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Abstract

Sarcasm is a frequently used linguistic device which is ex-
pressed in a multitude of ways, both with acoustic cues (includ-
ing pitch, intonation, intensity, etc.) and visual cues (including
facial expression, eye gaze, etc.). While cues used in the ex-
pression of sarcasm are well-described in the literature, there
is a striking paucity of attempts to perform automatic sarcasm
detection in speech. To explore this gap, we elaborate a method-
ology of implementing Inductive Transfer Learning (ITL) based
on pre-trained Deep Convolutional Neural Networks (DCNNs)
to detect sarcasm in speech. To those ends, the multimodal
dataset MUStARD is used as a target dataset in this study. The
two selected pre-trained DCNN models used are Xception and
VGGish, which we trained on visual and audio datasets. Re-
sults show that VGGish, which is applied as a feature extractor
in the experiment, performs better than Xception, which has its
convolutional layers and pooling layers retrained. Both models
achieve a higher F-score compared to the baseline Support Vec-
tor Machines (SVM) model by 7% and 5% in unimodal sarcasm
detection in speech.

Keywords: sarcasm detection, Deep Convolutional Neural
Networks, Inductive Transfer Learning, speech recognition,
human-computer interaction

1. Introduction

In order to reliably recognize sarcasm, it is necessary to de-
fine what sarcasm is. A common sense definition suggests that
sarcasm is a way to convey the opposite of what is said. This
is, however, something of a reduction. Consider how a sen-
tence like “the service here is good”, when delivered sarcasti-
cally does not only mean that the service is actually not good,
but that it is awful. In other words, it is not merely a matter
of negation [1]. Sarcasm can also be heightened with certain
words which express illocutionary force. In English, this can be
achieved with adverbs like “honestly”, as in “honestly, the ser-
vice here is good.” Another interesting aspect of sarcasm that
evades a typical definition is that it is systematic. This means
that any sentence can be rendered sarcastically, with a largely
predictable interpretation, even in the absence of context. Thus,
the interpretation of the example above would be obvious to all
eavesdroppers without recourse to context. It is also pertinent
to bear in mind that the ways in which sarcasm is conveyed and
perceived have been extensively studied across cultures and lan-
guages [2, 3, 4]. In linguistics, it has been argued that prosodic
cues (e.g., intonation and stress) play a significant role in com-
municating sarcasm [4, 5, 6]. Critically, these results have not
been fully implemented in speech technology. As speech tech-
nology is increasingly used in our daily activities, developing a
system that is able to recognize and interpret colloquial speech
is a necessary step to further enhance human-computer interac-
tion.
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This paper addresses two gaps in sarcasm detection re-
search. The first gap stems from the observation that although
sarcasm detection in text [7, 8, 9] has been studied for a while
now, sarcasm detection in speech receives comparatively much
less scholarly attention. The second gap addresses the fact that
of the few attempts to perform sarcasm detection from speech,
all rely on machine learning algorithms such as tree-based
methods and Support Vector Machines (SVM) [10, 11, 12],
even though Neural Networks (NNs) based transfer learning
could be a very effective tool to these ends. Concretely, Deep
Convolutional Neural Networks (DCNNs) advance in several
aspects such as the first GPU implementation and the first ap-
plication of maximum pooling [13]. They stand out in vari-
ous research fields recently as a result of their ability to tackle
challenging tasks, including speech and signal processing [14].
Moreover, transfer learning, which allows models to be re-used
in different tasks, domains, and distributions, is gaining increas-
ing attention in speech technology [15, 16], upon which, Induc-
tive Transfer Learning (ITL) is a category of transfer learning,
used to tackle target tasks that are different from source tasks.
However, to the best of our knowledge, no existing study has
applied DCNNs-based ITL to sarcasm detection in speech. Ac-
cordingly, we propose the following research questions:

1. Can DCNNs-based ITL enhance sarcasm detection in
speech?

2. What DCNN transfer learning approach optimizes sar-
casm detection in speech?

To address the first question, we conduct experiments
in which we apply pre-trained DCNNs to sarcasm detec-
tion by using ITL. It is hypothesized that the selected pre-
trained DCNNs models, Xception and VGGish, can enhance
the sarcasm detection performance compared to the baseline
SVM model. To address the second question, we imple-
ment different transfer learning approaches to the selected
models, namely, instance-based transfer learning and feature-
representation transfer learning. Then, we compare the model
performance on the MUStARD [10] dataset. Work by Tsalera
et al. [17] used feature-representation transfer learning success-
fully achieved 100% accuracy in classifying sounds in the Air
Compressor dataset. As an improvement upon the previous re-
search, in this paper, we implement both instance-based transfer
learning and the feature-representation transfer learning, with
an intention to investigate which transfer learning approach gen-
erates better performance for sarcasm detection in speech.

We make the following contributions:

1. We implement ITL based on pre-trained DCNNSs to sar-
casm detection in speech.

2. We demonstrate that the feature-representation approach
enhances DCNNs architecture in the task of transfer
learning of detecting sarcasm in speech.
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3. We demonstrate that data augmentation is a suitable
method to deal with data scarcity in sarcasm detection.

This paper is organized as follows: Section 2 is an overview
of previous works on sarcasm detection in speech and pre-
trained DCNNs models. Section 3 discusses the methodology.
Section 4 presents the implementation of the experiments. Sec-
tion 5 presents the results and Section 6 discusses the results.
Finally, Section 7 concludes this paper and outlines directions
for future work.

2. Related Work

In speech-related fields, studies dedicated to sarcasm detec-
tion can be classified into two categories according to the data
modality: those that rely on audio data exclusively and those
based upon multimodal data (which may include some combi-
nation of text, audio, or visual data). As for the former cat-
egory, the mainstream is to use machine learning methods, in
which feature selection is the most important task. For exam-
ple, Tepperman et al. [11] conducted experiments involving
prosodic, spectral, and contextual cues to investigate the role
of prosody in detecting sarcasm in speech. Although the re-
sults highlighted the insufficiency of prosody in sarcasm detec-
tion, spectral cues were shown to be substantial features. Later,
Rakov & Rosenberg [12] extracted sentence-level acoustic fea-
tures (including pitch, intensity, and speaking rate) and word-
level features (including pitch contour and intensity contour)
from a dataset composing utterances from a TV show. Then,
they conducted k-means clustering to recognize sarcastic utter-
ances. As a result, it was demonstrated that specific acoustic
features (including pitch and intensity contours) were indica-
tors of sarcastic speech. As for the latter category, Castro et al.
[10] were the first to propose a multimodal approach to sarcasm
detection and a benchmark dataset MUStARD was introduced
with audio, visual and text modalities. They used SVM to clas-
sify audio files from MUStARD dataset into sarcastic and non-
sarcastic utterances. Finally, they achieved an F-score of 65% in
the audio modality. Based on the MUStARD dataset, a number
of studies concerning multimodal sarcasm detection have been
presented [18, 19].

DCNNs are developing rapidly as their excellent perfor-
mance in image classification and recognition. Xception [20]
is a DCNN with depthwise separable convolutions. The Xcep-
tion architecture has 36 convolutional layers serving as feature
extractors, followed by a logistic regression layer. All 36 con-
volutional layers are constructed into 14 modules, each mod-
ule is connected with linear residual connections. Xception is
trained on the JFT dataset which composes of over 350 million
images that are classified into 17,000 classes. It has been pro-
foundly used in image identification and classification. VGGish
[21] is a sound-based DCNN model modified based on the ar-
chitecture of VGG which is used for image classification [22].
VGGish contains a sequence of convolution and activation lay-
ers, followed by max pooling layers; fully-connected layers at
the top generate output feature vectors with a size of 128. VG-
Gish is trained on YouTube-100, which is a dataset consisting
of 100 million YouTube videos. Each video is labeled with at
least 1 topic (e.g., “Song”, “Cormorant”, “Trumpet”). It is built
to classify soundtracks from 70 million videos (5.24 hours) la-
beled with 30,871 categories. Table 1 presents details of the two
models.
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Table 1: Selected DCNNs

CNNs Type Dataset Layers Parameters
Xception Image JFT 71 21 millions
VGGish  Audio  YouTube-100 24 7 millions

3. Methodology

To address the research questions proposed in Section 1, we
elaborate the following replicable approach. Two pre-trained
models were selected for the experiment: Xception, which is
an image-based model, and VGGish, which is a sound-based
model. In the experiments, initially, we preprocessed 690 au-
dio files from MUStARD to reduce background noise and to
match the input size of the selected models. Next, features were
extracted from the audio files and fed into the models. Then,
for both models, data augmentation was conducted to boost the
training set. Regarding the transfer learning approaches, the
instance-based approach was used for Xception. We adopted
VGGish as a feature extractor. Lastly, in the evaluation stage,
5-fold cross-validation was used to evaluate the models. The
overview of the process is presented in Figure 1.

Audio files

Preprocess

noise reduce

resample (22050Hz)
re-channel (mono)

resize for VGGish (5000ms)

Feature extraction

Mel spectrograms for Xception
log Mel spectrograms for VGGish

Test and
Validation Set

Training Set

Data augmentation

Speed (+100ms; -100ms)
Volume (+30dB; -30dB)

Transfer learning

feature-representation approach
instance-based approach

Figure 1: Overview of audio file processing.

3.1. Pre-trained models

We implemented instance-based transfer learning and feature-
representation transfer learning [23] for Xception and VGGish
respectively. In the aspect of Xception, since the similarity be-
tween both tasks and domains of the source and the target are
low, we considered that the discrepancy may be diminished by
updating the weights with the target data. Therefore, we modi-
fied the top layer of the original model; layers from 100 onwards
were retrained with the target data. The model architecture is



presented in Figure 2. As for VGGish, the source and target
tasks are different; however, both the source and target domains
are related to sound processing. Only the top layer was mod-
ified. Figure 3 shows the architecture of VGGish used in this
study.
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Figure 2: The Xception architecture. ”sconv” is separable con-
volutional layer. The top layer is changed to a global average
pooling followed by a fully connected layer with sigmoid as the
activation function. Layers from 100 onward are retrained with
the target data.

3.2. Dataset

We used MUStARD dataset which is a multimodal corpus con-
sisting of 690 audiovisual utterances extracted from TV shows
(Friends, The Golden Girls, The Big Bang Theory, etc.). Each
utterance is accompanied by a label. In total, 345 sentences are
labeled as sarcasm and the other 345 sentences are annotated as
non-sarcasm. As we aimed at sarcasm in speech particularly,
only the audio files from the dataset were extracted and used in
the experiments.

3.2.1. Audio preprocessing

All audio files were preprocessed to reduce background noise.
We re-sampled each audio file to 22,050 Hz; moreover, all of
them were converted to mono channel before extracting fea-
tures.

3.2.2. Feature extraction

Considering Mel spectrograms are spectrograms that reflect the
human perception of sounds, and represent both temporal and
frequency domain information of sounds, in our experiments,
audio files were represented by Mel spectrograms to maximally
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Figure 3: The VGGish architecture. The top layer is changed
to a global average pooling followed by two fully connected
layers.

represent sarcastic patterns in speech. As Xception only accepts
images as inputs, pertinent packages were used to transform au-
dio files into images. This included the sound processing pack-
age librosa [24] and plot package matplotlib [25]. We used 64
Mel bins, the length of Fast Fourier Transform window was set
to be 1024. With respect to VGGish, we used the method pro-
vided by the developers of VGGish on Github ! to generate fea-
tures with the size 96 x64.

3.2.3. Data augmentation

The MUStARD dataset contains only 690 audio files, which is
too small for training DCNNs. Therefore we augmented the
data as follows: audio files were accelerated by 100ms and
slowed down by 100ms. Additionally, an increase of volume
by 30 dB and a decrease by 30 dB collectively contributed to
generating more data.

4. Experiments

Both selected pre-trained models were implemented with Keras
[26] and used Tensorflow [27] as the backend. Adaptive Mo-
ment Estimation (Adam) was chosen as the optimizer due to its
benefits of adapting the learning rate [17]. The Binary Crossen-
tropy was employed to calculate the score of probabilities. As
the dataset was small while the number of parameters was huge
in the pre-trained models, we set small learning rates to compile
the models. For Xception, the top layer was assigned learning
rates of 0.001 and 0.01, and the fine-tuning layers (e.g., from
100 layers onward) were retrained with a learning rate of le-5.
The same batch size (e.g., 8, 16, 32) and epochs (e.g., 6, 8, 10)
were appointed during the training for both models. Tabel 2, 3,
and 4 show the hyperparameters in detail.

5. Results

Compared with the baseline SVM, both of the proposed pre-
trained models gained higher performance. Without data aug-

Uhttps://github.com/tensorflow/models/tree/master/research/audioset/vggish



Table 2: Hyperparameters for Xception’s top layer

Batch size

16,32,64

Optimizer

Adam

Epoch Learning rate

6,8,10  0.001,0.01

Table 3: Hyperparameters for fine-tuning Xception

Batch size
16,32,64

Optimizer
Adam

Epoch
12,16,20

Learning rate

le-5

mentation, Xception achieves an F-score of 69%, whereas the
number is 70% for VGGish. With the augmented data, the F-
score grows from 69% to 70% for Xception. Similarly, VGGish
experiences an increase by 2%.

The highest performance is gained by VGGish when the
learning rate is 0.01, trained with a batch size of 32 and 8 epochs
(68% Precision, 77% Recall, 72% F-score). The combination
of hyperparameters generates the highest score for Xception is
slightly different, which is when the batch size is 16 and epoch
is 10, with a learning rate of 0.001 (66% Precision, 76% Recall,
70% F-score). The highest results from training the two models
are listed in Table 5.

6. Discussion

We investigated whether DCNNs-based ITL can enhance sar-
casm detection in speech by conducting experiments on selected
pre-trained models. We then explored the better transfer learn-
ing approach by comparing the performance of the two models
on the audiovisual sarcasm dataset MUStARD.

The results show that selected DCNNs models, Xception
and VGGish improved sarcasm detection by 5% and 7% respec-
tively when compared to the SVM baseline model. Our results
are consistent with the results provided by Tsalera et al. [17], in
which the performance of the image-based pre-trained models
was inferior to sound-based pre-trained models. There may be
two causes of this disparity between models. An initial expla-
nation involves the dissimilarity between the source and target
data. In terms of the source data, Xception is trained on images
while VGGish is trained on audio files. Even though the data
domain between VGGish and the current MUStARD dataset is
different, the data similarity is still higher than that between
Xception and the current dataset. Another explanation involves
the different methods of transfer learning. Here, two methods of
retraining were applied (See Section 3). VGGish was applied as
a feature extractor (i.e., feature-representation approach); how-
ever, in the case of Xception, not only the top layer but also
the convolutional and pooling layers from 100 onward were
retrained (i.e., instance-based approach). The results support
that the feature-representation approach works better with the
sound-based pre-trained model in the target task.

The results also reveal that data augmentation is an effective
tool to deal with data scarcity. In this study, data is augmented
by adjusting speed and volume. Xception gains an increase of
1% and VGGish is enhanced by 2%.

7. Conclusions

This paper investigates whether DCNNs-based ITL can enhance
sarcasm detection in speech and further explores which transfer
learning approach is suitable for the target task. To address the
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Table 4: Hyperparameters for VGGish

Batch size

16,32,64

Optimizer

Adam

Epoch Learning rate

6,8,10  0.001,0.01

Table 5: Compared to the baseline SVM, the highest results
gained before and after data augmentation in Xception and VG-
Gish. Note: DA=data augmentation

Models DA  Precision Recall F-score
Xception No 65% 73% 69%
Xception Yes 66% 76% 70%
VGGish No 67% 76% 70%
VGGish Yes 68% 77% 72%
SVM(baseline) No 66% 65% 65%

research questions, we applied two pre-trained DCNNs, which
are trained on image and audio datasets respectively, with two
different transfer learning approaches and further tested them
on the benchmark multimodal sarcasm dataset MUStARD. Re-
sults indicate that DCNNs-based ITL can enhance sarcasm de-
tection in speech. VGGish gains better performance than Xcep-
tion. Our experiments extend ITL from image-based and sound-
based DCNNs to sarcasm detection in speech, demonstrating
that feature-representation transfer learning approach is com-
patible with DCNNs architecture in sarcasm detection, and fur-
ther testifying that data augmentation is a suitable method to
deal with data scarcity.

There are multiple avenues for future research. Below are
five. First, more data could generate higher performance as it
adds up the trainable patterns for models. Alternatively, various
data argumentation methods (e.g., pitch change, time-shifting,
noise injection, etc.) can be applied for further improvement.
Second, a diversity of transfer approaches (e.g., parameter-
transfer and relational-knowledge-transfer) could be involved
to further investigate the optimal transfer learning approach. As
the next step, we can apply the instance-based-transfer to VG-
Gish to further improve our study. Third, future studies can
focus on extracting fine-grained features from audio files. In
this study, the Mel spectrogram is extracted from each audio
file to represent acoustic features. However, sarcasm-related
features (e.g., pitch, intensity, speaking rate, etc.) are not fully
represented by Mel spectrograms. Selected features associated
with sarcasm could improve the performance further. Fourth,
fine-tuning pre-trained models and hyperparameters adjustment
could potentially improve the model performance. Fifth, as pre-
vious research indicates that multimodal application increases
the accuracy of sarcasm detection [10], it may be of great value
to combine textual and audiovisual modalities in the future.

In sum, this paper enhances sarcasm detection in speech by
elaborating a methodology of implementing DCNNs-based ITL
to detect sarcasm in speech, the two selected pre-trained models
(Xception and VGGish) achieved an increase of 5% and 7% in
the benchmark sarcasm dataset MUStARD.
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