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Abstract
Recently, several logics modelling evidence have been proposed in the literature. These logics often also feature beliefs. We
call the process or function that maps evidence to beliefs consolidation. In this paper, we use a four-valued modal logic of
evidence as a basis. In the models for this logic, agents are represented by nodes, peer connections by edges and the private
evidence that each agent has by a four-valued valuation. From this basis, we propose methods of consolidating the beliefs of
the agents, taking into account both their private evidence as well as their peers’ opinions. To this end, beliefs are computed
iteratively. The final consolidated beliefs are the ones in the point of stabilization of the model. However, it turns out that
some consolidation policies will not stabilize for certain models. Finding the conditions for stabilization is one of the main
problems studied here, along with other properties of such consolidations. Our main contributions are twofold: we offer a
new dynamic perspective on the process of forming evidence-based beliefs, in the context of evidence logics, and we set up
and address some mathematically challenging problems, which are related to graph theory and practical subject areas such as
belief/opinion diffusion and contagion in multi-agent networks.

1 Introduction

With the advent of social media platforms, the way information spreads and is consumed has shifted
drastically in the past decades. As many as 42% of news consumers in countries like Chile, Brazil
and Malaysia prefer to get informed via social media, whereas in countries such as the US, Canada
and Australia this figure is about 25%.1 While this new way of sharing information has advantages,
it also facilitates the spread of misinformation. When asked whether they are worried about what is
‘real or fake’ on the internet, a majority of people in Brazil (85%), the UK (70%) and the US (67%)
answered positively, whereas in other countries the figure is lower but still significant, e.g. 38% for
Germany and 31% for the Netherlands.2

Amidst such a deluge of information of variable quality, perhaps one of the most important skills
in the 21st century is to use the proper epistemic machinery, i.e. to know how to fetch, filter and

1Digital News Report 2019, Reuters Institute. Accessed via: https://ora.ox.ac.uk/objects/uuid:18c8f2eb-f616-481a-9dff-
2a479b2801d0/.

2Ibid.
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Iterative social consolidations 1143

aggregate information, to separate reliable from unreliable sources, to combine pieces of evidence
appropriately and to consolidate evidence into beliefs.

In artificial intelligence, epistemic and doxastic logics are used as tools to model the knowledge
and belief of agents [26, 45]. In practical, real-world scenarios, however, these intelligent agents
often have to rely on inconsistent or incomplete data to build up their representation of the world.
We can think of these data as evidence, a looser and more general concept than that of justification
as featured in justification logics [2–4, 20, 27]. Here, evidence may be quite weak, e.g. a source that
says that a proposition is the case; think of a newspaper article that claims that drinking two cups of
coffee a day is healthy.

Recently, a series of logics have emerged with the purpose of modelling agents who possess
evidence [13, 21, 29, 34, 37, 38, 41–44]. Given this setting, then, we pose the following problem: how
to consolidate this evidence into beliefs? We highlighted the relevance of this problem in [33], where
we used the term consolidation3 to refer to the process of forming beliefs from evidence—formally
represented by functions from evidence to doxastic models. The complexity of certain epistemic
tasks has been studied (e.g. in [16, 39]), and, in the same vein, looking at consolidations as processes
enables us to ask questions about the complexity of such operations.

As in our previous papers [33, 35], we use the four-valued epistemic logic (FVEL) that we
developed in [32, 34] as a base. The resulting system is reminiscent of [6, 7]: agents are represented
as nodes and peer relations are represented as as edges, while belief is decided iteratively via modal
operators B0, B1, etc. In a first moment, B0ϕ is decided for each formula ϕ, based solely on the
agent’s own evidence. These are the agent’s initial beliefs or B0-beliefs. Next, B1-beliefs are decided
based on the agent’s evidence again plus the B0-beliefs of its neighbors. Then, B2-beliefs are decided
similarly but also taking into account B1-beliefs of the neighbors, and so on. The reason for this
choice is to make evidence private to each agent. So an agent can only access its own evidence plus
its neighbors’ opinions (or beliefs), but their evidence is not public, in contrast to our previous paper
[35]; this public evidence allowed for belief consolidation in a single iteration.

The main question that we investigate in this article is the following: what are the conditions for
stabilization of the iterative process of consolidating agents’ beliefs given their private evidence and
their peers’ opinions? We define three consolidation policies and study their (in-)stability properties
in different circumstances.

The rest of this article is structured as follows. Section 2 provides the logical background, based
on a combination of many-valued and modal logic. Section 3 introduces three consolidation policies
and definitions of some desired properties. In Section 4, we attempt to answer the main question of
this paper, namely, when is stability attained under these policies? Section 5 discusses some related
research, while in Section 6 we sketch some possible avenues of future research.

2 Logical language

In this section we explore a variant of FVEL [34] proposed in [35]. The only difference here is our
new definitions for belief.

3Borrowed from belief revision [23, 24], where it has the meaning of transforming a potentially inconsistent belief base
into a consistent one.
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1144 Iterative social consolidations

2.1 Syntax

Let At be a countable set of atoms. Below, p ∈ At; the classical part of the language is given by L0;
the propositional part is given by L1; and the complete language is given by L:

L0 ψ ::= p |∼ ψ | (ψ ∧ ψ)

L1 χ ::= ψ |∼ χ | (χ ∧ χ) | ¬χ

L ϕ ::= χ |∼ ϕ | (ϕ ∧ ϕ) | �ϕ | Biψ

where i ∈ N. We abbreviate ϕ ∨ ψ
def=∼ (∼ ϕ∧ ∼ ψ) and ♦ϕ

def=∼ � ∼ ϕ.
We restrict belief to classical propositional formulas (L0) because formulas with ¬ refer to

evidence, and we are not interested here in expressing agents holding beliefs about evidence, only
about facts. As we will see below, the semantics are not quite compositional since, for instance,
whether ¬p is true or not is not determined by whether p is true or not. This is because in the four-
valued semantics, truth and falsity are not defined as complements but may overlap or leave gaps.

Let us give some examples on how to read formulas of L1. Here, literals such as p are read as the
agent has evidence for p, whereas ¬p is read as the agent has evidence against p. Similarly, formulas
such as p ∧ q are read as the agent has evidence for p ∧ q, and ¬(p ∧ q) is read as the agent has
evidence against p ∧ q. Here, ∼ χ , on the other hand, is read as it is not the case that ϕ, and so ∼ p
is read as it is not the case that the agent has evidence for p.

In L, the reading of formulas is inherited from L1. Additionally, we read �ϕ as ϕ holds for all
peers and Biϕ as the agent believes ϕ in iteration i. Here, our reading of belief formulas deviates
from how we read formulas in L1: Bip is not read as the agent believes that she has evidence for p
(at iteration i), but simply as the agent believes p (at iteration i).

2.2 Semantics

Models are tuples M = (S, R, V), where S is a finite non-empty set of agents, R is a binary
irref lexive4 relation on S representing ‘peerhood’ and V : At × S → P({0, 1}) is a four-valued
valuation representing agents’ evidence: {1} is true (t), {0} is false (f ), {0, 1} is both (b) and ∅ is none
(n).5 A satisfaction relation is defined as follows:

M , s |� p iff 1 ∈ V(p, s)

M , s |� ¬p iff 0 ∈ V(p, s)

M , s |�∼ ϕ iff M , s 	|� ϕ

M , s |� (ϕ ∧ ψ) iff M , s |� ϕ and M , s |� ψ

M , s |� ¬(ϕ ∧ ψ) iff M , s |� ¬ϕ or M , s |� ¬ψ

M , s |� �ϕ iff for all t ∈ S such that sRt,

it holds that M , t |� ϕ

M , s |� ¬ ∼ ϕ iff M , s |� ϕ

M , s |� ¬¬ϕ iff M , s |� ϕ

4Baltag, Christoff, Rendsvig and Smets [7] work with symmetric, serial and irref lexive relations. Irref lexivity here means
that the agents are not peers of themselves.

5We stick to the standard [9] in the naming of truth values. In our context, however, n is better understood as no evidence
about ϕ, t as only evidence for ϕ (or positive evidence), f as only evidence against ϕ (or negative evidence), and b as evidence
both for and against ϕ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/32/6/1142/6657656 by guest on 05 June 2023



Iterative social consolidations 1145

An extended valuation function can be defined differently for each type of formula. If ϕ ∈ L1,
then: 1 ∈ V(ϕ, s) iff M , s |� ϕ; 0 ∈ V(ϕ, s) iff M , s |� ¬ϕ. Otherwise: 1 ∈ V(ϕ, s) iff M , s |�
ϕ iff 0 /∈ V(ϕ, s).

We can also define formulas discriminating which of the four truth values formula ϕ ∈ L1 has:

ϕn def= (∼ ϕ∧ ∼ ¬ϕ);

ϕf def=∼∼ (∼ ϕ ∧ ¬ϕ);

ϕt def=∼∼ (ϕ∧ ∼ ¬ϕ);

ϕb def=∼∼ (ϕ ∧ ¬ϕ).

If ϕ has value x ∈ {t, f , b, n}, i.e. V(ϕ, s) = x, then ϕx has value t, otherwise ϕx has value f . If a
formula ϕ ∈ L1 has valuation t or f , we say that the evidence for ϕ is unambiguous, otherwise we
say it is ambiguous. If V(p, s) = {1}, we say that s is a t-agent (with respect to p, but this will usually
be omitted as we will mostly be thinking of a fixed atom p); if V(p, s) = {0}, we say that s is an
f -agent, otherwise we say s is a b/n-agent.6

Notice that the semantics for belief was left open. Our goal in this paper is to discuss a number of
possible definitions for the semantics of belief, taking into account that evidence is private to each
agent; therefore, belief can only be defined from each agent’s own evidence plus their neighbors’
beliefs.

3 Iterative social consolidations: preliminaries

The following definition will be employed throughout the paper:

DEFINITION 1 (Attitude).
Let Atti : L0 × S → {1, 0, −1} be a function such that:

• Atti(ϕ, s) = 1 iff M , s |� Biϕ;
• Atti(ϕ, s) = −1 iff M , s |� Bi ∼ ϕ;
• otherwise Atti(ϕ, s) = 0.

The function Atti also depends on a model M , but this will be left implicit. We will write Att′i if
we are referring to a modified model M ′. Moreover, as it will become clear later, M , s |� Biϕ and
M , s |� Bi ∼ ϕ are mutually exclusive.

How to define beliefs from evidence, i.e. how to consolidate? Before defining any consolidations,
we will present the following notion, which is similar to bisimulation:

DEFINITION 2 (n-Equivalence).
We say that (M , s) �n (M ′, s′) iff (M , s) and (M ′, s′) satisfy exactly the same L1 formulas and
exactly the same formulas of the form �Biϕ, ♦Biϕ, � ∼ Biϕ, ♦ ∼ Biϕ, where i ≤ n.

6For this paper we could have used only three values (t, f and b/n), but since this is part of a larger project involving
FVEL, we chose to keep the four values.
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1146 Iterative social consolidations

Now we employ this equivalence to limit the space of possibilities. All consolidations have to
conform to the following condition:

DEFINITION 3 (Consolidation Definability Condition (CDC)).
If (M , s) �n (M ′, s′), then, for all ϕ ∈ L0, M , s |� Bn+1ϕ iff M ′, s′ |� Bn+1ϕ.

What the Consolidation Definability Condition (CDC) does is to make consolidations behave as
functions whose input is the initial evidence and the belief history of peers. It will be clear later why
we want to consider the history instead of just the last iteration of peers’ beliefs. Even in this limited
space, there are many possibilities. In this paper, we will limit ourselves to consolidations that obey
the regularity condition, defined as follows:

DEFINITION 4
We define regular consolidations to be those policies that respect, for all i ∈ N:

M , s |� B0p iff M , s |� pt

M , s |� B0 ∼ p iff M , s |� pf

M , s |� Bi ∼∼ ϕ iff M , s |� Biϕ

M , s |� Bi(ϕ ∧ ψ) iff M , s |� Biϕ and M , s |� Biψ

M , s |� Bi ∼ (ϕ ∧ ψ) iff M , s |� Bi ∼ ϕ or M , s |� Bi ∼ ψ

Behind Definition 4 is the idea that only beliefs in literals have to be consolidated, and from those
basic beliefs others can be built by simple propositional reasoning. Moreover, the first two clauses
say that if the evidence for an atom p is only positive (there is only evidence for p but not against p)
or only negative, then the agent will initially believe p or ∼ p, respectively.

Before the first iteration, the agents have not formed any beliefs, so each agent can only use
their own private evidence. In the next iterations, however, every agent may have formed beliefs,
and therefore, in order to use all information they have available, the agents can now combine their
own evidence with the opinion of their peers to form more robust beliefs.7 We remark that here the
iterations are not intended to model the passage of time, but are only a necessary technical device
used to circumvent the lack of peers’ opinions in the beginning. If the goal were to realistically
model time, it would make more sense to have asynchronous updates, where one agent updates in
each iteration, but we will leave this variant for future work. The beliefs under B0, B1, ... here do not
really mean that the agent is convinced about such beliefs at any moment; these are just steps towards
the agent’s actual beliefs, which we will denote by the operator B (without index); this B represents
the beliefs of the agent in her point of stabilization. So if the agent does not stabilize its beliefs with
respect to a formula ϕ, we cannot say that it has actually formed any (stable) beliefs on ϕ.

DEFINITION 5 (Stabilization).
An agent s in a model M is said to be stable at iteration i ∈ N with respect to ϕ ∈ L0 if, for all
j ≥ i: Atti(ϕ, s) = Attj(ϕ, s). A model M = (S, R, V) is said to be stable at iteration i ∈ N with

7This iterative process might remind one of Google’s famous PageRank algorithm [30].
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Iterative social consolidations 1147

respect to ϕ ∈ L0 if for all s ∈ S, s is stable at iteration i with respect to ϕ. If a model/agent is
not stable (with respect to a formula) it is unstable. The smallest i such that agent s is stable at
iteration i with respect to ϕ is called the stabilization point of agent s with respect to ϕ. The largest
stabilization point among all agents in M with respect to ϕ is called the stabilization point of M with
respect to ϕ. If the stabilization point of a model/agent (with respect to ϕ) is 0, it is called static (with
respect to ϕ).

4 Consolidation policies

In this section we will study three regular consolidation policies. Good policies follow some general
principles such as not wasting information, being neither too gullible nor too skeptical, etc. We will
highlight the qualities and flaws of each policy as we discuss them.

4.1 Policy I: monotonic belief diffusion

Below we define our first consolidation (a complete definition of belief):

DEFINITION 6 (Policy I).
Policy I is the regular consolidation with M , s |� Bn+1p iff:

M , s |� pt or (M , s |� pb ∨ pn and M , s |� ♦Bnp and M , s |� �Bnp).
And analogously for Bn+1 ∼ p.

Now, similarly to [7], we are faced with the question of what are the conditions under which this
specific policy eventually stabilizes. In most cases we will only talk about stability referring to some
arbitrary atom p, as the dynamics are similar for all formulas.

LEMMA 1
For regular consolidations, if a model/agent is stable at iteration i with respect to all atoms p ∈ At,
then this model/agent is stable at iteration i with respect to all formulas ϕ ∈ L0.

PROOF. Follows directly from Definition 4. �
Actually, Policy I is guaranteed to stabilize, as we prove below.

PROPOSITION 1
Under Policy I, for any model M and ϕ ∈ L0, the stabilization point of M with respect to ϕ is at
most k, where k is the length of the longest directed path in M without repeated edges.

PROOF. First we prove the proposition for an arbitrary atom p, which implies the general proposition
due to Lemma 1. Let k be the length of the longest directed path without repetition, and suppose s is
an unstable agent at iteration k. If k = 0, it is immediately obvious that this cannot be the case, so
let us assume that k > 0.

If all peers of s were stable at iteration k − 1, s would be stable by iteration k (Definition 6). So
there is an agent s1 such that sRs1 and s1 is unstable at iteration k − 1. Similar reasoning applies to
s1: she has a neighbor s2 who is unstable at iteration k − 2, and so on, until we reach agent sk who
is unstable at iteration 0. But if agent sk is unstable, there must be an agent sk+1 such that skRsk+1
(which could make the beliefs of sk change in the next iterations). But, from s to sk+1 there is a path
of length k + 1, which by our assumption (regarding k) means that there is at least one repeated
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1148 Iterative social consolidations

FIGURE 1 All unstable models of size 4 under Policy II have between 4 and 10 edges. This figure
shows only some of them.

edge in this path, and therefore one repeated agent. This, in turn, implies that we have a cycle with
at most k agents (otherwise the length of the longest path without repetition would exceed k). If
sk+1 is one of the repeated agents, then sk+1 ∈ {s, s1, ..., sk}; otherwise, the repeated agents are all
in {s, s1, ..., sk}. In any case, there is a cycle whose members si are all in {s, s1, ..., sk}. But, since all
si ∈ {s, s1, ..., sk} are unstable, they are all b/n-agents. But, if that is the case, then it is not hard to see
that Attj(p, si) = 0, for all j ∈ N. But this means that all si ∈ {s, s1, ..., sk} are static. Contradiction.�

Notice that for consolidations in general, due to the CDC, we cannot talk about fixpoints in the
traditional sense, i.e., an iteration i where the beliefs (the output) are the same as in iteration i − 1. In
Policy I, though, it is the case that if all beliefs are the same in iteration i and i + 1, then the model
is stable at i. In this policy, if the evidence is unambiguous, the agent immediately forms belief or
disbelief, and never changes. Stabilization is explained by the following:

PROPOSITION 2
In Policy I, the spread of belief is monotonic: let l ∈ {p, ∼ p} for some p ∈ At; and for all i ∈ N, let
Ai,l = {s ∈ S | M , s |� Bil}; then for all i ∈ N, Ai,l ⊆ Ai+1,l.8

PROOF. Informally: once an agent adopts belief/disbelief, it means that all her peers have also
adopted such attitude (or that she had belief/disbelief from the start, due to unambiguous evidence),
which in turn implies that all their peers have also done so, and so on... �

Policy I is also very restrictive: the only possible change in attitude for an agent (‘in time’, or
relative to the progression of iterations) is from abstention to belief/disbelief.9 This leads us to our
next definition: a more f lexible consolidation.

4.2 Policy II: unstable consolidations

DEFINITION 7 (Policy II).
Policy II is the regular consolidation with M , s |� Bn+1p iff:

M , s |� pt or (M , s |� pb ∨ pn and M , s |� ♦Bnp and M , s |� � ∼ Bn ∼ p).
And analogously for Bn+1 ∼ p.

8A similar monotonicity holds for the Threshold Model Update in [7,Definition 2.4].
9Similar in spirit to our work, but different in many technical aspects, Liu, Seligman and Girard [25] call a change from

belief to disbelief (or vice-versa) revision and a change from belief/disbelief to abstention contraction, adopting the classical
terms from belief revision [1]. Likewise, the change from abstention to belief/disbelief could be named expansion.
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Iterative social consolidations 1149

What changes now is that peers that abstain are ignored (unless all of them abstain), i.e. the agents
are less cautious about forming belief/disbelief when their evidence is ambiguous. Policy II is not
guaranteed to stabilize. For example, the models of Figure 1 do not stabilize—in that figure, agents
where p has value t are marked with a t, and similarly for f ; for the other agents, the evidence for
p is ambiguous. For the first model of Figure 1 (top left), note that the agents with unambiguous
evidence adopt belief and disbelief immediately, but a (agent on the top left of the model) and b
(top right) keep changing between belief (disbelief) and abstention. First, B0p holds for the agent
marked with a t. Then, since b abstains (neither B0p nor B0 ∼ p hold), the only non-abstaining
neighbor of a believes p, therefore we get B1p for a, and similarly B1 ∼ p for b. In the next iteration,
however, a has a neighbor with B1p (the one marked with t) and one with B1 ∼ p (agent b), so she
abstains—similarly for b. The cycle repeats indefinitely; therefore, Policy II is not monotonic, in
contrast to Policy I, as shown in Proposition 2.

Instability is undesirable for consolidations. Even though it might be rational to be always open
to changing our minds, especially upon the discovery of new evidence, our models are finite and
they receive no new information input during the consolidation process. Therefore, rational agents
are expected to decide, in a finite amount of time (or number of iterations) what are their final
belief states. Now, however, all possible attitude changes between belief, disbelief and abstention are
possible.

PROPOSITION 3
Stability in Policy II is decidable.

PROOF. For n agents, a model has 3n possible belief states (sets of attitudes of the agents) at each
iteration. Since belief in one iteration depends only on the fixed evidence and on the belief state in
the previous iteration, if the belief state in iteration 3n differs from that of iteration 3n − 1, the model
is unstable. �

PROPOSITION 4
Let R+ be the transitive closure of R. Under Policy II, for every s ∈ S that remains unstable, there is
a t such that sR+t and t is in a cycle.10

PROOF. Consider an agent s such that: (*) there is no t such that sR+t and t is in a cycle. Then all
directed paths starting from this s are finite (forming a rooted directed acyclic graph). We will prove
the proposition by induction on the length k of the longest path starting at s. I.H: For each agent s
such that (*) holds and whose longest path starting from it has size k ≤ n − 1, agent s is stable.
Base: k = 0, then obviously s is stable. Step: k = n. Consider any of the longest paths from s:
(s, s1, ..., sn−1). Then, (s1, ..., sn−1) has length n − 1 and (*) holds for s1, which by I.H. gives us that
s1 is stable. The other peers of s that belong to smaller paths are also stable, due to the I.H. Therefore,
all peers of s are stable and thus so is s. �

PROPOSITION 5
A model with only one b/n-agent s is stable under Policy II.

10Here it might be possible to draw some connection to abstract argumentation frameworks [17], because in that theory
odd cycles result in the inexistence of stable extensions.
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1150 Iterative social consolidations

PROOF. If s is the only b/n agent, all peers of s are stable (their attitude does not change). Then there
are three possibilities, as follows:

1. The set of peers of s is empty. In that case s is static.
2. All peers have the same attitude. In that case, s will also adopt this attitude.
3. There are at least two peers with different attitudes. In that case, s will remain static.

In all three cases, stabilization occurs at the first iteration. �

PROPOSITION 6
In any model without a t-agent (or without an f -agent), the spread of belief is monotonic (under
Policy II).

PROOF. Let M be a model without any f -agents. By Definition 7, under Policy II it is impossible
for any agent to have attitude −1 (disbelief). Moreover, the only way that an agent s who ‘adopted’
(changed attitude from 0 to 1) can unadopt (revert back to 0) is when:

1. all its peers who previously had attitude 1 also unadopted; or
2. one of its peers changed attitude to −1.

Since item (ii) is impossible, the only way is via item (i), but then for that to happen it is necessary
that all the peers of the peers of s unadopted. This recursion cannot go on forever because our
models are finite, and since we do not have an f -agent, there cannot be a first unadopter. Therefore,
unadoption is impossible and thus belief spread is monotonic. Similar reasoning applies for the case
of no t-agent. �

DEFINITION 8 (Submodel).
We say M ′ = (S′, R′, V ′) is a submodel of M = (S, R, V) if S′ ⊆ S, R′ ⊆ R, and for all p ∈ At and
s ∈ S′: V ′(p, s) = V(p, s).

DEFINITION 9 (Model Restriction).
Let M = (S, R, V). A restriction MZ of M to Z ⊆ S is the submodel MZ = (Z, R′, V ′) of M with
R′ = R ∩ (Z × Z).

PROPOSITION 7
Let M = (S, R, V), let s ∈ S, let R∗ be the ref lexive and transitive closure of R, and let R∗(s) = {t ∈
S | sR∗t}. Then for all t ∈ R∗(s), all ϕ ∈ L0 and all i ∈ N: MR∗(s), t |� Biϕ iff M , t |� Biϕ.

PROOF. This is an instance of a theorem that holds for so-called generated submodels (see
Proposition 2.6 in [12]). �

COROLLARY 1
Any unstable model (under Policy II) has at least one cycle (s1, ..., sn) with n ≥ 2 and such that for
all si ∈ {s1, ..., sn}: si is a b/n-agent; there are a, b ∈ S such that siR+a and siR+b, a is a t-agent and
b is an f -agent.

PROOF. First we modify the proof of Proposition 4 to show that: for any unstable agent s there is a t
such that sR+t and t is in a cycle consisting only of unstable b/n-agents. We prove the contrapositive
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Iterative social consolidations 1151

FIGURE 2 Some stable models satisfying the conditions of Corollary 1. In each model here, the
b/n-agents are white, any one of the black agents can be taken as a t-agent and the other as an
f -agent.

by induction as before, by assuming that no such cycle exists, and therefore any path from s to any
unstable b/n-agent is finite. The rest of the induction is similar. In the base case, if the agent has no
unstable b/n-peer, then all its peers are stable and therefore it is stable.

Now we just have to show that for all members si of this cycle, there are agents a and b as in the
corollary statement. Note that for any two agents si, sj in a cycle, R+(si) = R+(sj). Now assume
there is no t-agent a such that siR+a is true. We know by Proposition 7 that the beliefs of si are the
same as in MR∗(si), which has no t-agent. But by Proposition 6, we know that in such a model the
spread of belief is monotonic and therefore the model stabilizes. So there has to be a t-agent a with
siR+a. Analogous reasoning applies for f -agent b. �

COROLLARY 2
The first model of Figure 1 (top left) is the smallest (in number of agents and edges) unstable model
under Policy II.

Corollary 1 gives necessary but not sufficient conditions for instability (see Figure 2)11 :

OPEN PROBLEM 1
What is the set of unstable models under Policy II?

The set of such models is obviously infinite, but enumerable. For each k ∈ N, we just need to
generate all models of size k (which is a finite number of models), with each possible valuation
(assuming here only one atom: At = {p}) and combination of edges, and compute whether the model
is stable or not (decidable, by Proposition 3). This algorithm works as a finite description of the set of
unstable models (under Policy II). It would be more interesting, however, to have a more ‘structural’
description, such as the one of Corollary 1.

Unfortunately, we have not managed to find such a simple structural characterization of unstable
models (and actually we do not know if such a characterization is even possible), but the following is
our attempt at finding ‘simplifications’ that could hopefully yield models that capture the ‘essence’
of instability.

11For example, Christoff and Grossi [14] solve this problem for a different logic. Van Benthem [40] provides a more
abstract study of oscillations in logics, corresponding to the phenomenon that we call instability.
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1152 Iterative social consolidations

DEFINITION 10 (Reduction).
Let M be the class of all models. A relation T ⊆ M×M is called a semi-reduction if for all models
M = (S, R, V), M ′ = (S′, R′, V ′), we have MTM ′ iff: M ′ is stable iff M is stable; and S′ ⊆ S.
Moreover, if M ′ is a submodel of M , then T is called a reduction.

DEFINITION 11 (Faithful reduction).
A semi-reduction T is called faithful if for all models M = (S, R, V), M ′ = (S′, R′, V ′), we have
MTM ′ iff: for all i ∈ N, all ϕ ∈ L0 and all s ∈ S′, M ′, s |� Biϕ iff M , s |� Biϕ.

Note that if for all M , M ′, MTM ′ only if M ′ is a restriction of M , then T is a faithful reduction.
Below, let us consider arbitrary models M = (S, R, V) and M ′ = (S′, R′, V ′).

DEFINITION 12
Below we define T1, T2, T3, T4, T5, T6 ⊆ M × M such that:

• MT1M ′ iff: M ′ is the submodel of M such that R \ R′ = {(s, t)}, where s, t ∈ S and s is a t-agent
or an f -agent, and S′ = S.

• MT2M ′ iff: there is an s ∈ S such that there is no t ∈ S with sRt or tRs, and M ′ is the restriction
of M to S \ {s}.

• MT3M ′ iff: there is a b/n-agent s, a t-agent a and an f -agent b in S such that sRa and sRb, and
M ′ is a restriction of M to S \ {s}.

• MT4M ′ iff: there is a b/n-agent s ∈ S for which there is no t-agent a ∈ S with sR+a, and no
f -agent b ∈ S with sR+b and M ′ is a restriction of M to S \ {s}.

• MT5M ′ iff: there are at least two distinct t-agents (or f -agents) a, b ∈ S; S′ = S, V ′ = V and
R′ = R ∩ ((S \ {b})× (S \ {b}))∪ Q, with Q = {(a, s) | (b, s) ∈ S × S}∪ {(s, a) | (s, b) ∈ S × S}.

• MT6M ′ iff: there is a b/n-agent s for which there is no cycle (s1, ..., sn) consisting only of b/n-
agents in M such that for an si in (s1, ..., sn), a t-agent a ∈ S and an f -agent b ∈ S, it holds that
siR+a, siR+b and siR+s; and M ′ is a restriction of M to S \ {s}.

Note that T5 is the only of the relations Ti above in which MTiM ′ does not require M ′ to be a
submodel of M , which means that one has to apply it wisely if one wants to actually simplify a
model (basically, one t-agent and one f -agent have to be chosen to concentrate all incoming arrows).
It is called a semi-reduction because it does not necessarily yield simpler models.

PROPOSITION 8
The relations T1, T2, T3, T4 of Definition 12 are faithful reductions, T5 is a faithful semi-reduction,
and T6 is a (non-faithful) reduction.

PROOF. This proof is straightforward. In some cases, one just has to use Proposition 7 and have in
mind that peers with attitude 0 do not affect any agent’s beliefs. �

Now one can apply arbitrary sequences of the reductions above to obtain, from an arbitrary model,
less cluttered counterparts that are stable if and only if the original was (see Figure 3). In the three
cases in Figure 3, the models have certain features that allow us to enlarge them or add nodes and
connections that do not change anything stability-wise. For example, if an agent is connected to a
t-peer, adding another t-peer will not make any difference. Also, if in the reduced example to the
right of the arrow in Figure 3(b), one added some b/n-agents between the t-agent and the cycle, as
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FIGURE 3 Here b/n-agents are white, t-agents are gray and f -agents are black. Many stable models
reduce to a single agent model (after applying T1 − T6 as much as possible), but there are cases like
(a) above where it is not reduced completely. Likewise, many unstable models reduce to the smallest
unstable model, like case (b), but some do not, as in case (c). These reduced models highlight features
affecting a model’s stability or instability.

long as one added the same number of b/n-agents between the f -agent and the cycle in the same
direction, it would just take one more iteration for the beliefs to propagate.

In Figure 3(a), if the path between the t-agent and the cycle has a different length than the path
between the f -agent and the cycle, then this will stabilize the cycle. Finally, in Figure 3(c), only some
arrows and agents that do not affect stability have been removed when going from the top picture to
the bottom one.

One can also use only faithful reductions to obtain a simplification where all agents have exactly
the same belief history. Using reductions might be a more efficient way of checking whether a model
is stable, and it certainly is an easier method for humans in many cases. A more formal comparison
of the complexity between checking stabilization in the standard way versus using reductions is left
for future work.

To get a sense of the prevalence of instability, we randomly generated (using the Erdoős-Rényi
method [19]) and tested 100,000 models of size 4 to 60 and found the percentages of unstable ones, as
shown in Figure 4. It is clear that we can expect a zero-one law here (e.g. as in [46]), with the percent-
age going to zero in the limit when the size tends to infinity. This mitigates the problem of instability
for Policy II: in large enough models (such as a big network of scientists, for example), ‘almost never’
will the agents incur an irrational consolidation infinite loop. A possible informal explanation is that,
as the size increases, the number of possible structures that can be built grows much faster than the
number of possibilities for ‘instability-inducing’ structures, which are very specific: they have to
respect the conditions of Corollary 1 plus other unknown conditions (Open Problem 1). Another
interesting question is: why does the percentage of unstable models peak at size 11?
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FIGURE 4 Percentage of unstable models per model size, for Policy II.

4.3 Policy III: ignoring unstable peers

Our next consolidation policy will try to tackle the instability problem by temporarily ignoring agents
who have not been stable for the last λ iterations. Formally, we define the following abbreviation:

M , s |� stablen
λ,p (with n ≥ λ ≥ 1and p ∈ At)

with the meaning: Attn−1(p, s) = Attn−2(p, s) = ... = Attn−λ(p, s). (Agent s has been stable about
p in the last λ iterations preceding iteration n), and set that if λ ≤ 1, then M , s |� stablen

λ,p; and if
λ > n, then M , s |� stablen

λ,p is defined as M , s |� stablen
n,p. This abbreviation does not increase

expressivity, because it can always be defined by a finite propositional combination of conditions.
For example, M , s |� stable10

2,p is defined as the following disjunctive condition: (M , s |� B9p and
M , s |� B8p) or (M , s |� B9 ∼ p and M , s |� B8 ∼ p) or (M , s |�∼ B9p∧ ∼ B9 ∼ p and
M , s |�∼ B8p∧ ∼ B8 ∼ p).

From the above, we conclude that, as expected, M , s |� �stablen
λ,p means that for all t ∈ S such

that sRt, M , t |� stablen
λ,p. Dually, M , s |� ♦stablen

λ,p means that there is a t ∈ S such that sRt and
M , t |� stablen

λ,p. To restrict the modal operators to stable peers only, we can define M , s |� �n
λ,pϕ

as M , s |� �(∼ stablen
λ,p ∨ ϕ), and we can define M , s |� ♦n

λ,pϕ as M , s |� ♦(stablen
λ,p ∧ ϕ). Now

we are ready to define the family of policies Policy III-λ:

DEFINITION 13 (Policy III-λ).
Let 1 ≤ λ ∈ N. Policy III-λ is the regular consolidation with M , s |� Bn+1p iff:

M , s |� pt or (M , s |� pb ∨ pn and M , s |� ♦n+1
λ,p Bnp and M , s |� �n+1

λ,p ∼ Bn ∼ p).
And analogously for Bn+1 ∼ p.

It is not hard to see that Definition 13 is compliant with the CDC (Definition 3), which is also
the reason why we defined the CDC based on the history of peers’ beliefs and not only on the last
iteration. Note also that if the parameter λ = 1, Policy III-λ coincides with Policy II, so the former is
a generalization of the latter. Figure 5 shows the evolution of belief using Policy III-λ on the model
of Figure 1, with different values of λ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/32/6/1142/6657656 by guest on 05 June 2023



Iterative social consolidations 1155

FIGURE 5 Iterations of belief for agents a and b in the first model of Figure 1 (top left). Abstention
is represented by 0, belief by 1 and disbelief by −1 (as in Definition 1).

The question that immediately surfaces is whether larger values of λ improve stability. Looking
at Figure 5, we notice that larger values of λ make iterations of abstention less frequent. We have to
formally define what ‘improving stability’ means here.

DEFINITION 14 (Stability Measure).
A stability measure <M ,ϕ for consolidations (with respect to a fixed model M and an arbitrary
ϕ ∈ L0), where C2 <M ,ϕ C1 is read as C1 is more stable than C2 for ϕ in M , has to respect the
following principles:

1. If C1 makes M static but C2 does not, then C2 <M ,ϕ C1;
2. if C1 makes M stable but C2 does not, then C2 <M ,ϕ C1;
3. if M stabilizes with C1 at iteration i and with C2 at j > i, then C2 <M ,ϕ C1;

If for all models M and all ϕ ∈ L0 it is the case that C2 <M ,ϕ C1, then we say that C2 < C1, i.e., C1
is more stable than C2.

For an arbitrary measure of stability, our initial hypothesis is as follows:

HYPOTHESIS 1
Let 1 ≤ λ, κ ∈ N. If λ < κ , then Policy III-λ < Policy III-κ .

We can start by asking whether Policy III with λ = 1 can, in some case, be more stable than with
λ = 2. Definition 14-i cannot be used to violate Hypothesis 1, when changing λ from 1 to 2. If a
model is static, changing λ will not produce any changes in belief. Perhaps surprisingly, though, our
Hypothesis 1 can be violated by Definition 14-ii, i.e. there is a model that stabilizes when λ = 1 but
does not when λ = 2, namely the model of Figure 6 (right). For clarity, the value of p is not shown
when it is ambiguous.

The models of Figure 6 (left) and Figure 6 (right) are the smallest models (considering number
of agents and arrows) that feature, respectively: (a) a change from unstable with λ = 1 to stable
with λ = 2 and (b) the opposite. We tested computationally and verified that phenomena (a) and (b)
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FIGURE 6 Left: unstable with λ = 1, stable with λ = 2. Right: stable with λ = 1, unstable with
λ = 2.

FIGURE 7 Iterations of belief for the models of Figure 6.

do not happen in models with 4 or less agents. Another surprising result is that, among models of
size 5, there are exactly the same number of models where (a) and (b) occur. Moreover, we tested
with λ = 1, ..., 10, running for at most 1000 iterations, and all models fitting (a) were stable with
λ = 2, ..., 10, and all models fitting (b) were unstable with λ = 2, 3 and stable otherwise. We suspect
that phenomena (a) and (b) occur due to the qualitative difference between Policy III-λ with λ = 1,
which equals Policy II, and with λ ≥ 2. Moreover, on the basis of the experiments we can conjecture
that increasing λ does have a positive effect in terms of stability for the vast majority of models and
changes in λ, with possible exceptions when λ is raised from 1 to 2 or 3 (although Hypothesis 1 is
false). This is because the (b)-type models became stable with larger values of λ, despite becoming
unstable with λ = 2, 3.

4.4 Comparing the policies

In the beginning of Section 4, we mentioned some properties of good policies such as not wasting
information and being neither too gullible nor too skeptical. With respect to these properties, we
make a few observations:

• Policy II is less skeptical than Policy I, because in Policy II, in contrast to Policy I, an agent
does not need all neighbors to believe p in order to start believing p.

• Similarly, Policy III seems to be less skeptical than Policy I.
• It is unclear whether Policy III is more or less skeptical than Policy II. Policy III seems at

first sight to create fewer iterations in which agents are undecided, but we have not proven any
relation formally.

From a certain perspective, skepticism has to do with wasting information: if an agent never forms
any belief, then it is maximally skeptical but also wastes maximum information. From another
perspective, an agent ignores information in order to form more beliefs, e.g. an agent using Policy
III ignores unstable peers for that purpose.
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4.5 Other policies

Other policies that have not yet been explored include the following ideas:

1. Stopping the consolidation at a fixed iteration defined by a parameter λ. This policy would
guarantee stability in a forceful manner. A drawback is that it would be too sensitive to the
parameter λ, especially in the case of unstable models (under Policy III);

2. Limiting the number of times an agent can change its attitude, e.g. after going from abstention
to belief/disbelief, it cannot go back to abstention. We probably will not have problems to
define this consolidation respecting the CDC, for even though the agents do not take into
account their own belief histories directly, these are definable from their peers’ previous
beliefs;

3. Defining belief based on the number of peers holding a certain attitude. In [35], we show that
by introducing a dynamic operator (which increases expressivity), we can count peers with
certain attitudes. This would probably be a more realistic way of consolidating beliefs, but
demands a language richer than the modal logic used here.

4. Allowing t and f -agents to change attitudes. For this, item (iii) above might be helpful.
Alternatively, b/n-agents could have a policy similar to Policy II, whereas t and f -agents could
be more resistant to change, adopting a strategy in line with Policy I.

5 Related work

Researchers in social epistemology and agent-based modeling have investigated agents in social
networks that combine their own evidence with the beliefs they know their peers to have. Beliefs in
social networks sometimes indeed stabilize over time. This phenomenon can be rational and positive,
see e.g. the correct consensus described by Zollman [47]. Stabilization can also have undesired
effects, such as the mere (incorrect) consensus described by Zollman [47], the echo chambers
described by Nguyen [28], and the polarization described by Dykstra and colleagues [18].

From a logical point of view, perhaps the closest work to ours is being done by Sedlár and
Majer [36]. They use a four-valued paraconsistent logic that is very close to the one we used
previously in [32, 34] and on which the current formalism is based. Their work features a source-
related interpretation of the modal accessibility relation. In this way, inconsistencies and conflicting
information are explained by information with origins in different sources. The motivation of their
paper differs from ours in many ways and is more closely related to our previous work (see,
e.g. [32, 34]).

Grandi, Lorini and Perrussel [22] study the way opinions on a set of issues evolve in a social
network in a setting that is similar to ours and they study the notion of convergence, which is very
similar to our notion of stability. Their model has a set of agents who are linked in a graph and who
try to form an opinion on a set of atomic propositions, which may be restricted by so-called integrity
constraints. The process of how opinions may change in a network involves iterative application
of well-known aggregation procedures from the literature on social choice theory. They obtain a
number of results on convergence. The main difference between their approach and ours is that the
opinions of agents in the system of [22] are binary, so an agent cannot abstain on an issue. The other
difference is that [22] has integrity constraints that capture the possible dependencies that atomic
propositions may have. We do not consider these in our framework.

An important societal problem is pluralistic ignorance: each agent in a group believes that their
private attitude deviates from that of the others, while in fact everyone acts identically, in opposition
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to their private attitudes. For example, in Hans-Christian Andersen’s famous fairy-tale, a whole
group of adults acts as if they believe that the emperor is showing off his beautiful new clothes, until a
child expresses their true beliefs, namely, that the emperor is not wearing any clothes at all. Christoff
and Hansen [15] present a dynamic hybrid framework that is sufficiently fine grained to model
situations of pluralistic ignorance, which could not yet be modeled in [25]. It would be interesting
to extend the framework of our current paper, in which agents’ evidence is always private, with the
possibility of public evidence as in [35] in order to be able to model such situations of pluralistic
ignorance.

Bjorndahl and Özgün [11] study a generalization of the topological frameworks of [5, 29]. In
their new framework, evidence is taken to be factual: each piece of evidence corresponds to a set of
possible worlds. However, this correspondence is itself subject of uncertainty, i.e. the agents do not
know what the evidence actually entails. This is similar to our approach in that the agents have to
find out what to believe based on their evidence (i.e., they have to consolidate), but differs from it in
the factivity of evidence. What the evidence entails is not necessarily clear in our models. Their logic
allows for the modelling of, among other things, calibration errors, giving it a quantitative aspect in
the treatment of evidence. This is something we hinted at in the end of [35], although the quantitative
aspects of these two papers are manifested in very different ways.

6 Conclusions and future work

In this paper we used a many-valued modal logic (FVEL) to represent a multi-agent network of peers
and their evidence, and defined belief based on this network and on the evidence. This paper is an
alternative view to our previous paper [35], where the agents can access one another’s evidence,
therefore allowing for consolidations done in one step. By making the evidence private, we triggered
an iterative process, through which the agents always (in Policy I) or almost always (Policy II)
approximate a final belief. The exception to this is in the problematic cases of unstable models,
which were one of the main topics explored here.

For the consolidation policies with public evidence that we defined in [35], we extensively
assessed them against a set of rationality postulates inspired by social choice theory, which
we call ‘consistency’, ‘modesty’, ‘no gurus’, ‘atom independence’, ‘logical omniscience’ and
‘monotonicity’. For precise definitions of these rationality postulates and the relation between
belief consolidation and judgment aggregation based on voting, see [35]. A similar assessment of
rationality postulates for our current policies based on private evidence remains for future work. At
first sight, within the abstractions and limitations of our modelling (i.e., respecting the CDC), the
policies sketched here seem to be moderately rational. At least, they respect some of the rationality
postulates that we defined for general consolidation functions in [33, footnote 4]:

• If evidence is only positive, then you should not disbelieve;
• If evidence is only negative, then you should not believe;
• If only positive (negative) evidence is not enough to generate belief (disbelief), then nothing is.

One philosophical point that has to be better defended is the non-temporal aspect of the iterations
in the consolidation process. We are not trying to represent agents who are updating their beliefs
as the days and years go by. This time can be seem as just a ‘processing time’. It can also be
viewed as passage of time in a very restricted situation where agents cannot do anything besides
communicating with their peers—they do not have the opportunity to consult other sources of
information or to make deep ref lections—as if they are deliberating in an isolated room. This
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Iterative social consolidations 1159

deliberation, of course, would be of a very simple kind, in which all they are allowed to do is to
ask the opinions of their peers, at discrete moments of time, or turns.

In the problem of informational cascades [8, 10], rational individual behaviour might lead to bad
doxastic outcomes. In that case, this happens due to the evidence being private to each agent, who
can only access the others’ final judgements, which is also a feature of our models. The instability,
but possibly other irrational behaviours in our system, is partially explained by that feature. A
comparison with the system in [35], where others’ evidence is public, would help to elucidate the
impact of private evidence.

There is still much work to be done on these consolidations, especially Policy III, which has not
yet been explored in great depth. It would also be interesting to study the properties of the stabilized
belief operators B of the stable policies that we studied so far. Other policies such as the ones in
Section 4.5 can also be studied. Moreover, as remarked earlier, here a three-valued logic (such as the
ones in [31, Ch. 7]) of evidence would suffice, but consolidations that distinguish n and b could be
developed in future work.
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