
 

 

 University of Groningen

A Swarm Robotic Approach to Inspection of 2.5 D Surfaces in Orbit
Haghighat, Bahar; Ebert, Julia; Boghaert, Johannes; Ekblaw, Ariel; Nagpal, Radhika

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Haghighat, B., Ebert, J., Boghaert, J., Ekblaw, A., & Nagpal, R. (2022). A Swarm Robotic Approach to
Inspection of 2.5 D Surfaces in Orbit.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-12-2023

https://research.rug.nl/en/publications/08099e77-867d-498e-a29a-f0f6cb4ce246


A Swarm Robotic Approach to Inspection of 2.5D Surfaces in Orbit
Bahar Haghighat1†, Julia Ebert1, Johannes Boghaert1, Ariel Ekblaw2, and Radhika Nagpal1

1John A. Paulson School of Engineering and Applied Science, Harvard University, Boston, Massachusetts
(bahar@seas.harvard.edu, ebert@g.harvard.edu, jboghaert@seas.harvard.edu, nagpal@g.harvard.edu)

2Media Lab Space Exploration Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts
(aekblaw@mit.edu)

Abstract: Robotic inspection offers a robust, scalable, and flexible alternative to deploying fixed sensor networks or human
inspectors. While prior work has mostly focused on single robot inspections, this work studies the deployment of a swarm of
inspecting robots on a simplified surface of an in-orbit infrastructure. The robots look for points of mechanical failure and inspect
the surface by assessing propagating vibration signals. In particular, they measure the magnitude of acceleration they sense at
each location on the surface. Our choice for sensing and analyzing vibration signals is supported by the established position of
vibration analysis methods in industrial infrastructure health assessment. We perform simulation studies in Webots, a physics
based robotic simulator, and present a distributed inspection algorithm based on bio-inspired particle swarm optimization and
evolutionary algorithm niching techniques to collectively localize an a priori unknown number of mechanical failure points. To
perform the vibration analysis and obtain realistic acceleration data, we use the ANSYS multi-physics simulation software and
model mechanical failure points as vibration sources on the surface. We deploy a robot swarm comprising eight robots of 10-cm
size that use a bio-inspired inchworming locomotion pattern. The swarm is deployed on 2.5D (that is curved 2D) cylindrical
surfaces with and without obstacles to investigate the robustness of the algorithm in environments with varying geometric com-
plexity. We study three performance metrics: (1) proximity of the localized sources to their ground truth locations, (2) time to
localize each source, and (3) time to finish the inspection task given an 80% surface coverage threshold. Our results show that
the robots accurately localize all the failure sources and reach the coverage threshold required to complete the inspection. This
work demonstrates the viability of deploying robot swarms for inspection of potentially complex 3D environments.

Keywords: Swarm robotics, robotic inspection, vibration sensing, target search, niching, particle swarm optimization (PSO)

1. INTRODUCTION

Many industries, such as agriculture, bridge maintenance,
and wind turbine maintenance are actively investing in
robotic inspection solutions [1, 2]. Robotic inspection aims
to reduce the risk, cost, and possible service downtime asso-
ciated with inspection of infrastructure by supporting human
inspection through reducing the need to deploy humans. De-
ploying robots becomes particularly useful when inspection
must be carried out in dangerous conditions or over extended
periods of time. Human inspectors can then be deployed only
after the inspector robots have identified and localized exist-
ing issues that require further action.

Robotic inspection can be highly beneficial for supporting
long-term deployments of space infrastructure [3]. Across a
long deployment time, wear and tear on the deployed struc-
tures becomes non-negligible. It is then valuable to be able
to identify and mend damages before they become a source
of major structural failure. The operation of the International
Space Station (ISS) is an example scenario. The ISS has
now been in operation in orbit for over two decades. As the
structure ages, failures are arising [4]. In the near future, this
could also apply to the Lunar Gateway space station envi-
sioned by NASA in the context of the Artemis program. The
program, launched in 2017, involves deployment of a Base
Camp on the Moon and the Lunar Gateway space station in
lunar orbit to support long-term science and human explo-
ration, by the year 2025. Regular inspection can help extend

† Bahar Haghighat is the presenter of this paper.

the lifetime of such long-term infrastructure deployments.

Vibration sensing and analysis methods are well studied
for evaluating structural integrity [5]. The underlying theo-
retical methods are based on the vibration response or modal
analysis of an a priori known structure [6, 7]. Given the
nondestructive and noninvasive nature of vibration-based in-
spection systems, they can be safely applied to sensitive or
damaged structures [8]. Depending on the vibration signal
profile, the exact signal processing and failure identification
method may differ [9]. Standard monitoring approaches typ-
ically rely on a large set of static sensors with fixed sampling
rates [10]. Companies such as Gecko Robotics and Waygate
Technologies offer solutions for vibration-based inspection
of structures by deploying single unit robots that move over
the infrastructure to cover the inspection area [11, 12].

While an automated inspection task may be performed
by a single mobile robotic unit (deployed post-construction)
or by a fixed network of sensors (deployed pre- or post-
construction), there are multiple benefits in employing a
swarm of robots. Swarms are known for being resilient to
failure of the individual comprising units. Compared to fixed
sensor networks – which are typical for many environmen-
tal monitoring applications because of their ease of deploy-
ment – swarms can provide more dynamic and flexible cov-
erage performances in surveying and inspection applications
[13]. To achieve a low-cost swarm deployment, minimiz-
ing the complexity and cost of the individual robotic units
in the swarm is critical. This drive for simplicity in individ-
ual robotic units has been the motivation behind employing



simplistic bio-inspired robot designs and algorithms.
The inspection task that we plan to undertake can be for-

mulated as a generalization of the source localization task,
which is a well-studied problem [14-16]. Source localization
typically comprises three components: (i) finding a cue, (ii)
tracing the cue and localizing a source, and (iii) confirming a
localized source. The inspection task can then be formulated
as a repetition of source localization until a termination con-
dition is met. Thus, it comprises two main search behavioral
components: a local search behavior to localize a new source
in the search space and a global search behavior to maximize
exploration and coverage of the search space.

For the global search behavioral component, coverage can
be maximized through (i) a random exploration or (ii) a struc-
tured exploration of the search space. Lévy flights and Brow-
nian motion random walks can provide a random exploration
of the search space [17-19]. For the structured exploration
approaches, it is shown that the problem of optimizing the
coverage using a robot swarm for an a priori known environ-
ment is NP-complete [20]. The basic lawnmower problem
in an unobstructed environment and the traveling salesman
problem are also shown to be NP-hard [21, 22]. These prob-
lem types mean that there is no guaranteed method to de-
termine the optimal solution for covering the search space,
however, near optimal solutions are possible [20].

For the local search behavioral component, a taxonomy
of source localization techniques is presented in [23]. Three
main categories of search methods can be identified: (i) re-
active methods, (ii) heuristic cognitive methods, and (iii)
probabilistic cognitive methods. Reactive search methods,
such as gradient-based and bug algorithms, guide the search
by relying solely on the latest observations available to the
robots. These methods are typically simple and require lit-
tle memory and computational resources [24-26], but have
been shown to perform poorly in complex scenarios [14, 16].
Cognitive methods, on the other hand, combine incoming
observations with previously gathered information in order
to guide the search [23]. Heuristic cognitive search meth-
ods see the source localization problem as an optimization
problem. The objective function that needs to be optimized
can then be, for instance, the gas concentration detected by
the robots [23]. Heuristic methods lend themselves well to
multi-robot search scenarios [23]; by design, their mathe-
matical optimization counterparts typically deploy multiple
agents or candidate solutions that move in the search space
and are evaluated over time. The most known bio-inspired
examples of such optimization techniques are the Particle
Swarm Optimization (PSO) [27] and the Cuckoo Search (CS)
methods [28]. PSO-based multi-robot search implementa-
tions have been studied in [29, 30]. Probabilistic cognitive
search methods use probabilistic inference to derive the dis-
tribution of the cue in the search space, maximized at the lo-
cation of the source, based on the gathered information [23,
26]. This, however, requires the knowledge of a dispersion
model for the given cue and environment [23]. The inference
methods are often based on the Bayesian inference frame-
work, examples of which are Hidden Markov Models [31]
and Particle Filters (PFs) [32]. Another notable example is

infotaxis, which is based on an entropy-reduction principle
[33]. Probabilistic cognitive search methods are applicable
only as long as their underlying model assumptions hold and
accurate cue dispersion models are available. In odor source
localization problems where gas dispersion models are avail-
able, these search methods are widely studied. However, in
failure source localization using vibration cues, they remain
less applicable.

We believe that small-scale low-cost vibration sensing
robot swarms hold a great potential for a variety of structural
integrity inspection tasks. In this work, we use a bio-inspired
inchworming robot model and present a swarm inspection
algorithm based on the Particle Swarm Optimization (PSO)
search method – a well-studied and widely applied technique
in multi-robot search scenarios – employed on the swarm. In
particular, our work puts forward four main contributions.
• Localizing an a priori unknown number of failure
sources: Multi-source localization is an active topic of re-
search [34, 35]. Inspection tasks have the additional chal-
lenge that the number of failure sources is a priori unknown.
To cope with this problem and define a task termination con-
dition, we employ a heuristic strategy as well as a coverage
certainty grid map.
• Relying on vibration signals: Techniques for vibration
sensing are well-studied for structural inspection applica-
tions [5]. However, compared to other methods such as odor
sensing, vibration sensing remains under-addressed in au-
tonomous inspection swarms. In this work, we use a real-
istically modeled vibration signal (using ANSYS software)
that is applied to simplified spacecraft surface sections.
• Traversing curved surfaces: 2.5D environments are
largely unexplored in source localization and target search
scenarios in the literature. Curved surfaces pose challenges
for robot locomotion and can alter the cue propagation
through the structure, depending on the geometrical com-
plexity of the environment. We also consider obstacles repre-
senting spacecraft features in our modeling, which pose ad-
ditional challenges to robot locomotion and cue propagation.
• Using bio-inspired inchworm robot concept: In simu-
lation, soft-bodied robots are typically more challenging to
model and control than their rigid-bodied counterparts, but
physical soft-bodied robots are generally simpler to control
compared to rigid-bodied robots. This is due to the large
mechanical coupling of the degrees of freedom in their soft
structure. Multiple soft-bodied inchworming robot designs
have been developed in the literature [36, 37]. In this work,
we consider a simulated bio-inspired inchworm-like soft-
bodied robot model. The swarm algorithm that we develop
is then deployed on a swarm of size N = 8 inchworming
robots. We specifically adapt our algorithm for execution on
the inchworming robot model, but without loss of generality;
our proposed swarm inspection algorithm can be deployed
on any robot capable of traversing the target surface.

2. PROBLEM STATEMENT
The inspection task that we undertake in this paper can be

formally defined as the repeated localization of any multitude
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Fig. 1: The pipeline structure of our simulation framework.
Vibration signals are modeled offline in ANSYS and used to
generate signals sensed in the Webots robot simulation.

of failure sources on a 2.5D surface (a 2D curved surface)
in orbit, using a swarm of robots that rely on sensing the
vibration signal as a cue, until a termination condition is met.

A failure source is defined as a feature that disturbs the
normal functioning of a system. Detecting a failure source
requires knowledge of the functional state of the system. We
expect that failure sources such as cracks and fissures on the
surface can result in creation of specific vibration signal pro-
files that are detectable in the presence of the endemic vi-
bration energy of the system. In our model of the failure
sources, we further simplify the points of mechanical fail-
ure as sources of induced vibration. We model the vibration
source as an external force applied to the surface following a
sinusoidal pattern at a frequency of 1Hz and amplitude of 1N,
which falls within the mid-frequency range of the vibratory
regime of the ISS [38]. The amplitude is chosen such that the
resulting acceleration values are within the ISS acceleration
spectrum ranging from below a micro-g to 10 milli-g [38].

The cue is the acceleration signal measured during the
search. For spacecraft surface inspection, we hypothesize
that the cue can be an endemic or induced vibration signal.

3. SIMULATION FRAMEWORK
The simulation framework serves as the virtual environ-

ment in which we deploy and study our inspecting robot
swarm. Two main software components are used: the AN-
SYS software, which we use for creating realistic vibration
signals propagating on a surface that models a floating struc-
ture in orbit, and the Webots robotic simulator [39], which
we use for simulating the locomotion of our robots, their sen-
sors, actuators, and the surface that they traverse. The overall
pipeline of our simulation framework is shown in Fig.1.

Within Webots, we created three main components: (i)
a bio-inspired robot model that comprises a multi-segment
piece-wise approximation of a flexible-bodied robot of size
20×100×7mm, which uses an inchworming locomotion pat-
tern, (ii) target surfaces that the robots move on and inspect,
and (iii) a supervisor controller code that is responsible for
passing on the vibration data to the robots as they move on
the surface, depending on their location on the surface at each
simulation step. The supervisor controller emulates a black
box that contains an acceleration sensor along with a pro-
cessing unit that returns to the robots the maximum observed
acceleration amplitude at each location on the surface. The
robot model is the most complex of the three components.
For the sake of brevity, and since this is not the focus of the

Rear ankle joint

Main body joint

Fig. 2: Bio-inspired inchworming robot model in Webots.

Total Acceleration
(mm/s2)

0.47345

0.11937

0.41443
0.35542
0.29641
0.23740
0.17839

0.06036

0.53246 (max)

0.0013497 (min)

Total Deformation
(mm)

0.011959

0.0030045

0.010467
0.0089741
0.0074817
0.0059893
0.0044969

0.001512

0.013451 (max)

0.00019616 (min)

Fig. 3: Surface models with elastic support boundary condi-
tions in ANSYS.

work here, we explain two main features of the robot model:
(i) the inchworming locomotion pattern and (ii) the sensing
and communication capabilities of the simulated robot.

The robot model, as shown in Fig. 2, is capable of moving
on flat and curved surfaces. The simulated robot has two con-
nectors on its feet that approximate switchable magnetic con-
nectors. The main robot body is a simulated flexible struc-
ture that bends along its main section to allow moving for-
ward and steering to left and right, and along the two ankle
joints to allow lifting the main body and adjusting the posi-
tion of the front foot relative to the next landing surface. The
inchworming locomotion pattern allows the robot to achieve
a step size of about half its body size, roughly 5cm. The
robots are assumed to have knowledge of the map of the en-
vironment as well as their location using a global positioning
sensor, in particular the location of the walls and obstacles.
A loss-free global communication channel is assumed in be-
tween the robots. The robots use communication to share
their locations on the map, which is then used to perform
collision avoidance with other robots.

Within ANSYS, we use the Transient Analysis to sub-
ject the surface model to a transient sinusoidal load case of
1N at 1Hz representing the vibration source. To represent
the placement of the surface in orbit, we use an elastic sup-
port boundary condition that involves the notion of founda-
tion stiffness expressed in N/mm3. This is typically used
to model soil supported or submersed structures. We empiri-
cally set the foundation stiffness parameter to 0.0001N/mm3

by running a series of simulations and qualitatively evaluat-
ing the results in discussion with a human expert. The defor-
mation amplitude for the applied load case is 0.013mm. Fig.
3 shows the surface models. In order to simplify the data pro-
cessing and export, we create text files that approximate the
acceleration signal observed in ANSYS with 2D Gaussian
distributions. This data is then retrieved by the supervisor
controller code in Webots and passed on to the robots de-
pending on their location on the surface at each simulation
step, as shown in the block diagram structure in Fig. 1.



Algorithm 1 Inspection Algorithm Overview

1: run Lévy Random Walk (RW) ▷ Initialize
2: while coverage < 80% do
3: if robot in collision then ▷ Collision avoidance
4: run Collision Avoidance (CA)
5: else if cue picked up then ▷ Local search
6: run Particle Swarm Optimization (PSO)
7: if cue is a source then ▷ Source confirmation
8: declare source
9: run Directed Walk (DW) ▷ Re-initialization
10: return to Lévy Random Walk (RW)
11: end if
12: else
13: run Lévy Random Walk (RW) ▷ Global search
14: end if
15: update coverage ▷ Update coverage
16: end while

4. PROPOSED ALGORITHM
The inspection task, as we formally defined in Section 2,

can be interpreted as a generalization of the source localiza-
tion problem, which is well studied in the literature [14-16,
40]. The source localization problem can be divided into
three main sub-problems: (i) finding a cue, (ii) tracing the
cue and localizing the source, and (iii) confirming the source
location. Our formal definition of the multi-source inspection
task involves a repetition of these steps as well as a termina-
tion condition based on a predefined coverage threshold.

Knowing that source confirmation and reaching the cov-
erage threshold require local and global search behaviors, re-
spectively, we define two goals for our inspection algorithm:
(i) finding all the sources present in the search space as fast as
possible, and (ii) reaching the global coverage threshold re-
quired to complete the inspection task as fast as possible. In
the following, we describe our choice for the local search, i.e.
the behavioral component that results in localizing a source
in the environment, and the global search, i.e. the behav-
ioral component that results in exploring the environment and
reaching the coverage threshold termination condition.

The overall algorithm structure is shown in Algorithm 1.
There are four main control states in the algorithm, which
we cover briefly in this paragraph and detail further below.
In the absence of any prior sensing of a cue, the robots start
in the Random Walk (RW) state, performing an unbiased
Lévy random walk around the environment until they sense a
cue. Upon sensing a cue, the robot will start performing a bi-
ased random walk in the Particle Swarm Optimization (PSO)
state, and moving towards the source. Once a robot is fin-
ished localizing a source, it starts in the Directed Walk (DW)
state and moves to an unexplored area in the environment.
The robot will start in the Collision Avoidance (CA) state at
any point in time if it is closer than a threshold distance to a
static obstacle in the environment or to another moving robot.

We use a multi-modal variation of the PSO algorithm
combined with a niche formation behavior as our heuristic
local search component. The PSO velocity update is as fol-

lows. For each individual i and dimension j we have:

vti,j = ω ∗ vt−1
i,j + c1 ∗ rnd()t ×

(
pbesti,j − post−1

i,j

)
+c2 ∗ rnd()t ×

(
gbesti,j − post−1

i,j

) (1)

where pbest and gbest are the positions of the best values ob-
served by the individual and group, respectively. The inertia
term ω and c1, c2 are weights to balance exploration and ex-
ploitation in order to find the optimal value of the function.
We use the parameters ω = 0.15, c1 = 0.35, c2 = 0.5. To
account for the constraints of the specific robot model, we
introduce restrictions on the velocity (determined by the gait
cycle of roughly 3s) and the steering angle (0.8 radians) that
is required by the algorithm for the robot to execute. The
steering angle is passed on to the robot controller.

Niche formation is part of the local search behavior and
allows for confirming an identified source location. In par-
ticular, once a robot is in the vicinity of a source and starts
the PSO state, it forms a two-robot niche by recruiting its
nearest neighbor. The recruited robot then starts moving to-
wards the location of the identified source. Once it perceives
a cue, it performs a biased PSO walk towards the source.

After localizing a source, a robot engages in a directed
walk behavior, moving towards unexplored parts of the en-
vironment. This is achieved by using a sliding window ap-
proach to identify the least covered areas and then perform-
ing a roulette wheel sampling where the likelihood of select-
ing a less covered goal position increases quadratically.

Collision avoidance is done based on the Artificial Poten-
tial Field (APF) method using (i) a map of the environment
in which the boundaries of the arena and the obstacles are
marked and (ii) by communicating with other robots and ob-
taining their location on the map. Each obstacle then con-
tributes a repulsion term to update the velocity of the robot.
For a repulsive term i in dimension j we have:

ri,j = cweight ×
[

1
di

− 1
thresholdi

]
×
[
posj−pointi,j

d3
i

]
(2)

where di is the distance from the robot to obstacle i, posj is
the robot’s position in dimension j and pointi,j is the clos-
est point on obstacle i in dimension j. The threshold is the
distance to the obstacle below which the robot will engage in
collision avoidance. Beyond this range, no collision avoid-
ance is performed with the obstacle. Threshold and weight
values can be different depending on the type of obstacle.

We require a coverage guarantee to ensure that, given
enough time, all the sources that are present in the search
space will be found. We deploy a Lévy random walk for the
global search behavioral component. The Lévy random walk
assigns a random orientation (angle) to the robot and a ran-
dom step length (magnitude), following a Lévy distribution.
This exploratory random walk guarantees full coverage of
the search space asymptotically. We terminate the inspection
earlier, based on a predefined coverage threshold value that
is calculated based on a coverage map.

All robots have access to a shared coverage map, which
is used to compute the covered area and check the coverage
threshold condition. This map is represented as a grid-based
map of 10×10cm cells. As the robots move through the envi-
ronment sensing the value of the vibration signal and confirm



Fig. 4: Webots simulation environment for Scenario I.

Fig. 5: Webots simulation environment for Scenario II.

new source locations, they update this shared map. The map
is updated using a simplified sensor model; the sensor model
is a two dimensional Gaussian Probability Density Function
(PDF). To update the coverage map based on a single robot
observation, the sensor model PDF is superimposed on the
coverage map, centered around the reporting robot, and the
maximum certainty value is updated on the map.

5. SIMULATION EXPERIMENTS
This section describes our experimental objectives and the

two simulation setups used in our simulation experiments.

5.1. Experimental Objectives
We consider three main aspects of the swarm performance

when analyzing the dynamics of the robot swarm while con-
ducting the inspection task and to evaluate the swarm per-
formance. These aspects are different from, but related to
the performance metrics that we describe in the following
paragraph. In particular, in each scenario we would like to
see that the swarm succeeds (i) in localizing all the sources
(localization success), (ii) in reaching the coverage thresh-
old for terminating the inspection (termination success), and
(iii) that all of the robots in the swarm manage to maneuver
around in the search space, without getting lost or stuck, fol-
lowing the cue on the surfaces to the source locations while
avoiding obstacles (maneuverability success).

To quantify the swarm performance on these three aspects,
we consider the following performance metrics, by taking
inspiration from similar metrics used in the fields of source
localization and target search [35, 41]. In each scenario, we
quantify (i) the source localization accuracy or the proximity
of a confirmed source location to the ground truth location
of the source, (ii) the time to find each source present in the
search space, and (iii) the time to reach the coverage thresh-
old termination criterion. To gain more insight into the dy-
namics of the inspecting swarm, we will look at the time the
robots spend in each of the four main control states of Col-
lision Avoidance (CA), Particle Swarm Optimization (PSO),
Random Walk (RW), and Directed Walk (DW).

5.2. Experimental Scenarios
The real-world inspection task that underlies our devel-

opments is a complex one. Within the scope of this work,

we simplify the problem to two simulation studies, described
below. In each case, we deploy a swarm of size N = 8.

Scenario I comprises a curved 2.5D cylindrical surface
with projected flat dimensions of 4× 4m. The ANSYS sim-
ulations involves a full cylindrical surface of 2mm thickness,
4m radius, and 6m axial length. The sources of vibration
are at locations (2m, 3m), (1m, 1m), and (3.5m, 0.5m) on
the projected surface reference frame. The entire surface is
subject to a foundation stiffness of 1 × 10−4 N

mm3 , and the
mesh is sized uniformly with nodes of 100× 100mm. At the
location of the vibration source, we apply a load case with
a sinusoidal of amplitude 1N and frequency 1Hz. The peak
amplitude at steady state at each location, i.e. after roughly
9.75s, is then considered for constructing the 2D Gaussian
signal used in Webots (see Section 3). The ANSYS simula-
tions revealed that the vibration propagation on a cylindrical
surface is strongly biased along its length.

Scenario II is an extension of Scenario I; we further in-
crease the geometrical complexity of the search space by
introducing three rectangular obstacles representing features
such as ridges or add-on sections on the surface. The obsta-
cles are expected to affect both the propagation of the vibra-
tion signal on the surface and the movement of the robots.

6. RESULTS

In this Section we present and discuss the simulation re-
sults obtained from 10 trials of each experimental scenario
detailed in Section 5. The random seed for each robot is
fixed but the starting positions are randomized in each run.
By running a number of simulation experiments with differ-
ent swarm sizes and observing the effect of the robot den-
sity in the environment on the inspection performance, we
chose the N = 8 swarm size. For the sake of brevity, those
studies are not discussed here. Looking at the overall perfor-
mance of our algorithm between the two experimental sce-
narios, we note how the swarm performance changes as the
level of complexity in the search space increases.

The results are shown in Fig. 6. Three main metrics
are considered, namely the source localization accuracy; the
time to localize each source and reach the coverage thresh-
old; and the time spent in each of the four main control states.
The complexity of the search space increases from Scenario
I to Scenario II. This increase in complexity clearly affects
the inspection completion time as defined by the time the
80% coverage threshold is reached and the time before each
source is discovered (Fig. 6b,e). This can also be noted
by comparing the time spent in the RW control state among
the two scenarios (Fig. 6c,f). We can explain the variation
in source localization accuracy (Fig. 6a,d) by considering
three main factors. First, the more time the robots spend in
PSO control state versus the CA control state, the higher the
chances will be that they achieve a better localization of the
source. Second, the parameters of the PSO algorithm de-
termine the way robots take advantage of their own and also
other robots’ measurements of the cue to find their way to the
source. These parameters are not optimized at the moment
and we can hypothesize that they may depend on the over-
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Fig. 6: Performance results for Scenario I (top row) and for Scenario II (bottom row).

all geometry that defines the search space. Lastly, the inter-
play between the step size of the surveying robots, the shape
and spread of the cue, and the placement of the source in the
arena play a significant role in how accurately a source can
be localized. We hypothesize that by optimizing the PSO pa-
rameters and the step size parameter for a given search space,
source localization accuracy can be enhanced.

7. CONCLUSION
In this work, we presented a swarm robotic inspection

approach for localizing multiple sources of mechanical fail-
ure on a 2.5D surface in orbit by sensing vibration signals.
The particular real world scenario that underlies our devel-
opments is the need for inspection of the outer surface of
long-term deployed spacecrafts. The goal of the inspection
is to identify mechanical failures such as fissures and cracks
resulting from natural wear and tear of the structures.

Our work here focused on development and presentation
of a modeling and algorithmic framework for the surface in-
spection task using a swarm of robots. We deployed our
proposed algorithm on a simulated swarm of vibration sens-
ing surface-crawling robots that use an inchworming gait for
locomotion. Within the simulated world where the robots
perform the inspection task, we modeled the points of me-
chanical failure on the surface under inspection as sources of
vibration. The robots then used the signal that propagates
through the surface as a cue for localizing the sources of
vibration. We simulated realistic vibration signal propaga-
tion in ANSYS, then simplified data transfer by fitting 2D
Gaussian functions to the simulation results. In the Webots
robotic simulator, we investigated the performance of the
swarm within two experimental scenarios comprising three
sources on a 2.5D cylindrical surface and three sources on
a 2.5D cylindrical surface with additional obstacles on the

surface. Our algorithm succeeded at finding all the sources
present in the search space in each of the two experimental
scenarios. Additionally, we showed that we are able to reach
a predefined coverage threshold as a termination criterion for
the inspection task. Our results provide evidence supporting
the viability of robot swarms for inspection of 2.5D surfaces
based on sensing vibration cues on the surface.

Future work will involve extending our modeling and al-
gorithmic framework in several ways. First, we plan to de-
velop a fully automated simulation pipeline to facilitate ran-
domized studies of a variety of environments. In particular,
we plan to automate the currently manual process of sim-
ulating the vibration signal within ANSYS and transferring
the corresponding data to a file format that is accessible by
the simulated robots within Webots. Second, we plan to
implement realistic constraints in the communication range
and bandwidth used by the simulated robots within Webots.
Third, given a specific search environment, we plan to lever-
age the automated simulation framework developed in this
work to perform a parameter optimization in order to find the
set of parameters (i.e., number of robots, local search behav-
ior parameters, global search behavior parameters, obstacle
avoidance behavior parameters, etc.) that result in the best
desired performance metrics.

Our hope is that this work inspires further studies of robot
swarms as a robust, scalable, and low-cost solution for a
wider variety of structural inspection applications.
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