mean error of 1.9, 2.5 and
2.6◦ for 1, 2.5 and 5 kHz. The software implementation of Chan et al [4] performs with an error between 4
and 5◦ after training. Our closed-loop system estimates the position of a sound source with a mean error of
1.24± 4.2,2.6± 7.9,5.5± 16.9◦ for a 250 Hz pure tone, 500 Hz pure tone and the Google speech command
dataset, respectively. A detailed comparison of our system with other neuromorphic approaches is given in
table 1. When using noise or pure tones, all mentioned neuromorphic approaches perform in an error range
smaller than 5◦ (see table 1), comparable to human performance with a precision between 3 (frontal
position) and 10◦ (lateral position) [39]. Our approach has mean errors comparable to the two others.
However, there are significant differences in the working principles. Since Chan et al computes the location
on Matlab software, the problem can be solved purely mathematically reaching a high precision. At the same
time the system is limited in its real time capabilities and requires a lot of power. It uses a PC with a power
consumption of more than 100 W and sequential processing. Our approach runs on neuromorphic hardware
using approximately 1 W and parallel in memory computing. Furthermore, our system is the most compact
neuromorphic solution for SSL using the ITD. Most animal-inspired approaches for SSL use arrays of
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Table 1. Comparison of different neuromorphic sound source localization approaches. Our approach without the ring attractor requires
the lowest number of computational units and works with the lowest spiking rate. Few computational units enable a compact ASIC
implementation while a low spiking rate reduce the dynamic computation, hence the dynamic power consumption, of the system.
Acronyms: neuron (neu), correlator (corr), hardware (HW), software (SW), open loop (OL), closed loop (CL), interaural time
difference (ITD), interaural level difference (ILD), lateral superior olive (LSO).

Implementation Type Signal # neu/corr # synapse
Cochlea
rate (Hz)

Detector
rate (Hz) Power (W) Mean error (◦)

OURS without
ring attractor

HW OL ITD 6 14 ⩽250 ⩽500 See below Unknown

OURS with ring
attractor

HW CL ITD 326 ∼400 ⩽250 ⩽500 NAS: 0.0297 250 Hz pure tone:
1.24± 4.2

TDE: 0.012 500 Hz pure tone:
2.6± 7.9

SpiNNaker
chip: 0.93

Speech: 5.5± 16.9

[4] HW/SW
CL

ITD ∼3000 117.000 ⩽6 k Unknown > 100 Pink noise
200–3 kHz: 5.0
White noise 3 kHz:
4.4

[22] HW CL ILD 128 LSO 0 ⩽6 k ⩽6 k 0.058 1 kHz pure tone:
1.92± 0.94
2.5 kHz pure tone:
2.49± 0.79
5 kHz pure tone:
2.57± 0.35

[21] HW OL ILD 1024 ∼1216 Unknown Unknown Unknown Unknown

Figure 12. Velocity of the pan-tilt unit for the experiment shown in figure 11 including initialization before real experiment. From
−12 until−8 s the pan-tilt unit turns to its initial position of−110◦. This turn is performed with the maximum velocity of the
pan tilt unit of around±38◦ per second. At 0 s the experiment begins and the pan-tilt unit turns towards the direction of the
sound source. At around 1 s the pan-tilt unit reaches a velocity of 33◦ per seconds and then slows down.

coincidence detectors which means that each frequency channel pair requires various different coincidence
detectors with different delay lines. The time difference is encoded in a time difference map. In contrast, our
approach converts the time difference into a rate which requires only a few TDEs leading to a much more
compact solution. Also, our hardware implementation works already very well with only one frequency
channel which further reduces the number of required computational units. Even when including the ring
attractor our system is more compact than the approach by [4] (see table 1). Approaches using the ILD are
usually more compact since they only need to convert the frequency of each channel into an angular location.
However, while ITD works only with low sound frequencies ILD works only with high sound frequencies.
Hence, by developing an approach which estimates both the ITD and ILD the best performance can be
reached covering the full frequency range. In a future implementation we will combine [22] and our
approach to develop such a system. Further improvements can be obtained by moving to a different pan-tilt
unit. Our system is constrained by the physics of the robotic platform. The maximum speed of the pan-tilt
unit lies at 38◦ per second (see initialization phase in figure 12) leading to response times in the range of
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seconds. By replacing the pan-tilt unit with a much faster model we could easily move the performance into
the range of hundreds of milliseconds. Low power consumption, small network size and low latency make
this implementation very well suited for real world robotic applications and computing on the edge.

While other approaches mentioned above only test with noise and pure tones, we evaluated the
performance of the proposed system also with speech commands in order to test it in a more realistic
scenario.

In this work we used a pan-tilt unit with a positional motor control scheme. Hence, we require a
ring-attractor network to store the angular position of the robotic platform and update the position based on
the output of the Time to Rate network. Such an implementation can be useful for robotic tasks in which the
agent has to be aware of its own joint positions, for example an assistant robot which turns its head towards a
human speaker to focus its attention. The approach could be deployed in the iCub humanoid robotic
platform, similar to the Jeffress model implementation by [40]. In case of a differential motor control scheme
the ring-attractor is not required. The output of the Time to Rate Network can directly be used for
differential motor control, e.g. to move a mobile agent towards a human speaker. In that case, the movement
velocity of the two motors is controlled by the spiking rate of the two Time to Rate Network output neurons
using, for example, pulse frequency modulation [41]. Such a system can be used to detect and approach
different types of sound sources. For example a rescue robot equipped with this system could move towards
the direction of human voices to find possible endangered subjects.

The system used in this paper consists of two FPGAs, a SpiNNaker board, 3Dio microphones and a
pan-tilt-unit. Only very few resources on the two FPGAs and the SpiNNaker board are used in our current
implementation. The full binaural NAS implementation with two times (left and right) 64 frequency
channels requires approximately eleven thousand slices on a Xilinx Virtex-5 FPGA with a power
consumption of 29.7 mW [6]. Our current system only uses two out of the 128 frequency channels. The eight
subsequent TDEs on FPGA require approximately 1120 registers and 1440 lookup tables with a power
consumption of around 12 mW [13]. On SpiNNaker, the TDE input population of 8 neurons, the two Time
to Rate Network output neurons, the 256 Ring Attractor Neurons and the 64 Center Detector Network
neurons require two out of 18 cores on a single ARM chip. Each chip consumes 255 up to 930 mW
depending on the intensity of computation [42]. Over all, our SNN uses eleven thousand slices, 1120
registers and 1440 lookup tables and one SpiNNaker chip with a power consumption of up to one Watt.
Since the network is relatively small with only 326 neurons and around 400 synapses it could also be
implemented on a standard micro-controller. For example Dabbous and colleagues [43] implemented an
object-detection network of comparable size on a Raspberry Pi 4. However, their classification network
reaches a high latency of 0.42 s when operating on a 10 µs time step. Furthermore, the power consumption of
the Raspberry Pi 4 with 3 up to 7 W is much higher than the power usage of the system presented. While in
this article we use a relatively large prototyping system consisting of three boards to evaluate the functionality
of our SSL approach, our final aim is to implement the network onto a single mixed analog-digital
asynchronous CMOS ASIC. In comparison to other neuromorphic approaches we use few computational
units which allows for a compact design (see table 1 columns 4 and 5). We use low spiking frequencies which
reduces the dynamic power consumption (see table 1 columns 6 and 7). At the same time, the accuracy of
our system is comparable to other approaches (see table 1 column 9). Hence, our network is a very promising
candidate for an ASIC implementation for edge computing and low power robotics.

Using the TDE on CMOS (1.4 nW–500 µW [13]), and the low-power LIF neuron on CMOS
(20 µW–100 µW for 100 Hz [44]) we can aim at the design of a single ASIC with an overall power
consumption in the double digit mW range or below. A comparison regarding power consumption to
closed-loop deep learning approaches is not possible since, to our knowledge, there is no deep learning
closed-loop real-time hardware implementation.

The implementation proposed in this article is, to the best of the authors’ knowledge, the first
neuromorphic hardware closed-loop SSL system using ITD capable of working in real time. Based on the
current results using ITD for SSL, we aim to add an ILD and head-related transfer function part to the
system to further increase the precision and also detect elevation angles. Adding more microphones, as done
in many SSL implementations, can also increase the precision of the system. At the same time more
processing and hence more power is needed to compute data from the additional microphone inputs.
Therefore, the right trade off between sufficient precision and number of microphones needs to be found
dependending on the application. We will explore this trade off in future applications. This work serves as a
first approach towards achieving a closed-loop 360◦ neuromorphic SSL system. Our SSL system advances the
state-of-the-art of neuromorphic event-based systems for robotics and embedded systems. Neuromorphic
closed-loop hardware is a promising candidate for robotic systems due to its compactness, low power
consumption and real time performance.
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