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Abstract
Current paradigms for neuromorphic computing focus on internal computing mechanisms, for
instance using spiking-neuron models. In this study, we propose to exploit what is known about
neuro-mechanical control, exploiting the mechanisms of neural ensembles and recruitment,
combined with the use of second-order overdamped impulse responses corresponding to the
mechanical twitches of muscle-fiber groups. Such systems may be used for controlling any analog
process, by realizing three aspects: Timing, output quantity representation and wave-shape
approximation. We present an electronic based model implementing a single motor unit for twitch
generation. Such units can be used to construct random ensembles, separately for an agonist and
antagonist ‘muscle’. Adaptivity is realized by assuming a multi-state memristive system for
determining time constants in the circuit. Using SPICE-based simulations, several control tasks
were implemented which involved timing, amplitude and wave shape: The inverted pendulum
task, the ‘whack-a-mole’ task and a handwriting simulation. The proposed model can be used for
both electric-to-electronic as well as electric-to-mechanical tasks. In particular, the ensemble-based
approach and local adaptivity may be of use in future multi-fiber polymer or multi-actuator
pneumatic artificial muscles, allowing for robust control under varying conditions and fatigue, as
is the case in biological muscles.

1. Introduction

The current successes in deep learning neural net-
works (Sejnowski 2018) also pose new challenges.
Whereas the carbon footprint of a training proced-
ure in artificial neural networks is very high, the
required computations are far from efficient on a von
Neumann computer architecture. Large vectors con-
taining input and output patterns need to be copied
between storage and processor modules. However,
the essential operation is a mere matrix-vector mul-
tiplication, once the data sits present. The com-
putation of a weighted sum and a resulting final
non-linear operation, however, can be realized by
patterns streaming through a neuromorphicmaterial,
at a fraction of the energy dissipation. The biological

brain is an example of such a complex material.
However, there aremore examples of impressive, ana-
log processing than the neural computation within
the neocortex of the brain itself. A large component of
neural activity is concerned with the non-linear, ana-
log control of movement. Biological evolution in ver-
tebrates has lead to a versatile system for neuromech-
anical control (i.e. the muscular system) consisting of
contractile fibers and the associated spinal and cere-
bellar control mechanisms. In this study, we will pro-
pose an electronic system for the control of complex
analog systems that is inspired by a number of essen-
tial properties of its biological counterpart. The basic
tenet is not so much in realizing a final mechanical
pathway but in proposing possible mechanisms for
control, which potentially can be reused at several
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electrical as well as soft-mechanical levels in a neur-
omorphic control system performing an analog con-
trol task.

1.1. Related work in biologically inspired
movement control in robotics
In recent literature, there is an increased interest in
biologically inspired methods for movement con-
trol (DeWolf 2021). Apart from the minimization
of energy requirements, biological systems provide
highly effective examples of adaptive and fault-
tolerant control under heterogeneous external condi-
tions and in the face of internal resource depletion.
The biological inspiration has an influence on sev-
eral levels in the general movement-control architec-
ture. In DeWolf et al (2016), a spiking neuron model
of the motor cortices and cerebellum of the motor
control system for a three-link simulated planar arm
is presented. The recurrent error-driven adaptive
control hierarchy model addresses the overall con-
trol architecture and the spike-based learning pro-
cess. However, the model does not explicitly incor-
porate the essential electro-biomechanical nature of
the end effector, the muscular system. Spike-based
control also has attractive properties for the adapt-
ive control of, e.g. a robotic arm mounted on a
wheel chair (Ehrlich et al 2022) in robotic support
of activities of daily living. In this study, Intel’s Loihi
chip (Davies et al 2018) was used. Although it is spike
based and interesting because of its adaptive prop-
erties, the general approach heavily relies on direct
control of electric motors per joint. We believe it
is important to explore the possibilities for ballistic,
twitch-based control as is the case in both biological
muscles and would be required for new contractile
materials (Mirfakhrai et al 2007, Leng et al 2021)
which allow for the exploitation of intrinsic compli-
ance. The intrinsic stiffness of traditional joint-angle
control by electric motors has an advantage in indus-
trial applications. However, the downside is that com-
pliant control (Liang et al 2014, Li et al 2017) for
service cobots must be computed in detail, centrally.
New actuator technologies will require innovative
control schemes. In Abadía et al (2021), the import-
ant aspect of movement control and planning in sys-
tems with intrinsic delays is addressed. Such time
delays play an important role in sensorimotor anticip-
ation and in learning. The paradigm concerns force
control of a teleoperated Baxter robot arm, where
safety requires an adequate handling of delays. This
research (Abadía et al 2021) mainly addresses cent-
ral control mechanisms.Wewill also address the issue
of time delay in the current study, which is aimed
more at peripheral processes. These (DeWolf et al
2016, Abadía et al 2021, Ehrlich et al 2022) and other
studies (Ehrlich and Tsur 2021) would be suitable in
delivering a central control architecture that acts as a
front end for the peripheral biomimetic control pro-
posed in the current study. It should be noted that

peripheral end-effector control is not the only pos-
sible application domain for the work proposed here.
An additional goal of this study is to provide an inter-
face from short-lasting spike events to internal state
responses with a prolonged temporal effect, as occurs
in the biological system, when a discrete spike induces
a smooth gradient in the state of the receiving sys-
tem. We expect that there are many application pos-
sibilities for adaptive, neuromorphic approximation
of time functions. In the next sections we will explore
properties of the biological motor control system.

1.2. Ensemble models in biological motor control
Motor control in vertebrates is characterized by an
architecture where spiking control signals from a
‘higher’ processing level in the central nervous sys-
tem, i.e. the primary motor cortex, are sent down-
ward (Betts et al 2013) (figure 1). Passing through the
spinal cord, the terminal connections end up within
a vertebra of the spine, in the ventral horn, where
a pool of alpha motoneurons receives the excitation
signals from the upper control level. At this point,
the motoneuron pool is then activated, leading to (a)
recruitment (Liddell and Sherrington 1925) of silent
neurons when their activation threshold is exceeded
and (b) leading to a modulation of the spiking fre-
quency of neurons that are already active (Kanosue
et al 1979, Van Boxtel and Schomaker 1983). These
two mechanisms allow for coarse, recruitment-based
force control as well as fine regulation of required
intermediate-force levels by means of altering the fir-
ing rate. The recruitment process is organized accord-
ing to the ‘size principle’ (Henneman 1957), with
smaller motor neurons connected to small fibers have
a low threshold and are resistant to fatigue, whereas
large motor neurons have a high threshold, activat-
ing high-force, fast-twitch (FT), but fatigable muscle
fibers. The force jump that would be caused by a dis-
crete recruitment step of a strong motor unit (MU)
can be smoothed, i.e. filled in, by spike, i.e. twitch
trains of increasing frequency, fromotherMUs, yield-
ing smooth control that is realized by means of a
discrete-event and discrete-force system. In order to
obtain stable and predictable results, the system is also
equipped with a negative feedback system, measur-
ing the actual mechanical effect of a motor command
in terms of muscle-fiber length variations (Hulliger
1984) as well as the force exerted on muscle ten-
dons (Houk and Henneman 1967). In this way, the
system is able to generate the required force, acceler-
ation, speed and positional control patterns, even in
the face of external disturbances and resource deple-
tion in the muscle fibers (Sahlin 1986, Prochazka
1996, Schlink et al 2021). In short: The biological
neural system has solved the problem of continuous,
analog control where the basic actions are discrete
short-lasting spike events; It has solved the problemof
activating groups of contractile elements while avoid-
ing step-wise jumps in the delivered output force; and
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Figure 1. Schematic overview of the biological system for motor control. Details are left out and anatomy is not to scale. Spikes
from upper motor neurons (a) in the primary motor cortex are sent down the spinal cord (b) to a segment (vertebra) in the spine
(c), where an exit cavity is located for the axons towards the target muscle. The excitatory signals from the cortex make synaptic
contact with a pool of lower motor neurons (alpha motoneurons). Each motor neuron ((d), orange) is connected with a long
axon (e) to a large number of muscle fibers (f), where an arriving electrical spike is converted into mechanical action, the twitch.
The combined final system at the bottom, consisting of a single lower motor neuron, its axon, the fan-out branches to
neuromuscular junctions and the contractile fibers is called a MU. A muscle can contain hundreds of such MUs.

it has solved the problem that output elements may
be subject to perturbations and drift during task exe-
cution. Last but not least, the biological motor sys-
tem is adaptive as regards newmotor tasks, the effects
of resource depletion during task execution, and, at a
slower pace, skeletal growth and ageing of the biolo-
gical systems involved. While not all of these proper-
ties are necessary or easy to implement in new neur-
omorphic systems, we will explore a number of facets
that lend themselves to a hybrid emulation in analog
electronics and digital simulation.

An early ensemble approach to modeling muscu-
lar control in the electrical domain was given by De
Luca (1979)3. The muscle consists of many separate
groups of fibers, MUs, in humans ranging from a few
dozen MU in small facial muscles up to 1900 MU in
the calf muscle (m. gastrocnemius) (Feinstein et al
1955). A single MU actually consists of the combina-
tion of: (1) one motoneuron in the spine; (2) its axon
towards the muscle; (3) the branches of the terminal
arborization within the muscle; 4) the end plates as

3 ibi, figure 5, p 321.

the neuromechanical junctions positioned on 5) the

spatially distributed contractilemuscle fibers. A single

motoneuron excites from 100 to 1000 muscle fibers,

depending on themuscle (Buchthal and Schmalbruch

1980). A discharge of the motoneuron in the vent-
ral horn (figure 1) leads to a spike traveling towards

the end plates, there leading to a spatiotemporally dis-
persed depolarisation which can be electrically meas-

ured on the surface of the muscle as a MU action

potential (MUAP). Mechanically, the spike arrival

can be measured as a muscle shortening, in the
free-hanging condition, or as a force pulse in the
mechanically constricted (isometric) condition. The
shape of the MU twitch corresponds to a second-
order overdamped impulse response (Crochetiere
1967, Milner-Brown et al 1973, Tax and van der
Gon 1991) (figure 2). Whereas the summation, over
motor units, of the MUAPs yields a signal measured
as the electromyogram (EMG), the summation of
the twitches (Burke et al 1976, Simony et al 2010,
Gerritsen 2020, Smith et al 2020), similarly, leads to
the compound force output of the muscle as shown
in figure 3.
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Figure 2. Example of a second-order overdamped impulse response to an input spike (not shown) which occurs at t= 1. This
function approximates the summed mechanical force effect of the contracting muscle fibers belonging to a MU, on the arrival of a
spike from the alpha motoneuron.

Figure 3. The muscle, modeled as a motor-unit pool receiving spikes from an upper controlling level, where each MU can be
viewed as a filter operator in the electrical and force domain. The total muscle activity is spatiotemporally summed, leading to an
observable EMG and an overall force-time function. The interesting aspect for neuromorphic computing is that the input can be
seen as gross multi-channel spike-train control on a pool of units, with an overall functional effect in the force domain
characterized by a carefully timed and shaped wave pattern. Short inter-spike intervals, whether within a MU spike train, or as the
consequence of spatio-temporal summation over input spike trains, lead to a temporal fusion of twitches, allowing a wide variety
of output force patterns.

1.3. How to exploit mechanisms in biological
control within neuromorphic computing?
The aim of this study is not to model all forms of
continuous, sustained control, but to focus on motor
tasks involving short-lasting ballistic movements or
analog bursting. By using the second-order over-
damped impulse response (figure 2) to a spike, i.e. a

pulse with a very short duration, the effect of that
input event is spread over time, with a smeared-out
duration which is useful in relation to the analog-
control requirements of a particular motor task. In
brief, the idea is to use the 2nd order impulse response
as a base function for a neuromorphic universal func-
tion approximator. In an electronic implementation,

4
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this can be realized by putting two ‘RC’ filters in series,
realizing an impulse response:

h(t) =
k

τ2 − τ1
(exp(−t/τ2)− exp(−t/τ2)) (1)

where τ 1 and τ 2 are time constants.
Advantages of this approach:

• Bridge the gap between short-lasting spikes on
the input and long-lasting analog wave output as
required by a movement task;

• Ability of the twitch impulse response to be used
as a base function for general function approxima-
tion;

• Requiring only simple electronic circuits;
• In which the behavior is controlled by adaptive
memristors.

1.4. Relation with traditional machine-learning
methods for function approximation
Universal function approximators can be real-
ized in many ways, ranging from polynomials,
Fourier transform, additive mixtures of Gaussians
(GMM) (Gauvain and Lee 1994), multilayer per-
ceptrons (Hornik et al 1989), or other methods.
There are, however, peculiarities caused by the used
basis function in such approaches. For instance,
Gaussian mixtures are only an effective function
approximator for probability densities, i.e. p ∈ [0,1].
Similarly, twitches (i.e. 2nd order overdamped
impulse responses) will be unipolar assuming a pos-
itive input impulse, as required by the electronics.
Therefore, modeling using only positive ‘humps’ is
not sufficient, because in control problems, the con-
troller output needs to be signed (i.e. requiring a
bipolar control action a ∈ [−s,+s]). Twitches, i.e. 2nd
order ‘humps’ (figure 2) are a very skewed approxim-
ation of a Gaussian, but cheap to generate because the
only requirement is a cascade of two RC filters which
can be realized by a wide range of neuromorphic
materials having capacitive, or more generally, state-
persistent properties of the leaky-integrator type.

The required bipolarity for control can be realized
by assuming both an agonist and an antagonist MU
pool, with a reversed sign on the base function. In
muscular systems, the sign reversal is the natural con-
sequence of a geometric structure that is organized
around a joint, the agonist and antagonist muscles
being connected to opposing locations around a
hinge (joint) in a kinematic chain (Hartenberg and
Denavit 1964).

Wewill propose a computing architecture for ana-
log control tasks requiring short-lasting (ballistic)
wave shapes with appropriate timing, amplitude, and
adaptive wave shapes. The modeling will be done in
two levels: (1) an electronic circuit is proposed using
NGSPICE (Cox et al 1992, Strasnick et al 2021) to
model a singleMU, allowing for the timed generation
of 2nd-order overdamped impulse responses; (2) an

overall architecture is proposed, solving bipolar (pos-
itive and negative) control signals by summing out-
puts over ensembles ofMUs; (3) an overall simulation
is realized in Python to instantiate the NGSPICE sim-
ulations and collect their output; (4) heuristic, STDP-
inspired learning rules are presented to adapt mem-
ristor resistances to a task; (5) several tasks will be
used to evaluate the capabilities of this biologically
inspired analog control system.

The proposed approach has three desired proper-
ties in mind:

• The total system of circuits needs to be flexible in
the sense that it needs to be able to learn to perform
multiple analog control tasks involving timings and
wave shapes;

• The circuit needs to operate using current
memristive devices having a limited set of resist-
ance values, usually only two;

• The circuit has low power requirements;

To show that ensembles of MU circuits can learn to
perform dynamic control tasks, we will test whether
it can be trained to control:

(i) A cart-pole (inverted pendulum) task (Donaldson
1960, Blitzer 1965, Barto et al 1983)
Task focus: (timing and amplitude in 1D);

(ii) Playing the whack-a-mole game (Gutiérrez et al
2006, Wikipedia 2022)
Task focus: (timing and amplitude in 1D);

(iii) We also want to show the ability of the
circuit to generate wave shapes representing
pen-tip trajectories for handwritten charac-
ters (Schomaker 1992)
Task focus: (trajectory formation in 2D).

Finally, we will discuss the modeling results and the
possible implications for future neuromorphic and
biomimetic control systems.

2. Methods

2.1. Circuit
The basic component of the approach is an electronic
circuit representing a single MU, the MU circuit, for
generating a delayed twitch with a particular amp-
litude. An ensemble of several such circuits is assumed
to represent a ‘muscle’, i.e. a complete analog control-
ler for one output dimension. Two such ensembles
can operate in an agonist/antagonist mode, allowing
for bipolar control.

2.1.1. Delayed-pulse generator
The first part of the circuit is the time-delayed spike
generator. This part of the circuit will turn a basic
activation stimulus (a step pulse, from rest) into a
delayed pulse, represented by a narrow, high amp-
litude block pulse. This brief-lasting spike is assumed

5
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Figure 4. First part of the circuit which generates delayed narrow block pulse (‘Dirac’ pulse in the muscle fiber model).

Figure 5. Second part of the circuit, generating a muscle twitch-like signal from a narrow block pulse input.

Figure 6. Overall diagram of twitch-generating circuit representing a MU. The first part of the circuit generates a delayed pulse
while the second one generates a second-order overdamped impulse response. The red resistances are variable, i.e. memristive
devices.

to be a physically realizable version of the ideal-
ized (Dirac 1947) pulse, with an area of one and a
duration approaching zero seconds, as is used in sig-
nals & systems theory. It represents a single input
spike of the input trains as shown in figure 3. The
delayed pulse generator can be seen in figure 4. A
memristor-capacitor combination realizes a charging
curve leading to a step response by the first opamp,
which is translated into a spike by the second opamp,
not unlike a leaky-integrate and fire (LIF) neuron
model (Abbott 1999).

2.1.2. Muscle-twitch generator
The second subcircuit is the twitch generator, which
converts the short-lasting spikes from the first part of
the circuit into longer-lasting spikes that look like the

tension over time of a muscle twitch. The conversion
from a spike to a twitch is realized by filtering the
narrow block pulse with a second-order RC filter.
The double RC filter generates a second-order over-
damped impulse response. The subcircuit can be seen
in figure 5.

2.1.3. Complete single-MU circuit
The complete ‘single-MU’ twitch generator circuit is
shown in figure 6. It has only three memristors. In
total, the single circuit has 16 passive components
and three standard opamps (LM741). The compon-
ents have been selected for a proof of concept, where
notably some capacitors (C1, C5) are dimensioned
to allow for modeling a relatively slow real-time pro-
cess. When embedded in an ensemble, additional

6
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Figure 7. Drawing of memristor consisting of a Pt anode
and cathode and a layer of undoped as well as doped TiO2.

memristors are needed to obtain a weighted-sum
output overMU circuits to allow a variation of output
patterns.

2.1.4. Memristive devices
Thememristor, coined by Chua (1971) and produced
in the HP Labs (Strukov et al 2008) is typically a non-
linear device, of which the microscopic internal state
can be modified and measured as a change in the res-
istance. Their ability to co-locate memory and com-
pute in the same element makes them akin to biolo-
gical synapses.

The memristor is a two-terminal device whose
resistance can be switched between several states
depending on the applied voltage. The classical mem-
ristor consists of two electrodes that sandwiches a bin-
ary resistive oxide, such as TiO2 as seen in figure 7.

Resistive switching is activated when the electric
field due to the applied voltage leads to the move-
ment of oxygen vacancies whose density at either
interface with Pt can be controlled by the applied
voltage. The higher concentration of oxygen vacan-
cies at TiO2−x (x denoting the vacancy concentration)
on the left side leads to the formation of an ohmic
contact with Pt and a Schottky interface with Pt on
the right side. The barrier height and width modula-
tion related to themovement of the oxygen vacancies,
with the applied voltage is associated with the differ-
ent resistance states that such memristors exhibit.

A non-volatile memristor will retain its res-
istive state when no voltage is applied. This way,
the memristor can be regarded as a component
with memory. Non-volatile memristors are usu-
ally bistable, although research has been done
on memristive systems with a higher number of
states (Ielmini and Waser 2016, Sun et al 2021).
Bistable memristors have an ON/Low resistive and
OFF/High resistive state, also referred to as LRS and
HRS respectively.

In neuromorphic systems, the goal is to realize
local adaptation at individual synapses. In this study,
we first want to investigate whethermemristors with a
limited number of resistive states can be used for ana-
log tasks. It is not clear, a priori, that a coarse quantiz-
ation of resistances (read: ‘neural-network weights’)
still allows for sufficiently fine control in such tasks.
Therefore, updates to the memristor parameters are,

for the time being, realized by using an external con-
troller which allows for a stochastic exploration of
resistance configurations. The external controller can
control the weight changes of the entire system or
subsystems within the system. The controller receives
input information from devices that measure the
physical properties of the system, which are different
across different tasks. These properties are converted
into a control signal, based on heuristics, that contain
a direction of update (i.e. an increase or decrease in
resistance) and what subset of resistors to update. The
resistances then changewith only a set value. The con-
troller’s stochasticity determines which resistors are
chosen to be updated, namely; at every instancewhere
updates are performed, depending on the task, the
resistors have a 20% or 50% chance of being adjusted.
A flowchart of the process can be seen in figure A1.

2.2. Ensemble architecture
Similar to the muscle-modeling approach, a summa-
tion over individual twitches fromMUcircuits is used
to obtain the driving signal. The architecture used
for this contains multiple circuits with a common
activating step input, where only the variable resist-
ance values will be different between circuits. The
circuits are split up into antagonistic groups, mean-
ing one group of circuits will contribute positively
while the other contributes negatively. By means of
a long-lasting block pulse stimulus, the circuits in
an ensemble are stimulated and will produce differ-
ently shaped and delayed second-order overdamped
voltage pulses. The individual pulses are summed per
group and represent the force an actuator has to exert,
i.e. in the simulation the exerted force is assumed to
be equal to the voltage (i.e. value [V] = value [N]).

Three different ensemble architectures are
used; single-bin homogeneous updating (SBHoU)
ensemble, multi-bin homogeneous updating
(MBHoU) ensemble and the MU recruiting-inspired
MBHeU ensemble. The SBHoU ensemble consists of
one group of an antagonistic pair of circuits where
either all agonist or all antagonist circuits will activ-
ate. The MBHoU ensemble consists of eight groups
of circuits (four agonists and four antagonists) of
which each activates depending on circumstances.
The MBHeU ensemble consists of eight groups of
circuits in which one or more activate depending
on the circumstances. A schematic visualization can
be found in figure B1 together with a more detailed
explanation in appendix B.

2.3. Control tasks
In this section, our main task: the cart-pole or
inverted-pendulum task is described. The whack-a-
mole task is described in appendix C and a trajectory-
generation task for pen-tipmovement in handwriting
is described in appendix D. The control tasks address
approximation problems in timing, amplitude and
wave-shape domains.
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Figure 8. Cart-pole environment with a positive angle right of the vertical and a negative angle left of the vertical. A positive force
exerted pushes the cart to the right, while a negative force pushes the cart to the left. The total force exerted on one side is the
summation of outputs of the respective circuits.

The cart-pole task represents a typical inverted-
pendulum control problem. It is used to evaluate
the timing and amplitude control capabilities of our
model. The cart-pole system consists of a pendulum
attached to a cart using a hinge weight. The pendu-
lum needs to be balanced by the movement of the
cart, initiated by either turning the wheels or apply-
ing a force to the sides of the cart. In the current
model, the task does not require an initial upswing
from a down-hanging orientation. The cart-pole is
simulated using the OpenAI Gym cart-pole envir-
onment (Brockman et al 2016). This environment
utilizes the frictionless version of the equations of
motions of the cart-pole described in Barto et al
(1983), shown in equations (2) and (3).

Θ̈ =
g ∗ sin(Θ)+ cos(Θ) ∗ −F−mp∗l∗Θ̇

mc+mp

l ∗ ( 43 −
mp∗cos2(Θ)
mc+mp

)
(2)

ẍ=
F+mp ∗ l ∗ (Θ̇2 ∗ sinΘ− Θ̈ ∗ cos(Θ))

mc +mp
(3)

where g= gravitational acceleration (9.8 (m s−2)),
mc =mass of the cart, mp =mass of the pole,
l= distance from hinge to center of mass of the pole,
and F= horizontal force applied to the center of mass
of the cart.

Different machine learning algorithms to control
the inverted pendulum have been explored in simu-
lation under which fuzzy logic (Becerikli and Celik
2007), reinforcement learning (Lillicrap et al 2019)
and spiking neural networks (Kang and Banerjee
2018). The problem is also tackled in real life by rein-
forcement learning and a hybrid system of memris-
tors and transistors (Wang et al 2019), where the
memristors were used to speed up matrix multiplic-
ations and introduce stochasticity. The cart-pole is
controlled in a simulated environment. We use the
circuit outputs to generate force, and the OpenAI
Gym cart-pole environment (Brockman et al 2016)
to simulate the cart-pole. The environment with
annotations and outputs of force-generating circuits
can be seen in figure 8. The cart in this environment is
moved by a pushing force that pushes to the left or the

right. We call the ensemble pushing right the agonist
ensemble and the ensemble pushing left the antagon-
ist ensemble.

When the pole flips from a vertical position to a
positive angle compared to this position in a clock-
wise direction, the agonist circuits that have to push
the cart receive a 10V block pulse until the pendu-
lum flips to the other side. The circuits that are not
activated also do not contribute in pushing the cart
anymore (e.g. when the pole flips from a positive to a
negative angle, the agonist circuit ensemble does not
contribute any force anymore).

The pole is assumed to fall, ending a run in a fail-
ure, whenever the pole exceeds an angle of 20◦ relative
to the vertical. A run is assumed to finish successfully
whenever the pendulum is balanced for 60s. Unlike in
the common benchmark setups, we do not set a hori-
zontal limit for where the cart is able to move.

Monte Carlo search will be performed to explore
the performance of different ensemble schemes in
pole balancing. The physical properties are arbitrarily
chosen; The mass of the pole is 0.2kg, the mass of the
cart is 0.3kg and the pole length is 1m. The activated
bins with their corresponding angular velocity ranges
can be seen in table B2. One run consists of 90 balan-
cing attempts where the 90 initial conditions for the
pole are each of the elements of the Cartesian product
between the following two sets;

Θ= {−0.25,−0.15,−0.1,−0.05,−0.01,0.01,
0.05,0.1,0.15,0.25} (rad)

Θ̇ = {−0.25,−0.15,−0.1,−0.05,0,0.05,0.1,
0.15,0.25} (rad s−1).

The score of each run is the average balancing time
over the attempts.

By evaluating the results from the Monte Carlo
search we will hypothesize what ensemble could be
used best to utilize in combination with a more goal-
oriented learning rule which we call event timing-
based plasticity. We will compare these combinations
of ensembles and learning rules by means of two
different tasks. The first task is a simple pendulum
balancing task where the pendulum has to be bal-
anced from an initial angle of approximately 0◦ and

8



Bioinspir. Biomim. 18 (2023) 046015 L Schomaker et al

an angular velocity between −0.05 and −1.5 or 0.05
and 1.5 (rad s−1). The second task is balancing the
pendulum with initial positions as seen in the Monte
Carlo search (i.e. an angle-angular velocity combina-
tion from the set of 90 initial states).

In both tasks, when the pendulum either crosses
the vertical again or falls, the resistances are updated.
Taking the time between two consecutive pendulum
crossings to be t, the resistances update according to
the following rules;

• Resistances should increase when the pendulum is
pushed too fast and too hard, resulting in lower
amplitudes and bigger time delays.

• Resistances should not change when t is within the
ideal region.

• Resistances should decrease when the pendulum is
pushed too slow and not hard enough, resulting in
higher amplitudes and smaller time delays.

An ideal time between two crossings is assumed to
be between 0.1s and 1s. Resistances are only allowed
to change −10kΩ|10kΩ or 0 Ω. The probability of
change will be determined by the external controller’s
stochasticity. Afterward, the task in which the pen-
dulum has a vertical initial position is extended to
determine the working range of the system. This is
done by varying the physical properties of the cart-
pole system.

Besides controlling the pendulum, playing whack
a mole and performing handwriting will also be
explored. The details of the tasks will be described in
appendix B.

2.4. Optimizationmethods
Optimization methods are used to teach or optim-
ize a system with respect to a goal. Several optimiz-
ation methods are used in this research. This section
explains the optimization methods used; Monte–
Carlo search (random search), the Widrow–Hoff
learning rule (Widrow and Hoff 1960) and a rule
inspired by STDP.

2.4.1. Spike-time and event-time dependent plasticity
Neurons are plastic in nature and update their con-
nection strengths based on local information in the
form of relative spike timings. Relative time differ-
ences in spikes can either cause an increase in connec-
tion strength, a decrease in connection strength or can
leave the connection strength unchanged. Different
STDP schemes are available, of which each has its own
advantages and disadvantages. The STDP algorithms
avoid global optimization and optimize locally. Local
updating is an attractive property because it elim-
inates the need for additional connections or ‘third
leads’, into an electronic circuit. However, the cur-
rent study is first focused on the general principle of
neuromuscular-inspired analog control, evaluating it
on a number of tasks. However, it is also useful to

borrow from STDP the event-time principle as the
basis for memristor updates. Actually, there exists a
wide range of proposed STDP curves beyond the clas-
sic ‘1/x’ shape (Buchanan and Mellor 2010).

In this study, we will use a more abstract version,
dubbed event-time dependent plasticity (ETDP),
which is based on deriving update signals for a mem-
ristor update from relative timing requirements of a
particular task. The basic and discrete update actions
are: ‘resistance up’, ‘resistance unchanged’, and ‘resist-
ance down’. The assumption of ETDP is that it is pos-
sible to determine an event in the task execution, of
which the (relative) timing is related to success or fail-
ure. Because our proposed MU circuit in itself does
not require a large crossbar withmanymemristors on
the crossings, the disadvantage of the circuit-global
nature of ETDP is manageable, although admittedly
not negligible. For the tasks where ETDP is used, an
explicit time event can be detected and used as an
update signal.

2.5. Overall approach
We can model a single MU by treating it as a
mechanism that produces a delayed spike with
respect to a stimulus after which it filters this spike
using a second-order overdamped transfer function
(figure 2). This model is inspired by the neural fir-
ing timing property of which the importance is sug-
gested by Mainen and Sejnowski (1995). Controlling
a dynamical system using only a single signal how-
ever, may not be viable for systems that require
fine-grained control. In order to achieve more fine-
grained control, it is preferable to sum the activation
over an ensemble of units. As seen in figure 3, mul-
tiple MUs can either be added up in the the electrical
domain in terms of MUAPs or they can be added up
in terms of their twitch forces. We will use the latter
to control our system. By timing the twitch forces we
perform ballistic control on the system.We do this by
simulating an ensemble ofMUs, which work together
to control systems. Each MU in our system will be
simulated by an NGSPICE model (Cox et al 1992,
Nagel et al 2011), which is an open-source tool from
the SPICE4 family of algorithms for detailed simula-
tion of electronic circuits. Similar to the model that
adds up multiple twitches to generate more complex
force patterns, we will add upmultiple twitch-like cir-
cuit outputs to generate more complex voltage pat-
terns. These voltage patterns are then digitally trans-
formed into force patterns, used as driving forces in
the simulations.

3. Results

3.1. Validation and calibration
Before being able to perform the three major exper-
imental tasks, some validation and calibration steps

4 https://en.wikipedia.org/wiki/SPICE (28 April 2023).
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need to be performed on the MU-circuit ensemble
approach.

3.1.1. Validating the timing capability of a single
motor-unit circuit
In order to test the basic timing capability of the first
stage of a single motor-unit circuit, a number of pilot
evaluationswere done to verify the dependency on the
resistance of memristor R1. The circuit is fed with a
step function, from the resting state (0 V). A monit-
oring controller sets a predefined delay and starts an
iterative update of R1 until the timing of the output
signal is correct, starting with a predefined initial res-
istance (100 kΩ). The resistance value for a delay in
the range of 0–1200ms can be estimated in about 20
steps for coarse update steps of + or −10 kΩ. After
convergence from21 steps onward, the obtainedMAE
was 16.5ms and the RMS error 20.8 ms. An approx-
imation with |∆R| values which gradually become
smaller leads to a more accurate timing but required
a longer iteration sequence of 30 steps and assumes
a finer memristance resolution. More details can be
found in appendix E.1. It was concluded that this per-
formance was a sufficient basis for the actual timing
tasks (inverted pendulum and whack-a-mole).

3.1.2. Validating the shape-fitting capability of an
ensemble of twitch generators
Similarly, before embarking on more complicated
tasks, we needed to evaluate the capability of an
ensemble of electronic twitch-generator circuits to
approximate an arbitrary wave shape. Five different
transient time functions were used. Three unipolar
wave shapes: sawtooth pulse (increasing), reverse
sawtooth (decreasing) and block pulse. Furthermore,
a bipolar wave shape was evaluated, i.e. a damped
sinusoidal impulse response. All signals were approx-
imated using random weight initialization and the
Widrow–Hoff learning rule. Please note that the basic
architecture allows for bipolar signals in all cases
because there is both an agonist and antagonist pool.
For the unipolar targets, the system needs to learn
to suppress negative output. Results show that with
100 circuits (50 for positively signed twitches, 50 for
negatively signed twitches, a decent fit can be reached
in about 1000 iterations. Figure 9 shows the results
for the damped sinusoid. The approximationwas also
acceptable for the difficult ramp slope and the dis-
crete jumps in the sawtooth and block pulse targets.
Table 1 gives the RMS errors for different wave shapes.
An overview of these pilot evaluations can be found
in appendix E.2.

3.1.3. Validating a basic inverted-pendulum task
(‘1 s experiment’)
The cart-pole task represents a typical inverted-
pendulum control problem. It is used to evaluate
the timing and amplitude control capabilities of our
model. The goal was set to push the cart such that the

Figure 9. Damped sinusoid fitted with 50 scaled agonist
and antagonist circuit outputs.

Table 1.Wave shape approximation RMS error in V, for different
wave shapes.

Wave RMS error Vpp

Block pulse 0.31 5
Damped sine 0.51 8
Reverse sawtooth 0.74 5
Sawtooth 0.76 5
Sine 0.29 10

Table 2. Update rules of the 1 s experiment.

Event Resistance change

Pendulum falls Decrease
Pendulum crosses vertical over 1 s Decrease
Pendulum crosses vertical under 1 s Increase

pole crosses the vertical, in one second from an ini-
tial angle of 0.15(rad), and initial pendulum angu-
lar velocity of 0 (rad s−1). The goal event time win-
dow for the pendulum crossing the vertical was from
1.00 s to 1.01 s. After every attempt, when the pen-
dulum fell or reached the vertical, resistances change
either 2kΩ| − 2kΩ or 0 Ω with an equal probability
(i.e. 50/50). The rules can be seen in table 2. The tim-
ing and cumulative circuit output of a single run can
be seen in figure 10. After iteration 8, the system has
learned to let the pendulum cross the vertical. The
final signal of the run can be seen in figure 10(b).
Here we can see that the cart is nudged just a little,
in the beginning. Just before the 1 s mark however,
at t = 0.8 s, the cart is pushed hard by two peak-
ing forces. In summary, the system initially attempts
to push the pendulum to the vertical and when this
is achieved it optimizes the timing given the inertia
characteristic of the pendulum, yielding a stable per-
formance after ten trials. The experiment is also per-
formed using different numbers of circuits in order
to see whether the number of signals increases or
decreases convergence. The average convergence time
with error bars can be seen in figure E4. Here we

10



Bioinspir. Biomim. 18 (2023) 046015 L Schomaker et al

Figure 10. Single 1 s pendulum timing task. (a) Time in (s) until the pendulum either falls or reaches the vertical per trial, as a
function of the iteration step number. After eight iterations stable operation is achieved. (b) Final control wave shape. Peak
activation is reached at t = 0.8 s, just before the t = 1 s mark, i.e. the system apparently takes the inertia of the cart pole into
account (cf equations (2) and (3)).

Figure 11. Raw histograms of obtained average balancing time, Monte Carlo sampling, three ensemble compositions: (a) SBHoU,
(b) MBHoU and (c) MBHeU scheme with subgroups: viable solutions would be sampled from the right side of a histogram,
i.e. selecting the long balancing times.

can see that with an increasing number of circuits,
the convergence time (number of steps) decreases as
well as its variation over training sessions. We have
now shown that besides timing the delayed step, we
can also time and shape the pendulum-control action
using an ensemble of circuits.

After embarking on the validation of basic func-
tionality with acceptable to good results, we can now
address the results for the major tasks.

3.2. Inverted-pendulum task: ensemble
configurations
All three ensemble architectures are compared. For
every ensemble type we performed 3 tests using a
different number of circuits. For every run (one
ensemble setting), we sampled 50 000 times from
the 10 000 randomly generated circuit outputs
(section 3.1.2). For every sample we let this combin-
ation of outputs balance the pendulum starting with
90 different combinations of angles and angular velo-
cities as mentioned in section 2.3.We thus performed
50 000 ∗ 90= 4500 000 trials to get an impression
of every setting’s performance. For every sample

(containing 90 trials) the score is equal to the average
balancing time over all 90 trials. For each ensemble
composition, the histogram of obtained balancing
times over all the trials is shown in figure 11. Please
note that vertical axes are on a logarithmic scale.

Since we are only interested in balancing the pen-
dulum for a long time, comparing the three different
methods is done by looking at the number of occur-
rences in the higher balancing times (>20 s).

The first histogram shows the SBHoU ensemble
and can be seen in figure 11(a). We can see that there
are a vast number of trials that end up in the one or
two-second balancing time bin. We can also see that
especially the 25 circuits per side ensemble resulted in
several trials that balanced the pendulum longer than
20 s.

For the MBHoU ensemble, seen in figure 11(b),
we can see that again there are a large number of
combinations that result in one to two-seconds aver-
age balancing time. The 25 circuits ensemble per-
forms best, like in the SBHoU experiment. This
time however there were fewer trials resulting in a
balancing time higher than 20 s.
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Table 3. Number of average balancing times above 20 s per
ensemble size.

Ensemble size SBHoU MBHoU MBHeU

I 21 4 2
II 50 8 7
III 56 15 21
Total 127 27 30

The third histogram, seen in figure 11(c), shows
theMBHeU ensemble. Also here,many combinations
of circuits were capable of reaching a one to two-
second average balancing time. However, the setting
with the largest number of circuits (40) scores best but
there are only a few solutions yielding balancing times
that are higher than 20 s.

The numbers of top balancing times are shown
in table 3. Here we can see that in the extreme cases,
the SBHoU ensemble performs best, followed by the
MBHeU solution, which is in turn followed by the
MBHoU ensemble type by only a small margin. We
can also see that the setting with the most circuit per-
forms best for every ensemble type.

When selecting from the range of acceptable
solutions (min. 20 s of balancing), the single-
bin/homogeneous ensemble (SBHoU, panel (a) in
figure 11) thus seems to perform best (56 accept-
able solutions). Of the multi-bin architectures,
the MBHoU approach requires more circuits than
the MBHeU approach, but surprisingly the lat-
ter approach performs better (21 vs 15 solutions).
Therefore, the multi-bin homogeneous ensemble
with many circuits and an anticipated high energy
demand (MBHoU) will not be chosen, in the next
experiments.

3.3. Pendulum balancing using ETDP
In this experiment, we will compare two ensemble
types on a pendulum-balancing task. As opposed to
plain Monte–Carlo search, we will apply a more goal-
directed form of plasticity, ETDP. The reason for
also exploring the MBHeU scheme while the SBHoU
ensemble performed best is not only because of its
similarity to the biological process, but also due to
the expectation that our event-time approach would
potentially be able to learn to balance the pendu-
lum for a wider dynamic range of initial settings (ini-
tial angle, initial angular velocity, cart mass, pendu-
lum mass and pendulum length) than is the case in a
homogeneous ensemble.

The best scheme for the MBHeU approach is the
25→ 25+ 5→ 25+ 5+ 5→ 25+ 5+ 5+ 5 circuits
scheme (see table F1 and appendix B for an explan-
ation). In order to compare the SBHoU approach in
a fair manner, we choose the same number of circuits
for the SBHoUapproach as for theMBHeUapproach,
which is 80 (40 per side).

Ten different runs consisting of a maximum of
500 resistance change opportunities are performed

Table 4. Fraction of perfectly balanced states given initial
pendulum condition and circuit ensemble architecture.

SBHoU MBHeU

Vertical start 1± 0 1± 0
Non-vertical start 0.7± 0.2 0.97± 0.02

for both a random starting angle and starting angu-
lar velocity as well as a vertical start. The pendulum
has a length of 1m, a weight of 0.2kg and the weight
of the cart is 0.3kg. Resistances are only allowed to
change −10kΩ|10kΩ or 0kΩ with a 20% chance of
changing, which is determined by an external control-
ler. After every update, the performance is measured
by taking the average balancing time, calculated over
all 90 states in the case of the random starting state
and calculated over 60 different initial angular velo-
cities5 rads−1 in the case of the vertical starting state.
The best performing combination of circuits (i.e. the
combination of circuits of which the average balan-
cing time is the highest) are saved for every run. The
number of perfectly balanced (60 s) states is counted
for each of those circuits and is then averaged. The
comparison can be seen in table 4.

We can see that in the vertical start setting, both
architectures are able to perfectly balance all test
settings. In the non-vertical start setting, however
the single bin homogeneous update architecture is
able to only balance 2/3rd of the settings while the
multi bin heterogenous update architecture is able to
balance 97% of the initial conditions. The MBHeU
architecture is significantly better in the non-vertical
start setting than the SBHoU architecture t(18) =
−4.266,p= 0.0005.

From the same experiment, the average balancing
time per update is kept track of and is plotted in
figure 12.

In the vertical start runs, we can see that the
homogeneous updating architecture learns faster
than the heterogeneous one, while both will converge
to a configuration where the system is able to per-
fectly balance all starting conditions. In the harder
task where the initial pole position is one of 90 states
as seen in the Monte Carlo search, the heterogeneous
system seems to peak higher and generally seems to
have a higher variance. It appears that the working
range (pendulum angle and angular velocity) needs
to be limited during the training procedure, because
configuration which might be impossible to optimize
for while also keeping the system optimized for other
configurations, may cause divergence in the training
due to a competition between opposing controllers.

5 {−1.5, −1.45, −1.4, −1.35, −1.3, −1.25, −1.2, −1.15, −1.1,
−1.05,−1,−0.95,−0.9,−0.85,−0.8,−0.75,−0.7,−0.65,−0.6,
−0.55, −0.5, −0.45, −0.4, −0.3, −0.25, −0.2, −0.15, −0.1,
−0.05, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,
0.65, 0.7, 0.75, 0.8 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3,
1.35, 1.4, 1.45, 1.5}.
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Figure 12. Comparison of average runs, capped on 500 updates. The filled area is the standard deviation of the data at every point.
(a) The average run when the initial pole position is vertical. (b) The average run when the initial position is one of 90 random
initial states as seen in the Monte Carlo search.

Figure 13. Comparison of dual ensemble compositions. The transparent lines are the individual runs. The opaque lines are the
averages of all individual runs.

This divergence can be seen especially in the hetero-
geneous system bymeans of the decreasing trend after
peaking. By using two ensembles that interchange-
ably learn until they perform better than the other
while the other does not learn, learning ismore stable.
Performance of dual ensembles, consisting of com-
binations of all 10 previous runs for all 4 settings can
be seen in figure 13.

In the case of the vertical starting state, we can
see that on average the homogeneous updating sys-
tem learns faster but the heterogeneous updating sys-
tem does not lag far behind and reaches the 60 s mark
approximately 100 updates later. In the case of the 90
starting states, the homogeneous system again learns
faster on average but is surpassed by the heterogen-
eous system after around 350 updates. the heterogen-
eous architecture on average balances better than the
homogeneous one.

A single run consisting of 500 optimization steps
with a pendulum length of 1m, a pendulumweight of

0.2kg and a cart weight of 0.3kg is performed. Every
optimization step consists of one or more updates,
which happen when the pendulum drops or crosses
the middle. The resistances are allowed to change
−10kΩ|10kΩ depending on the required direction
or 0Ω with a 20% probability. One step is over when
the pendulum falls or is balanced for 60s. An example
of a single run can be seen in appendix F. The start-
ing angles of the pendulum are approximately 0◦ and
the starting angular velocities are randomly initial-
ized between −1.5 to −0.05(rads−1) and 0.05 to
1.5(rads−1). Using the same settings, 30 runs have
been performed. The average and standard error of
these 30 runs are shown in figure 14. We can see that
especially in the first few steps, the pendulum takes
some time to be balanced. Later, the learning sud-
denly speeds up and finally slows down again. Over
time, the system is able to balance the pendulum fairly
well with an average of the maximally reachable 60 s
on a regular basis.
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Figure 14. Average of 30 runs. The top figure shows the
average balancing time of the pendulum per step. The
bottom figure shows the probability of resistances being
updated per step. The green shade indicates the standard
error.

Table 5. All values of variable parameters of the pendulum.

Pendulum length (cm) 40, 100, 200
Pendulum weight (kg) 0.2, 0.5, 1
Cart weight (kg) 0.2, 0.5, 1

In order to show that the system can also learn to
balance the pendulum for a longer amount of time, a
single run with the same settings as the previous runs
is performedwith a cap of one hour (3600 s). This run
can be seen in figure F3.

The working range of the system is explored
by varying the simulated physical properties of the
cart and the pole (Brockman et al 2016). Twenty-
seven (27) different combinations of parameters are
explored. Three parameters are varied; length of the
pendulum, mass of the pendulum and mass of the
cart. The parameters and their values can be seen in
table 5.

For every combination of values, the optimization
process is run five times. Meaning, in total 135 simu-
lations are performed. The system is judged on three
criteria; consistency, learning speed and average bal-
ancing time.

• The consistency is a measure of how well the sys-
tem performs once it has reached a balancing time
of 60 s the first time. This is calculated by dividing
the total number of times it reaches 60 s by the total
number of trials performed after the first time the
system reached 60 s. It thus shows how well the sys-
tem is able to keep performing once it has found its
first solution.

• The learning speed is the number of trials the sys-
tems needs before it is able to reach 60s for the first
time.

• The average balancing time is the average balancing
time over the entire run.

The evaluations are plotted in figures 15, G1 and G2.
The same data, but instead plotted per pendulum
length can be seen in appendix G. These plots are less
dense and easier to comprehend.

We will review the average balancing time in
figure 15 in more detail. We can see that a fairly wide
range of physical parameter settings results in an aver-
age balancing time of over 30 s. The system starts to
fail to learn when the cart mass is 1kg and the pendu-
lum length is 0.4m (i.e. where the pendulum length is
the longest and the cart mass is the heaviest). This is
indicated by green dots on the bottom of the plot. It
should be noted that this physical parameter setting
requires fast, powerful actions, due to the combina-
tion of a short arm and the relatively large mass. On
the other side of the spectrum (i.e. a large pendulum
and a light cart indicated by red triangles), the system
shows signs of a harder time learning.

3.4. Handwriting task
The handwriting task is performed on all letters of the
alphabet, for 3 different writings per letter, ten times
per writing for both an ensemble of block pulses as
well as an ensemble of twitches. An example of fitting
a single written letter variant can be seen in figure 16.

Here we can see that there is quite some variabil-
ity in the individual fits. Despite this, the average of
all fits comes close to the original letter. We can also
see that the letter fit by block pulses has sharp corners,
while the letter fit by the twitches appears to be more
smooth. A histogramof the euclidean distances which
shows that the twitches fit the letters better than the
block pulses as well as a comparison between indi-
vidual letter fits can be seen in appendix I).

4. Discussion

In this study, we propose to take inspiration from bio-
logical neuromuscular control mechanisms, both for
‘internal’ neuromorphic computing and for external,
multi-actuator mechanical control. A basic electronic
circuit is introduced (inNGSPICE) as a syntheticMU,
which is able to implement timing, amplitude and a
2nd order overdamped impulse response, by means
of a limited number of n-state memristors. By com-
bining several such MUs into an ensemble, arbitrary
wave shapes for short-lasting control actions can be
realized. The problem of bipolar control signals is
solved by defining two pools of motor neurons, one
for the ‘agonist’ and one for the ‘antagonist’ direction.
The concept is tested on three motor-control tasks
involving timing, amplitude and wave-shape require-
ments: The inverted-pendulum task, the whack-a-
mole task, and a pen-tip trajectory generator for
handwritten characters.

4.1. Modeling results
The proposed approach shows, that in simulation, the
three tasks are performed well, with a limited number
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Figure 15. Average average balancing time over five trials per combination including standard error bars. The physical
parameters; cart mass (kg) and pole length (m) are shown in the legend. In three cases, the mass and rod-length parameter
combinations were uncontrollable.

Figure 16. Example of a single letter variant fit. (a) The letter is fit using block pulses. (b) The letter is fit using twitches. The
transparent lines in the background are the individual fits, while the blue line is the average of all the fits.

of motor-unit circuits in an ensemble. Whereas the
exact shape of a force burst is less important in
the inverted-pendulum task and the whack-a-mole
task, the advantage of the ‘twitch’ modelization as a
second-order impulse response becomes clear in the
handwriting task, where basic block pulses provided
a higher RMS error than the twitch function as the
basis function in the ensemble.

4.2. Electronics implementation
The current circuit is not a minimal setup and can
be simplified in many ways. The goal of this publica-
tion is to propose the general principle and leave fun-
damental improvements to the domain of electron-
ics research. One possibility would be to replace the
opamps with field-effect transistors, which also will
allow for a good range of usable RC-value combina-
tions due to their high input impedance (107–1012Ω).
The use of MOSFETS would also reduce the power
requirement of the circuit. It would be interesting to
find solutions with a minimized component count
and optimized routing in a multi-unit design. In
analog neuromorphic computing, the temporal task

requirements cannot be overlooked. The compon-
ent parameters (RC-value combinations) are depend-
ent on the speed of optimal system responses in a
particular task. Here, the parameters were geared to
simulations of relatively slow processes. Notably, the
capacitor is an ‘expensive’ component in a circuit.
However, if the spike rates are high and twitch dur-
ations are short, low-capacitance MOSCAPs (Arora
1993) could be used in a VLSI design. Alternatively,
volatile memristors can be used which have large
time-constant values for the decay of a parameter
value in the circuit, e.g. resistance (Wang and He
2017).

4.3. Implications for systems with adaptive
memristive devices
One of the advantages of a ‘real’ STDP framework
is the local learning, on board. In the proposed
ETDPmodel, memristor adaptation needs to be real-
ized by a non-local, external controller. For the MU
circuit, five (5) leads would be needed to inject
resistance-switching voltages. If these are kept within
a reasonable range, damage to the semiconductors
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can be avoided. An alternative solution would consist
of optically-controlled memristors (Hu et al 2021),
which have an advantage due to the decoupled oper-
ational and training modes and the opportunity for
out-of-plane access to the memristive devices on a
flat surface, i.e. without additional wiring and routing
problems. Since themodel is basically concernedwith
a timed generation of transients, it does not require,
in itself, a large-sized 2D crossbar. A 1D linear array
of memristors is needed to realize the weighted sum
per ensemble, whereas the realization of the bipolar
control signal just requires the summation over agon-
ist and agonist ensemble, for a single control output
channel. This does not preclude the use of a cross-
bar at later or earlier processing stages, it just is not
needed within the stage of wave-shape composition
by timed twitches.

4.4. Implications for biomimetic actuator design
Whereas the primary goal of this study is to pro-
pose neuromorphic approaches for analog control
in general, the availability of ensemble-based motor
control will be useful for biomimetic control sys-
tems, especially if these involve the use of many small
actuators with an uncertain, non-linear behavior. For
example, in McKibben actuators (Gaylord 1955) or
Hasel actuators (Rothemund et al 2021), especially
if implemented with a large number of contract-
ile elements. A wide range of solutions and patents
for (electro-)contractile materials are known (Brock
1991, Mirfakhrai et al 2007, Bhatti et al 2020,
Kuramaya and Ito 2020, Leng et al 2021, Phan et al
2021, Liu et al 2022). Despite a stable research interest
over the years, it is difficult to create a breakthrough,
because of the non-linearity of control and possible
drift and temperature dependencies. A twitch-based
controller for individual thin contractile elements
that are grouped in parallel, similar to the biological
muscle can theoretically compensate for the imper-
fections (Moghadam et al 2015) in the material. For
somematerials, the second-order filter component in
our model can be replaced by the electroactive fiber
group, while retaining the population-based tim-
ing, amplitude and wave-shape control. In Kuramaya
and Ito (2020) an example is given of an artifi-
cial muscle exhibiting a second-order overdamped
impulse response that appears to be very similar to
its counterpart in biological muscles. In this study,
we did not address the biological feedback control,
which uses muscle length-variation sensors (muscle
spindles) and tendon force. Ensemble-based control
models (Georgopoulos 1991) play a role, both at the
output level and the input level. This means that
error signals can be directed back into a motor-unit
controller, to compensate for locally non-ideal actu-
ation. As an example, an electro-active polymer with
a transparent core can be gauged using laser pulsing
using Bragg grating (Hill et al 1978, Wolf et al 2018),
such that the contractile state can be sensed. Other

sensing mechanisms with strain gauges or piezo
materials can be envisaged, giving local feedback from
individual regions within an artificial muscle. The
essence is to design a fine-grained multi-actuator sys-
tem that is intrinsically prepared for internal wear and
tear and external disturbances. This can be realized
by point-to-point feedback in an electro-mechanical
ensemble system, such that sensors report on the
corresponding local regions of contractile elements.
This approach is opposed to the traditional technical
actuator design which aims at a limited number of
presumably perfect components, e.g. using one elec-
tromotor per joint. Evidently, a biologically-inspired
system will not be the choice if micrometer preci-
sion is needed. For many materials, even attaining
millimeter precision will be difficult at the scale of
humanoid robotics. However, for control of ballistic
movements over a wide range of tasks, a spiking ana-
log control model does have attractive properties.

4.5. Incorporation of reflexive feedback
In this work, the overall architecture and the tasks
that were used address the feedforward, ballistic type
of control, i.e. without considering real-time feed-
back. In the biological motor apparatus, there is a
wide range of sensory (afferent) channels, concerning
muscle-fiber length changes from the muscle-spindle
sensors, absolute force-level information from the
Golgi organ, and nociceptive (pain) signals. For a
mechanical agonist/antagonist muscle setup, hom-
onymous excitation and reciprocal inhibition allow
for a precise control of mechanical impedance. An
example of the highly advanced control mechan-
isms in the biological system is that the sensitiv-
ity of the muscle-spindles is controlled from within
even the high level of the motor cortex via the γ
motor neuron or fusimotor system, encompassing
30% of the total control signal (Macefield and
Knellwolf 2018). Such feedforward mechanisms are
especially important for anticipatory control in a
system with several delays, in signal propagation as
well as in the mechanical force buildup. However,
for a fully computational neuromorphic application
of the paradigm that uses the twitch ensemble for
time function approximation, lack of feedback may
not be a limitation and it avoids the complexity
in an electronic implementation. Interestingly, the
sensory information collection in the dorsal root of
the spine also appears to obey recruitment prin-
ciples, similar to the size principle on the output,
i.e. motor-neuron side (Idlett et al 2019). Ensemble
recruitment also plays a role in central (non-motor)
computation (Crowe et al 2010, Carrillo-Reid and
Yuste 2020). In Khubieh et al (2015), it is shown
that the recruitment mechanism increases dynamic
range and allows for an exploitation of the noise
that is present, in pyramidal cortical neural compu-
tation, i.e. not only in efferent motor control but also
in internal computational processes. Representing
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an information quantity using a number of neur-
ons leads to an improved signal-to-noise ratio and
dynamic range.

4.6. Gross versus detailed control
An aspect of the fine-grained control in the biological
motor system has not yet been addressed. Implicitly,
the control signals coming from the upper level,
i.e. the primary motor cortex, were assumed to have a
gross effect on themotoneuron pool. This means that
the details of local adaptation in space (the tissue) and
time are left to the computational resources within
the segmental level of the spine, allowing the usual
recruitment order to take place. This view is consist-
ent with the general approach in, e.g. motor planning
in robotics, with a separation of 3D task-space and
n-df joint-space planning and abstracted set-point
values to be reached by the actuator. However, in
the biological system, the central controller can exert,
apart from gross influence, also a more detailed con-
trol in the recruitment of MUs (Basmajian 1963). If
needed, the central controller can choose to modu-
late the actuator in detail, if a task would require so.
In Formento et al (2021), subjects were able, after six
days of training, to skillfully and independently con-
trol three MUs in the biceps to complete a 2D center-
ing task. For intelligent controller systems this means
that corrective action for non-ideal components can
be realized at two levels: The basic low-level control
loop and a higher, strategy-based adaptation of con-
trolling signals, from above. Also here, an ensemble
implementation may show its virtue: In the case of
manyMUs, compensatory strategies by a central con-
troller may be applied with graded effects. The com-
bination of strict hierarchical control in combination
with delegated local steering is known as heterarchical
control (Cohen 1992).

4.7. Future research
We have presented a first step in the direction
of ensemble-based generation of control functions.
Several important elements of the biological sys-
tems may play a role in more advanced versions of
the proposed approach. As an example, for reasons
of simplicity, the ‘size principle’ (Henneman 1957)
was not deployed in the synthetic MU ensemble.
A non-homogeneous distribution of amplitude and
time-constant parameter valuesmay allow for achiev-
ing a larger dynamic range of responses, both in
amplitude and speed of reaction. The distribu-
tions of such parameters are highly specific (Elder
et al 1982) in the human muscular system. In
case of new contractile materials, it is evident that
the properties of such materials would determine
optimal parameter values that need to be determ-
ined. Whether a non-homogeneous pool of twitch
generators is also beneficial in the case of gen-
eric time-function approximation tasks for internal
neuromorphic computation is an open research
question. In a small experiment using the 20%/80%

rule for m. soleus (Elder et al 1982), for slow (Type
1) vs fast (Type 2) synthetic MU distribution in our
inverted-pendulum task, no clear benefit of a het-
erogeneous composition of the ensemble was found
(appendix J). The argument of a beneficial increased
dynamic range can be countered by the argument
that the learning process is simplified in the linear
setup of a homogeneous ensemble, where the contri-
bution of the smallest MUs is not larger than the step
sizes required for accurate control or precise func-
tion approximation. More research will be needed,
because there clearly is a potential for any mech-
anism that is helpful in the reduction of resources
(energy, number of electronic components) in neur-
omorphic control. In artificial systems, the optimal-
ities will likely not fully overlap with those found in
the biological system (Dideriksen et al 2012). Finally,
the approach presented here may have useful implic-
ations for neuroprosthetics (Unal et al 2018, Lan et al
2023, Zhang et al 2022).

5. Conclusion

This study provided a proof of concept, using hybrid
simulation, for the use of a motor-unit twitch cir-
cuit that can be used as the basic component in an
ensemble setup for generating analog control sig-
nals that are timed, with a specific amplitude and
wave shape. Results show, that the circuits were
well trainable and performed well on three differ-
ent analog-control tasks: The inverted pendulum, the
‘whack-a-mole’ task and the generation of pen-tip
trajectories for letters in handwriting. While the res-
ults are preliminary, they open a new view on compu-
tational processes within neuromorphic computing
hardware but also on control modes for multi-fiber
artificial muscle actuators.
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Appendix A. Control flowchart

Figure A1. Flowchart of system control and learning. The initialization, processes and decisions are task-specific.

Appendix B. Ensemble compositions for
the cart-pole task

Within the biological muscle, there exist many ways
in which MUs are grouped and are involved in a
recruitment scheme. For the cart-pole system, we
test three different ensembles types, abbreviated as
SBHoU, MBHoU and MBHeU.

The SBHoU ensemble of which an example can
be seen in figure B1(a), consist of one ensemble
for the agonist and one ensemble for the antagon-
ist side. The agonist ensemble will activate when the
pole crosses the vertical in the positive angular direc-
tion and the antagonist ensemble will activate when
the pole crosses the vertical in the negative angular
direction.

The MBHoU ensemble (figure B1(b)) consists of
multiple ensemble bins per side, where one bin con-
sists of multiple circuits. When the pendulum flips
from one side of the vertical to the other, one of
the multiple ensemble bins is activated. Which one is
activated depends on the instantaneous angular velo-
city at the point in time of the pendulum crossing
the vertical. In practice this can be seen as follows:
the angular velocity will be measured at the point

of crossing by a tachometer. This meter generates a
certain current. This current then operates a switch.
The switch will in turn activate a specific ensemble
bin depending on the height of the current, and
thus the magnitude of the angular velocity. For the
MBHoU ensemble we choose four different circuit
bins per side (we thus have eight bins). The first bin
will activate when the instantaneous angular velocity
is [0–0.5) rads−1, the second bin will activate when
the instantaneous angular velocity is (0.5–1] rads−1,
the rest is visible in table B1 where Θ̇ is the instant-
aneous angular velocity at the point of crossing the
vertical.

The third approach is the recruitment-based
MBHeU approach (figure B1(c)). This approach
works the same as the MBHoU ensemble approach
except that, with an increasing velocity range, an
increasing number of bins will activate (e.g. when
the angular velocity is between 0 and 0.5rads−1, a
subset of circuits will activate.When the angular velo-
city is between 0.5 and 1rads−1, the same subset
will activate together with an additional subset). This
method thus activates extra circuits when more force
is needed. The activated ensembles per angular velo-
city range is shown in table B2.
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Figure B1. Diagram of all three ensemble compositions, within a single polarity (pole side).

Table B1.Multiple ensemble bins approach for ensembles that activate for a specific instantaneous angular velocity range.

Activated bin number (side) Θ̇ (rad s−1)

1 (agonist) [0,0.5)
2 (agonist) [0.5,1)
3 (agonist) [1,1.5)
4 (agonist) [1.5,∞)
1 (antagonist) (0,−0.5)
2 (antagonist) [−0.5,−1)
3 (antagonist) [−1,−1.5)
4 (antagonist) [−1.5,−∞)

Table B2. Recruiting architecture for ensembles that activate for a specific instantaneous angular velocity range.

Activated bin number (side) Θ̇ (rad s−1)

1 (agonist) [0,0.5)
1+ 2 (agonist) [0.5,1)
1+ 2+ 3 (agonist) [1,1.5)
1+ 2+ 3+ 4 (agonist) [1.5,∞)
1 (antagonist) (0,−0.5)
1+ 2 (antagonist) [−0.5,−1)
1+ 2+ 3 (antagonist) [−1,−1.5)
1+ 2+ 3+ 4 (antagonist) [−1.5,−∞)

Appendix C.Whack-a-mole task

In this children’s game, a mole pops out from a
board with holes and has to be hit with a hammer
to gain points. We have simplified the game to one
dimension, with a single mole that pops up at a fixed
distance from the origin. Rather than ensembles of
circuits that alternately activate, all circuits activate
simultaneously and voltages are added up to gener-
ate a net control voltage. This voltage will drive the
hammer forward while net positive and backward

while net negative. The mole is assumed to be hit
when the hammer is located above the mole, how-
ever, with the requirement of low velocity, imply-
ing that a braking action needs to be learned. The
update-rules can be seen in table C1. The resistances
are only allowed to change −50kΩ|50kΩ or 0kΩ
which will again be determined by the external con-
troller’s stochasticity, which allows for a 20% chance
of change. Because of the mole’s static position, no
recruitment is needed to deal with a large dynamic
range.
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Table C1. Resistance update-rules for whack a mole. A decrease in resistance reduces time delay and increases amplitude. An increase in
resistance results in the opposite.

Condition Agonist resistances Antagonist resistances

Hammer exceeds negative× limit Decrease Increase
Hammer exceeds positive× limit Increase Decrease
Hammer in front of mole+ time limit exceeded Decrease Increase
Hammer past mole+ time limit exceeded Increase Decrease

Figure D1. Decomposition of the handwritten letter ‘a’ into a horizontal stroke and vertical stroke. The handwriting is sampled at
100 Hz and interpolated using cubic interpolation which smooths the letter. Combining the amplitudes at the same points in time
results in the original letter. The letter is a smoothed letter from the PluColl dataset (Schomaker 1994).

Appendix D. Handwriting task

In some control tasks, block pulses as control signals
might suffice. Using a smooth task like handwriting
we explore the differences between the twitch shape
and a block pulse. Writing a letter can be decom-
posed into a horizontal and a vertical stroke pat-
tern. Combining the two results in the original let-
ter. An example of the decomposition can be seen in
figure D1. By fitting both the horizontal and the ver-
tical stroke, handwriting can be learnt. Please note
that small deviations along either one of the axes can
already result in an illegible letter if the differential
timing is disturbed (Schomaker et al 1989). A data-
set containing handwritten letters is the PluColl data-
set (Schomaker 1994, Vuurpijl and Schomaker 1997),
which is available on the Zenodo repository. For all
letters of the alphabet, 3 different writing instances
per alphabet letter are arbitrarily picked out. The let-
ters are then fit using randomly generated pulses and
the Widrow–Hoff learning rule, 10 times per writing
pattern for both an ensemble of block pulses as well
as an ensemble of twitches. The latter is done to eval-
uate the assumed advantage of the smooth twitches as
opposed to the block pulses as the basis function.

Appendix E. Preliminary evaluations

E.1. Single-circuit timing capability, R1 adaptation
The signal timing experiment is performed to see
whether we could learn to generate a step signal at a
specific moment in time. In order to see whether the

circuit is able to generate a step delay at multiple dif-
ferent times, multiple timing goals have been set. Two
different schemes have been used to update resistance
R1. In both cases, the initial resistance is set at 100kΩ
and is updated such that the time delay comes as close
as possible to the target time.

The first scheme used is the linear updating
scheme where the change in resistance is 10kΩ per
step or iteration. The time delay of the circuit, taught
by a linear updating scheme, seen in figure E1, first
goes to a value close to the desired time. It then
exceeds this time and starts wiggling around the
desired time value because the standard update of
10kΩ does not allow for convergence unless the per-
fect timing is achieved with a resistance value that is a
multiple of 10kΩ.

The second scheme is the decaying update
scheme. In this scheme the initial resistance change
is 10kΩ and this decays linearly over time, shown in
equation (E.1).

∆R= 10kΩ ∗ (iterations− iteration)/iterations.
(E.1)

In the equation,∆R is the change in resistance, ‘itera-
tions’ is the maximum number of iterations and ‘iter-
ation’ is the current iteration number. The timing res-
ults of the decaying scheme can be seen in figure E2.
Using this scheme we can see that at first, the system
starts with relatively big updates, getting closer to the
desired time fast. Over time the update size decreases,
which allows the system to converge.
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Figure E1. Time delay optimization task for multiple target times with a set update magnitude of 10kΩ. All runs started at 100kΩ.

Figure E2. Time delay optimization task for multiple target times with a decaying update magnitude. All runs started at 100kΩ.

E.2. Evaluation of basic wave-shape fitting
In order to perform a variety of tasks, the system
should be able to fit various shapes. Five different
shapes have been fit using the Widrow–Hoff learn-
ing rule. Before fitting the functions, 10 000 circuit
outputs have been generated using random resistance
values for R1, R4 and R6. For every waveform, 2000
learning iterations have been performed. For one
learning iteration, 100 circuits are sampled, where

50 of the circuits are used as agonist (contributing
positively) and 50 as antagonist (contributing negat-
ively). After sampling, theWidrow–Hoff learning rule
is performed for 1000 steps to optimize 102 coeffi-
cients (100 circuit outputs, one agonist bias and one
antagonist bias) that scale the outputs of every cir-
cuit respectively. After every coefficient update, the
negative weights are clipped to zero in order to make
it more physically plausible (i.e. the agonist should
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Figure E3. Time function approximation on five waveshapes: (a) damped sine, (b) sawtooth, (c) reverse sawtooth, (d) block
pulse, (e) sine burst. The ensemble contains 50 agonist and 50 antagonist MUs, in each waveshape.

strictly only contribute positively and the antagonist
should strictly only contribute negatively). An issue in
fitting the sawtooth is the straight diagonal line. Since
the basic twitches only consist of a rounded shape,
straight diagonal or horizontal lines are more diffi-
cult to fit. This is also visible in for example the block
pulse (figure E3(d)). Generally however, considering
the variety of signals, the signals fit reasonably well.

E.3. Cart-pole task, ‘1 s experiment’
The ‘1 s’ experiment was performed using a differ-
ent number of circuits in order to see whether the
number of signals increases or decreases convergence.
The average convergence time with error bars can be
seen in figure E4. The convergence duration improves
from over 250 steps at 10 circuits down to just above
50 steps when using 25 circuits.
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Figure E4. Average time it took to learn to get the pendulum straight exactly after one second including error bars. This average
time is taken for four ensembles with 10, 15, 20, and 25 circuits, and is performed ten times per ensemble. Convergence is
speeding up and becoming more predictable, with an increasing number of circuits in an ensemble.

Table F1. Circuit scheme per ensemble. As examples: SBHoU 1 has one ensemble of 15 circuits per side, MBHoU 1 has four ensemble
bins (one per angular velocity range) of 15 circuits per side and MBHeU 1 has 15, 20, 25 and 30 circuits for the respective angular
velocity range per side. The number of variable resistances is calculated by: number of sides ∗ number of circuits per side ∗ number of
variable resistances per circuit.

Ensemble name Ant(agonist) circuit scheme Number of variable resistances

SBHoU 1 15 2 ∗ 15 ∗ 3= 90
SBHoU 2 20 2 ∗ 20 ∗ 3= 120
SBHoU 3 25 2 ∗ 25 ∗ 3= 150
MBHoU 1 15/15/15/15 2 ∗ 4 ∗ 15 ∗ 3= 360
MBHoU 2 20/20/20/20 2 ∗ 4 ∗ 20 ∗ 3= 480
MBHoU 3 25/25/25/25 2 ∗ 4 ∗ 25 ∗ 3= 600
MBHeU 1 15/15+ 5/15+ 5+ 5/15+ 5+ 5+ 5 2 ∗ 30 ∗ 3= 180
MBHeU 2 20/20+ 5/20+ 5+ 5/20+ 5+ 5+ 5 2 ∗ 35 ∗ 3= 210
MBHeu 3 25/25+ 5/25+ 5+ 5/25+ 5+ 5+ 5 2 ∗ 40 ∗ 3= 240

Appendix F. Pendulum balancing using
ETDP

We test three ensemble schemes with three different
numbers of resistances per scheme, which can be seen
in table F1. The resistances that are updated are R1 for
timing and R4 and R6 for shape and amplitude of the
signal.

A single run consisting of 500 optimization steps
with a pendulum length of 1m, a pendulumweight of
0.2kg and a cart weight of 0.3kg is performed. Every
optimization step consists of one or more updates,
which happen when the pendulum drops or crosses
the middle. One step is over when the pendulum falls
or is balanced for 60s. The starting angles of the pen-
dulum are approximately 0◦ and the starting angu-
lar velocities are randomly initialized between −1.5
to−0.05(rads−1) and 0.05–1.5(rads−1).

Figure F1 shows the update scenario for the ETDP
rule in the pendulum task. For vertical-line crossings
that occur much too early (t< 0.1s) the direction of
thememristor adaptation obtains the sign−1.Within

a dead zone (0.1s< t< 1.0s) no updates occur. For
t> 1.0s, the direction of adaptation has the sign +1.
The reason 0.1 s is chosen as the lower time limit is
that otherwise the learning rule will only allow for an
increase in resistance, meaning there is no regulariz-
ation and it is possible for the resistances to decrease
to their minimum value (which results in all circuits
generating an≈8V voltage spike at t= 0.

The single run can be seen in figure F2. From this
run we can see that the system is helpless initially. It
then slowly starts learning and it reaches the balan-
cing time of 60s more frequently, after around step
180 it barely drops the pendulum.At around 300 steps
however, it seems to have gotten into a less stable
state, which is quickly corrected as can be seen in
the density of lines in the bottom graph. We can also
see that even though in some trials, the system has
reached its maximum balancing time, resistances are
still updated during balancing. This means that even
though it knows how to balance the pendulum for a
given starting condition, it will still keep optimizing
toward the ideal 0.1–1s range as seen in figure F1.
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Figure F1. Control curve representing update states based on the relative timing of events for the circuits that control the
pendulum.

Figure F2. Balancing the pendulum using an ETDP update rule during a single training trial (run) of 500 timesteps. The top
figure shows the balancing time of the pendulum. The bottom figure shows whether the resistances have changed during
balancing (1) or not (0).

Figure F3. Single run performance, capped on one hour. Top graph: balancing time in seconds. Bottom graph: resistance update
events (1= change, 0= no change). The performance keeps improving over time, occasionally dropping in case of difficult initial
pendulum states at the boundaries of the operating domain of the circuits.
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Figure G1. Average learning time over 5 trials per combination including standard error bars. The physical parameters; cart mass
(kg) and pole length (m) are shown in the legend.

Figure G2. Average consistency over 5 trials per combination including standard error bars. The physical parameters; cart mass
(kg) and pole length (m) are shown in the legend.

Appendix G. Pendulumworking range

From the learning time graph in figure G1, we can see
that it takes a relatively long time to learn to balance
the pendulumwhen the cart mass is the highest (1 kg)
and the pendulum is shortest (0.4m). The rest of
the settings seem to be learned fairly fast. By look-
ing at the consistency plot in figure G2 we can see
that again the highest cart mass and shortest pen-
dulum setting performs worse. Besides this, the set-
ting with the shortest pendulum length and second to
highest cart mass also does not seem to be consistent.

Combining these two observations it seems that in the
extreme case the system barely learns. Additionally,
when the system is less hard to stabilize (i.e. with
a cm of 0.5kg and a pl of 0.4m, the system does
learn fast but is not able to generalize for all starting
states.

From the consistency plot in figure G2 we can see
that for most physical parameter-value combinations
the system seems to be consistent:When it has learned
to balance the pendulum for 60 s once, it generally
is able to keep balancing the pendulum for various
starting conditions.

25



Bioinspir. Biomim. 18 (2023) 046015 L Schomaker et al

Figure G3. Consistency of the system balancing the pendulum for different pendulum lengths: a) 0.4m, b) 1m, c) 2m. Standard
error bars are included. The cart mass (0.2, 0.5 and 1 kg) is indicated by color (see legend).

Figure G4. Learning speed of the system balancing the pendulum for different pendulum lengths. Standard error bars are
included. The cart mass (kg) is indicated by the legend, cf. figure G3.

Figure G5. Average balancing time of the system balancing the pendulum for different pendulum lengths. Standard error bars are
included. The cart mass (kg) is indicated by the legend, cf. figure G3.

Appendix H.Whack-a-mole results

H.1. Whack-a-mole
In the whack-a-mole game the mole, with a length of
0.05m is put 0.5m away from the starting point of the
hammer. The mole thus covers 0.5m–0.55m relat-
ive to the starting point of the hammer. The hammer
is a ‘point in space’ with a mass of 0.3kg. The time
limit to reach the mole is 1 s and the position limits
are−10cm and 75cm.When exceeding the limits, the
resistances update. We also ran a simulation of mul-
tiple runs using a different number of circuits. The

force on the hammer and the trajectory of the ham-
mer of one run, is shown in figure H1.

We can see the hammer speeding up when the
force is high, the hammer then overshoots, slows
down and is pulled back. This allows the hammer to
arrive between 0.5 and 0.55m with a very low velo-
city. The comparison between the average of runs
with different numbers of circuits can be seen in
figure H2. In this figure we can see that although
there is a large variability in the attempts, the gen-
eral trend seems to be that the more circuits are
used to learn to play the game, the faster the system
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Figure H1. Fifth run of the experiment using 20 agonist and 20 antagonist circuits. (a) Force over time. (b) Hammer trajectory
over time.

Figure H2. Average attempts it takes to learn the whack-a-mole game. The average is taken over 10 attempts and standard error
bars are included.

learns to play in terms of the number of attempts.
The difference inmean however is not statistically sig-
nificant when performing the one-way ANOVA test
F(2,27) = 0.183,p= 0.872

Appendix I. Handwriting results

In the handwriting task, for each of the 780 fits6

per signal type, the average Euclidean distance is

6 26 letters, 3 differently written letters per letter, 10 fitting attempts
per letter.

calculated as an error measure. Errors of all fits can
be seen in figure I1. Here it seems that the distribu-
tion of the twitch fits is more left-leaning than the
distribution of the block fits. By means of a two-way
ANOVA test and the plots in figures I1 and I2, it can
be confirmed that the twitches significantly fit the let-
ters better F(1, 1508)= 21.3, p= 4.3 ∗ 10−6.

(Figure I2). Here the average and standard error
per letter are calculated. We can see that fitting using
twitches always has a better or equal performance
compared to fitting with block pulses except for the
letters i, k and t.
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Figure I1. Euclidean distances of all fits categorized by fits using block pulses and fits using twitches.

Figure I2. Euclidean distance and standard error per letter. The average Euclidean distance shown is the average for a letter over
three writers, and 10 model fit attempts per letter, yielding 30 fits. Error bars represent the standard error. Letters differ in their
degree of difficulty.

Appendix J. Evaluation of using a
heterogeneous pool with slow and FTs on
the inverted-pendulum task

As a first step to future researchwe evaluated the effect
of applying the ‘size principle’ (Henneman 1957) in
the composition of the motor-unit pool. Please note
that in the case of electronic control there are no
constraints that are dictated by the mechanical actu-
ator (e.g. contracting fibers). A distinction was made
between FT MUs, using capacitors of 200 nF, and
slow-twitch (ST) MUs, using capacitors of 1µF. The

FT MUs had an amplitude range of 0.72–10.2 V. The
ST MUs had an amplitude range of 0.1–1.9 V. This
check involved a replication of the inverted pendu-
lum task (section 2.3), using 90 possible pendulum
starting states and 16 replications. The obtained bal-
ancing duration for both a single homogeneous MU
pool and a heterogeneous ST/FT pool are measured.
Figure J1 shows the result of the simulations for ‘1
pool’ and ‘2 pools’. At the end of the training (500
updates) there are no clear differences. More research
is required to explore the benefits of specific twitch
amplitude and duration distributions.
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Figure J1. Comparison of training on the inverted-pendulum task with a single MU pool (1 pool) and a heterogeneous MU
ensemble with ST and FTs (2 pool).
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