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Fusion-S2iGan: An Efficient and Effective
Single-Stage Framework for Speech-to-Image

Generation
Zhenxing Zhang and Lambert Schomaker

Abstract—The goal of a speech-to-image transform is to
produce a photo-realistic picture directly from a speech signal.
Recently, various studies have focused on this task and have
achieved promising performance. However, current speech-to-
image approaches are based on a stacked modular framework
that suffers from three vital issues: 1) Training separate networks
is time-consuming as well as inefficient and the convergence
of the final generative model strongly depends on the previous
generators; 2) The quality of precursor images is ignored by this
architecture; 3) Multiple discriminator networks are required to
be trained. To this end, we propose an efficient and effective
single-stage framework called Fusion-S2iGan to yield perceptu-
ally plausible and semantically consistent image samples on the
basis of given spoken descriptions. Fusion-S2iGan introduces a
visual+speech fusion module (VSFM), constructed with a pixel-
attention module (PAM), a speech-modulation module (SMM)
and a weighted-fusion module (WFM), to inject the speech
embedding from a speech encoder into the generator while
improving the quality of synthesized pictures. Fusion-S2iGan
spreads the bimodal information over all layers of the generator
network to reinforce the visual feature maps at various hierarchi-
cal levels in the architecture. We conduct a series of experiments
on four benchmark data sets, i.e., CUB birds, Oxford-102,
Flickr8k and Places-subset. The experimental results demonstrate
the superiority of the presented Fusion-S2iGan compared to
the state-of-the-art models with a multi-stage architecture and
a performance level that is close to traditional text-to-image
approaches.

Index Terms—speech-to-image transform, single-stage archi-
tecture, generative adversarial network, attention mechanism and
fusion module

I. INTRODUCTION

THE task of speech-to-image generation aims to automat-
ically yield photo-realistic and semantically consistent

photographs directly from given speech signals. In recent
years, this topic has drawn rapidly growing interest from multi-
disciplinary communities. It can be potentially used in a wealth
of real-world applications, such as creating novel, visually
interesting photos providing ideas for visual artists, photograph
editing according to the spoken description, generating new
data in machine learning [1], when augmentation is needed in
training, e.g., classifier, and helping disabled persons produce
pictures.

The availability of a speech-to-image transform would allow
for an AI system to check the visual implications of a spoken

Zhenxing Zhang and Lambert Schomaker are with the Bernoulli Insti-
tute, University of Groningen, Groningen 9747, The Netherlands (e-mail:
z.zhang@rug.nl; l.r.b.schomaker@rug.nl.)

narrative. Consider, for example, the ‘telephone test’, where a
human describes a 5-image cartoon or comic strip by speech
and the system needs to provide its visual associations to
reconstruct the original image input. Incongruencies between
original and reconstruction may be a useful source of in-
formation for continuous learning, both in terms of visual
and textual congruence. As an example, a spoken original
cartoon description can be visualized by the speech-to-image
GAN, its output can be captioned [2] and this text can be
compared to the recognized spoken description. From the
textual discrepancies a loss can be computed that is used for
training and improving consistency in a cyclic manner.

Moreover, researching speech-to-image synthesis may help
cognitive-science researchers to investigate how humans grad-
ually understand the world. Several studies [3]–[5] reveal that
human infants know many aspects of their native language
by perceiving and analyzing the features of the speech signal
such as consonants and vowels. More significantly, infants
are able to understand the meanings of numerous ordinary
nouns through daily experience with language before they are
capable of reading [6]. For example, infants will attend to
the banana present in their visual field when hearing ‘Look,
a banana!’ from their parents. This illustrates that strong
connections between vision and speech signals are being
created at this early age and infants acquire the capability
of discovering the semantic relationships between the spoken
words and the visible objects. We think that research on
synthetic-image generation directly from speech audio may
provide a way of looking into the problems that the human
brain is confronted with when forming a visual association on
the basis of speech input. Note that in this task, an intermediate
textual representation can be avoided (learning to read text
happens at a much later stage, in children). In traditional AI,
the abstract symbolic nature of text is considered to be an
essential property and the pinnacle of intelligent information
processing. However, the assumption that decoded speech
(‘recognized text’) is a necessity for image generation has not
been proven. From the point of view of deep machine learning,
there is no strict necessity to rely on an intermediate symbolic
text code. Vectorial representations may also be suitable for
abstract representations, as has been shown extensively in
recent years [7].

The task of speech-to image generation has a variety of
advantages over text-to-image synthesis [8], [9], whose goal
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is to produce high-resolution image samples semantically
aligning with input natural-language descriptions.

Firstly, spoken language may play a more advanced role
in controlling and directing an image-generation process than
the text modality. Compared to encoded text, speech signals
contain, in addition to the pertinent phonemes, rich charac-
teristics that can be roughly divided into timbre, prosody,
rhythm, intonation, stressed components, etcetera [10], [11].
Prosody allows speakers to express the attitude and emotional
states, providing key non-verbal cues that help the listener to
understand the spoken description [12]. For instance, when a
person says: ‘There is a fire’ in a neutral or falling intonation,
it is probable that the fire is not big. However, if the speaker
says the same sentence in a sharp intonation, then it may be
more likely that this is a case of a large, risky fire. The example
shows that text alone may not be sufficient to convey subtleties
of the speaker’s intention. It is possible to introduce non-
verbal cues, e.g., emotional features, for conditional-image
synthesis. Incorporating prosody information into the design of
picture-generation systems will also be very beneficial for their
applications, where users can produce desired photographs
by adjusting intonation. Since current text-to-speech synthesis
models with deep-learning techniques allow for prosody mod-
ulation [11], synthesizing pictures on the basis of emotional
features and linguistic information of speech signals should be
feasible using such produced training data.

Secondly, the auditory modality is the most commonly used
and natural way for humans to communicate information with
each other in daily life, while written-form language is more
slow and elaborate. For these reasons, compact speech-to-
image generation systems may become interesting in com-
parison to a pipeline of a speech-recognizer followed by a
standard text-to-image algorithm.

Thirdly, there are about 3,500 languages lacking orthog-
raphy or written form [13], which makes it impossible to
train a text-to-image synthesis model for these languages and
thus text-to-image systems cannot benefit these populations.
Since acquiring speech signals is relatively easy and not
limited by languages, an adequate speech-to-image generation
architecture can be designed for these populations. This may
be interesting in language research in the humanities. The
presence of such tools would allow for an immediate inspec-
tion of the correspondence between spoken description and the
generated image, by subjects and scholars.

In summary, spoken descriptions are suitable to explicitly
and accurately describe an image using linguistic and emo-
tional information, and researching speech-to-image synthesis
has practical and scientific implications. Nevertheless, speech-
to-image generation remains a considerably challenging cross-
modal task. Different from textual descriptions, a speech
signal is not discrete but continuous, lacking regular breaks
between words, i.e., the spaces in the written-form text. This
characteristic will make it difficult for the model to grasp
the linguistic information of spoken captions of photographs
and pictures while learning the corresponding embeddings.
Besides, spoken descriptions contain not only the linguistic
content but also the non-verbal cues, e.g., emotion, intent
and attitude of a speaker, which are significant for generated
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Fig. 1. The comparison between the stacked framework and the proposed
architecture. The multi-stage pipeline (a) entails training separate genera-
tors to obtain high-quality samples. The presented Fusion-S2iGan (b) is
capable of producing visually plausible pictures only employing a single
generator/discriminator pair. In (a), G0-G2 are generators and D0-D2 are
discriminators. In (b), B0-B6 are the dual-residual speech-visual fusion
blocks discussed in Section III, and G and D are the generator network
and discriminator network, respectively.

samples. These features present another crucial challenge for a
speech-to-image generation system: How to effectively inject
these features into a neural network which has a large 2D
color image as its output? Note that the common speech-
text recognition step is not necessary when using speech-
audio descriptions to image generation and emotional features
in speech signals would additionally be lost. Unfortunately,
there are as yet no suitable data sets with emotional speech
in different degrees, describing a corresponding image in each
sample. However, as a first step in the direction of exploiting
the potential of speech-audio we will focus on non-emotional
speech-to-image transforms.

We are not the first to attempt to translate speech signals into
high-resolution pictures directly. For example, Li et al. [14]
introduced a multi-stage speech-to-image GAN architecture to
produce photo-realistic pictures semantically correlated with
the input spoken description. In order to better capture the
linguistic information, the researchers adopted a well-trained
image encoder as a ‘teacher’ to train the speech encoder from
scratch. Wang et al. [13] designed a new speech-embedding
network (SEN) to obtain the speech vector. Furthermore, a
relation-supervised densely-stacked generative model is devel-
oped to yield high-quality photographs.

These speech-to-image GAN models adopt a multi-stage
framework (see Fig. 1(a)), where several generators and dis-
criminators are employed to produce visually plausible sam-
ples. Although this architecture has now acquired promising
results in the speech-to-image generation task, there still exist
three vital problems. First, this framework entails training
separate networks and is therefore inefficient as well as time-
consuming [9]. Even worse, it is difficult for the final generator
to output perceptually realistic photographs when the earlier
generator networks do not converge to a global optimum [8].
Second, the quality of the outputs of the previous generator
networks [15] is ignored by this architecture. Contextual
vectors are not used to enhance and modulate the visual feature
maps in the generator for precursor images, which comprises
up-sampling operations and convolutional layers [8]. Third,
several discriminator networks are required to be trained.
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In recent years, we have proposed two novel single-stage
text-to-image GAN models, i.e., DTGAN [8] and DiverGAN
[9], to address the above-mentioned issues of a multi-stage ar-
chitecture. Both DTGAN and DiverGAN are capable of adopt-
ing a single generator/discriminator pair to produce photo-
realistic and semantically correlated image samples on the
basis of given natural-language descriptions. In DTGAN, we
presented dual-attention models, conditional adaptive instance-
layer normalization and a new type of visual loss. In Di-
verGAN, we extended the sentence-level attention models
introduced in DTGAN to word-level attention modules, in
order to better control an image-generation process using word
features. Moreover, we proposed to insert a dense layer into
the pipeline to address the lack-of-diversity problem present
in current single-stage text-to-image GAN models. Inspired by
these previous works and in order to overcome the problems
of a stacked framework, we introduce a visual+speech fusion
module as well as several effective loss functions, which
contribute to a new single-stage speech-to-image architecture.

The contributions of this paper can be summarized as
follows:
• We present a novel effective and efficient single-stage

architecture called Fusion-S2iGan (see Fig. 1(b)) for speech-
to-image transforms, which is capable of producing high-
quality and semantically consistent pictures only using a
generator/discriminator pair.
• We design a visual+speech fusion module (VSFM) to

effectively feed the speech information from a speech encoder
to the neural network while improving the quality of generated
photographs. More importantly, we spread the bimodal infor-
mation over almost all layers of the generator. This allows for
an influence of the speech over features at various hierarchical
levels in the architecture, from crude early features to abstract
late features.
• To the best of our knowledge, we are the first to apply

(1) the hinge loss, (2) deep attentional multimodal similarity
model (DAMSM) loss and (3) matching-aware zero-centered
gradient penalty (MA-GP) loss in speech-to-image generation,
which are beneficial for the convergence and stability of the
generative model.
• We carry out extensive experiments on four benchmark

data sets, i.e., CUB bird [16], Oxford-102 [17], Flickr8k
[18] and Places-subset [19]. The experimental results suggest
that the proposed Fusion-S2iGan has the capacity to yield
better pictures than current multi-stage speech-to-image GAN
models such as StackGAN++ [20], Li et al. [14] and S2IGAN
[13].
•We explore how far can current single-stage text-to-image

methods be used for the speech-to-image transform task, which
is depicted in Section VIII-C.

The remainder of this paper is organized as follows. Sec-
tion II reviews related works. In Section III, we introduce the
architecture of the proposed Fusion-S2iGan in detail. In Sec-
tion IV, we elaborate on the presented visual+speech fusion
module. Experimental settings are discussed in Section V and
results are reported in Section VI, VII and VIII. Section IX
draws the conclusions.

II. RELATED WORK

In this section, research fields related to our work are de-
scribed, including text-to-image generation and speech-audio-
to-image synthesis.

A. Text-to-Image Generation

Many text-to-image synthesis approaches are built upon the
original conditional generative adversarial network (cGAN)
[21] due to its appealing performance. We roughly group them
into two categories in terms of the number of the generators
and the discriminators they use.

1) Multi-stage models: Zhang et al. [20] suggested em-
ploying several generators and discriminators to boost image
quality and semantic relevance while presenting the first multi-
stage text-to-image generation framework named StackGAN.
StackGAN serves as a strong basis for the future research. Xu
et al. [22] proposed to incorporate a spatial-attention module
into the design of a stacked architecture, in order to better
bridge the semantic gap between vision and language. Qiao
et al. [23] developed MirrorGAN that introduced an image-to-
text model to ensure that synthesized pictures are semantically
related to given textual descriptions. Zhu et al. [15] built
DMGAN where a dynamic-memory module is applied to
enhance the image quality in the initial stage. CPGAN [24]
designed a memory structure to parse the produced image in an
object-wise manner and introduced a conditional discriminator
to promote the semantic alignment of text-image pairs.

2) Single-stage methods: Reed et al. [25] were the first to
use a single generator/discriminator pair to yield samples on
the basis of natural-language descriptions. However, the res-
olution of generated pictures is limited owing to the unstable
training process as well as the lack of an effective structure.
Tao et al. [26] developed a matching-aware zero-centered
gradient penalty loss to help stabilize the training and improve
the image quality of a single-stage text-to-image GAN model.
Zhang et al. [8] presented DTGAN, in which dual-attention
models, conditional adaptive instance-layer normalization and
a new type of visual loss are designed to generate perceptually
realistic images only using a single generator/discriminator
pair. Zhang et al. [9] proposed DiverGAN inserting a dense
layer into the pipeline to address the lack-of-diversity problem
present in current single-stage text-to-image GAN models.
Zhang et al. [27] introduced linear-interpolation and triangular-
interpolation techniques to explain the single-stage text-to-
image GAN model. Moreover, a Good/Bad data set was cre-
ated to select successfully generated images and corresponding
good latent codes.

B. Speech-audio-to-Image Synthesis

With the recent rapid advances in generative-adversarial
networks (GANs) [28] and conditional GANs (cGANs) [21],
speech-to-image generation has made promising advances in
image quality and semantic consistency when given speech-
audio signals as inputs. Various studies focused on synthesiz-
ing images conditioned on the sound of music. Chen et al. [29]
made the first attempt to use the cGAN to produce samples on
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the basis of music audio. Hao et al. [30] presented a unified
architecture (CMCGAN) for audio-visual mutual synthesis.
Specifically, CMCGAN incorporated audio-to-visual, audio-
to-audio, visual-to-audio and visual-to-visual networks into the
pipeline for cyclic consistency and better convenience.

Some publications tried to reconstruct a facial photograph
from a short audio segment of speech. Duarte et al. [31]
proposed an end-to-end speech-to-face GAN model called
Wav2Pix, which has the ability to synthesize diverse and
promising face pictures according to a raw speech signal. Oh et
al. [32] developed a reconstructive speech-to-face architecture
named Speech2Face that contains a voice encoder and a pre-
trained face decoder network. The encoder is used to extract
face information from the given speech and the decoder aims
to reconstruct a realistic face sample.

Different from the above approaches, several papers aimed
at translating a spoken description of an image into a high-
quality picture directly. Li et al. [14] attempted to apply
a multi-stage speech-to-image GAN model to yield percep-
tually plausible pictures semantically correlated with input
speech-audio descriptions. To better acquire the speech em-
bedding, the researchers used a well-trained image encoder as
a ‘teacher’ to train the speech encoder from scratch. Wang
et al. [13] proposed S2IGAN where a speech-embedding
network (SEN) was designed to obtain the spoken vector
and a matching loss and a distinctive loss were presented to
train SEN. In addition, a relation-supervised densely-stacked
generative model is introduced to produce high-resolution
images.

This paper focuses on solving the task of speech-to-image
synthesis only using a single generator/discriminator pair.

III. FUSION-S2IGAN FOR SPEECH-TO-IMAGE GENERATION

The overall framework of Fusion-S2iGan for a speech-to-
image transform is presented in Fig. 2. The architecture only
consists of a generator and a discriminator. Next, we introduce
these two components one by one.

A. Preliminary

The goal of speech-to-image generation is to yield per-
ceptually plausible samples that are semantically correlated
with the linguistic content of input spoken descriptions. Math-
ematically, let {(Ii, Si)}ni=1 represent a suite of n image-
spoken caption pairs for training, where Ii indicates an image
and Si = (s1i , s

2
i , ..., s

k
i ) refers to a set of k speech-audio

descriptions of Ii. The generator of a speech-to-image GAN
model aims to synthesize a high-resolution and semantically
related picture Îi on the basis of a speech signal si randomly
picked from Si. In the meantime, the discriminator is trained
to separate the real image-speech pair (Ii, si) from the fake
image-speech pair (Îi, si).

B. Generator

The generator is able to project a speech signal into a photo-
realistic and semantically consistent picture, shown in Fig.
2(a). More specifically, the generator network is composed of

a dense layer transforming a latent code to the initial feature
map and seven dual-residual speech-visual fusion blocks mod-
ulating the visual feature map with the spoken vector derived
from a speech encoder. The speech encoder is employed to
learn the semantic representation and conceptual meaning of a
given spoken description that capture the discriminative visual
details [33].

The designed dual-residual speech-visual fusion block (see
Fig. 2(c)) contains two effective and efficient visual+speech
fusion modules (see Fig. 2(d)) as well as a suite of ReLU acti-
vation functions and convolutional layers. Each visual+speech
fusion module comprises Batch Normalization (BN) [34], a
pixel-attention module (PAM), a speech-modulation module
(SMM) and a weighted-fusion module (WFM). The dual-
residual speech-visual fusion block allows us to easily enhance
model capacity by effectively increasing the number of layers,
while also stabilizing the training process by maintaining
more original features than cascade structures. Benefiting from
such dual-residual speech-visual fusion blocks, the generator
network has the ability to yield high-quality pictures. The
process of synthesizing photographs on the basis of a speech
signal is formulated as follows:

h0 = F0(z) (1)

h1 = FDual
1 (h0, s) (2)

hi = FDual
i (hi−1 ↑, s) for i = 2, 3, ..., 7 (3)

o = Gc(h7) (4)

where z is a latent vector randomly sampled from the normal
distribution, F0 is a dense layer, s is the speech embedding
from a speech encoder, FDual

i is the presented dual-residual
speech-visual fusion block and Gc is the last convolutional
layer. The details of the proposed visual+speech fusion module
will be discussed in Section IV.

C. Discriminator
The architecture of the discriminator network comprises an

image encoder, a pre-trained speech encoder and a conditional
discriminator network, depicted in Fig. 2(b). To be specific,
the image encoder is constructed with one convolutional
layer with strides 1 kernel size 3 padding 1 followed by six
adaptively successive residual blocks. Each block consists of
two convolutional layers, where the first layer with strides 2
kernel size 4 padding 1 is used to reduce the dimension to
half of the input feature map and the second one with strides 1
kernel size 3 padding 1 aims to further distill image features.
After each convolutional layer, Leaky-ReLU activation [35]
with a slope of 0.2 is utilized to help the training. The number
of filters for residual blocks are 64 128 256 512 1024 1024,
respectively. In order to stabilize the learning, we incorporate a
residual connection into each block. In the process of training,
a picture is fed into the image encoder to extract the image
features (1024, 4, 4) which are combined with the spoken
vector from the speech encoder as the joint embeddings. After
that, the joint features are passed through the conditional
discriminator to gain the final conditional score, which is
utilized to determine whether the input image-spoken caption
pair is real or fake.
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Fig. 2. The overall framework of the proposed Fusion-S2iGan. FC is a dense layer, Conv is a convolutional layer, ReLU is a ReLU activation function and
BN is a Batch-Normalization operation. Additionally, Residual Block and Fusion Module refer to the presented dual-residual speech-visual fusion block (see
(c)) discussed in Section III-B and visual+speech fusion module (see (d)) discussed in Section IV, respectively. Furthermore, PAM, SMM and WFM in (d)
represent the pixel-attention module, speech-modulation module and weighted-fusion module, respectively, discussed in Section IV. Note that we do not plot
the up-sample layers between Residual Blocks in (a) due to the limited space.

D. Objective Function

An adversarial loss is employed to match generated samples
to input speech signals. Inspired by [9], we utilize the hinge
objective [36] for stable training instead of the vanilla GAN
objective. The adversarial loss for the discriminator is defined
as follows:

LD
adv =Ex∼pdata [max(0, 1−D(x, s))]

+
1

2
Ex∼pG

[max(0, 1 +D(x̂, s))]

+
1

2
Ex∼pdata [max(0, 1 +D(x, ŝ))]

(5)

where s is a given spoken caption, ŝ is a mismatched speech-
audio description, x is the real image from the distribution
pdata and x̂ is the synthesized sample from the distribution
pG,

To enhance the image quality and semantic consistency of
produced pictures, we adopt the matching-aware zero-centered
gradient penalty (MA-GP) loss [26] for the discriminator,
which applies gradient penalty to real images and input spoken
descriptions. The MA-GP Loss is formulated as follows:

LM = Ex∼pdata [(‖∇xD(x, s)‖2 + ‖∇sD(x, s)‖2)
p] (6)

For the generator, we apply an adversarial loss and a deep
attentional multimodal similarity model (DAMSM) loss [22]
to train the network.

IV. VISUAL+SPEECH FUSION MODULE

It is widely known that the semantic relationships between
the visual content of photographs and images and the corre-
sponding conditional contexts, e.g., class labels and textual
descriptions, play a significant role in an image-generation
process. However, this correlation will be more complicated
for speech-to-image synthesis, since the speech signal is long
and continuous, lacking word boundaries, i.e., the spaces
in natural-language descriptions. It is thus very difficult to
model the affinities between the linguistic content of spoken
descriptions and the visible objects. Moreover, word-level
modulation modules fail to fuse spoke information and visual
feature maps due to the continuity of speech signals. In this
case, a crucial problem is most clearly present for researchers:
how to effectively inject the information from a spoken probe
into a neural network which has a large 2D color image as
its output?

The input speech signal needs to be converted to the global
speech vector similar to the sentence embedding [8] and then
can be made to modulate feature maps in the network. In this
section, we develop an effective and efficient visual+speech
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Fig. 3. Overview of the introduced pixel-attention module, which aims to assign larger weights to discriminative and informative pixels. BN and ReLU refer
to Batch Normalization and a ReLU activation function, respectively. 1 × 1 conv and 3 × 3 conv indicate the 1 × 1 and 3 × 3 convolutional operation,
respectively.

fusion module (VSFM) to facilitate the visual feature maps
with the global speech embedding and yield high-resolution
pictures.

A. Overall Architecture

The framework of the proposed visual+speech fusion mod-
ule is shown in Fig. 2(d). Given an intermediate feature map
F ∈ RC×H×W and the speech vector s ∈ RD from a speech
encoder as inputs, the VSFM first applies Batch Normalization
(BN) [34] on F , acquiring a new feature map F ′ ∈ RC×H×W .
This may help stabilize the learning of the conditional gener-
ative adversarial network (cGAN) and accelerate the training
process. After that, the VSFM refines F ′ ∈ RC×H×W using
the pixel-attention module (PAM) Mp and speech-modulation
module (SMM) Ms, respectively. Afterwards, the VSFM
effectively fuses their outputs Mp(F

′) ∈ RC×H×W and
Ms(F

′, s) ∈ RC×H×W using the weighted-fusion module
(WFM) Mf . Meanwhile, a residual connection is employed
to get the final enhanced result F ′′ ∈ RC×H×W . Note that
we spread the bimodal information of the VSFM over all
layers of the generator network. This allows for an influence
of the speech over features at various hierarchical levels in the
architecture, from crude early features to abstract late features.
The overall process of the VSFM can be formulated as follows:

F ′ = BN(F ) (7)
F ′′ = F ′ +Mf (Mp(F

′),Ms(F
′, s)) (8)

where BN indicates a Batch-Normalization operation. The
details of PAM, SMM and WFM will be described in the
following subsections.

B. Pixel-Attention Module (PAM)

Pictures and photographs consist of visual pixels which are
considerably significant for image quality. Learning the long-
range contextual dependency of each position of a picture
is essential for producing perceptually plausible samples.
However, convolutional operations can only grasp local re-
lationships between spatial contexts and thus fail to ‘see’ the
entire image field. Hence, the pixel-attention module (PAM) is
introduced to effectively model the spatial affinities between

visual pixels and enable crucial and informative positions to
receive more attention from the generator.

Fig. 3 illustrates the process of the pixel-attention module
(PAM). For a feature map F ′ ∈ RC×H×W , we first feed it
into a 3×3 convolutional layer followed with BN and a ReLU
function to reduce the channel dimension to RC/r×H×W . This
may integrate and strength the visual feature map across the
channel and spatial directions. Subsequently, we use a 1 ×
1 convolutional layer followed with the sigmoid function to
process the features to obtain the pixel-attention map PA ∈
R1×H×W . Mathematically,

PA = σ(f1×11 (ReLU(BN(f3×30 (F ′))))) (9)

where f is a convolutional layer, ReLU is the ReLU function
and σ is the sigmoid function. We conduct a matrix multi-
plication between the original feature map F ′ ∈ RC×H×W

and the spatial-attention map PA ∈ R1×H×W to acquire the
refined result. Specifically,

Mp(F
′) = F ′ � PA (10)

where � is the element-wise multiplication.

C. Speech-Modulation Module (SMM)

An adequate modulation method needs to be developed to
ensure the semantic consistency and quality of synthesized
photographs [9]. To this end, the speech-modulation module
(SMM) is introduced to inject the features derived from the
speech signal into the network at the proper points in the
network architecture.

Inspired by [26], SMM facilitates the visual feature map
using detailed linguistic cues captured from the speech em-
bedding s. To be specific, we adopt two dense layers to project
s into the linguistic cues WA ∈ RC×1×1 and BA ∈ RC×1×1.
After that, WA and BA are employed to scale and shift F ′.
The process of SMM can be defined as follows:

WA =MLP (ReLU(MLP (s))) (11)
BA =MLP (ReLU(MLP (s))) (12)
Ms(F

′) = F ′ �WA+BA (13)

where MLP is a fully-connected perceptron layer and Ms(F
′)

is the output from SMM.
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GAP MLP+GELU MLP

softmax

𝑀𝑝(𝐹
′)

𝑀𝑠(𝐹
′, 𝑠)

𝑀𝑓(𝐹
′, 𝑠)

𝑊𝐹1

𝑊𝐹2
𝐼𝐹

Fig. 4. Overview of the proposed weighted-fusion module, which effectively combines the outputs from the pixel-attention module (PAM) and speech-
modulation module (SMM) in an adaptive manner. Mp(F ′) and Ms(F ′, s) denote the result of PAM and SMM, respectively. GAP, MLP and GELU
represent the global-average pooling, fully-connected perceptron layer and Gaussian Error Linear Unit (GELU) [37], respectively. WF1 and WF2 are the
channel-aware weight matrix. Mf (F

′, s) is the final refined result.

D. Weighted-Fusion Module (WFM)

We do not simply fuse the attended and enhanced visual
feature maps from PAM and SMM using an addition or
element-wise multiplication, since pixels and speech signals
refer to two very different modalities and need to be combined
in a more advanced manner. Here, we propose an efficient
weighted-fusion module (WFM) to highlight the discrimina-
tive and significant regions in an adaptive manner and produce
high-quality image samples.

The detailed structure of the weighted-fusion module
(WFM) is depicted in Fig. 4. For the outputs Mp(F

′) and
Ms(F

′, s) from PAM and SMM, respectively, we perform an
element-wise addition between them as a first step, acquiring
an intermediate feature map IF ∈ RC×H×W . In the next
step, IF is used to compute the final weights for both
Mp(F

′) and Ms(F
′, s). More specifically, we employ global-

average pooling (GAP) to process IF to aggregate holistic
and discriminative information, thereby obtaining a channel-
feature vector IF ′ ∈ RC×1×1. Subsequently, we feed IF ′ into
two fully-connected perceptron layers, in which the first one
is to compress and integrate the channel features and the other
aims to recover the channel dimension and capture the seman-
tic importance of the image-attention mask and the speech-
modulation module at the level of the channels. After that, we
apply a softmax function across the channel dimension to get
the contextually channel-aware weight matrix WF ∈ RC×2.
Afterwards, WF is split into two separate channel-wise weight
matrices WF1 ∈ RC×1 and WF2 ∈ RC×1. Mathematically,

IF =Mp(F
′) +Ms(F

′, s) (14)
IF ′ = GAP (IF ) (15)
WF = softmax(MLP (GELU(MLP (IF ′)))) (16)
WF = [WF1;WF2] (17)

where GAP is the global-average pooling and GELU is the
Gaussian Error Linear Unit (GELU) [37]. WF1 and WF2 are
resize into RC×1×1 and applied to Mp(F

′) and Ms(F
′, s) to

get the final fusion result. It is denoted as follows:

Mf (F
′, s) =WF1 �Mp(F

′) +WF2 �Ms(F
′, s) (18)

V. EXPERIMENTAL SETTINGS

A. Data Sets

To evaluate the proposed Fusion-S2iGan, we perform ex-
tensive experiments on two synthesized spoken caption-image
data sets and two real spoken caption-image data set, which
are employed by Li et al. [14] and S2IGAN [13].
• CUB bird [16]. The CUB data set includes a total of

11,788 images, which is divided into 8,855 training pictures
and 2,933 testing pictures. Each picture is accompanied by 10
natural-language descriptions. To evaluate the task of speech-
to-image generation, Li et al. [14] and S2IGAN [13] transform
textual descriptions to spoken captions utilizing a text-to-
speech method such as Tacotron 2 [38].
• Oxford-102 [17]. The Oxford-102 data set is composed of

8,189 pictures, in which 5,878 pictures belong to the training
set and the other 2,311 pictures are used for testing. Each
picture contains 10 textual descriptions, which are transformed
to speech signals in the same way as the CUB data set.
• Flickr8k [18]. The Flickr8k data set is a more challenging

data set comprising 8,000 scene pictures and each image is
paired with 5 real spoken descriptions collected by [39]. We
split the Flickr8k data set according to S2IGAN [13].
• Places-subset [19] The Places-subset data set is a subset

of the Places Audio Caption data set [40], [41], which en-
compasses real spoken captions of pictures from the Places
205 data set [19]. It contains a total of 13,803 image-spoken
caption pairs belonging to 7 categories, which are divided into
10,933 training paired data and 2,870 testing paired data.

B. Implementation Details

For the speech encoder, following the structure of S2IGAN
[13], we use two 1-D convolution blocks, two bidirectional
gated recurrent units (GRUs) and a self-attention module to
obtain the speech embedding. To better capture the semantic
representation of spoken descriptions on the Places-subset data
set, we replace the Inception-V3 [42] pre-trained on ImageNet
[43] in S2IGAN with the ResNet [44] trained on Places 205
[19]. The dimension of the speech vector is set to 1024. In
the experiments, we utilize the Adam optimizer [45] with
β1 = 0.0 and β2 = 0.9 to train the networks. Furthermore,
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we follow the two timescale update rule (TTUR) [46] and set
the learning rates for the generator and the discriminator to
0.0001 and 0.0004, respectively. We set the batch size to 32.
We implement Fusion-S2iGan adopting PyTorch [47]. All the
experiments are conducted on a single NVIDIA Tesla V100
GPU (32 GB memory).

C. Evaluation Metrics

We verify the effectiveness of Fusion-S2iGan by computing
the following four extensively employed evaluation metrics:
• Inception score (IS) [48]. The IS is obtained by comput-

ing the KL divergence between the conditional class distribu-
tion and the marginal class distribution. The synthesized pic-
tures are divided into multiple groups and the IS is calculated
on each group of photographs, then the average and standard
deviation of the score are reported. Higher IS demonstrates
better quality and diversity among the generated images [9].
• Fréchet inception distance (FID) [42]. The FID calcu-

lates the Fréchet distance between the distribution of generated
images and the distribution of true data. A lower FID score
means that the generated pictures are closer to the correspond-
ing real pictures.
• Mean average precision (mAP) and R(ecall)@50 [13].

The mAP and R(ecall)@50 are speech-image retrieval metrics,
introduced by S2IGAN to measure the semantic relevancy for
the synthesized and real speech data sets, respectively. Higher
mAP or R@50 suggest better semantic consistency.

It should be noted that standard deviation on performances
cannot be given for all metrics reported (FID and mAP). This
is due to the fact that we wanted the measurements to be
comparable with other studies. However, given the size of the
test sets: N = 30k for the CUB data set and N = 10k for the
Oxford-102 data set, we expect the measurements to be fairly
reliable. As a comparative illustration: In case of a measured
accuracy of 0.80 and a data set of N = 30k, at α = 0.01, the
confidence band would span 0.794 to 0.806, i.e., a deviation
of just 0.75%.

VI. RESULTS ON THE SYNTHESIZED SPEECH DATASETS

A. Quantitative Results

We compare Fusion-S2iGan with previous single-stage [9],
[26], [49] and multi-stage [13]–[15], [20], [22], [23], [50], [51]
cGAN-based methods in text-to-image generation and speech-
to-image transforms on the CUB and Oxford-102 data sets.
The IS, FID and mAP of Fusion-S2iGan and other compared
approaches on the CUB and Oxford-102 data sets are shown
in Table I. Note that the reported scores in Table I are based
on the results presented in these publications. We can see that
Fusion-S2iGan achieves the best scores on speech-to-image
synthesis, significantly improving the IS from 4.29 to 4.82
on the CUB data set and from 3.69 to 3.81 on the Oxford-
102 data set, reducing the FID from 14.50 to 13.74 on the
CUB data set and from 48.64 to 40.08 on the Oxford-102
data set and increasing the mAP from 9.04 to 11.49 on the
CUB data set and from 13.40 to 17.72 on the Oxford-102
data set. Notably, Fusion-S2iGan performs better in speech-
to-image generation than both DM-GAN [15] in text-to-image

TABLE I
THE IS, FID AND MAP OF PREVIOUS TEXT-TO-IMAGE AND

SPEECH-TO-IMAGE APPROACHES AND FUSION-S2IGAN ON THE CUB AND
OXFORD-102 DATA SETS. THE BEST RESULTS OF SPEECH-TO-IMAGE

GENERATION ARE IN BOLD.

Datasets Methods Input IS ↑ FID ↓ mAP ↑

CUB

StackGAN++ [20] text 4.04±0.05 26.07 7.01
AttnGAN [22] text 4.36±0.03 23.98 −

MirrorGAN [23] text 4.56±0.05 − −
ControlGAN [50] text 4.58±0.09 − −

SDGAN [51] text 4.67±0.09 − −
DM-GAN [15] text 4.75±0.07 16.09 −
DF-GAN [26] text 4.86±0.04 19.24 −
DTGAN [49] text 4.88±0.03 16.35 −
DiverGAN [9] text 4.98±0.06 15.63 −

Classifier-based [13] speech 3.68±0.04 43.76 −
Li et al. [14] speech 4.09±0.04 18.37 −

StackGAN++ [20] speech 4.14±0.04 18.94 8.09
S2IGAN [13] speech 4.29±0.04 14.50 9.04

Fusion-S2iGan speech 5.06±0.09 13.09 12.12

Oxford-102

StackGAN++ [20] text 3.26±0.01 48.68 −
DF-GAN [26] text 3.71±0.06 − −
DTGAN [49] text 3.77±0.06 − −
DiverGAN [9] text 3.99±0.05 − −

Classifier-based [13] speech 3.30±0.06 64.75 −
Li et al. [14] speech 3.23±0.05 54.76 −

StackGAN++ [20] speech 3.69±0.08 54.33 12.18
S2IGAN [13] speech 3.55±0.04 48.64 13.40

Fusion-S2iGan speech 3.81±0.08 40.08 17.72

generation on the CUB data set, as seen from an improvement
of the IS from 4.75 to 4.82 and DTGAN [8] doing text-to-
image synthesis on the Oxford-102 data set, here improving
the IS from 3.77 to 3.81. The experimental results suggest that
Fusion-S2iGan is capable of yielding perceptually plausible
pictures with higher quality and better diversity than state-of-
the-art speech-to-image transform models and many text-to-
image approaches.

B. Qualitative Results

In addition to quantitative experiments, we carry out qual-
itative comparison on the CUB and Oxford-102 data sets,
which is presented in Fig. 5. Note that in order to visualize
the synthesized images of S2IGAN [13], we utilize the public
code 1 to train the network from scratch due to the lack of
available pre-trained models. It was noted that the contrast of
the generated images was dull for the S2IGAN code, as given.
By enhancing brightness and contrast, this problem could be
solved. However, we found this is only needed for human
evaluation: On 20 selected images 2, the IS score for S2IGAN
was the same for the raw (greyish) output and the enhanced
output samples. As can be seen in Fig. 5(a), the shape of
birds produced by AttnGAN [22] and S2IGAN [13] (2nd,
3rd, 6th and 8th column) is strange, the image details are
lost (2nd, 3rd, 5th, 6th and 7th column) and the backgrounds
are blurry (1st, 3rd, 6th and 8th column). However, Fusion-
S2iGan yields more clear and photo-realistic samples than
AttnGAN and S2IGAN, which demonstrates the effectiveness
of our architecture. For example, the birds synthesized by
Fusion-S2iGan have a more clear shape and richer color

1https://github.com/xinshengwang/S2IGAN
2https://zenodo.org/record/7014899#.YwN-xHZByUk
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AttnGAN

(Text)

S2IGAN

Ours

A beautiful small 

red bird with 

bright red crown, 

brown/red wings 

and black eyes.

The bird has a 

black bill and a 

black eyering.

This bird is 

yellow and black 

in color, with a 

black beak.

This bird is white 

and brown in 

color, with a 

stubby beak.

This bird has 

wings that are 

grey and has a 

striped belly.

This bird has a 

yellow belly, 

grey feathers 

and a yellow 

head.

This large bird is 

brown with a 

long bill and 

neck.

This bird has a 

white bell, 

abdomen and 

vent color with 

lots of black 

dots on them.

(a) The CUB dataset

DTGAN

(Text)

S2IGAN

Ours

This flower has 

petals that are 

purple and has a 

white stigma.

This flower has 

big white petals 

and a small 

yellow ovary.

The flower petals 

are white in color 

with larger 

yellow stamen.

This flower has 

petals that are 

red and has 

yellow stamen.

This flower has 

petals that are 

yellow and 

very thin.

This flower has 

petals that are 

yellow with a 

few brown lines.

This flower has 

overlapping pink 

pointed petals 

surrounding a 

ring of short 

yellow filaments.

This flower has 

petals that are 

purple and 

very stringy.

(b) The Oxford-102 dataset

Fig. 5. Qualitative comparison of AttnGAN [22], DTGAN [8] conditioned on the textual descriptions, S2IGAN [13] and Fusion-S2iGan on the basis of the
speech signals on the CUB and Oxford-102 data sets. The spoken descriptions are shown above the images.

distributions compared to AttnGAN and S2IGAN in the 2nd,
3rd, 6th, 7th and 8th column. Furthermore, as shown in the
1st, 2nd, 4th, 6th and 8th column, Fusion-S2iGan produces
visually plausible birds with more vivid details than AttnGAN
and S2IGAN.

The qualitative results of DTGAN [8], S2IGAN [13] and
Fusion-S2iGan on the Oxford-102 data set are illustrated in
Fig. 5(b), suggesting that Fusion-S2iGan is able to adopt a
single generator/discriminator pair to produce high-resolution
pictures that correspond well to the given speech-audio de-
scriptions. For instance, Fusion-S2iGan yields perceptually
realistic flowers with a more vivid shape than DTGAN and
S2IGAN in the 1st, 2nd, 6th, 7th and 8th column. In addition,

as shown in the 3th, 4th, 5th and 6th column, the flowers
generated by Fusion-S2iGan have more clear details and richer
color distributions than DTGAN and S2IGAN.

The above experimental results indicate that Fusion-S2iGan
equipped with the dual-residual speech-visual fusion blocks
has the ability to effectively inject the speech information into
the generator network and generate high-quality photographs.

VII. RESULTS ON THE REAL SPEECH DATASETS

In addition to the synthesized speech data sets, we also
evaluate Fusion-S2iGan on the challenging real speech data
sets, i.e., Flickr8k and Places-subset data sets, from both
quantitative and qualitative perspectives.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE II
THE IS, FID AND R@50 OF ATTNGAN [22] BASED ON THE TEXTUAL

DESCRIPTIONS, LI et al., STACKGAN++ [20], S2IGAN [13] AND
FUSION-S2IGAN CONDITIONED ON THE SPOKEN CAPTIONS ON THE
FLICKR8K AND PLACES-SUBSET DATA SETS. THE BEST RESULTS OF

SPEECH-TO-IMAGE GENERATION ARE IN BOLD.

Datasets Methods Input IS ↑ FID ↓ R@50 ↑

Flickr8k

AttnGAN [22] text 12.37±0.41 84.08 50.40

StackGAN++ [20] speech 8.36 ±0.39 101.74 16.40
S2IGAN [13] speech 8.72±0.34 93.29 16.40

Fusion-S2iGan speech 11.70±0.45 70.80 34.95

Places-subset

AttnGAN [22] text 4.59±0.51 35.59 33.85

Li et al. speech − 83.06 −
StackGAN++ [20] speech 3.78±0.35 47.94 8.87

S2IGAN [13] speech 4.04±0.25 42.09 12.95

Fusion-S2iGan speech 5.05±0.10 25.68 28.37

A. Quantitative Results

Table II reports the IS, FID and R@50 of Fusion-S2iGan
and other compared approaches on the Flickr8k and Places-
subset data sets. It can be observed that Fusion-S2iGan per-
forms better than S2IGAN by notably enhancing the IS from
8.72 to 11.70 on the Flickr8k data set and from 4.04 to 5.05
on the Places-subset data set, reducing the FID from 93.29
to 70.80 on the Flickr8k data set and from 42.09 to 25.68
on the Places-subset data set and improving the R@50 from
16.40 to 34.95 on the Flickr8k data set and from 12.95 to
28.37 on the Places-subset data set. Notably, Fusion-S2iGan
obtains a remarkably lower FID in speech-to-image synthesis
than AttnGAN doing text-to-image generation on both data
sets, which demonstrates that the distribution of the samples
synthesized by our model is closer to the real data distribution.
Specifically, Fusion-S2iGan reduces the FID from 84.08 to
70.80 on the Flickr8k data set and from 35.59 to 25.68 on
the Places-subset data set while increasing the IS from 4.59 to
5.05 on the Places-subset data set. We can also see that Fusion-
S2iGan gets a lower R@50 score than AttnGAN on both data
set. The reason for this may be that speech signals lack regular
breaks between words, i.e., the spaces in the written-form text.

B. Qualitative Results

For qualitative comparison, we visualize the pictures pro-
duced by Fusion-S2iGan and S2IGAN and corresponding
ground-truth images on the Flickr8k and Places-subset data
sets in Fig. 6, which suggests that Fusion-S2iGan is capable of
yielding photo-realistic and semantic-consistency photographs
when given speech signals. For example, in terms of complex-
scene generation, Fusion-S2iGan generates visually plausible
dogs with more vivid details and more clear backgrounds than
S2IGAN in the 1st, 5th, 6th and 8th column. We can also
observe that Fusion-S2iGan synthesizes a man surfing on the
realistic sea waves (2nd column), two clear persons standing
on the beach (3rd column), a plausible football player in red
and a reasonable background (4th column) and a running girl
(4th column), whereas S2IGAN yields unclear objects (1st,
2nd, 4th, 5th, 6th and 8th column) and blurry backgrounds

(4th and 7th column). Furthermore, it can be seen that the
number of the objects produced by Fusion-S2iGan is correct
in the 1st, 2nd, 3rd, 5th, 6th, 7th and 8th column.

As can be seen in Fig. 6(b), Fusion-S2iGan produces
promising and high-quality complex-scene pictures, i.e., a
realistic bedroom (1st column), plausible kitchens (2nd and
8th column), high-quality living rooms (3rd and 5th column),
visually promising dining rooms (4th and 7th column) and a
photo-realistic hotel room (6th column), although the Places-
subset data set is very challenging. However, some examples
generated by S2IGAN (1st, 4th, 6th, 7th and 8th column) are
not plausible. For instance, the shape of the beds is not clear
(1st and 6th column) and the color distribution is rough (4th

and 8th column).
The above analysis indicates that Fusion-S2iGan has the

capacity to achieve very good results on the real speech data
sets due to the effective speech-visual fusion module and loss
functions.

VIII. ABLATION/SUBSTITUTION TESTS

In order to evaluate the effectiveness of different com-
ponents in Fusion-S2iGan, we perform a series of abla-
tion/substitution tests on the CUB, Oxford-102 and Flickr8k
and Places-subset data sets. Ablation usually refers to the
removal of processing steps and evaluating the effects on
performance. Here, however, the word ‘substitution’ is more
appropriate, referring to the in-place replacement of a network
module by another variant. In the evaluation we used 30k
sample images for the CUB data set and 10k samples for the
Oxford-102 data set in order to obtain reliable performance
estimates.

A. Effectiveness of the Pixel-Attention Module (PAM)

To validate the effectiveness of the introduced pixel-
attention module (PAM), we investigate the performance of
Fusion-S2iGan with other attention modules on the CUB and
Oxford-102 data sets. Specifically, we replace the PAM in
the visual+speech fusion module (VSFM) using the bottleneck
attention module (BAM) [52], polarized self-attention (Polar-
izedAttn) [53] and contextual transformer attention (CoTAttn)
[54], respectively. The comparison results are depicted in Table
III. We can see that PAM outperforms BAM, PolarizedAttn
and CoTAttn by increasing the IS by 0.12 on the CUB data
set and 0.06 on the Oxford-102 data set, reducing the FID by
0.33 on the CUB data set and 1.16 on the Oxford-102 data set
and enhancing the mAP by 0.75 on the CUB data set and 0.44
on the Oxford-102 data set. The results demonstrate that PAM
can improve the quality and semantic relevancy of produced
pictures, relative to the other methods.

B. Effectiveness of the Weighted-Fusion Module (WFM)

To further prove the benefits of the proposed weighted-
fusion module (WFM), we conduct a substitution test on
fusion methods. We replace WFM with the element-wise
addition and multiplication operations, respectively. Table IV
reports the quantitative results on the CUB and Flickr8k data
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Ground Truth

S2IGAN

Ours

A small black and 

white dog running 

through the grass 

with a tennis ball 

in his mouth.

A person rides 

the waves on a 

surfboard. 

A little girl and 

boy play in the 

sand on the 

beach.

Coach talks with 

football player, 

other players and 

crowd in 

background.

A dog 

swimming 

though water 

holding a stick.

A dog runs in 

the snow.

The little girl is 

running and 

laughing.

Two dogs 

playing in a 

lake.

(a) The Flickr8k dataset

Ground Truth

S2IGAN

Ours

This is a plain 

bedroom and how 

it is possibly a 

queen-size bed two 

night tables that do 

not match and one 

lamp.

The kitchen has 

marble 

countertops 

and stainless 

steel.

A very nice 

modern looking 

living room with 

an ocean on the 

outside.

A dining room 

table that spins 

in golden.

Picture of living 

room with a very 

large brown sofa 

with recliner and 

a wooden coffee 

table.

Pictures of the 

inside of a hotel 

room with a 

king-size bed.

A very large 

kitchen and 

dining room 

with two islands.

The interior of 

the kitchen 

there are white 

cabinet.

(b) The Places-subset dataset

Fig. 6. Qualitative comparison of S2IGAN [13] and Fusion-S2iGan conditioned on the speech signals on the Flickr8k and Places-subset data sets. Ground-truth
images are shown above the samples produced by S2IGAN and the spoken descriptions are presented above the ground-truth images.

TABLE III
SUBSTITUTION STUDY ON PIXEL-ATTENTION MODULES. BAM,

POLARIZEDATTN AND COTATTN REFER TO THE BOTTLENECK ATTENTION
MODULE [52], POLARIZED SELF-ATTENTION [53] AND CONTEXTUAL

TRANSFORMER ATTENTION [54], RESPECTIVELY. PAM INDICATES THE
INTRODUCED PIXEL-ATTENTION MODULE. THE BEST RESULTS ARE IN

BOLD.

Datasets CUB Oxford-102

Evaluation Metrics IS ↑ FID ↓ mAP ↑ IS ↑ FID ↓ mAP ↑

BAM [52] 4.35±0.04 16.23 10.32 3.62±0.09 42.72 16.35
PolarizedAttn [53] 4.68±0.04 14.33 10.74 3.75±0.07 44.20 16.42
CoTAttn [54] 4.70±0.05 14.07 10.53 3.75±0.06 41.24 17.28

PAM 5.06±0.09 13.09 12.12 3.81±0.08 40.08 17.72

sets. It can be observed that WFM performs better than both
addition and product operations, significantly improving the
IS from 4.68 to 4.82 on the CUB data set and from 10.23
to 11.70 on the Flickr8k data set, reducing the FID from
15.25 to 13.74 on the CUB data set and from 78.03 to 70.80
on the Flickr8k data set and increasing the mAP from 11.11
to 11.49 on the CUB data set and the R@50 from 30.82 to
30.95 on the Flickr8k data set. The above analysis suggests
the effectiveness of the presented WFM in comparison to plain
additive or product-based weighing.

C. Effectiveness of the Visual+Speech Fusion Module (VSFM)

To verify the effectiveness of the developed visual+speech
fusion module (VSFM) and investigate how far can current
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TABLE IV
SUBSTITUTION TEST ON FUSION METHODS. ADDITION AND PRODUCT
REPRESENT THE ELEMENT-WISE ADDITION AND PRODUCT OPERATION,

RESPECTIVELY. WFM DENOTES THE PROPOSED WEIGHTED-FUSION
MODULE. THE BEST RESULTS ARE IN BOLD.

Datasets CUB Flickr8k

Evaluation Metrics IS ↑ FID ↓ mAP ↑ IS ↑ FID ↓ R@50 ↑

Addition 3.70±0.04 29.11 2.7 9.53±0.37 100.83 5.98
Product 4.68±0.04 15.25 11.11 10.23±0.36 78.03 30.82

WFM 5.06±0.09 13.09 12.12 11.70±0.45 70.80 34.95

TABLE V
SUBSTITUTION STUDY ON THE VISUAL+SPEECH FUSION MODULE

(VSFM). DTGAN AND DF-GAN REFER TO THE SENTENCE-VISUAL
FUSION MODULE IN DTGAN [8] AND DF-GAN [26], RESPECTIVELY.

VSFM DENOTES THE PRESENTED VISUAL+SPEECH FUSION MODULE. THE
BEST RESULTS ARE IN BOLD.

Datasets CUB Oxford-102

Evaluation Metrics IS ↑ FID ↓ mAP ↑ IS ↑ FID ↓ mAP ↑

DTGAN [49] 4.18 ±0.04 24.70 4.92 3.15±0.04 52.67 13.87
DF-GAN [26] 4.40 ±0.03 16.74 8.20 3.58±0.07 48.37 16.32

VSFM 5.06±0.09 13.09 12.12 3.81±0.08 40.08 17.72

single-stage text-to-image algorithms be used for speech-to-
image generation, we explore the results of Fusion-S2iGan
with the sentence-visual fusion modules in DTGAN [8] and
DFGAN [26] on the CUB and Oxford-102 data sets. The
results of the substitution study are displayed in Table V.
We can see that the VSFM achieves the best score, notably
increasing the IS by 0.42 on the CUB data set and 0.23 on the
Oxford-102 data set, reducing the FID by 3.00 on the CUB
data set and 8.29 on the Oxford-102 data set and increasing the
mAP by 3.29 on the CUB data set and 1.40 on the Oxford-102
data set.

It can also be observed that DTGAN does not obtain promis-
ing performance on the speech data sets. The reason behind
this result may be that the dual-attention module in DTGAN
is not suitable for processing the continuous speech signals
and modeling the semantic relationships between vision and
speech. The above experimental results indicate that with the
VSFM, Fusion-S2iGan is able to yield high-resolution pictures
semantically aligning with the input speech-audio descriptions.

To evaluate the impact of different number of the fusion
modules in the dual-residual speech-visual fusion block, we
compare the results of a fusion module (single-module) and
two fusion modules (dual-module) on the Flickr8k and Places-
subset data sets, as shown in Table VI. We can observe that the
proposed dual-residual speech-visual fusion block outperforms
the block with a single module on both data set, which
validates the effectiveness of the dual-residual structure.

IX. CONCLUSION

In this paper, we propose a unified, novel end-to-end
speech-to-image transform architecture named Fusion-S2iGan.
Fusion-S2iGan is able to only use a generator/discriminator
pair to project a speech signal into a high-quality pic-
ture directly. Fusion-S2iGan adopts a new and effective vi-
sual+speech fusion module (VSFM) to modulate the visual

TABLE VI
EFFECT OF THE NUMBER OF FUSION MODULES IN THE DUAL-RESIDUAL
SPEECH-VISUAL FUSION BLOCK. SINGLE-MODULE AND DUAL-MODULE
INDICATE THE RESIDUAL STRUCTURE WITH A SINGLE FUSION MODULE
AND TWO FUSION MODULES, RESPECTIVELY. THE BEST SCORES ARE IN

BOLD.

Datasets Flickr8k Places-subset

Evaluation Metrics IS ↑ FID ↓ mAP ↑ IS ↑ FID ↓ mAP ↑

single-module 10.39±0.34 81.62 32.37 5.02±0.06 41.67 24.00
dual-module 11.70±0.45 70.80 34.95 5.05±0.10 25.68 28.37

feature maps with the speech information and boost the
resolution of produced samples. More significantly, Fusion-
S2iGan spreads the bimodal information over all layers of the
generative model. This allows for an influence of the speech
over features at various hierarchical levels in the architec-
ture, from crude early features to abstract late features. The
hinge objective, deep attentional multimodal similarity model
(DAMSM) loss and matching-aware zero-centered gradient
penalty (MA-GP) loss are introduced to stabilize the training
of the conditional generative adversarial network (cGAN).
Fusion-S2iGan is evaluated on four public data sets, i.e., CUB
bird, Oxford-102, Flickr8k and Places-subset, outperform-
ing current speech-to-image methods. Moreover, we explore
whether current text-to-image approaches are effective for a
speech-to-image transform. Furthermore, our presented VSFM
is a general fusion module, and can be easily integrated into
current speech-to-image frameworks to improve image quality
and semantic consistency. More significantly, our developed
architecture overcomes the issues presenting in the existing
multi-stage speech-to-image algorithms, and can serve as a
strong basis for developing better speech-to-image generation
models. In the future, we will investigate how to inject
the emotional features derived from the speech signal into
the speech-to-image synthesis pipeline and how to combine
speech signals with other conditional contexts, e.g., sketches,
to control the produced pictures.
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