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1 Introduction

Studying the hadronic decays of the cc̄ states J/ψ, ψ(3686), and χcJ (J = 0, 1, 2) provides
valuable information on perturbative QCD in the charmonium-mass regime and on the
structure of charmonia. The color-octet mechanism, which successfully describes several
decay patterns of P-wave χcJ states [1], may be applicable to further χcJ decays. Measure-
ments of χcJ hadronic decays can provide a test of the color-octet mechanism and further
assist in understanding χcJ decay mechanisms.

The BES collaboration observed near-threshold structures in baryon-antibaryon in-
variant mass distributions in the radiative decay J/ψ → γpp̄ [2] and the purely hadronic
decay J/ψ → pK−Λ̄ [3]. It was suggested theoretically that these near-threshold structures
might be observation of baryonium [4–6] or caused by final state interactions [7–9]. Excited
Λ and N resonances were observed in the study of the decay J/ψ → nK0

SΛ̄ [10]. Studying
the same decay modes in other charmonia can provide complementary information on these
structures.

Anomalous enhancements near the threshold of pΛ̄ + c.c. have been also observed in
the decays χcJ → pK−Λ̄ + c.c. by the BESIII collaboration [11]. If isospin symmetry
is conserved, the decay branching fraction (BF) ratio B(χcJ → pK−Λ̄ + c.c.)/B(χcJ →
nK0

SΛ̄+c.c.) ∼ 2 should be satisfied, thereby implying the existence of the isospin conjugate
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Figure 1. Feynman diagram of the χcJ → nK0
SΛ̄ decay, where J = 0, 1, and 2.

decays χcJ → nK0
SΛ̄ + c.c. and providing predictions for their BFs. A typical diagram for

the decay is shown in figure 1.
In this analysis, we present the study of χcJ → nK0

SΛ̄ + c.c. using the ψ(3686) data
sample containing (4.48± 0.03)× 108 events collected at BESIII [12]. The radiative decays
ψ(3686) → γχcJ , which have a BF of approximately 10% for each χcJ [13], offer an ideal
environment to investigate χcJ decays. Throughout this paper, charge conjugate modes
are implied unless otherwise stated.

2 Detector and data sets

The BESIII detector is a magnetic spectrometer [14, 15] located at the Beijing Electron
Positron Collider (BEPCII) [16]. The cylindrical core of the BESIII detector consists of
a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight sys-
tem (TOF), and a CsI (Tl) electromagnetic calorimeter (EMC), which are all enclosed in
a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive plate counter muon identifier
modules interleaved with steel. The acceptance of charged particles and photons is 93%
over 4π solid angle. The charged-particle momentum resolution at 1.0GeV/c is 0.5%, and
the specific energy loss (dE/dx) resolution is 6% for the electrons from Bhabha scattering.
The EMC measures photon energies with a resolution of 2.5% (5%) at 1GeV in the barrel
(end cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the
end cap part is 110 ps.

Simulated samples produced with the geant4-based [17] Monte-Carlo (MC) software,
which includes the geometric description of the BESIII detector and the detector response,
are used to determine the detection efficiencies and to estimate the background levels. The
simulation takes into account the beam energy spread and initial state radiation (ISR) in
the e+e− annihilation modeled with the generator kkmc [18]. The inclusive MC samples
consist of 5.06×108 ψ(3686) events, the ISR production of the J/ψ state, and the continuum
processes incorporated in kkmc. The known decay modes are modeled with eventgen [19]
using the BFs taken from the Particle Data Group (PDG) [13], and the remaining unknown
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decays of charmonium states from lundcharm [20]. Radiation from charged final state
particles is incorporated with the photos [21] package.

The signal detection efficiencies are estimated with signal MC samples. The decays
of ψ(3686) → γχcJ (J = 0, 1, 2) are simulated following ref. [22], in which the magnetic-
quadrupole (M2) transition for ψ(3686)→ γχc1,2 and the electric-octupole (E3) transition
for ψ(3686) → γχc2 are considered in addition to the dominant electric-dipole (E1) tran-
sition. For the decay χcJ → nK0

SΛ̄ + c.c., a special generator based on results of Helicity
Partial Wave Analysis (HelPWA) [23–25] is used (see appendix A). The background MC
samples are obtained from inclusive MC samples, in which the signal channels are removed
with TopoAna [26], and the samples are normalized to the data sample based on luminosity.

3 Event selection and background analysis

The signal process ψ(3686)→ γχcJ , χcJ → nK0
SΛ̄ with K0

S → π+π− and Λ̄→ p̄π+ consists
of the final state particles γnp̄π+π+π−. Charged track candidates from the MDC must
satisfy |cos θ| < 0.93, where θ is the polar angle with respect to the z axis, which is the axis
of the MDC. The closest approach to the interaction point is required to be less than 20 cm
along the z direction and less than 10 cm in the plane perpendicular to z. The TOF and
dE/dx information are combined to calculate the particle identification probabilities (P )
for the hypotheses that a track is a pion, kaon, or proton. Proton candidates are required
to satisfy P (p) > P (K) and P (p) > P (π). Exactly four charged tracks are required in each
candidate event.

Since K0
S and Λ̄ have relatively long lifetimes, they are reconstructed by constraining

the π+π− pair and the p̄π+ pair to originate from secondary vertices, respectively. Charged
track candidates, except the one used as a p̄ in the Λ̄ reconstruction, are assumed to be pions
without applying particle identification. The decay lengths of K0

S and Λ̄ from the secondary
vertex fits divided by their corresponding uncertainties are required to be larger than two.
The mass distributions of the reconstructed K0

S (denoted asMππ) and Λ̄ (denoted asMp̄π+)
candidates are shown in figures 2(a) and 2(b), respectively, where the signal regions are
defined as [0.480, 0.516]GeV/c2 for K0

S and [1.112, 1.120]GeV/c2 for Λ̄.
Photons are reconstructed as energy clusters in the EMC. The shower time is required

to be within [0, 700] ns from the event start time. Photon candidates within |cos θ| < 0.80
(barrel) are required to have deposited energies larger than 25MeV and those with 0.86 <
|cos θ| < 0.92 (end caps) must have deposited energies larger than 50MeV. The photon
candidates must be at least 10◦ away from any charged track to suppress Bremsstrahlung
photons or splitoffs. We require at least one photon candidate satisfying the above criteria.

A 1-C kinematic fit is applied under the hypothesis of ψ(3686)→ γnK0
SΛ̄ to select the

best combination and to improve the resolution, where the neutron is treated as a missing
particle. The value of χ2

1C is required to be less than 200. If more than one combination
survives in an event, the one with the smallest χ2

1C is retained.
The invariant mass of the four momentum of the missing particle, Mmiss, is defined as

pmiss = pCM − pγ − pK0
S
− pΛ, where pi is the four momentum of the particle i and pCM is

the four momentum of the initial e+e− system. To further improve the purity, Mmiss before
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Figure 2. Distributions of (a) Mππ of the K0
S candidates, (b) Mp̄π+ of the Λ̄ candidates, and (c)

Mmiss before the 1-C kinematic fit. Dots with error bars are data. Red solid (blue dashed) lines
refer to the inclusive MC samples with (without) the signal processes. The pairs of pink solid (blue
dashed) arrows indicate the signal (sideband) regions.

the 1-C kinematic fit is required to satisfy 0.90 < Mmiss < 0.98GeV/c2. The distribution
of Mmiss before the 1-C kinematic fit is shown in figure 2(c).

By analyzing the ψ(3686) inclusive MC samples with TopoAna [26], the only significant
peaking background is found to be caused by the decays χcJ → Σ±Λ̄π∓ + c.c. with Σ± →
nπ±. The two pions in this decay may accidentally fall into the K0

S mass window and fulfill
the constraint for the secondary vertex fit, thus faking the K0

S . This Σ± background peaks
in the invariant mass spectrum of nK0

SΛ̄ (denoted as MnK0
SΛ̄) but distributes uniformly

in the Mππ spectrum. Other backgrounds are smoothly distributed underneath the χcJ
signals.

4 Branching fraction measurement

A simultaneous unbinned maximum-likelihood fit to the MnK0
SΛ̄ spectra in both the Mππ

signal and sideband regions, as shown in figure 3, is performed to determine the signal
yields and peaking backgrounds. The lower and upper sideband regions are defined as
[0.430, 0.466] and [0.530, 0.566]GeV/c2, respectively. The fit model for the signal region is∑

J

(N1,J · fJsignal +N2,J · fJpeakbkg) +N3 · fflatbkg (J = 0, 1, 2) , (4.1)

and that for the sideband region is∑
J

(N ′2,J · fJpeakbkg) +N ′3 · f ′flatbkg (J = 0, 1, 2) . (4.2)

The signal shape fJsignal for each χcJ resonance is described by its line shape convolved
with a double-Gaussian function to account for the mass resolution. Each signal line
shape is modeled with BW (MnK0

SΛ̄) × E3
γ × D(Eγ), where BW (MnK0

SΛ̄) = ((MnK0
SΛ̄ −

mχcJ )2 + 0.25Γ2
χcJ

)−1 is the nonrelativistic Breit-Wigner function with the width ΓχcJ and
the mass mχcJ of the corresponding χcJ fixed to the PDG values [13]; Eγ = (m2

ψ(3686) −
M2
nK0

SΛ̄)/2mψ(3686) is the energy of the transition photon in the rest frame of ψ(3686);
D(Eγ) is a damping factor that suppresses the divergent tail due to E3

γ . This damping
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Figure 3. Simultaneous fit to the MnK0
S

Λ̄ spectra in the (a) signal and (b) sideband regions. The
points with error bars are data. The black solid lines represent the total fit. The red, green, and
blue dashed lines represent the signals of χc0, χc1, and χc2, respectively, and the corresponding
dotted lines illustrate the peaking backgrounds. The purple dotted-dashed lines show the fitted
backgrounds.

factor is described by D(Eγ) = exp(−E2
γ/8β2) with β constrainted to center value of the

CLEO measurement (65.0± 2.5)MeV [27]. The uncertainty of β is considered as a source
of systematic uncertainty. The two Gaussian functions in the convolution share the same
mean value which is then floated in the fit. The relative width and size of the second
Gaussian to the first Gaussian function are fixed to the results of MC studies, while the
width of the first Gaussian function is floated. The peaking background shapes fJpeakbkg
are parameterized the same as the signal shapes. The yields N2,J in the signal region are
normalized to N ′2,J in theMππ sideband regions according to the sizes of these two regions.
The background shapes f (′)

flatbkg in both regions are modeled as second-order Chebyshev
polynomial functions. The numbers of fitted χcJ signal events, N1,J , are listed in table 1.

A special generator based on results of HelPWA [23–25] for the decay χcJ → nK0Λ̄ +
c.c. is developed to estimate the detection efficiencies. The description of HelPWA can
be found in the appendix A. For the χcJ data events used in HelPWA, the signal re-
gions of MnK0

SΛ̄ for χc0, χc1, and χc2 are [3.39, 3.45], [3.50, 3.53], and [3.54, 3.57]GeV/c2,
respectively; the masses of K0, Λ̄, and χcJ are constrained to their known masses [13].
The inclusive background MC sample is used to calculate the background likelihood with
negative weight.

The signal MC events are generated with the HelPWA model, in which the parameters
of coupling constants are determined by fitting the model to the χcJ data events. The
Dalitz plots and the two-body invariant mass Mij distributions of the data sample are
shown in figures 4 and 5, respectively, where i and j denote the final state particles. The
generated signal MC events based on HelPWA along with the simulated background events
from the inclusive MC sample are represented as the solid lines in figure 5. The signal MC
samples are generated with χcJ → nK0

SΛ̄ and χcJ → n̄K0
SΛ separately. After applying the

same event selection criteria to the signal MC samples, we fit the invariant mass spectra
with the same methods used for the experimental data. The detection efficiencies of χcJ ,
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Figure 4. Dalitz plots of M2
nK0

S
versus M2

K0
S

Λ̄ for the (a) χc0, (b) χc1, and (c) χc2 candidates in
the data sample. The signal regions of MnK0

S
Λ̄ for χc0, χc1, and χc2 are [3.39, 3.45], [3.50, 3.53], and

[3.54, 3.57]GeV/c2, respectively.

Mode N1,J εJ (%) BF (10−4)
χc0 1284± 50 9.95 6.65± 0.26± 0.41
χc1 399± 30 12.44 1.66± 0.12± 0.12
χc2 879± 40 13.03 3.58± 0.16± 0.23

Table 1. The number of fitted signal events (N1,J), detection efficiency (εJ), and B(χcJ → nK0
SΛ̄+

c.c.), where the first uncertainty is statistical and the second one is systematic.

εJ , are averaged over both charge conjugate channels and listed in table 1. The efficiency
differences between the two charged conjugated modes are less than 0.5% for all three χcJ
channels and are consistent within the statistical uncertainties.

The BFs are calculated using

B(χcJ → nK0
SΛ̄) = N1,J

Nψ(3686) · εJ ·
∏
i Bi

, (4.3)

where Nψ(3686) is the number of ψ(3686) events [12]; εJ is the detection efficiency as listed
in table 1;

∏
i Bi = B(ψ(3686)→ γχcJ) · B(K0

S → π+π−) · B(Λ̄→ p̄π+), where the BFs are
taken from the PDG [13]. The results are summarized in table 1.

5 Systematic uncertainty

The number of ψ(3686) events is measured to be (4.48 ± 0.03) × 108 based on inclusive
hadronic events, as described in ref. [12], so the uncertainty is 0.6%. The systematic
uncertainty due to the detection of γ is studied with the well understood channel J/ψ →
ρ0π0 [28]. The efficiency difference between data and MC simulation is about 1% per
photon. To estimate the uncertainties associated with K0

S and Λ reconstruction, the decays
J/ψ → K∗±(892)K∓, K∗±(892) → K0

Sπ
± and J/ψ → ΛΛ̄ are selected as the control

samples. The uncertainties are determined to be 1.5% per K0
S and 2.0% per Λ. The

systematic uncertainty caused by the 1-C kinematic fit is studied with the control sample
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Figure 5. Distributions of MnΛ̄, MnK0
S
, and MK0

S
Λ̄ for χcJ → nK0

SΛ̄ + c.c. (J = 0, 1, 2). The
left column is for χc0, the middle column is for χc1, and the right column is for χc2. The data are
represented by black points with error bars and the MC events are represented by red lines. The
signal regions of MnK0

S
Λ̄ for χc0, χc1, and χc2 are [3.39, 3.45], [3.50, 3.53], and [3.54, 3.57]GeV/c2,

respectively.

ψ(3686) → π0nK0
SΛ̄ with purity about 98.5%, where n, K0

S , and Λ̄ are selected using the
same criteria as the nominal analysis but the number of good photons is required to be
at least two. The difference of the selection efficiencies between data and MC simulation
is determined to be 4.1% and assigned as the corresponding systematic uncertainty. The
uncertainties associated with the mass windows of K0

S , Λ, and Mmiss are estimated by
repeating the analysis with alternative mass window requirements. We change the mass
window of K0

S to [0.473, 0.521] and [0.487, 0.511]GeV/c2, that of Λ to [1.110, 1.123] and
[1.113, 1.119]GeV/c2, and that of Mmiss to [0.880, 1.000] and [0.910, 0.970] GeV/c2. The
largest differences from the nominal BFs are assigned as the corresponding systematic
uncertainties.

The systematic uncertainty related to the fitting procedure includes multiple sources.
For the signal line shape, the parameterization of the damping factor may introduce
a systematic uncertainty. The nominal damping factor is changed to another popular
form used by KEDR [29], given by D(Eγ) = E2

γ0
EγEγ0+(Eγ−Eγ0)2 , where Eγ0 = (m2

ψ(3686) −
M2
χcJ

)/2mψ(3686). The resulting differences in the fit are assigned as the related systematic

– 7 –
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Sources B(χc0) B(χc1) B(χc2)
Nψ(3686) 0.6 0.6 0.6

γ detection 1.0 1.0 1.0

K0
S reconstruction 1.5 1.5 1.5

Λ reconstruction 2.0 2.0 2.0
Kinematic fit 4.1 4.1 4.1
Mass windows 0.4 0.7 0.5
Fitting procedure 2.8 4.1 2.3
MC modeling 1.3 1.3 2.3
Input BFs 2.2 2.6 2.2
Total 6.2 7.1 6.3

Table 2. Systematic uncertainty sources and their contributions (in %).

uncertainties. In addition, the background function is changed from a second to a third
order Chebyshev function, and the differences in signal yields are taken as the systematic
uncertainties. The systematic uncertainty due to the fit range is evaluated by changing
the fit range from [3.35, 3.60] to [3.35, 3.65] and [3.30, 3.65]GeV/c2, and the maximum dif-
ferences in the fitted yields are considered as the associated systematic uncertainties. The
total uncertainties of the fitting procedure are estimated to be 2.8%, 4.1%, and 2.3% for
χc0, χc1, and χc2, respectively.

The systematic uncertainties arising fromMCmodeling are estimated by using different
model parameters and taking into account contribution from intermediate resonances with
small significance in HelPWA. The differences of efficiencies based on the new HelPWA
results and the nominal ones are taken as the uncertainties. The systematic uncertainties
due to the input BFs of ψ(3686) → γχc0 (χc1, χc2), K0

S → π+π−, and Λ → pπ− are 2.0%
(2.5%, 2.1%), 0.1%, and 0.8%, respectively, according to the PDG [13].

All systematic uncertainty contributions are summarized in table 2. The total system-
atic uncertainty for each χcJ decay is obtained by adding all contributions in quadrature.

6 Summary

The decays of χcJ → nK0
SΛ̄ + c.c. (J = 0, 1, 2) are observed for the first time using (4.48±

0.03)× 108 ψ(3686) events accumulated with the BESIII detector at the BEPCII collider.
The BFs of χcJ → nK0

SΛ̄ + c.c. are determined to be (6.65 ± 0.26stat ± 0.41syst) × 10−4,
(1.66± 0.12stat ± 0.12syst)× 10−4, and (3.58± 0.16stat ± 0.23syst)× 10−4 for J = 0, 1, and
2, respectively. Isospin symmetry is examined by comparing our results with the isospin
conjugate decays of χcJ → pK−Λ̄ + c.c. [11]. The ratios B(χcJ → pK−Λ̄ + c.c.)/B(χcJ →
nK0

SΛ̄+c.c.) are measured to be 1.98±0.09stat±0.14syst, 2.71±0.24stat±0.20syst, and 2.35±
0.14stat ± 0.16syst for J = 0, 1, and 2, respectively, where common sources of systematic
uncertainties are canceled. No obvious isospin violation is observed.
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Enhancements are observed in the Dalitz plots shown in figure 4 and the mass distri-
butions of two-body nΛ̄ subsystems shown in figure 5. We perform a HelPWA with the
main goal to produce MC samples that describe the data well enough to obtain a good
estimate of the efficiency. While the HelPWA does describe the data nicely, the complexity
of the model we used here does not allow to draw any firm conclusions on the relative
contributions of individual resonances.
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A HelPWA model

A.1 Variable definition

Four-momentum vectors of final states for the decay χcJ → nK0
SΛ̄ are denoted by p1, p2

and p3. Momentum combinations, pi + pj and pi + pj + pk, are denoted by [ij] and
[ijk], respectively. The production of nK0

SΛ̄ events, as shown in figure 6, is assumed via
intermediate states Λ∗, K∗, N∗ and direct three-body decay,

(a) : χcJ → Λ∗Λ̄, Λ∗ → nK0
S , (A.1)

(b) : χcJ → K0
SK
∗+, K∗+ → nΛ̄, (A.2)

(c) : χcJ → nN̄∗, N̄∗ → K0
SΛ̄. (A.3)

(d) : χcJ → nK0
SΛ̄. (A.4)
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Figure 6. The quasi-two body decays and the direct three-body decays in the process χcJ → nK0
SΛ̄.
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Figure 7. Helicity system of the decay χcJ → Λ∗Λ̄, Λ∗ → nK0
S .

For the decay χcJ → A(pA)B(pB), the helicity angles are taken as the polar and
azimuthal angles for the momentum pA in the χcJ rest frame. Let x̂, ŷ and ẑ be the
coordinate system fixed in the χcJ rest frame. For the second decay, A → X(pX)Y (pY ),
the z axis, ẑh, is taken along the flying direction of the A in the χcJ rest frame, and
momenta pX and pY are defined in the A rest frame. Then the helicity coordinate system
fixed by the A decay is defined as ŷh ∝ ẑ × ẑh and x̂h = ŷh × ẑh. The helicity angles for
the second decay are taken as the polar and azimuthal angles for the momentum pX in
the helicity system (x̂h, ŷh, ẑh). Figure 7 shows the helicity system definition for type (a)
decay, for example. Variable definitions for the helicity angles and amplitudes are given in
table 3 for the sequential decays (a), (b) and (c).

A.2 Decay amplitude

Decay amplitude for process (a) reads

A1(m,λ1, λ3) =
∑
λR

FχcJλR,λ3
DJ∗
m,λR−λ3(φ[123]

[12] , θ
[123]
[12] , 0)BW (m12)FΛ∗

λ1,0D
JR∗
λR,λ1

(φ[12]
[1] , θ

[12]
[1] , 0),

(A.5)
where DJ

m,λ(φ, θ, 0) is Wigner-D function with J = 0, 1, 2 for χcJ states, JR is the spin of
resonance Λ∗, and BW denotes Breit-Wigner function.

Decay amplitude for the process (b) reads

A2(m,λ1, λ3) =
∑

λ+,λ′1,λ
′
3

FχcJλ+,0D
J∗
m,λ+(φ[123]

[13] , θ
[123]
[13] , 0)BW (m13)FK∗+λ′3,λ

′
1
DJR∗
λ+,λ′3−λ

′
1
(φ[13]

[3] , θ
[13]
[3] , 0)

×D
1
2
λ′3,λ3

(φ′2, θ′2, ψ′2)D
1
2
λ′1,λ1

(φ′3, θ′3, ψ′3), (A.6)
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Decays Helicity angles Helicity amplitudes

χcJ(m)→ Λ∗(λR)Λ̄(λ3) θ
[123]
[12] , φ

[123]
[12] FχcJλR,λ3

Λ∗ → n(λ1)K0
S θ

[12]
[1] , φ

[12]
[1] FΛ∗

λ1,0

χcJ(m)→ K∗+(λ+)K0
S θ

[123]
[13] , φ

[123]
[13] FχcJλ+,0

K∗+ → Λ̄(λ3)n(λ1) θ
[13]
[3] , φ

[13]
[3] FK

∗+
λ3,λ1

χcJ(m)→ N̄∗−(λ−)n(λ1) θ
[123]
[23] , φ

[123]
[23] FχcJλ−,λ1

N̄∗− → Λ̄(λ3)K0
S θ

[23]
[3] , φ

[23]
[3] F N̄

∗−
λ3,0

Table 3. Helicity angles and amplitudes of the sequential decays (a), (b) and (c). λi denotes
the value of helicity for the corresponding particle, and m denotes the spin z projection of virtual
photon χcJ .

where JR is the spin of K∗+. The angles (φ′2, θ′2, ψ′2) and (φ′3, θ′3, ψ′3) correspond to the
rotation to align the Λ̄ and n helicity system to coincide with those defined in the process
(a). These rotations carry the polarization of Λ and n into the helicity system of (a), so that
ensures the coherent interference between the two decays. This issue has been addressed
in the analyses [30, 31] and proved in ref. [32].

Decay amplitude for process (c) reads

A3(m,λ1, λ3)=
∑

λ−,λ′1,λ
′
3

FχcJλ−,λ′1
DJ∗
m,λ−−λ′1

(φ[123]
[23] , θ

[123]
[23] , 0)BW (m23)F N̄∗−λ′3,0

DJR∗
λ−,λ′3

(φ[23]
[3] , θ

[23]
[3] , 0)

×D
1
2
λ′3,λ3

(φ′2, θ′2, ψ′2)D
1
2
λ′1,λ1

(φ′3, θ′3, ψ′3), (A.7)

where the two factors D
1
2
λ′3,λ3

(φ′2, θ′2, ψ′2) and D
1
2
λ′1,λ1

(φ′3, θ′3, ψ′3) correspond to the rotation
of Λ̄ and neutron helicities to coincide with those defined in the process (a).

Helicity amplitude is expressed with partial waves in terms of LS-coupling scheme [23,
33, 34]. For two-body decays with spin J → s+ σ, it follows

F Jλ,ν =
∑
ls

( 2l + 1
2J + 1

)1/2
〈l0Sδ|Jδ〉〈sλσ − ν|Sδ〉glSrl

Bl(r)
Bl(r0) , (A.8)

where L and S are the orbital angular momentum and spin quantum numbers for the
two-body decay, r is the magnitude of the relative momentum of the final states, r0 is
the corresponding momentum at the R nominal mass, gls is a coupling constant to be
determined, and BL(r) is the Blatt-Weisskopf barrier factor [24].

The non-resonant decay is described with the helicity amplitude constructed in the
event system, in which the X–Y plane is chosen as the three-body decay plane, and the Z-
axis is defined as the normal to the decay plane. To describe the n,K0

S and Λ orientations
in the X–Y –Z system, one needs to introduce three rotations to carry the momenta of
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Figure 8. Illustration of rotations to carry the n,K0
S and Λ orientations from the χcJ rest frame

xyz to the three body helicity system XY Z by the three Euler angles α, β and γ.

final states from the χcJ rest frame, x–y–z to the three-body helicity system, X–Y –Z by
three Euler angles, α, β,and γ as shown in figure 8. The calculations of Euler angles can
be found in [35].

The amplitude is written as [25],

Bm =
∑
µ

DJ∗
m,µ(α, β, γ)Tλ1,λ2,λ3 , (A.9)

where m denotes the z-component of the χcJ spin in its rest frame. The decay amplitude
Tλ1,λ2,λ3 is a fit constant depending on the helicity values λi of the final state particles, and
µ is the helicity of the χcJ in the helicity system fixed to the three-body reference, which
is summed over.

A.3 Fit method

To determine the decay coupling constants gls and decay amplitude T , we fit the model to
the data events by minimizing the function defined as

S = −(lnLdata − lnLbg), (A.10)

where the contributions from background events are subtracted from the likelihood of
observed data events Ldata, and the likelihood function L for the N data events is defined
with the amplitudes as

L =
N∏
j=1

∑
m,λ1,λ3

ρJm,m
σMC

∣∣∣∣∣∑
i

Ai(m,λ1, λ3) +Bm

∣∣∣∣∣
2

j

, (A.11)
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where ρJ is the spin density matrix for the χcJ production from the ψ(3686)→ γχcJ decay,

and they are taken as ρ0 = 1, ρ1 = 1
4

( 1 0 0
0 2 0
0 0 1

)
and ρ2 = 3

20

 2 0 0 0 0
0 1 0 0 0
0 0 2/3 0 0
0 0 0 1 0
0 0 0 0 2

 [32] for χc0, χc1

and χc2, respectively. The amplitude summation
∑
iAi(. . . ) is taken over all intermediate

states, and |. . .|j denotes the amplitude calculated with the angular observables of j-th
event. The normalization factor σMC is calculated as the average of amplitudes with a
sample of simulated MC phase space events.

To describe the data distributions with the model, we use the 16 intermediate states
[excited Λ: Λ(1405), Λ(1520), Λ(1600), Λ(1670), Λ(1690), Λ(1800), Λ(1890), Λ(2000),
Λ(2020), Λ(2100), Λ(2110), Λ(2325), Λ(2350); excited N : N∗(2300); excited K: K2(2250)],
and the non-resonant decay. The masses and widths of these states are fixed to the PDG
values [13] in the fit. The possible interferences between the non-resonant process and the
processes with intermediate states are also included, and parity conservation is required to
reduce the number of independent helicity amplitudes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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