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Abstract
When data are clustered, common practice has become to doOLS and use an estimator
of the covariance matrix of the OLS estimator that comes close to unbiasedness. In
this paper, we derive an estimator that is unbiased when the random-effects model
holds. We do the same for two more general structures. We study the usefulness of
these estimators against others by simulation, the size of the t-test being the criterion.
Our findings suggest that the choice of estimator hardly matters when the regressor
has the same distribution over the clusters. But when the regressor is a cluster-specific
treatment variable, the choice does matter and the unbiased estimator we propose for
the random-effects model shows excellent performance, even when the clusters are
highly unbalanced.

Keywords Clustered errors · Degrees-of-freedom correction · Placebo regression ·
Treatment effect · Unbiased estimator

1 Introduction

Within-cluster dependence presents a considerable challenge for reliable inference.
Even with large data sets, a small number of clusters induces substantial finite-sample
bias in the estimated variance of the regression coefficients. Several options are avail-
able to mitigate this bias. Stata uses a scalar correction to the Liang and Zeger (1986)
cluster-robust variance estimator, while Bell and McCaffrey (2002) develop cluster
extensions of the MacKinnon and White (1985) heteroskedasticity-robust variance
estimators. See Cameron and Miller (2015) and MacKinnon et al. (2023) for recent
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surveys on the topic. However, with the exception of some special cases, none of these
variance adjustments completely eliminates the bias.

In this paper, we develop variance estimators that are unbiased under progressively
more complicated dependence structures. Our aim is to investigate whether remov-
ing the bias in the variance estimators leads to improved inference, in particular by
delivering hypothesis tests with more accurate size control. The key idea underlying
the unbiased variance estimator is a cluster extension of the variance estimator by
Hartley et al. (1969), which is unbiased under heteroskedasicity. In its original form,
this variance estimator has the drawback that it requires inverting a matrix that grows
quadraticallywith the sample size.We showhow the underlying structure of thismatrix
can be exploited to make the computation feasible even with large microeconometric
data sets.

With a large number of clusters, test statistics based on cluster-robust variance esti-
mators have a standard normal distribution, see for instance Hansen and Lee (2019).
With a small number of clusters, the use of the normal distribution to obtain confi-
dence intervals and critical values can lead to substantial size distortions as discussed
in Cameron and Miller (2015), Sect. VI.D, unless the within-cluster dependence is
restricted as in Ibragimov and Müller (2016). The use of a t-distribution reduces the
size distortion, but this requires selecting the appropriate degrees of freedom (d.f.).
For our proposed variance estimators, we derive a data-driven estimator for the d.f.
following the approach based on an independence assumption on the errors as in Bell
and McCaffrey (2002), as well as the generalization to a random-effects structure
studied in Imbens and Kolesár (2016).

We focus on three dependence structures of increasing generality. First, we assume
that in each cluster, the errors follow the same random-effects structure. In this case, the
covariance structure depends on two (unknown) parameters. Second, we extend this
setting by allowing the RE parameters to be cluster dependent, increasing the number
of parameters to two times the number of clusters. Finally, we consider a fully unre-
stricted setting where each cluster has an arbitrary covariance matrix. This captures
for example a setting with conditional heteroskedasticity where the covariance matrix
depends via an unknown functional form on a set of continuous regressors. In prac-
tice, leaving the correlation structure completely undetermined is generally preferred.
However, tighter parametrizations can be useful to reduce estimation uncertainty and
improve the behavior of tests in settings where the number of clusters is small and the
parametrization is only mildly misspecified.

As said, the first two structures contain random effects, and one might consider
treating the effects as fixed, that is, adding cluster-level fixed effects to the model.
This will greatly reduce the intra-cluster correlation and might be considered a sim-
ple alternative. However, the drawbacks outweigh the benefits. Just as in the closely
connected case of panel data analysis, fixed effects spawn the within-transformation,
which often eliminates most variation in the data while wiping out regressors that are
the same for all observations in a cluster, like a cluster-specific treatment dummy, a
case of great empirical relevance. At the same time, the main advantage of fixed over
random effects in a panel data context, controlling for endogeneity, is not a particular
issue in the current context.
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For each of the three dependence structures, we numerically evaluate the size prop-
erties of hypothesis tests based on the unbiased variance estimators. We compare their
performance with the default Stata option, as well as the HC2 variance estimator by
Bell and McCaffrey (2002) with d.f. as in Imbens and Kolesár (2016). The model we
consider includes a treatment dummy and a continuous variable. For each covariance
structure, we vary the number of treated clusters and consider both a balanced design,
where each cluster has the same number of observations, as well as an unbalanced
design.

Under the specification where the random-effects structure is the same across clus-
ters, we find that the corresponding unbiased variance estimator performs remarkably
well. Even with only a single treated cluster, hypothesis tests provide accurate size
control on both the treatment dummy and the continuous variable. When the num-
ber of observations differs between clusters, we find that the d.f. calculated under
the more general RE assumption improve substantially over those calculated under
independence assumptions. In a more general setting where the RE structure is cluster
dependent, we find that using the corresponding variance estimator improves over the
benchmarks particularly when the design is unbalanced. Finally, we consider a setting
where there is conditional heteroskedasticity that depends on the continuous variable.
The most general unbiased variance estimator continues to control size in this setup.

After these simulations with fully artificial data, we compare methods using real-
life data with an artificial element added. That is, we estimate a wage equation on
the basis of US data, clustered by state. To the real-life data, we added an artificial
state-wide policy dummy variable.We study the size of an hypothesis test on the effect
of this dummy variable by sampling subsets of states either at random or based on
their number of observations.

Finally, we remark that we develop our variance estimators in what Abadie et al.
(2020) refer to as a sampling-based framework, where we condition on the available
regressors and the cluster structure is determined by the covariance structure of the
regression errors.When the regressors are random as in a design-based framework, the
relevant cluster structure is instead determined by the clustering in both the regressors
and the regression errors. For instance, when the regressor is a treatment dummy
that is randomized at the unit level, there is no need to account for clustering at
all. From this perspective, we expect that in a design-based framework, the tighter
cluster parametrizations we propose can be useful when these correspond to the cluster
structure in the assignment mechanism for the treatment dummy.

The paper is organized as follows. In Sect. 2, we start by deriving the general form
of unbiased estimators for error covariance matrices with a linear structure. We then
specify this for clusters in Sect. 3. We first consider in Sect. 3.1 a simple structure
with just two parameters, one for the overall error and one for the within-cluster error.
In Sect. 3.2, we generalize this and make these parameters specific per cluster. In
Sect. 3.3, we generalize this one more step and allow all covariances within clusters to
vary freely. We proceed to compare the performance of the various unbiased variance
estimators, first by simulation and then through an application to real-life data. Our
performance measure is the size of the t-test. The d.f. of the t-tests play an important
role, and in Sect. 4, we discuss how we set them. Section5 describes the setup of the
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2514 T. Boot et al.

simulations, while the results are presented in Sect. 6. The results for the real-life data
are given in Sect. 7. Section8 concludes.

Most derivations are given in “Online Appendix A, B and C,” contained in the
Supplementary Information available online. TheMATLABcode for the computations
reported in this paper is available from https://sites.google.com/view/tomboot/.

2 Unbiased variance estimation

We consider the linear regression model y = Xβ + ε, with X exogenous of order
n × k. We follow the usual notation M ≡ In − X(X′X)−1X′ and P ≡ X(X′X)−1X′.
The errors are distributed according to ε ∼ (0,�) and we consider the case where �

is linear in parameters,

vec� = Dπ ,

with π of order r × 1 and the design matrix D of order n2 × r . We are interested in
unbiased estimation of the covariance matrix V of the OLS estimator β̂ of β,

V = (X′X)−1X′�X(X′X)−1.

As will become clear below, our analyses involving V require us to consider it in
stacked form, v ≡ vecV. With

R′ ≡
(
(X′X)−1X′ ⊗ (X′X)−1X′)D,

we have in stacked form

v =
(
(X′X)−1X′ ⊗ (X′X)−1X′) vec�

= R′π .

We base our estimator on a function of the residuals ε̂ ≡ Mε that is aligned with the
structure of �. We hence project the squared residuals on the space spanned by D, so
we use D(D′D)−1D′(ε̂ ⊗ ε̂), leading to the estimator

ṽ =
(
(X′X)−1X′ ⊗ (X′X)−1X′)D(D′D)−1D′(ε̂ ⊗ ε̂)

= R′(D′D)−1D′(ε̂ ⊗ ε̂). (1)

However, this estimator is biased; with E
(
D′(ε̂ ⊗ ε̂)

) = D′(M ⊗ M)Dπ there holds

E(ṽ) = R′(D′D)−1[D′(M ⊗ M)D]π �= R′π = v.

The bias is easily removed by replacing the term (D′D)−1 by [D′(M ⊗ M)D]−1. For
the special case of heteroskedasticity, this idea is due to Hartley et al. (1969). The
adapted, unbiased estimator of v then is
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v̂ ≡ R′[D′(M ⊗ M)D]−1D′(ε̂ ⊗ ε̂). (2)

For computational purposes, (2) is unattractive as the matrix M ⊗ M is huge with
large data sets. However, we show below how the simple structure of M, being the
sum of the unit matrix and a matrix of low rank, can be exploited to avoid compu-
tational difficulties. A relatively common issue with unbiased estimation of variance
components, see for instance Kline et al. (2020), is that the estimator is not guaranteed
to be positive definite. However, corrections that make the estimator positively biased
are readily available and avoid overrejection.

Below we will consider three cases, with different design matrices D. In the third
case, the number of columns of D can be very large. Then, we can use an adapted
version of (2). Let

A ≡ D′D − D′(In ⊗ P)D − D′(P ⊗ In)D

W ≡ X′X ⊗ X′X
F ≡ D′(X ⊗ X).

Then,

R′ = W−1F′

D′(P ⊗ P
)
D = FW−1F′

D′(M ⊗ M
)
D = D′D − D′(In ⊗ P

)
D − D′(P ⊗ In

)
D + D′(P ⊗ P

)
D

= A + FW−1F′

Since
(
W + F′A−1F

)
W−1F′ = F′A−1(A + FW−1F′)

there holds

W−1F′(A + FW−1F′)−1 = (
W + F′A−1F

)−1F′A−1.

Substitution in (2) yields

v̂ = W−1F′(A + FW−1F′)−1D′(ε̂ ⊗ ε̂
)

= (
W + F′A−1F

)−1F′A−1D′(ε̂ ⊗ ε̂
)
. (3)

This expression still contains the inverse of the matrix A, which has the same number
of columns asD. It will appear, though, thatA−1 occurs only in the formF′A−1, which
appears to have a simple expression in this third case.

We now turn to the cluster structure. We denote the number of clusters by C and
index them by c = 1, . . . ,C . Cluster c has nc observations, so

∑
c nc = n. We let

n̈ ≡
∑
c

n2c

�n ≡ diag nc.
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Let ic an nc-vector of ones. With a slight abuse of notation, we will write Ic for Inc
and let

Gc ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

O
...

Ic
...

O

⎞
⎟⎟⎟⎟⎟⎟⎠

bc ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

ic
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

B ≡ (b1, . . . ,bc, . . . ,bC ). (4)

The regressors for cluster c are collected in Xc ≡ G′
cX and their sum over the cluster

in the row vector x̃′
c ≡ b′

cX. The x̃′
cs are collected in the C × k matrix X̃ ≡ B′X.

Likewise, ε̂c ≡ G′
cε̂ and ˜̂εc ≡ b′

cε̂ so ˜̂ε = B′ε̂.
Below we will frequently perform matrix operations using

vec(ABC) = (C′ ⊗ A)vecB

tr(ABCD) = vec(A′)′(D′ ⊗ B)vecC,

for conformable generic A,B,C and D. A piece of notation that is useful in the third
case that we will study is the Kronecker product with a dot on top. With ec be the cth
unit vector, we write

∑
c

e′
c ⊗̇ Ac = (A1, . . . ,AC )

for matricesA1, . . . ,AC with the same number of rows but possibly different number
of columns. The use of ⊗̇ is as straightforward as the use of ⊗.

3 Application to three forms of clustering

In this section, we consider three, increasingly general structures for � and present
the variance estimator (2) for each case. The results are in stacked form, v̂. We also
present the simpler expressions that are obtained when ε would be observable and
ε̂ is substituted for ε afterward, that is, the results that we obtain when we neglect
the presence of the regressors. These simpler expressions can be put in the usual,
“unstacked” form, that is, as V̂ rather than v̂. Derivations are relegated to “Online
Appendix A”.

3.1 Equicorrelated errors

We first consider the case where the errors are equicorrelated within clusters, so

� = σ 2In + τ 2BB′,
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Unbiased estimation of the OLS covariance matrix when the... 2517

with B as given in (4). Let

� =
(
n − k n − s
n − s n̈ − 2s̆ + ṡ

)
,

with

s ≡ tr(X′X)−1X̃′X̃
ṡ ≡ tr(X′X)−1X̃′X̃(X′X)−1X̃′X̃
s̆ ≡ tr(X′X)−1X̃′�nX̃

Then,

v̂ = (X′X ⊗ X′X)−1
(
vec X′X, vec X̃′X̃

)
�−1(ε̂

′
ε̂, ˜̂ε′ ˜̂ε)′ (5)

is an unbiased estimator of v.
Two remarks are in order here. The first one concerns symmetry. The k × k covari-

ance matrix V̂, obtained by rearranging v̂ into a matrix, should be symmetric. The
derivation of (5) did not take this requirement into consideration. However, it is easy
to show that V̂ is symmetric, by employing the commutation matrix Kk , with proper-
ties Kk(A ⊗ B) = (B ⊗ A)Kk for any k × k matrices A and B and KkvecC = vecC
for any symmetric k × k matrix C. Symmetry of V̂ is equivalent to Kkvecv̂ = vecv̂.
By using Kk = K−1

k , this readily follows. The same holds for the other two variance
estimators derived below.

The second remark concerns the role played by the regressors. When they would
have been neglected in the derivation, that is, estimating v by (1) instead of by (2), we
would have obtained

� =
(
n n
n n̈

)
so �−1 = 1

n(n̈ − n)

(
n̈ −n

−n n

)
. (6)

We can then write

v̂ = (X′X ⊗ X′X)−1
(
vec X′X, vec X̃′X̃

)
(σ̂ 2, τ̂ 2)′

or

V̂ = (X′X)−1X′�̂X(X′X)−1, (7)

with �̂ = σ̂ 2In + τ̂ 2BB′, where

σ̂ 2 = 1

n
ε̂

′
ε̂ − τ̂ 2 (8)

τ̂ 2 = 1

n̈ − n
( ˜̂ε′ ˜̂ε − ε̂

′
ε̂). (9)
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In this form, �̂ is the estimator for � used by Imbens and Kolesár (2016) in their d.f.
derivation, to be discussed in the following Sect. 4.

3.2 Cluster-specific parameters

We next let σ 2 and τ 2 vary over clusters, so now

� =
∑
c

(σ 2
c GcG′

c + τ 2c bcb
′
c).

Let

� =
(

�n − 2�s + A �n − 2�s̃ + L
�n − 2�s̃ + L′ �2

n − 2�n�s̃ + Q

)
,

with

�s = diag tr(X′X)−1X′
cXc

�s̃ = diag x̃′
c(X

′X)−1x̃c

while A,L and Q are matrices of order C × C with typical elements

acd ≡ tr(X′X)−1X′
cXc(X′X)−1X′

dXd

�cd ≡ x̃′
d(X

′X)−1X′
cXc(X′X)−1x̃d

qcd ≡
(
x̃′
c(X

′X)−1x̃d
)2

.

Then,

v̂ = (X′X ⊗ X′X)−1
∑
c

[
(vecX′

cXc)e′
c, (x̃c ⊗ x̃c)e′

c

]
�−1

∑
c

(
ε̂

′
cε̂cec˜̂ε2cec

)
(10)

is the unbiased estimator for the variance v.
Also, here, we present the simpler result when the regressors are neglected. Then,

� =
(

�n �n

�n �2
n

)
so �−1 =

(
�nW −W
−W W

)
,

withW ≡ (�2
n − �n)

−1. Then,

�−1
∑
c

(
ε̂

′
cε̂cec˜̂ε2cec

)
=

∑
c

1

nc(nc − 1)

(
(ncε̂

′
cε̂c − ˜̂ε2c)ec

( ˜̂ε2c − ε̂
′
cε̂c)ec

)
≡

∑
c

(
σ̂ 2
c ec

τ̂ 2c ec

)
,
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with σ̂ 2
c and τ̂ 2c implicitly defined. Then,

V̂ = (X′X)−1

[∑
c

(
σ̂ 2
c X

′
cXc + τ̂ 2c x̃cx̃

′
c

)]
(X′X)−1,

which is the obvious extension to the case of cluster-specific parameters from the one
where the parameters are the same over clusters, as discussed in Sect. 3.1.

3.3 Unrestricted error correlation within clusters

The third case we consider has errors that correlate freely within clusters, in a way
that differs over clusters. Thus,

� = diag 	c, (11)

where the 	c are nc × nc matrices of parameters. With

Sc ≡ Ik2 − Ik ⊗ X′
cXc(X′X)−1 − X′

cXc(X′X)−1 ⊗ Ik,

we now obtain

v̂ =
(
X′X ⊗ X′X +

∑
c

S−1
c

(
X′
cXc ⊗ X′

cXc
))−1 ∑

c

S−1
c

(
X′
cε̂c ⊗ X′

cε̂c
)

(12)

as the unbiased estimator of v for this case.
As regards the computability of v̂, notice the expression includes the inverse of a

k2 × k2 matrix with no exploitable structure. However, its inversion should not be
problematic computationally for a typical value of k. When cluster-specific dummies
are added to themodel, thematrix to be inverted increases in size to (k+C−1)2×(k+
C − 1)2. Any computational problem that might arise is easily averted by eliminating
the dummies through the within-transformation (subtract the cluster mean), which can
be performed in O(n). The results remain the same, but now in transformed variables,
and without the intercept, which becomes zero after the within-transformation.

Also, here, we consider the version of v̂ that neglects the regressors. Rearranged
into matrix format, it appears to be

V̂ = (X′X)−1
∑
c

X′
cε̂cε̂

′
cXc(X′X)−1. (13)

This estimator directly generalizes the White (1980) for cross-sections to clusters
and was introduced in the context of panel data analysis by Liang and Zeger (1986),
where it underlies the widely used panel-robust standard errors allowing for both
heteroskedasticity and correlation over time, see, e.g., Cameron and Trivedi (2005).
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4 Degrees of freedom

The various expressions for V̂ or v̂may be of interest by themselves but their main use
will be in inference on one particular regression coefficient, β�, say. For large C , the
critical values from a standard normal distribution can be used. However, in practice,
C is often small, and using a t-distribution is to be preferred. For instance, Stata uses
a t(C − 1)-distribution after the command regress y x, vce(cluster clustvar).

Following Satterthwaite (1946), Bell and McCaffrey (2002) proposed a refinement
by making the d.f. in the t-distribution data-dependent. The idea is as follows. Let v2�
be the variance of the OLS estimator β̂� and v̂2� an estimator of v2� . Let

T = β̂�

v�

/
v̂�

v�

.

Under normality of the regression errors, the numerator is N (0, 1) when β� = 0.
Letting v̂2� be the usual OLS-based estimator of v2� , the denominator is distributed
according to

(n − k)
v̂2�

v2�
∼ χ2

n−k, (14)

leading to the t(n − k)-distribution for T . This classical result gets lost when we
employ another estimator v̂2� than the usual one, like oneof the cluster-robust estimators
discussed in Sect. 3. The proposal of Bell and McCaffrey (2002) is to stay close to
(14), by setting the d.f. d� such that

d�

v̂2�

v2�

app∼ χ2
d�

,

where “app” stands for “approximately” in the sense that the first two moments of
d�v̂

2
�/v

2
� match those of a χ2-distribution with d� d.f. Using unbiased estimators of

the variance as derived in the preceding section proves its usefulness here since then
the first moments left and right match. Letting the second moments match means
var(d�v̂

2
�/v

2
� ) = 2d� or

d� = 2
(v2� )

2

var(v̂2� )
. (15)

Obviously, d� is not known and needs to be estimated. There are two issueswith this.
One is that d� may depend on parameters, which have to be estimated. A second issue
is that evaluating v2� and var(v̂2� ) requires the distribution of ε. As a practical solution

to obtain a reasonable value of d̂�, Bell and McCaffrey (2002) propose to simply take
ε ∼ N (0, σ 2In) as the “reference distribution.” Imbens and Kolesár (2016) suggested
to take the RE model as the reference distribution, ε ∼ N (0, σ 2In + τ 2BB), with B as
defined in (4). We will now derive expressions for d� for both cases. Given our focus
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on unbiased estimation, we extend previous results by using an unbiased estimator for
var(v̂2� ) and by using an unbiased estimator of any parameter that we meet in d�.

So, first following Bell and McCaffrey (2002), we let ε ∼ N (0, σ 2In). As v̂2�
is quadratic in ε̂, we can write v̂2� = ε̂

′A�ε̂ for some symmetric n × n matrix A�

whose particular form follows from (5), (10) or (12), depending on the case under
consideration. For notational simplicity, we will omit the subscript � to A from now
on and denote a ≡ vecA, so

v̂2� = ε̂
′Aε̂

= a′(ε̂ ⊗ ε̂)

= a′(M ⊗ M)(ε ⊗ ε)

hence,

var(v̂2� ) = 2σ 4a′(M ⊗ M)a

= 2σ 4trAMAM. (16)

From (5), (10) and (12), A readily appears to be block-diagonal, with cth block Ac

given by

Ac = r1Ic + r2ici
′
c, (r1, r2) = f ′�(X′X ⊗ X′X)−1(vecX′X, vecX̃′X̃)�−1

Ac = r1cIc + r2cici
′
c, (r′1, r′2) = f ′�(X′X ⊗ X′X)−1

∑
c

(
(vecX′

cXc)e′c, (x̃c ⊗ x̃c)e′c
)
�−1

Ac = XcQcX′
c, (vecQc)

′ = f ′�

(
X′X ⊗ X′X +

∑
c

S−1
c (X′

cXc ⊗ X′
cXc)

)−1

S−1
c ,

respectively, with f� ≡ e� ⊗ e� and r1 ≡ (r11, . . . , r1C )′ and likewise for r2. Since
v2� = σ 2e′

�(X
′X)−1e�, we obtain

d� =
(
e′
�(X

′X)−1e�

)2
trAMAM

, (17)

with

trAMAM = tr
∑
c,d

GcAcG′
c(I − P)GdAdG′

d(I − P)

= tr
∑
c

A2
c − 2tr(X′X)−1X′A2X + tr((X′X)−1X′AX)2. (18)

Computational gains can be had by exploiting the structure of Ac. Notice that the
expression for d� does not depend on unknown parameters since the factors σ 4 in the
numerator and the denominator cancel out.

Next, following Imbens and Kolesár (2016), we let � = σ 2In + τ 2BB′, with B as
defined in (4). Instead of (16), we now have var(v̂2� ) = 2trAM�MAM�M, and (17)
generalizes to
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d� =
(
e′
�(σ

2(X′X)−1 + τ 2(X′X)−1X̃′X̃(X′X)−1)e�

)2

trAM�MAM�M
. (19)

Here, both numerator and denominator depend on the parameters σ 4, τ 4 and σ 2τ 2,
which do not cancel out and hence have to be replaced by estimators. The lengthy
expression in the denominator poses another complication. Both complications are
addressed in “Online Appendix B”. Our simulation results indicate that this more
general procedure to estimate the degrees of freedom is particularly useful when the
clusters are of unequal size.

5 Simulation design

We take the simulation design of MacKinnon and Webb (2018) as our point of depar-
ture. The data generating process includes a treatment dummy and a continuous
variable. For c = 1, . . . ,C , it is

yc = icα + dcβ + xcγ + εc, (20)

with ic the intercept, dc the treatment dummy equal to 1 in clusters 1, . . . ,C1, which
we will vary from 1 to C − 1, and xc the continuous regressor, whose elements are
independent N (0, 1). The regression errors εc within cluster c are normally distributed
with their covariance matrix �c specified below. The errors are independent across
clusters. We set the parameters α = β = γ = 0, the number of clusters C = 14, and
the total number of observations n = 2800. The results below are based on 200,000
draws of (20). We draw the continuous variable xc only once.
Error covariance matrix To generate the data, we consider three increasingly
complicated designs for the covariance matrix of the εc.

1. Homogeneous design as Sect. 3.1,

�c = σ 2Ic + τ 2ici′c. (21)

with σ 2 = 1 and τ 2 = 0.1.
2. Restricted heterogeneous design as in Sect. 3.2,

�c = σ 2
c Ic + τ 2c ici

′
c σ 2

c = exp

(
2δ

C − c

C − 1

)
τ 2c = ρσ 2

c . (22)

This way of including heterogeneity across clusters is borrowed fromMacKinnon
and Webb (2018). We set ρ = 0.1 and δ = ln(2)/2, which means that σ 2

c ranges
from 1 to 2.

3. Unrestricted heterogeneous design as in Sect. 3.3,

�c = σ 2Ic + τ 2ici′c + diag(xc)2/2, (23)

with σ 2 and τ 2 as in the homogeneous design.
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Balance An important design choice is the number of observations per cluster. We
first consider a balanced design, where the number of observations per cluster is equal
to n/C = 200, and next an unbalanced design, where the number of observations
depends on the cluster index according to

nc = int

(
n

exp(γ c/C)∑
c exp(γ c/C)

)
, c = 1, . . . ,C − 1, nC = n −

∑
c

nc. (24)

We set γ = 2, which implies cluster sizes ranging from 67 to 438 observations.
Variance estimators and reference distributions We consider the following methods
to obtain t-values for the OLS estimate for β in (20).

1. The first benchmark t-values are based on the cluster extension ofWhite’s standard
errors due to Liang and Zeger (1986) as already introduced in (13), but with a
finite-sample correction as implemented in Stata,

V̂LZ1 = C

C − 1

n − 1

n − k
(X′X)−1

∑
c

X′
cε̂cε̂

′
cXc(X′X)−1.

Following Stata, we compare the resulting t-statistic against the critical values of
a t(C − 1) distribution. We denote this benchmark method by STATA.

2. The second benchmark t-values implement the Liang and Zeger (1986) standard
errors with a HC2 correction as in Bell and McCaffrey (2002).

V̂LZ2 = (X′X)−1
∑
c

X′
c(Ic − Pcc)

−1/2ε̂cε̂
′
c(Ic − Pcc)

−1/2Xc(X′X)−1,

where Pcc ≡ Xc(X′X)−1X′
c. Computation of V̂LZ2 involves the inverse of the

square root of the nc × nc matrices Ic − Pcc, which can be problematic for large
nc. However, Niccodemi et al. (2020) and Kolesár (2022) show how efficient
computation can be achieved, that is, in O(nc). We compare the t-statistic that
follows from using V̂LZ2 against the critical values of a t(dIK) distribution, with
dIK the d.f. suggested by Imbens and Kolesár (2016). We denote this benchmark
method by LZIK.

3. The third benchmark is the wild cluster bootstrap proposed by Cameron et al.
(2008). Its asymptotic validity under a diverging number of clusters was shown
by Djogbenou et al. (2019). We implement the restricted version as described in
Sect. 3.2 of MacKinnon (2022), where we set the number of bootstrap draws at
999. This version calculates the distribution of t-statistics that are based on the
variance estimator V̂LZ1 defined above. Since our simulation setting is close to the
one analyzed by MacKinnon and Webb (2018), the results for the wild bootstrap
coincide with their findings.

4. We use the three unbiased variance estimators from Sects. 3.1–3.3, denoted by
UV1, UV2, and UV3, respectively, and compare the resulting t-statistics against
the critical values of a t-distribution for both reference distributions considered
(indicated by RV0 and RV1, respectively), so with d.f. d� from (17) and from (19).
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Fig. 1 Size of the t test for the treatment dummy, SV1

This yields six cases, UV1(RV0), UV1(RV1), UV2(RV0), UV2(RV1), UV3(RV0),
and UV3(RV1).

Notice that LZ2 does not exist when the number of (un)treated clusters is smaller than
two, and that UV2(·), UV3(·) do not exist when the number of (un)treated clusters is
smaller than three. We then set the size to zero.

6 Simulation results

The main results of the simulations are presented in Figs. 1 , 2and 3 , based on data
simulated with error covariance matrix as in (21), (22) and (23), respectively. They
show the size of the t test for H0 : β = 0, with β the coefficient of the dummy
variable in (20). The number of treated clusters is on the horizontal axis. The upper
panel of each figure is for the balanced case and the lower panel for the unbalanced
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Fig. 2 Size of the t test for the treatment dummy, SV2

case as described in (24). Each figure shows seven curves. The first four are STATA,
LZIK, UV1(RV0), UV1(RV1). When we analyze the t-test on the treatment vari-
able, the differences between UV2(RV0) and UV3(RV0), as well as those between
UV2(RV1) and UV3(RV1), are not visible, so we report those as UV2/3(RV0) and
UV2/3(RV1). Finally, we report the results for the restrictedwild bootstrap. Notice that
three variances are involved: the reference variance to obtain d�; the variance whose
unbiased estimator was used; and the variance used in the simulation. For clarity, Table
1summarizes.

The most relevant curves in all three figures are the ones labeled UV1(RV1) in
Fig. 1, upper and lower panels. The homogeneous RE design can be considered the
more or less generic case in the clustered-error literature and, as is apparent from
Table 1, this particular curve is maximally based on this design as it underlies the data
generation SV1, the variance estimator UV1, and d� based on RV1.
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Fig. 3 Size of the t test for the treatment dummy, SV3

Table 1 Overview of the variances used

�c Reference variance Unbiased estimator Simulation variance

σ 2Ic RV0

σ 2Ic + τ2ici′c RV1 UV1 SV1

σ 2
c Ic + τ2c ici

′
c UV2 SV2

	c UV3 SV3

SV1 Inspecting Fig. 1 we see, for the balanced design in the upper panel, excellent size
control for UV1(·). This holds even when there is only a single treated cluster. It does
not appear to matter whether the d.f. are calculated under the more restrictive i.i.d.
assumption, UV1(RV0), or the RE structure, UV1(RV1). By contrast, UV2(·), UV3(·)
and LZIK are slightly conservative when we have a small or large number of treated
clusters. The STATA variance estimator performs quite poorly, especially when the
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number of treated clusters is small or large. The bootstrap with t-statistics based on
the STATA variance estimator performs much better.

Moving to the unbalanced setup in the lower panel of Fig. 1, we see that UV1(RV0)
no longer provides accurate size control. However, UV1(RV1), the most relevant case
as argued above, still exhibits excellent performance. The additional computational
complexity of this approach appears to pay off.We also see that, unlike in the balanced
case, the results for UV2(RV0) and UV3(RV0) differ from the benchmark variance
estimator LZIK. The unbiased variance estimators are more conservative for a small
number of treated clusters, while becoming slightly oversized for 9–11 treated clus-
ters. UV2(RV1) and UV3(RV1) are again very close to LZIK. The STATA variance
estimator again is found not to accurately control size. For the bootstrap, we find that
it is undersized for a small number of treated clusters and oversized for a large number
of treated clusters.

SV2 In Fig. 2, we show the size for t tests based on the various variances estimators
under the restricted heterogeneous design where each cluster has its own variance and
covariance parameter. This setup is more general than the homogeneous design in
which each cluster has the same variance and covariance parameter. As expected, the
performance of UV1(RV0) and UV1(RV1) somewhat deteriorates in this setup, with
size slightly below 0.10 for the case of a single treated cluster and balanced design. The
same is observed for an unbalanced design, with the size obtained under UV1(RV1)
being just over 0.10.

For UV2 andUV3, under both d.f., and LZIK, we see the test slightly overrejects for
a small number of treated clusters. When the number of treated clusters increases, the
tests become progressively more conservative. Again, a difference emerges between
UV2, UV3 and LZIK in the unbalanced case presented in the lower panel of Fig. 2.
Here, size control is more accurate for UV2 and UV3 compared to LZIK. Especially
UV1(RV0) and UV2(RV0) perform well in this setup, providing accurate size control
up to roughly eight treated clusters. With more treated clusters, they tend to be con-
servative, although not as much as LZIK. The bootstrap performance is similar to that
in SV1, although in a balanced design with a small number of treated clusters, it is
slightly oversized.

SV3 The results for the unrestricted heterogeneous design are nearly identical to
those in the homogenous design for the STATA variance, the bootstrap, LZIK and
UV2 and UV3 under both d.f. corrections. For UV1, we find reasonable performance
when clusters are balanced. When the clusters are unbalanced, UV1(RV0) becomes
oversized for a small number of treated clusters and undersized when the number of
treated clusters is large. The more general d.f. correction in UV1(RV1) partly corrects
these size distortions.

So far for the test on β, the coefficient of the cluster-specific dummy variable. We
can be much more concise as to γ , the coefficient of the continuous variable. For SV1
and SV2, the size control is almost perfect. This no longer holds for SV3, where the
size is still almost perfect for STATA, LZIK, UV3(·) but appears to be double the
nominal size forUV 1(·) and UV2(·); the latter methods are apparently sensitive when
the data are generated according to more general scheme SV3.
Degrees of freedom in SV1 Given the notable differences in performance when using
degrees of freedom based on RV0 or RV1, we analyze the degrees of freedom under
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Fig. 4 Simulations: treatment dummy with homogeneous error covariance matrix. Degrees of freedom

SV1 in Fig. 4. For a balanced design, we see that the degrees of freedom for UV1 are
equal to C − 2. Donald and Lang (2007) show that if the design is balanced and if all
regressors are invariant within clusters, the t-statistic is t(C − k) distributed, where k
is the number of regressors in the model. We can expect the same result to apply here
since the continuous variable is uncorrelated with the treatment dummy.

Under a balanced design, the degrees of freedom for the other methods are nearly
identical. They are low when the number of treated clusters is low and increase to
their maximumwhen half of the clusters is treated. This maximum appears to coincide
numerically with C − k as well.

When the design is unbalanced, we see a strong deviation from the degrees of
freedom under RV0 to those under RV1. This is especially true for UV1 and a small
number of treated clusters. For the remaining variance estimators, we see that under
RV0 the degrees of freedom are asymmetric in the number of treated clusters, while
those under RV1 are symmetric.
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Theoretical explanation of the differences The simulations highlight that UV1 can
offer accurate size control even with only a single treated cluster, while UV2 and UV3
require a somewhat larger number of treated clusters. To explain these results from
a theoretical perspective, we derive in “Online Appendix C” the required conditions
for the consistency of the variance estimators in a simple model. There is a single
treatment variable that is equal to one in tC out of C clusters. The design is balanced,
so that each cluster has n/C observations. The errors are N (0,�) with � as in Sect.
3.1. “Online Appendix C” shows that UV1 is consistent if n2/C3 → 0. This requires
the number of clusters to grow sufficiently fast, but does not impose any restriction on
the number of treated clusters. For UV2 and UV3 on the other hand, we find that the
number of treated clusters should diverge sufficiently fast so that n2/(C2 · tC ) → 0.
In contrast to UV1, we now only achieve consistency when the number of treated
clusters goes to infinity. These results explain the difference in performance of the
variance estimators when the number of treated clusters is small.

7 A placebo-regression experiment

To analyze the performance of the unbiased variance estimators in an empirical setting,
we consider a placebo-regression experiment. Placebo regressions were originally
proposed by Bertrand et al. (2004) to analyze the validity of commonly used standard
errors for difference-in-difference estimators. We consider an application similar to
that in Cameron and Miller (2015).

We use the Current Population Survey (CPS) 2012 data set that can be obtained
from https://cps.ipums.org/cps/. The data consist of 51 clusters: the fifty
American states and the District of Columbia. The number of observations in each
cluster varies from 519 (Montana) to 5866 (California). For observation h in cluster
i = 1, . . . ,C , we define the model

ln(wage)hi = β0 + β1educhi + β2agehi + β3age
2
hi + β4policyi + εhi .

(25)

Here,policy is a fake policy variable that is randomly assigned toC1 = 1, . . . ,C−
1 sampled clusters and constantwithin each cluster. Since the policy variable is fake,we
expect 5% rejections across the replications when we test the hypothesis H0 : β4 = 0
at the 5% level.

In line with the simulations in the previous section, we sample a subset of C = 14
clusters from the 51 available clusters. We consider two different ways of sampling
this subset. In the first, we randomly sample clusters with replacement. To test the
methods in an unbalanced setup, we also consider using the 3 states with the most
observations and the 11 states with the fewest observations. To preserve the relative
share of observations in each cluster, we randomly sample with replacement 20% of
the observations within each sampled cluster.

Figures 5and 6show the empirical size (upper panel) and the degrees of freedom
(lower panel) averaged over 10,000 replications for the four different designs. The
x-axis again depicts the number of treated clusters.
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Fig. 5 Application: randomly drawn states. Size and degrees of freedom

In line with the Monte Carlo results from the previous section, we see that the
Stata variance estimator with C − 1 degrees of freedom is severely oversized. This
effect is largely mitigated by using the bootstrap, although it is consistently oversized
for a moderate number of treated clusters. This is especially the case in the “3–11”
setting. In contrast, we find remarkably good size control for UV1(RV1) across the
designs. The degrees of freedom drop considerably when moving from RV0 to RV1.
This shows that the use of RV1 is of empirical relevance, especially in the settings
with higher imbalance and a small number of (un)treated clusters. The LZIK variance
estimator also performs well, although it is oversized in the highly unbalanced “3–11”
setting. There the unbiased variance matrix estimators control size more accurately.
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Fig. 6 Application: “3–11”. Size and degrees of freedom

8 Concluding remarks

The point of departure in this paper has been to derive unbiased estimators of the
covariance matrix of the OLS estimator when the data are clustered. We considered
three cases, the leading one being theREmodel. This led to ourmain research question,
which is to assess the performance of these estimators in the t test for a particular
regression coefficient, both among each other and vis-à-vis two oft-used alternatives.

We addressed this question by simulation, in a regression model with a two regres-
sors, one being continuous and distributed equally in all clusters, while the other
regressor represented a cluster-specific treatment dummy. The main finding of the
simulation study was the excellent behavior of the t test based on the unbiased estima-
tor for the RE model, for the case that the data actually have been generated according
to this model and the degrees of freedom have been based on it. So the three variances
that play a role are aligned. This result holds for the coefficient of the cluster-specific

123



2532 T. Boot et al.

dummy variable; there is hardly a noticeable difference in performance for between
the other variance estimators underlying the t test.

The random-effects model considered in Sect. 3.1 suggests an issue worthy of
investigation. Throughout the paper, we considered the OLS estimator and the t-
values related to it under various specifications. However, we can also consider the
feasible GLS estimator. When the random-effects specification would be the correct
one (and the random-effects parameters would be known exactly), the model would
have no clustered-error terms anymore, after the usual transformation well-known
from the panel data literature. Unlike the transformation corresponding with fixed
effects, the transformation for random effects keeps cluster-specific regressors in the
model, althoughwith little variation over time, so leading to large variances of theGLS
estimators. It is interesting to know how this would work out in theory and practice.

In our analysis, we have restricted ourselves to the case of a cross-sectional model.
Anobvious topic for future research is an extension to case of panel data anddifference-
in-difference models.

A next step is to see if the excellent behavior mentioned above also shows up in the
case where the three variances are still aligned but now pertain to the more flexible
RE model where the two error-components parameters differ over clusters. While
by itself this is eminently doable, the question arises to test this heterogeneous RE
structure against the homogeneous one. An obvious starting point is the score test
context proposed by Breusch and Pagan (1980). Deriving the relevant expression is
straightforward but deriving the (limiting) distribution of the test statistic is not since
the number of parameters grows with the number of clusters. We can have n → ∞
when C → ∞ but we can also consider keeping C fixed while letting the number of
observations per cluster go to infinity, or any combination of the two.

The results in the paper on the quality of unbiased estimators in the t test are based
on simulation only. We are not aware of any theory that might help giving these results
a theoretical basis. There is certainly a research challenge here.
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