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Abstract. Saliency methods are frequently used to explain Deep Neural
Network-based models. Adebayo et al.’s work on evaluating saliency
methods for classification models illustrate certain explanation methods
fail the model and data randomization tests. However, on extending the
tests for various state of the art object detectors we illustrate that the
ability to explain a model is more dependent on the model itself than
the explanation method. We perform sanity checks for object detection
and define new qualitative criteria to evaluate the saliency explanations,
both for object classification and bounding box decisions, using Guided
Backpropagation, Integrated Gradients, and their Smoothgrad versions,
together with Faster R-CNN, SSD, and EfficientDet-DO0, trained on COCO.
In addition, the sensitivity of the explanation method to model parameters
and data labels varies class-wise motivating to perform the sanity checks
for each class. We find that EfficientDet-DO0 is the most interpretable
method independent of the saliency method, which passes the sanity
checks with little problems.

Keywords: Object detectors - Saliency methods - Sanity checks.

1 Introduction

Localizing and categorizing different object instances is pivotal in various real-
world applications such as autonomous driving [7], healthcare [4], and text
detection [9]. Recent advances with Deep Neural Network-based (DNN) object
detectors demonstrate remarkable performances both in terms of robustness
and generalization across practical use cases [3]. Even though detectors are
extensively needed in safety-critical applications, the heavily parameterized DNN-
based detectors limit understanding the rationale behind the detections made
by such detectors. In addition, object detectors are prone to non-local effects
as a slight change in the object position can affect the detector prediction [20].
Therefore, explaining detector decisions is imperative to earn user trust and
understand the reason behind predictions to a certain extent in safety-critical
situations, overall improving system safety.
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Explaining a DNN decision-making process has been addressed prominently
[23] [34] [24] [6]. The explanations are useful for debugging the model, reveal the
spurious effects and biases learned by a model as well as underpins regulatory
requirements (like GDPR). Furthermore, such explanations boost transparency
and contribute towards safety of the associated DNN-based systems [11] [29].
Among the methods explaining DNNs, saliency methods are popular explanation
methods [21] [16], which provide the input feature attribution that highlights
the most relevant pixels responsible for the model prediction. Despite extensive
study of employing saliency methods to classification tasks, only handful of works
explain detector decisions [18] [30] [8]. Moreover, the evaluation metrics used to
quantitatively assess the detector explanations fail certain sanity checks as well
and prove to be statistically unreliable [28].

Sanity checks are basic procedures to test the ability of an explanation method
to correctly explain a model decision [2] or test the ability of an evaluation metrics
to correctly assess the explanation method [28] that generates a saliency map.
In this paper, we are concerned with the former, where we check the ability of
an explanation method to generate relevant saliency map based explanations for
detections made by an object detector. However, there is limited work studying
object detector explainability, and in particular basic sanity checks have not been
performed to the best of our knowledge. Therefore, conducting simple sanity
checks to determine the quality of an explanation method is extremely important.

In this paper we conduct simple sanity checks for certain explanation methods
explaining three object detector predictions. We extend the sanity checks in [2] to
object detectors. The sanity checks test explanation method sensitivity towards
the detectors parameters (model randomization test) and data generation method
(data randomization test).

The contributions of our paper are:

— We evaluate sanity checks for saliency explanations of object detectors, both
on classification and bounding box decision explanations.

— We define clear qualitative evaluation criteria for sanity checks in saliency
explanations for object detectors.

— We find that Modern object detectors like EfficientDet-DO0 [27] seem to be
more interpretable and pass more sanity checks than older detectors like SSD
[15] and Faster R-CNN [19].

We expect that our work helps advance our understanding of object detector
explainability and increases the use of explanations in computer vision.

2 Related Work

Adebayo et al. [2] are the pioneers to propose sanity checks for explanation
methods based on randomization tests. The authors identify that various widely
used explanation methods provide saliency map explanations that are independent
of the model parameters and the data used to develop the model. The widely-used
gradient-based explanation methods such as guided backpropagation [241] and
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Explaining EfficientDet-D0 Detection Using SmoothGrad + Guided Backpropagation

Detections

Decision: Class Train X Decision: Bounding Box, Xmin

Detection: Train Detection: Train
Decision: Bounding Box, Xmax X Decision: Bounding Box, Ymax

Detection: Train Detection: Train Detection: Train

Fig. 1. Sample detection explanations using EfficientDet-D0 and SGBP, considering
one saliency explanation for classification and bounding box regression decisions. We
find that EfficientDet-D0 provides high quality explanations that pass sanity checks. For
all figures in this paper, the saliency maps are overlaid on the corresponding original
image after min-max normalization with the minimum and maximum value indicated
in the corresponding heatmap.

Guided GradCAM [22] fail both model and data randomization sanity checks.
In this related work, the sanity checks are performed on classifier models such
as Inception v3, CNN, and MLP trained using ImageNet, Fashion MNIST,
and MNIST datasets respectively. However, Yona et al. [33] posit that the
randomization tests are distribution-dependent and modify the sanity checks
proposed in [2] with a causal perspective. The model sensitivity test is performed
by combining the original images with multiple or partial objects to generate
saliency maps for random and trained model. This reformulation is an attempt to
spatially control the relevant features for a particular class and extract visually
distinct saliency maps. The methods failing the sanity checks in [2] such as vanilla
and guided backpropagation pass this reformulated version. Kindermans et al. [13]
proposes input invariance property as a sanity check for saliency methods. The
saliency method output should not be affected by the transformations done to the
input, mirroring the model sensitivity to the specific transformation. Experiments
on MNIST illustrate the possibility to forcefully manipulate the explanations.
The literature on interpretability cover certain axioms such as completeness [(],
implementation invariance, and sensitivity [26] are considered as indicators of
reliability for saliency methods. Kim et al. [12] develop a synthetic benchmark and
enable a ground-truth-based evaluation procedure. Various evaluation metrics
to assess the explanation method with regards to factors such as faithfulness,
robustness, and fairness of explanation is provided by [10]. Tomsett et al. [28]
conclude the evaluation metrics assessing the faithfulness of the explanations are
unreliable by conducting certain sanity checks on the metrics. In this paper, we
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extend the sanity checks performed by [2] based on randomization to detectors
and report our findings.

3 Sanity Checks for Object Detection Saliency
Explanations

We use two kinds of sanity checks as defined by Adebayo et al. [2]. The model
parameter and data randomization tests have been proposed to evaluate the
explanation methods for classification tasks.

Model Randomization. The model parameter randomization test analyzes
the saliency method output for a trained classifier model against the saliency
method output for a model parameter initialized with random values [2|. The
saliency maps help to understand the explanation method sensitivity to model
parameters and to model properties, in general. A similar saliency map signifies
that the saliency method will not be helpful to debug a model as the saliency
method is invariant to the model parameters.

Data Randomization. In the data randomization test, the saliency maps for
a model trained on a correctly labeled dataset and model trained using randomly
permuted labels are compared [2].

A similar saliency map between the two outputs illustrates the relationship
insensitivity between labels and input images. The saliency maps will not reflect
the reason behind label and input image relationship captured by the data
generation process. If the explanations are indifferent to a random label assigned
to a mammogram image, for instance, the saliency map fails to explain the real
reason for a diagnosis output.

The tests serve as sanity checks to assess the scope of a particular explanation
method for explaining models performing certain tasks. These are very basic
assumptions made on saliency explanations and many methods fail these basic
tests in classification tasks.

In this paper, we use the two randomization tests on pre-trained object
detectors, for a certain set of saliency explanation methods, and we test if those
detectors and explanation methods pass the basic sanity checks.

3.1 Quantitative Evaluation Criteria

For quantitative evaluation, in order to assess the change in saliency maps when
randomizing the model parameters, the similarity between the classification
decision saliency maps generated from each randomized model instance and the
true model is computed using Structural Similarity (SSIM). This allows for visual
changes to the saliency map to be compared and tracked.

3.2 Qualitative Evaluation Criteria

This section reports on the subjective analysis carried out to understand the
differences in sensitivity of explanation methods across various detectors. Table 1
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Table 1. Summary of the subjective analysis for the model randomization test. The
score is computed as explained in Sec. 3.2. The higher the score the more sensitive is the
method for the detector model parameters. Each column indicates an aspect considered
to evaluate the change in the saliency map which is produced for the randomized model.
The table is generated by scoring the majority characteristic illustrated by each detector
and explanation method combination over 15 randomly sampled detections from the
COCO test 2017 split.
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illustrates clearly that the ability to explain is more model-dependent than the
ability of the explanation method to interpret a particular model.

A comparison is developed by visually inspecting certain aspects of the saliency
map obtained using a completely randomized model and also by comparing it
with the saliency map generated using the trained model. The various aspects
considered to indicate the magnitude of sensitivity are provided below with the a
scoring guide. A visual illustration of these aspects is shown in Table 2. In the
negative scenarios, the methods are awarded a score -1 x (score awarded below).
A score 1 is added to the total score if the method scores 1 for any one aspect.
This indicates that the method passes the sanity test.

Now we define criteria to evaluate a saliency map made by explaining an
object detector output.
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Table 2. Visual illustrations of saliency map sanity check properties. This table compares
explanation patterns made by different detectors and saliency explanation methods
against a randomly trained model. These results complement the qualitative evaluation
we perform in this paper.
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1. Edge detector. Saliency methods sometimes act as an edge detector which
does not depend on the input image, which is undesirable [2]. A method
acting as an edge detector is scored -1 because the explanations should be
meaningful rather than simply behaving like an edge detector.

2. Highlight only interest object. Saliency explanations should be focused
on the interest object inside the bounding box, assuming that that model
performs adequately and is not fooled by context or background [20]. A model
with randomized should not have this behavior as information was destroyed
and the saliency map should reflect this. When the saliency map generated
using the randomized model only highlights the interest object explained,
the method is awarded a -1 score.

3. Focus more than one object. Opposite from the previous criteria, a
randomized model should focus in more than one object as there is no
object-specific information in the model. Score of 1 is awarded to the method
producing a saliency map that highlights more than a single object in the
image.

4. Texture change. The texture of a saliency map denotes the spatial ar-
rangement of intensity in a pattern over an image region. If the texture of
the saliency map obtained using the randomized model varies from that of
the saliency map of the true model, the method is awarded a score 1. For
instance, the randomized model map can be a smoothened version without
sharp features or completely hazy.

5. Illustrate artifacts. Artifacts in saliency maps are also undesirable as they
show bias in the model structure and/or equations which affect the quality
of a saliency map. If the saliency map from the randomized model displays
certain image artifacts such as checkerboard artifacts and sharp parallel lines,
the method is awarded -1.

6. Intensity range change. The range of pixel values in a saliency map
should change as the model is randomized, reflecting the destruction in
information when weights are randomized. Score of 1 is awarded if the
saliency map intensity range changes before normalizing between 0 to 1
across the randomized and true model.

4 Experimental Setup

Object Detectors. In this study we evaluate three pre-trained object detectors:
Faster R-CNN (FRN) [19], SSD512 (SSD) [15], and EfficientDet-D0 (EDOO0) [27],
all trained on the COCO dataset [14]. Detailes are provided in Table 3.

Explanation Methods. We evaluate several gradient-based saliency meth-
ods, namely Guided Backpropagation (GBP) and Integrated Gradients (IG),
as well as their variations using SmoothGrad (SGBP and SIG). Mathematical
details for these methods are provided in the appendix.

Datasets. The detectors trained on common objects are used to perform the
model randomization test. The detector details are available in Table 3. Therefore,
the model randomization test is carried out for all the 12 combinations of detectors
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Table 3. Summary of object objector implementations used in this work. The detectors
are trained to detect common objects using COCO dataset. The mAP reported is at
0.5 IoU threshold. val35k represents 35k COCO validation split images. minival is the
remaining images in the validation set after sampling val35k.

COCO split
Detector Stage Train set Test set mAP (%) Weights Code

Faster R-CNN Two train+val35k 2014 minival2014 54.4 [1] [1]
SSD512 Single train-+val35k 2014 test-dev 2015 46.5 [15] [5]
EfficientDet-D0 Single train 2017 test-dev 2017 53.0 [27] [5]

Table 4. Details about the marine debris objector used in this work. The mAP reported
is at 0.5 IoU threshold.

SSD Backbones mAP (%) Input Image Size

VGG16 91.69 300 x 300
ResNet20 89.85 96 x 96
MobileNet 70.30 96 x 96
DenseNet121 73.80 96 x 96
SqueezeNet 68.37 96 x 96
MiniXception 71.62 96 x 96

and explanation methods. The dataset used for the model randomization study
is the COCO test 2017 split [14]. 15 randomly sampled images from the COCO
test 2017 split is analyzed for model randomization test. The test split is chosen
because the train and validation splits are used in training the detectors.

In order to perform the data randomization test, the Marine Debris dataset
[31] [32] is used. This study uses two versions of SSD trained on the Marine
Debris dataset. Details and performance of detectors trained on Marine Debris
Dataset are shown in Table 4. The two versions are true and random SSD models
with VGG16 backbone trained using the true and random labels respectively.
The additional details about the true SSD-VGG16 model is provided in Table 4.
The random detector is trained using random class labels and adding random
noise to the ground truth box coordinates. The random detector is trained until
the mAP@[IoU=0.5] on the train set is 80%. The explanations are generated for
the test set images. The Marine Debris dataset is used for this experiment to
overcome the time taken to train a detector on a complex COCO dataset. In
addition, the Marine debris dataset aids in studying the applicability of explaining
detectors in a real-world application.

5 Results and Discussion

Model randomization test: The saliency maps are investigated for both the
bounding box and classification decisions corresponding to a detection. The model
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Model Randomization Test - Classification Explanation

of Weight i i -

Detections 0 25 50 75 100 1.0

SSD_SGBP ED0_SGBP

FRN_SGBP

0.0

Fig. 2. Model randomization test for classification explanations (red-colored box)
across different models using SGBP. The first column is the detection of interest that is
explained in the consecutive columns. The second column is the saliency map generated
using the trained model without randomizing any parameters, which highlights the
important parts such as hands, eyes, and face. The last column is the saliency map
generated using a model with all parameters randomized. Note how FRN fails the
randomization test.

parameter randomization randomizes the weight variables starting from the last
layers. The left-most column after the interest detection with 0% represents the
saliency map generated using the trained model with none of the weight variables
randomized. 100% in the last column is the saliency maps generated using a
randomly initialized model with all weight variables completely randomized. Fig-
ure 2 illustrates the effect of classification explanations to the model parameters.
In the case of the EfficientDet-DO0 classification explanation with SGBP, the
saliency map is completely noisy without highlighting any specific feature. SSD
with SGBP acts like an edge detector by sharply highlighting certain features as
the number of weight variables randomized changes. However, the saliency map
highlights feature other than the person object. Figure 3 illustrate the sensitivity
of box coordinate x,,;, explanations using SGBP to the model characteristics.
The saliency maps highlight regions of the person at a certain randomization
level for SIG as shown in Figure 4.

The magnitude of change between the saliency maps of true and randomized
model is different for each model as the weight variables are randomized. It
clearly illustrates model randomization tests should be performed for each model
and method combinations as stated in the related work. Section 3.2 discusses
subjectively the magnitude of the change in sensitivity across detectors and
explanation method combinations. Therefore, the ability to explain models are
more dependent on the model than the ability of the explanation method to
explain the model.
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Model Randomization Test - B ling Box Xmin Expl: ion

of Weight i i -

Detections 0 25 50 75 100 1.0

SSD_SGBP ED0_SGBP

FRN_SGBP

0.0

Fig.3. Model randomization test for zm:» explanations (red-colored box) across
different models using SGBP. The first column is the detection of interest that is
explained in the consecutive columns. The second column is the saliency map generated
using the trained model without randomizing any parameters. The second column
highlights the important parts such as hands, eyes, and face. The last column is the
saliency map generated using a model with all parameters randomized. Note how FRN
fails the randomization test.

The explanation using GBP for EfficientDet-DO0 is noisy because the GBP
method acts similar to the Gradients method in the case of EfficientDet-DO.
Gradients estimate the gradient of the output target neuron with the input. Since
there are no ReLLU activations for EfficientDet-D0 the negative contributions
are not retarded and the prime usage of GBP is relaxed to work as Gradients
method.

The SSIM in Figure 5 is the average SSIM across different percentage of
weight variables randomized for a set of 15 images randomly sampled from the
COCO test set. Since the explanations have changed in terms of the important
pixels highlighted, saliency map texture, and SSIM metric with regards to the
explanations using the true model, all the explanation methods pass the model
randomization test for detectors.

The gradient attribution maps for the two-stage detector, Faster R-CNN,
illustrate checkerboard artifact on randomizing weights as shown in Figure 2.
There are various reasons for the gradient artifacts as discussed in [17] [25].

In the case of using GBP and SGBP with Faster R-CNN, the higher SSIM
between the classification decision saliency maps of completely randomized model
and true model is because of the checkerboard artifact shown in Figure 2. Even
though the center of mass of the grid pattern shifts over the image, the SSIM
provides a higher score due to similarity in the pattern. This observation is in
agreement with the subjective analysis in Section 3.2 with low sensitivity scores
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Model Randomization Test - Classification Explanation
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Fig. 4. Comparison of explanations using different explanation methods for the classi-
fication decision corresponding to EfficientDet-DO0 detections. The first column is the
detection (red-colored box) explained by the methods. The second column is the saliency
map generated using the trained model without randomizing any parameters. The last
column is the saliency map generated using the model with all parameters randomized.
SIG after randomizing 75 percentage of the weight variables visually highlight certain
regions of the person detection. However, the magnitude is relatively very less and
texture of the map is considerably different to the true model explanation.

EfficientDet-D0 Randomization Test - SSIM SSD512 Randomization Test - SSIM Faster R-CNN ization Test - SSIM
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Fig. 5. A quantitative assessment using SSIM of the change in classification saliency

map features during model randomization test across explanation methods and detectors

is provided. SSIM is the average SSIM computed across a subset of test images sampled
from the COCO test 2017.

for Faster R-CNN - GBP as well as Faster R-CNN - SGBP compared to other
detector and explanation method combinations.

Data randomization test: Figure 6 illustrate the differences in the saliency
maps explaining classification decision of SSD-VGG16. The attribution map
intensity levels are largely different. The texture of the explanations from the
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random model looks smoothed. However, the explanations generated using the
true model illustrate sharp features. There are substantial differences in the
saliency map generated using SIG for the chain detection in Figure 6. In addition,
the drink-carton classification explanations for the random model illustrates
patches, where as, the drink-carton is relatively sharper in the explanation
from the true model. However, the difference for other detection is only at
the level of attribution intensity and texture. Therefore, this opens up the
possibility to perform sanity checks at the class level. The methods should remain
sensitive for each class predicted by the model. The findings is consistent in
Figure 7 for explanations generated using GBP. In addition, all the explanation
methods provide different saliency maps for both classification and bounding
box explanations in terms of features highlighted, saliency map texture, and the
attribution intensity. Therefore, none of the selected explanation methods fail
the data randomization test for the SSD-VGG16 detector.

6 Conclusions and Future Work

In this work we have evaluated standard sanity checks for saliency explanations
in object detectors, considering both object classification and bounding box
regression explanations, through data and weight randomization. We defined new
qualitative criteria to systematically evaluate saliency maps visually, and we find
that overall, more modern object detectors like EfficientDet-D0 pass more sanity
checks and provide higher quality saliency explanations than older detectors like
SSD and Faster R-CNN.

Our conclusions hold under multiple gradient-based saliency methods, we
tested Guided Backpropagation and Integrated gradients, as well as their Smooth
Gradient combinations.

When Faster R-CNN fails to be explained using gradient-based saliency maps,
there are large checkerboard artifacts in the explanation, which stay even as
weights are randomized. SSD does not produce checkboard patterns but the
explanation is insensitive to weights being randomized. Only EfficientDet-D0
produces explanations that pass both data and weight randomization checks.

We expect that our work can increase interest in object detector explanations,
and provide additional ways to empirically validate these explanations. We believe
that our work provides additional insights not covered by [2], specially using
multiple and more complex models like object detectors.

Limitations. On a broader note, our work can focus on a larger evaluation set
with more defined evaluation metrics to assess the saliency maps. The evaluation
set is limited due to the high computation time to generate saliency maps for each
detection in an image for all coordinates, category decision, and randomization
levels.

In addition, we consider that certain models are not explainable based solely
on the fact that a few explanation methods fail in effectively explaining certain
detector decision. To make informed decisions, more explanation methods should
be evaluated together with sanity checks. Our work only provides a limited view
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SSD-VGG16 Data Randomization Test
Classification Decision Using SmoothGrad + Integrated Gradients
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Fig. 6. Data randomization test using SSD-VGG16 and SIG. The saliency maps explains
the classification decision. The first column depicts the detections, the detection of
interest is highlighted in white. The true and random model classification explanations
differ in terms of the features highlighted, attribution intensity, and the explanation
texture.

on this problem, but we do show that explainability depends both on model and
saliency explanation method.
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SSD-VGG16 Data Randomization Test
Classification Decision Using Guided Backpropagation
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Fig.7. Data randomization test using SSD-VGG16 and GBP. The saliency maps
explains the classification decision. The first column depicts the detections, the detection
of interest is highlighted in white. The true and random model classification explanations
differ in terms of the features highlighted, attribution intensity, and the explanation
texture.
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A Additional Sanity Check Results

Model Randomization Test - Bounding Box xmax Expl. ion

of Weight i i —
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Fig.8. Model randomization test for Zma. explanations (red-colored box) across
different models using SGBP. The first column is the detection of interest that is
explained in the consecutive columns. The second column is the saliency map generated
using the trained model without randomizing any parameters. The second column
highlights the important parts such as hands, eyes, and face. The last column is the
saliency map generated using a model with all parameters randomized. Note how FRN
fails the randomization test.
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Model Randomization Test - B ding Box ymin Expl; ion
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Fig.9. Model randomization test for ym:n explanations (red-colored box) across
different models using SGBP. The first column is the detection of interest that is
explained in the consecutive columns. The second column is the saliency map generated
using the trained model without randomizing any parameters. The second column
highlights the important parts such as hands, eyes, and face. The last column is the
saliency map generated using a model with all parameters randomized. Note how FRN
fails the randomization test.
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Fig.10. Model randomization test for ymar explanations (red-colored box) across
different models using SGBP. The first column is the detection of interest that is
explained in the consecutive columns. The second column is the saliency map generated
using the trained model without randomizing any parameters. The second column
highlights the important parts such as hands, eyes, and face. The last column is the
saliency map generated using a model with all parameters randomized. Note how FRN
fails the randomization test.
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