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Curse and Blessing of Non-Proteinogenic Parts in
Computational Enzyme Engineering
Kerlen T. Korbeld[a] and Maximilian J. L. J. Fürst*[a]

Enzyme engineering aims to improve or install a new function
in biocatalysts for applications ranging from chemical synthesis
to biomedicine. For decades, computational techniques have
been developed to predict the effect of protein changes and
design new enzymes. However, these techniques may have
been optimized to deal with proteins composed of the standard
amino acid alphabet, while the function of many enzymes relies
on non-proteogenic parts like cofactors, nucleic acids, and post-
translational modifications. Enzyme systems containing such
molecules might be handled or modeled improperly by

computational tools, and thus be unsuitable, or require addi-
tional tweaking, parameterization, or preparation. In this review,
we give an overview of common and recent tools and work-
flows available to computational enzyme engineers. We high-
light the various pitfalls that come with including non-
proteogenic compounds in computations and outline potential
ways to address common issues. Finally, we showcase success-
ful examples from the literature that computationally engi-
neered such enzymes.

1. Introduction

Protein engineering is a widely applied technology within many
fields of the biological sciences. From its origins as an analytical
method used to establish the role of an amino acid or protein
part by destruction, protein engineering has matured into an
independent research area. It is now commonplace to deliber-
ately alter proteins to establish novel functions, and the field
thus overlaps with and shares a design-driven approach with
biotechnology and synthetic biology. As protein function is
determined by structure, protein engineering has also always
been closely aligned with structural biology and (what some
already consider its successor) computational biology. A
distinction is usually made between “blind” directed evolution –
low-success-rate random mutagenesis in conjunction with
(high-throughput) functional selection assays – and rational
design – the structure- and often computer-aided alteration of
residues identified to be of high functional relevance.[1]

Although the literature is abundant with examples of entirely
blind protein engineering, in this current golden age of protein
structure prediction[2] even the most fervent proponents of
directed evolution might not refuse to take a structure into
account.[3] While modern machine learning (ML) algorithms
enabled AlphaFold[4] and its offspring, the underlying training
data represent the decades of progress in diverse experimental
fields and their coevolved theoretical “wingmen”: genomics and

bioinformatics, biochemistry and systems biology, as well as
biophysics and molecular modeling (sometimes synonymously
referred to as “computational biology”). Although the advances
in computational approaches have truly been astonishing, even
the recent leap toward solving the protein structure problem is
only one step on the path to the actual holy grail: the
prediction of protein function. While function exerted through
protein-protein interaction might come within reach via accu-
rate protein complex predictions, we are still relatively far from
predicting the activity of proteins with catalytic activity, which
account for approximately half of the protein universe (Fig-
ure 1).[5]

Enzymes are powerful and sustainable catalysts, which are
applied for example in the pharmaceutical or chemical industry
and are at the core of biotech and synthetic biology
technologies.[6] One of the main advantages of enzymes over
traditional catalysts is their genetic encoding-derived pro-
grammability, which facilitates easy engineering.

Judging by the most advanced tools currently at our hands,
the availability of a protein structure is not enough to
confidently predict the activity of a given enzyme variant.
Rather, enzyme engineers also often require accurate predic-
tions and knowledge of protein dynamics or at least conforma-
tional ensembles;[7–8] the structural effects of mutations; the
binding modes of small-molecule ligands; and the precise
molecular mechanisms of catalysis.[9] Unsurprisingly, the cata-
logue of in silico tools aimed at achieving these goals is
continuously expanded and improved, as theoretical insights
accumulate, and computational capabilities increase. However,
we found and outline here that a common pitfall of many
techniques is that, out of the box, they only work (reliably) with
proteins containing the proteinogenic twenty amino acids
(Table 1). Although they are the most important molecules that
build up proteins, more than two thirds of all enzymes rely on
additional building blocks. Non-covalently, enzymes may stably
or transiently bind cofactors, metals, or nucleic acids (Figure 1),
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and the interaction with these helper molecules is frequently
essential for their catalytic mode of action. In addition, naturally
occurring enzymes can form covalent intermediates with their
substrates, are subject to the over 500 known post-translational
modifications (PTMs, e.g. glycosylations, methylations, or
phosphorylations),[10] or contain non-canonical amino acids
such as selenocysteine and pyrrolysine.[11] Finally, researchers
have also expanded the amino acid alphabet with hundreds[12]

of non-canonical amino acids (ncAAs),[13] as strategies for
incorporation become simpler, more reliable, and directable to
multiple sites.[13–15] All these cases represent computational
challenges, in particular for molecular modeling. The solutions
to overcome them depend on the given task, as well as the
diverse roles played by these parts, which we here collectively
termed ‘non-proteinogenic’.

In this review, we aim to outline the breadth of these
challenges, their relevance for common computational tasks,
and the variety of approaches that computational biologists
have taken to tackle them. Because our objective is to provide
guidance to enzyme engineers, we emphasize the computa-
tional approaches aimed at manipulating the catalytic functions
of existing enzymes, and, in general, excluded de novo design

(reviewed elsewhere[16–18]). We also do not review literature on
the related problem of drug discovery,[19–20] although several of
our raised points will apply in that field, too. We will discuss
computational tools roughly in the order they occur in many
sophisticated computational design workflows (Figure 2),
although any given pipeline may diverge from this order, or
skip some or even most other steps in this very general scheme.
For nearly all methods, a protein sequence is both input (e.g. a
wild type) as well as output (the predicted mutant), and in
practice, many workflows iterate over cycles of prediction, test,
and method adjustment. The in the following discussed pipe-
lines may be purely sequence-based, take the protein structure
into account, or model the relevant enzyme-ligand complex for
computations (Figure 2). Models and simulations usually require
a force field, whose parameters are derived from quantum
mechanical (QM) calculations. Predicted mutants are usually
selected after an appropriate ranking step, and experimental
high-throughput screens can serve as input for machine
learning (ML) based methods. Rather than comprehensively
listing all available methods, we focus on presenting the most
commonly used tools, discuss pipelines that are representative
of a given design strategy, or refer to other reviews.
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Figure 1. Analysis of the Uniprot database and extracted information about deposited proteins with respect to their catalytic activity and dependency on
cofactors and other auxiliary non-proteinogenic molecules, visualized as a mixed pie and doughnut chart. A) Overview of the fractions of proteins that are
annotated to have catalytic activity (inner pie chart) and to contain cofactors (second layer/doughnut chart part). The height and color of the doughnut chart
piece representing a given protein fraction indicate the number of cofactors, while the fraction of nucleic acid-binding annotated proteins is shaded with
stripes. B) Treemap visualizing the distribution of the most common cofactors sub-grouped into organic (shades of purple) and inorganic (shades of green)
cofactors. Code and data for reproducing the figures can be found at https://github.com/kt-korbeld/cofactor-figure-data.
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2. Methods in Computational Enzyme
Engineering

2.1. Sequence and static structure-based methods

Any computational protein engineering effort requires basic
information about the target. Typically, the primary sequence of
a protein is the minimum. Because enzymatic activity can in
some cases be influenced by the nucleotide sequence,[21] the
today commonly performed procedure of codon optimizing
genes[22] for recombinant expression can be considered the first
step in computational enzyme engineering. Typically, however,
a protein’s primary amino acid sequence serves as the starting
point to many in silico design campaigns. Until 2021 (i. e. before
AlphaFold2), amino acid sequence alone was usually not
sufficient for reliably deducing a protein’s dependence on
PTMs,[23] cofactors, or other non-proteinogenic auxiliaries. The
sequence similarity to structurally-characterized homologs or
the presence of distinct fingerprints could, however, lead to
varying degrees of certainty,[24–25] in particular for cofactor[26]

and nucleic acid[27] binding. Notably, such sequence-based
prediction methods also included early implementations of ML
algorithms.[28–29] Tools that use sequence as the sole input do
not usually need to be adapted for enzymes with non-
proteinogenic parts, because the circumvention of structure
means that the processing and the output compute them
implicitly. On the other hand, such tools usually do not support

the input of modified or non-canonical amino acids (ncAAs)
either, perhaps because such an ability is too niche to justify
development. Therefore, the protein sequence serves in the
majority of cases solely as the input for structure determination,
and most mutant prediction workflows actually require a
protein structure. Thus, until recently, these approaches
depended on the availability of an experimental crystal, NMR,
or cryo-EM structure, as homology models were usually
considered too inaccurate, except for high-similarity targets.[30]

When available, experimental structures always require a
preparatory step to address the many issues found in protein
data bank entries that prevent realistic in silico modeling, such
as absence of hydrogens, protonation states, and bond orders,
or alternate configurations of or absent side-chains.[31–34] Since
these issues are well known to computational biologists,
dedicated tools to fix them are available,[35–36] and common
modeling software packages often contain built-in features to
address them automatically.[37–38] A well-maintained resource for
automatically refined and validated protein crystal structures is
PDB-REDO,[39] whose atomic models may be significantly
improved compared to the original PDB entry. Nevertheless, no
foolproof way can currently correct all errors, and it is advisable
to manually inspect important regions of original data (e.g.
electron density maps) and automatic fixes before structure-
based calculations.

The now ubiquitous availability of models with near-
experimental accuracy thanks to artificial intelligence (AI)

Table 1. Computational tools for enzyme engineering are mentioned in this review. Each tool is coloured green if works readily with (at least one type of)
non-proteogenic parts, orange if it can work but requires some additional consideration, and red if it works poorly or ignores non-proteogenic parts
altogether.

Category Method Implementation Ref.

Structure preparation Structure prediction AlphaFold2, RoseTTAfold, OpenFold, ESMFold, OmegaFold, RoseTTA-
foldNA

[4,43,86,191–193]

Binding site prediction ConSurf, PrankWeb, ScanNet, Fpocket, CAVITY, Bsite, Alphafill,
NodeCoder, BioMetAll

[40,61–64,67–69,72]

Molecular modeling software YASARA, Gromacs, GaudiMM, Gaussian [37,38,90,139]
Specialized docking Haddock, FlexPepDock, Flex-LzerD, LightDock, MELD-DNA, EADock,

MpSDock, GOLD
[81,83,85,87,88,194]

Designing catalytic
properties

Remodeling the active site RosettaDesign, Rosetta Enzyme Design, Triad [195–197]
Generating mutant libraries CASCO, FuncLib, HotSpotWizard, DynaComm.py [198–201]
Designing Access tunnel PELE, CAVER, Caverdock, Gpathfinder, MoMa-LigPath, ART-RRT [202–207]
Designing metal-binding sites MetalSearch, HostDesigner, Optgraft [208–210]
Machine learning methods MutCompute, Rossman-toolbox, Cofactory [211,212,229]

Designing
thermostability

Energy functions Foldx, Rosetta ddg_monomer, CUPSAT, pSTAB, Proteus, ABACUS [213–218]
Pipelines using energy functions Fireprot, HotSpot Wizard, PROSS, FRESCO, GRAPE [219–223]
Machine learning methods mCSM, BayeStab, PoPMuSiC-2.0, Prethermut,

i-Mutant 2.0/3.0, DeepDDG, ABACUS-R, MutCompute
[211,224–230]

Integrated Machine learning
methods

iDeepDDG, iStable, Dynamut, DUET [229,231,232]

Other methods SCHEMA, SDM, B-FIT [233–235]

Force fields Coarse-Grain MD MARTINI, oxDNA, oxRNA, AWSEM [98,99,100,106]
All-atom MD AMBER, CHARMM, OPLS-AA, GROMOS [120–123]
Polarizable MD CHARMM Drude, AMOEBA [135,136]

Obtaining parameters Automated parameterization Acpype, CHARMMing, PrATB, LigParGen, AUTOSMILES [37,149,152,236,237]
Force field refinements for nu-
cleic acids

Parmbcs0/1, Bcs0/1 [154–156]

Parameterizing metals EZAFF, MCPB, VFFDT [181,185,186]
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algorithms means nothing less than a revolution to the field: in
the seldom cases where existing computational tools required
PDB IDs as input, the pipelines were (or can be expected to be)
updated to incorporate automatic retrieval or generation of
such models. This sudden abundance of structural information
already reverberates through the field and might make rational
protein engineering based solely on sequence information
essentially obsolete or at least rare. A promising approach lies,
however, in combining both sequence- and structure-based
methods. An example is ConSurf,[40] a database and associated
web server for evolutionary analysis of an input sequence.[41]

The tool natively supports mapping the output on (predicted)
structures, and it has also been adapted to identify ligand and
cofactor pockets.[42]

Since the (quasi simultaneous) release of AlphaFold2[4] and
RoseTTAFold[43] a plethora of other AI structure prediction tools

has been released.[44] Given the rapid and ongoing develop-
ments in the field, we refrain from attempting a comprehensive
list here and recommend the reader to consult a recent review
article (at the time of writing, e.g.).[44–45] For computational
enzyme engineering, the decision on which prediction tool to
use will often be influenced by whether speed or accuracy is
the more important factor. While it is relatively simple to
estimate or test the former, evaluating the latter is significantly
more challenging and thus a community effort.[46]

Some of the currently popular AI structure prediction tools
create valuable, sequence-related output. For example, the
multiple sequence alignment (MSA) generated by AlphaFold
can be manipulated to reveal alternative protein
conformations.[47–50] Additional information can also be ex-
tracted from the per-residue uncertainty factor called the
predicted local distance difference test (pLDDT), which was
shown to correlate with protein dynamics.[51–52] While confident
structure prediction enabled a plethora of opportunities in
protein design, such as the de novo design of backbones from
random sequences via Monte Carlo “hallucination”[53] or
diffusion models,[54] the reliable prediction of the structure of
point mutations, lamentably, is still an unmet need.[55–57]

Another obvious flaw is that current AI structure models, as in
the AlphaFold database,[58] only contain monomers. Thus, an
important first step in in silico modeling is to first determine
and then model the appropriate (i. e. the in solution/the cell
occurring) oligomeric state. At the time of writing, there was no
dedicated tool available to predict and model the most relevant
oligomeric state ab initio, and the current standard procedure
appears to be to infer cardinality by aligning the monomer
model to the closest PDB homolog, followed by remodeling the
oligomer (which can, for example, be achieved with AlphaFold
multimer).[59]

Another shortcoming of AI structure prediction is the
inability to directly infer even obligate non-proteinogenic
protein parts or to deal with non-canonical amino acids.
General predictions for ligand binding are, however, a standard
annotation in Uniprot,[60] and dedicated tools for binding-site
prediction such as PrankWeb,[61] ScanNet,[62] Fpocket,[63] and
CAVITY,[64–66] or the human proteome-specific HProteome-
Bsite[67] exist. BioMetAll can be used to specifically find potential
metal binding sites, based on backbone geometries alone.[68] In
addition, AlphaFill is a recently released tool and accompanying
webserver that allows researchers to directly obtain a structure
with cofactors and other common ligands.[69] The method is
essentially an automated pipeline that recapitulates the
common modeling task of transplanting ligands from homolo-
gous structures. Such transplants usually work well for structur-
ally closely related proteins or conserved ligand binding
cavities, as is often the case for cofactor and nucleic-acid
binding sites.[70–71] However, a more sophisticated approach is
needed when no experimental structure template exists. A
recent AI method called NodeCoder aims to solve this problem
by using a graph convolutional network to perform structure-
based predictions for ligand, peptide, ion, and nucleic acid
binding sites.[72]

Figure 2. General workflow in computational enzyme engineering. Although
any given strategy may deviate from the here presented order and may use
only some of these elements, the scheme intents to depict a consensus of
computational workflows that aim to predict enzyme variants with improved
properties.
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The next instrument in the computational enzyme engineer-
ing toolbox is docking – one of the most frequently used
in silico methods for studying the interactions between organic
molecules and biological macromolecules. Docking is a rela-
tively fast computational method and is used extensively in
protein engineering and drug discovery. Established algorithms
typically sample and rank potential ligand binding modes in a
receptor protein structure using an energy function,[73–74] but
ML-based methods are also entering the field and await wider
benchmarks.[75] Comparisons of docking algorithms occur
regularly in the “Critical Assessment of PRedicted Interactions”
(CAPRI) competition,[76] or in dedicated studies.[77] Because the
success rate of docking is variable, it is sometimes recom-
mended to use a combination of available tools, as none of the
algorithms clearly exceed the others on all fronts.[73–74]

While the most commonly used docking tools work best
with small molecules, specialized docking algorithms are
typically more suited for larger flexible structures like peptides
or nucleic acids. Haddock[78] is a widely used macromolecular
docking algorithm and webserver with numerous described
adaptations and applications.[79] Rosetta FlexPepDock is a
dedicated tool of the Rosetta commons software suite[80] to
dock peptides with full backbone flexibility. Although it can
generally not take non-proteogenic parts into account,[81] it can
be adapted to accept ncAAs.[82] For docking nucleic acids, Flex-
LzerD,[83] LightDock,[84] or the recent MELD-DNA[85] can be used.
Furthermore, RoseTTAFoldNA[86] is a variant of the Baker lab’s
implementation of the AlphaFold framework, RoseTTAfold,[43]

for the prediction of nucleic acid-protein complexes.
When docking small-molecule non-proteinogenic parts such

as cofactors into apo protein structures, docking programs do
not need to be specifically adapted, as the support for a wide
range of ligands falls within their core competencies. When
docking other ligands, such as a substrate, to a holo enzyme,
non-proteinogenic parts can usually also simply be included as
part of the receptor structure. The exception to this rule are
metals or other metal-containing compounds like heme, as the
energy functions of docking algorithms have trouble accurately
representing the complex interactions of metals with the
surrounding residues, ligands, and water molecules (also called
the coordination sphere of a metal).[87–88] Thus, docking
algorithms specifically optimized for metalloproteins like
EADock,[87] MpSDock,[88] or more computationally expensive
docking methods that implement quantum mechanical calcu-
lations can be used.[88–89] The molecular modeling platform
GaudiMM also includes a functionality for docking bare metals
that takes these coordination spheres into account.[90] A
comprehensive review discussing metal groups in docking is
given by Riccardi et al.[91] It is the common practice to visually
inspect docking results to assess the plausibility of the outcome
with respect to orientation, shape complementarity, hydrogen
bonds, and hydrophobic contacts.[92] Such manual scoring
based on “chemical intuition” represents unfortunately an
understated hurdle for novices in the field.[43]

2.2. Simulating the protein structure

Once an enzyme structure with docked ligand and cofactor has
been obtained, its behavior can be studied by simulating the
protein structure. The output from such simulations can help
interpreting experimental results, cross-validate mutations pre-
dicted by other means, or help investigating conformational
dynamics and create ensembles to serve as input for other
computational design methods.[8,93] One of the most frequently
used methods for simulating protein behavior is molecular
dynamics (MD) simulations, which calculate the movement of
molecules by applying Newton’s equations of motion to a
protein’s atoms. A set of energy functions called a force field is
used to describe all bonded and non-bonded interactions
acting on a system. The result is a time trajectory that can give
a much more detailed picture of the precise mechanism and
behavior of a protein than a static structure.[94–95] Before
discussing in detail the most commonly applied all-atom
simulations and how to adjust them for enzymes with non-
proteinogenic parts, we will first have a look at both a more
simplified and a more detailed simulation approach and their
use cases.

Coarse grain (CG) force fields streamline the simulation by
turning larger functional groups into a single bead. This
procedure greatly speeds up calculations of large systems and
smoothens the energy landscape, which allows for significantly
greater conformational sampling.[96] MARTINI[97] is a popular
coarse grain force field due to its generalizability,[96] but more
specialized CG force fields like oxDNA[98–99] and oxRNA[99] for
nucleic acids, or AWSEM[100] for proteins have also been
developed. Although the loss of detail inherent to the coarse-
graining process often limits its use in enzyme engineering,
coarse grain MDs show their power with complex systems, for
example in the investigation of large conformational changes
inherent to many enzymes.[101] Due to their vastly decreased
calculation time, CG MD can also compensate accuracy with
throughput, and has for instance been used to screen candidate
sites for protein modifications.[102–103] MARTINI has also been
applied as an alternative method to investigate protein-ligand
binding, functioning as an intermediate between fast but
simplified docking methods, and more informative but compu-
tationally expensive all-atom MD simulations.[104] Although
finding good mappings from atoms to coarse-grain beads can
be challenging for non-proteogenic parts, MARTINI parameters
for various nucleotide-based cofactors have been published,[105]

and an automated MARTINI pipeline and database for small
molecule mappings facilitate future use.[106]

On the opposite side in terms of accuracy for simulating
biophysical systems are quantum mechanics (QM) and mixed
QM/molecular mechanics (MM) calculations. This approach is
especially valuable for studying the transition state of catalytic
mechanisms, as classical MD cannot describe the transfer of
electrons or covalent bonds. Since QM calculations scale
exponentially and are computationally very costly, it is only
feasible to simulate a small section of an enzyme.[107] As these
restrictions typically don’t even allow the simulation of an entire
catalytic pocket, multiscale QM/MM methods were developed.
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In this approach, a core region of the studied system is
simulated with QM, while its surrounding is simulated using
MM, i. e. via classical MD parameters.[108–109]

QM calculations generally depend on two factors: the level
of theory, which corresponds to the specific approximation of
the full Schrödinger equation, and the basis set – system-
dependent functions that represent the orbitals of the mole-
cules involved.[110] The level of theory used for QM and QM/MM
calculations is usually some form of density functional theory
(DFT).[107] The commonly used B3LYP hybrid functional, for
instance, combines DFT with a slightly different level of theory
called Hartree-Frock.[111]

As QM calculates energies ab initio, non-proteinogenic parts
within the QM region usually require no special attention, while
the same (parameterization) considerations as for MD (see
below) apply to parts in the MM region. Although DFT-based
methods generally represent the best trade-off between
reliability and computational cost for describing metals,[112] their
accuracy may be limited for metals with both high- and low-
spin states,[113–114] although such systems are uncommon in the
pathways of most metalloproteins.[113] Some metalloproteins
have also been found to be particularly sensitive to the
embedding scheme (the QM and MM connection region),[115]

and QM/MM calculations often cannot cover the long time-
scales required for optimization of the metal coordination
spheres.[112,116]

Due to the wide availability of atomic data for biological
systems, all-atom MDs are the most frequent type of simu-
lations in literature.[117] A variety of all-atom force fields is
available, which primarily differ in their treatment of dihedrals
and non-bonded parameters, as they usually aim to reproduce
slightly different experimental or QM benchmarks.[118–119] The
most commonly used all-atom force fields for biological
applications are AMBER,[120] CHARMM,[121] OPLS-AA,[122] and
GROMOS.[123] AMBER and CHARMM are specialized for use in
biological systems, while OPLS’s parameterization is more
general.[124] GROMOS models hydrogens implicitly, which re-
duces detail, but makes it well suited for the study of larger
systems. Since it may take a long time for a simulation to
sample behaviors such as ligand diffusion[125] or conformational
dynamics[93] – a reflection of the discrepancy between the
timescales of biological processes and computational simula-
tion capacity – enhanced sampling methods such as acceler-
ated MDs[126] and metadynamics[127] have been developed.
These and other strategies to prevent excessive sampling of
non-relevant states have been extensively reviewed by Lazim
et al.[128]

All-atom force fields generally require pre-defined parame-
ters and fixed partial charges for each compound. Conse-
quently, no bond or charge changes can occur during an MD
simulation, and the protonation state of all compounds must
carefully be fixed beforehand. To that end, the pKa of each
residue is usually estimated via either Poisson-Boltzmann
calculations[129–130] or empirical methods.[131–132] For some sys-
tems like cofactors[133] or disordered peptides,[134] it should be
kept in mind that more than one protonation state might be
relevant. While the parameters for amino acids and nucleotides

are included in the common force fields, non-proteogenic
compounds like ligands, ncAAs, or organic cofactors often are
not. Therefore, such compounds must be carefully parameter-
ized before a simulation, a process that can require significant
effort and is addressed in the subsequent sections. For the
study of electrostatically sensitive systems such as catalytic sites
with complex non-proteogenic compounds like large aromatic
cofactors or metal ions, fixed partial charges obtained from the
parameterization process might not describe the relevant
interactions accurately enough. To address these shortcomings,
polarizable force fields like CHARMM Drude[135] or AMOEBA[136]

were developed, which can shift their charges according to the
local environment and thus provide a much more accurate
representation of electrostatic interactions in protein cavities.[137]

Although their high computational cost has made their use
relatively rare, they have proven valuable for studying metal-
loproteins and nucleic acids in particular.[137]

2.3. Obtaining force field parameters

Since many computational enzyme engineering workflows
involve MD simulations, special care must be taken to
parameterize non-proteogenic parts. The main effort in the
parameterization of new molecules usually consists in the
calculation of partial charges.[138] A thorough computational
design approach starts with QM calculations (e.g. using
software packages like Gaussian)[139] to determine the electro-
static potentials and fit to point charges using a restraining
penalty function that prevents unrealistic behavior.[140] Partial
charges calculated this way are called restrained electrostatic
potential (RESP) charges.[141] Usually, Hartree-Frock (HF) is
sufficient as the level of theory for organic molecules, while the
hybrid functional B3LYP is common for metal-containing
systems, in both cases making use of the 6-31G* basis set.[120,142]

Although force field developers often recommend a consistent
charge approach,[120] RESP charges should theoretically be force
field-independent and compatible between levels of theory.[143]

A computationally cheaper alternative is automatic on-the-
fly calculation of charges, often involving semi-empirical
approximations that greatly simplify the Schrödinger equation
with empirically derived parameters.[144] An approximation
called “neglect of diatomic differential overlap” (NDDO) is
commonly used, as implemented in AM1 or the slightly more
accurate PM3 methods.[145–146] Another fast strategy is employed
by CHARMM’s general force field protocol CGenFF, which uses
libraries of fragments with optimal charges that are pieced
together using bond charge increment (BCI) rules to obtain
partial charges for the full molecule.[147–148]

Automatic parameterization pipelines are often included in
or provided by a particular force field or software developer: for
AMBER there is ANTECHAMBER,[120] which was further auto-
mated with a python pipeline called Acpype.[149] The software
package YASARA uses AUTOSMILES, which parameterizes for
AMBER, but also checks a database of pre-parameterized small
molecules.[37] CHARMM has a pipeline for parameterization
implemented in the CHARMMing modeling package.[148] For
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GROMOS, PRODRG,[150] and, since recently, the automated
topology builder (ATB), are available.[151] For OPLS-AA there is
BOSS[138] and the corresponding automation LigParGen.[152]

Except for CHARMMing and PRODRG, which use a BCI-based
algorithm, all these pipelines rely on semi-empirical
methods.[150] Of note, automatic parameterization tools can
produce unreliable results for complex ligands such as
cofactors, and it is thus considered best practice to specifically
determine and, if possible, validate parameters for important
non-proteinogenic parts.[153] In the following section, we discuss
available parameters for some common molecules.

2.4. Optimized parameters for non-proteogenic parts

The adequacy of faster semi-empirical charges obtained from
automated pipelines can vary depending on the compound.
Especially electronically complex systems such as aromatic
groups and heavier elements should be treated with caution.
For common organic cofactors, more thoroughly optimized and
tested parameters are available.

For instance, although AMBER and CHARMM have built-in
topologies for nucleotides, they are more accurately repre-
sented using the refined force field parameters Parmbsc0/
Parmbsc1[154–155] and Bsc0/Bsc1.[156] Sugar moieties in glycosy-
lated residues are well represented using either CHARMM,
which only slightly underestimates, or the AMBER refinement
GLYCAM,[157] which slightly overestimates the binding strength
of carbohydrate-protein interactions.[158] Both AMBER and
CHARMM also include parameters for phosphorylated amino
acids, which generally exhibit good performance, although
discrepancies between the two methods were noted.[159] Various
databases with parameters and RESP charges for ncAAs and
PTMs are available,[160–161] and a thorough review by Li et al.
provides a useful table of parameter sets.[13] Although RESP
charges are available for nicotinamide cofactors, modern
automated pipelines were found to produce reliable parameters
for all major force fields.[162–163] Optimized S-adenosyl-methio-
nine (SAM) parameters have been published for various force
fields,[164–165] and PLP RESP charges are available for AMBER.[166]

Parameterization of flavins requires extra care because the
electron density in the central three-ring structure cannot easily
be fragmented into smaller groups.[167–168] Although FAD[169] and
FMN[170] have been parametrized with RESP charges for AMBER,
a recent comparison shows that automatically generated top-
ologies for newer versions of AMBER, CHARMM, and OPLS are
also able to reproduce some of the more subtle electrostatic
effects relevant to FMN.[171] While the same work showed that
CHARMM force field topologies had trouble reproducing the
effects of nearby amino-acid substitutions on flavin binding,
newer, more thoroughly derived parameters have since been
published.[172]

Metals are widely employed as cofactors in enzymes (Fig-
ure 1B) and are some of the most difficult atoms to properly
parameterize. Due to their complex electron shells, the
distribution of charges and their coordination can change
significantly with the specific environment.[173] It is therefore

often difficult and sometimes impossible to reproduce all
desired properties using a single topology, and the optimal
parameterization strategy is system-dependent.[174–175] Simply
using the standard or automatic parameters will likely lead to
inaccurate energies and geometries.[142]

For metals that are not part of an organic cofactor, three
parameterization strategies exist: non-bonded models, which
simply keep the metal ion as a separate entity but optimize its
parameters; bonded models, which approximate the strongest
electrostatic interactions as a covalent link; and lastly models
that try to recapitulate the complex electronic structure with
multiple “dummy” atoms. A highly comprehensive review of
these methods was written by Li et al.[173] For proteins where
the metal remains in a relatively fixed position, the bonded
approach is most commonly used, as it accurately reproduces
the desired interactions and geometries. The resulting (unreal-
istic) static coordination sphere is acceptable in situations
where the metal is tightly bound to its coordinating
residues,[142,173–174] whereas non-bonded or dummy-atom models
can be considered where a more dynamic behavior of the metal
is desired. Even if thoroughly parameterized, accuracy is
ultimately limited by the simplification of the complex hetero-
geneous charge distribution into a single point, which can lead
for example to a systematic underestimation of the interactions
of divalent cations with water.[174] The cationic dummy model
(CADM) attempts to deal with these problems by distributing
the charge over several mock atoms with fractional charges
that surround a central core,[176] although the unrealistic
negative core charge may distort results in some situations.[173]

While the dummy-atom model produced highly accurate geo-
metries for double-metal centers, it was outperformed by the
classical non-bonded models for single-metal centers.[177–178] A
further extension of the dummy model by the Kamerlin group
showed a significant improvement compared to the non-
bonded model when more complex metal binding sites are
involved, confirming the particular strength of the dummy
model in describing complex multi-metal sites.[179]

Metal cofactor-specific approaches include the zinc AMBER
force field (ZAFF) or its extended version (EZAFF).[180–181] Heme
has been parameterized with various coordination spheres,[182]

and general topologies for CHARMM and AMBER, as well as for
the specific contexts of Photosystem II[183] and the P450 enzyme
family are available.[182,184] For metal-containing systems more
generally, AMBER’s metal center parameter builder (MCPB) has
been developed for bonded potentials or metal-containing
cofactors. The tool is complimented by the visual force field
derivation toolkit (VFFDT), which enables a user-friendly visual
assignment of bonded potentials.[185–186]

2.5. Designing catalytic properties

Although simulating the behavior of a protein gives valuable
insight into its molecular mechanism, the ultimate aim in
protein engineering is finding mutations that positively impact
a property of interest. For enzymes, a computational prediction
method often involves remodeling the active site. A commonly
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used tool for this task is RosettaDesign,[187] a part of the Rosetta
Commons software suite for redesigning protein structures. The
core of RosettaDesign is a fixed backbone algorithm that
remodels the amino acid sidechains without altering the
backbone. The standard Rosetta energy function[188–189] is used
to score each design.[187,190] A Rosetta application more specifi-
cally aimed at enzyme design is also available, and can remodel
the catalytic site around a given ‘Theozyme’ – a theoretical
model of the desired active site including ligands and cofactors
obtained using QM calculations.[196] Although the tool was
initially limited to the canonical amino acids, rotamer libraries
for non-canonical amino acids were later developed, too.[238]

The modular nature of Rosetta means that most of its numerous
packages access not only the same main energy function, but
also the various “patches” for unusual residues that have been
deposited. Various graphical user interfaces to Rosetta[239–240]

have been developed that can aid in the discovery of this kind
of documented, but potentially unpublished features. In
principle, all users can add additional parameters for their
specific molecules of interest. For special cases like modified
residues, custom protocols are commonly developed. For
instance, to engineer a ubiquitin conjugation enzyme, a custom
Rosetta protocol was used to model the covalent substrate-
enzyme complex, create a rotamer library, and score via
docking.[241]

Several more generalized pipelines in the literature utilize
one or more algorithms from the Rosetta suite, and over 80
such methods were recently reviewed.[242] The Triad software
package[197] also includes several pipelines for enzyme redesign,
and, besides Rosetta, includes other scoring functions such as
Dreiding[243] or PHOENIX.[244] Another exemplifying enzyme rede-
sign workflow using Rosetta is CASCO, which can be used to
engineer enantioselective enzymes.[245] The protocol relies on
the definition of a near attack conformation (NAC),[246] i. e. a
geometric orientation of the ligand-enzyme complex compat-
ible with catalysis toward the desired enantiomer. CASCO uses
RosettaDesign to find mutations that stabilize this conformation
and screens the best hits with short MD simulations, in which
the percentage of NAC time is used for ranking. Variations of
this approach incorporate an initial MD step to allow RosettaDe-
sign to screen mutants in different conformations,[247] or
alternatively leave out the MD screening altogether.[248] Some
example applications of methods involving Rosetta and MD are
discussed in section 3 of this review.

An alternative to designing mutants that affect a single
property is the generation of ‘smart’ mutant libraries likely to
affect catalytic properties, which can be screened more
generally for new functions. FuncLib, for instance, combines
RosettaDesign with evolutionary information to create a small
library of promising multipoint mutations that create a new
active site.[199] The method involves limiting sequence space via
MSAs to filter out improbable mutations. The remaining variants
are tested with RosettaDesign by first removing mutations that
destabilize the protein, and then scoring all remaining multi-
point mutations.

Although MSAs, and thus FuncLib, cannot deal with non-
canonical amino acids, it has been verified on proteins with

cofactors and catalytic metals.[199] HotSpotWizard is one of
several webserver-accessible computational tools of the Dam-
borsky lab for creating smart libraries. It combines MSAs with
structural computational tools to find mutational ‘hot spots’
likely to affect a property of interest.[200,220]

Instead of targeting the active site, several energy-based
workflows aim at altering catalytic properties by engineering
protein tunnels.[249] A highly popular tool to rapidly identify
substrate access or product release channels in static structures
or within an MD trajectory is CAVER.[203,250] More complex
approaches include steered MDs to pull a ligand along an
assumed access channel and concurrent energy calculations.[251]

A faster alternative is PELE, a Monte Carlo sampling method
that stochastically perturbs a ligand to study its diffusion and
allows a much broader sampling of the energy landscape than
MD.[202] In either case, classical energy-based force fields apply,
so non-standard residues and molecules can be integrated if
proper parameters are provided. Several other “approximate”[252]

tools for investigating ligand transport also compromise
between the accuracy and computational cost of MD
simulations.[252] While Caverdock[204] or GPathFinder[205] use
Autodock Vina[253] to score the energy of the ligand along the
entry path, other examples such as MoMa-LigPath,[206] and ART-
RRT[207] use planning algorithms borrowed from robotics to find
optimal ligand pathways. Yet, due to the limitations of fixed
structures, these methods are often combined with MD to
further investigate or verify mutations.[252] Although these tools
typically support input of proteins with cofactors and other
non-proteogenic parts, it should be kept in mind that these
might not be accurately represented by algorithms like MoMa-
LigPath or ART-RRT, which use a highly simplified energy
function that ignores electrostatics. For methods that rely on
docking algorithms, the previously discussed limitations, such
as the inaccurate representation of metals, apply.

Besides mutations in obvious functional hotspots such as
the active site and tunnels, directed evolution campaigns
frequently find that distal mutations can also exhibit significant
effects on activity.[254–256] An extensive recent review on the
topic elaborates on the challenges in the design of such
mutants,[257] which typically are hard to predict and often
require long MD or QM/MM simulations to investigate.[254] A
promising method for analyzing MD trajectories is a correlation-
based technique called the shortest path map (SPM), which
identifies hotspots for distal mutations via a graph network of
allosteric interactions.[201,258] Being MD-based, the tool is in
principle amendable to proteins with non-proteogenic parts,
although they will not be included in the graph network itself.
Given the inherent difficulty of rationalizing distal mutations a
priori, machine learning (ML)-based prediction methods repre-
sent a promising alternative approach.[259–261]

Also in other contexts, recent years have seen a surge of ML
algorithms for predicting promising mutations in enzymes.
MutCompute is a neural network trained on structural features
of amino acids in natural proteins to predict plausible
mutations.[211] Although only amino acids are explicitly ad-
dressed by MutCompute, the inclusion of cofactor-containing
proteins in the training set might allow it to take such parts
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implicitly into account. Some ML algorithms are also directly
related to cofactor-specific properties. Specifically for protein
structures featuring a Rossman fold, a deep learning algorithm
called Rossman-toolbox predicts the preference between NADH
and NADPH,[212] and Cofactory, also optimized for Rossman
folds, predicts a mutant’s cofactor specificity and binding
affinity for NAD, NADP, FAD, and SAM.[212] A purely sequence-
based ML algorithm for ranking mutations that may cause a
switch between NAD and NADP specificity is also available,
although the creation of a new optimized model for each
protein is required.[262] Another promising, although computa-
tionally expensive, approach is to use ML to predict energies,
by training them on MD or QM/MM trajectories of a protein of
interest. At the expense of throughput, such algorithms may
lead to more robust predictions than simply using these
simulations for rational design.[263–264]

Lastly, algorithms have also been developed for introducing
new metal binding sites into a protein. MetalSearch,[265]

HostDesigner,[209] and OptGraft[210] scan a protein to find optimal
positions to introduce a new metal binding center.

Although redesigning proteins to contain non-canonical
amino acids has become an increasingly large field,[13] it is
mainly the field of pharmaceutical peptides,[82,266] and artificial
metalloenzymes where ncAAs are used in computational
design.[267–269] For the latter approach, a protein scaffold is
designed to host a synthetic metal-containing cofactor for the
catalysis of new-to-nature chemical reactions.[270] Although this
strategy is in principle also applicable to naturally found
enzymes, the majority of literature reports either de novo or
non-catalytic proteins as scaffold. Consequently, we refrain from
extensively discussing these approaches here and refer the
reader to an example discussed in section 3, as well as review
articles on the topic in general,[271] and their computational
design in particular.[272–273]

2.6. Designing Thermostability

Thermostability represents an important non-catalytic property
targeted in enzyme engineering due to its relevance for
industrial processes.[274] Computational strategies to identify
stabilizing mutations span from evolutionary algorithms to
energy function-based predictions.

Evolutionary methods include consensus-guided mutagene-
sis, which predicts conserved or high-frequency residues in
MSAs as stabilizing; ancestral sequence reconstruction, which
reconstructs the sequences of enzymes at different nodes of a
phylogenetic tree; and the ancestral mutation method.[275] The
ability to improve thermostability via the latter two methods is
hypothesized to stem from the adaptation of ancestral organ-
isms to a hot earth environment.[276] Specific considerations for
cofactors and metal-dependent proteins are usually not neces-
sary for these techniques. However, although binding motifs
and catalytic residues are often conserved, the introduced
mutations can affect cofactor binding and specificity. For
example, ancestral proteins were reported to exhibit a switched
preference between nicotinamide cofactors[277] or flavins.[278]

In contrast, energy-based predictions require a protein
structure, and typically calculate the ΔΔGFold, i. e. the difference
in the free energy of (un)folding between a mutant and a wild-
type structure.

The predictive capability is dictated by the individual terms
of the energy function, which include amino acid hydrogen
bonds, hydrophobic interactions, and so forth, but often do not
contain parameters for non-proteinogenic parts.[279] Conse-
quently, several in silico stabilization techniques ignore them,
and foresee the rather crude solution of excluding residues
around the ligand pocket for predictions.[222] Although the
energy functions used to score thermostability are similar to
those used in MD force fields, they can be specifically
optimized. FoldX[280] is a popular software package[281] in which
newer versions introduced support for nucleotides and metals.
The current release (FoldX 5.0) also includes a plugin for the
molecular modeling software YASARA[37] that allows parameter-
ization of small molecules like cofactors or ncAAs.[213] Another
commonly used option is the DDG monomer algorithm
included in the Rosetta software suite, which calculates the
change in free energy for point mutations. Notably, this Rosetta
algorithm is unable to compute non-proteogenic parts.[214]

Various pipelines and web servers for the prediction of
stabilizing mutations that integrate these tools are available.
FireProt[282] and PROSS,[221] for example, combine MSAs to find
consensus mutations with FoldX and/or Rosetta energy calcu-
lations, and this ability has also been integrated into HotSpot
Wizard 3.0.[220] However, at the time of writing, neither of these
workflows supports the latest FoldX integration of cofactors.
More manual protocols include FRESCO,[283] which calculates the
ΔΔGFold of all of a protein’s single mutants with FoldX and
Rosetta and screens them via high-throughput MDs. Cofactor-
dependent enzymes can be and have been[284] accommodated
in FRESCO and PROSS by disregarding the ligand-surrounding
residues while conducting energy calculations, or incorporating
parameterization with FoldX 5.0.[222] Another workflow is GRAPE,
which incorporates two additional prediction algorithms to rank
mutants – consensus design and the statistical energy function
ABACUS[218] to rank mutants. Experimental single variant results
are then computationally clustered and combinatorial mutants
selected via a greedy algorithm.[223]

In addition, several other energy functions have been
developed. CUPSAT[215] uses an empirical energy function
specifically parameterized on amino acids, while pSTAB predicts
stabilization using ensemble-based statistical mechanics.[216]

Proteus tries to introduce new pairs of interactions instead of
looking for single point mutations.[217] These algorithms gen-
erally do not take non-proteogenic parts into account, although
CUPSAT’s web service lists residues involved in the binding of
small molecules present in the PDB, and so permits avoiding
mutating residues important in cofactor binding, although not
for catalytic metals. SCHEMA is a protein fragment combination
algorithm that uses an energy function to construct chimeric
proteins,[233] and has been successfully used to stabilize a metal-
containing protein.[285] SDM[234] predicts stabilizing mutations
based on environment-specific amino-acid substitution frequen-
cies and therefore does not consider non-proteogenic parts
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explicitly. Methods such as B-FIT,[235] which identify flexible
residues via a crystal structure’s B-factors are not limited to
proteinogenic atoms in the identification phase, but, depending
on the implementation, might be in the redesign phase.[286]

Due to the availability of relatively large and consistent
datasets, thermostability engineering is also a popular target for
ML methods such as mCSM,[224] BayeStab,[225] PoPMuSiC-2.0,[226]

DeepDDG,[229] ABACUS-R,[230] and MutCompute.[211] These algo-
rithms extract structural information like secondary structure,
surface area or residue environment from the crystal structure
before passing it on to the ML algorithms, during which non-
proteogenic molecules are usually ignored. Instead of exclu-
sively relying on structure, more sequence-based ML ap-
proaches also exist: i-Mutant[228] includes a purely sequence-
based functionality, and Prethermut[227] works on sequence
information exclusively. As mentioned before, sequence-based
approaches have the advantage of potentially processing non-
proteinogenic parts implicitly, but do not support input beyond
the standard alphabet of amino acids. ML can also be used as a
meta method that integrates the outputs of other predictive
algorithms to generate more accurate predictions than they do
in isolation. This approach is followed by iDeepDDG,[229]

iStable,[231] Dynamut,[232] and DUET;[287] and whether these
accurately represent enzymes with non-proteogenic parts
depends on the integrated methods.

ML approaches may also not require an explicit functionality
for non-proteinogenic parts and can handle them without
adaptation, as they are trained on diverse datasets like those
provided by ProThermDB[288] or SKEMPI.[289] While information
about the viability of mutations near cofactors thus may
implicitly be provided via these datasets, the inability to
disentangle the internal processing of ML algorithms makes a
general assessment difficult and requires empirical validation.
Notably, a benchmark study comparing the performance of
PoPMuSiC-2.1, i-Mutant 2.0, i-Mutant 3.0, CUPSAT, SDM, and
mCSM to predict stabilizing mutations of the heme-containing
proteins myoglobin and cytochrome C, found the ML algorithm
i-Mutant 2.0 to generally have the best correlation with
experimental data.[290]

3. Examples

Despite the difficulties to model enzymes with non-proteino-
genic parts, their catalytic value triggered a host of computa-
tional engineering campaigns. In this final section, we showcase
some of the many literature examples, which highlight both the
wide scope of catalytic mechanisms, as well as the various fields
in which computational enzyme engineering is important.
Perhaps the most significant application of enzymes is
biocatalysis and industrial enzyme biotechnology. Frequent
research goals in this field are the discovery or design of
enzymes that are thermostable, solvent tolerant, highly ex-
pressed, and display a broad substrate scope to efficiently and
economically produce chemicals valuable for human processes
and products.[291–293] As enzymes often compete with cheap
chemical catalysts, the main opportunities currently lie in high-
value products, e.g. pharmaceuticals,[294] and chemically chal-
lenging reactions, which enzymes frequently enable via
cofactors[295] or can be catalyzed by artificial metalloenzymes.[296]

Some enzymes are also used as therapeutic drugs, and a
rapidly growing field of research is investigating their potential
for future biomedical applications.[297] For the following exam-
ples of computational enzyme engineering in these fields
(Figure 3), we examine the challenges faced by the studied
system, and outline the approaches taken by the authors to
tackle non-proteinogenic components.

To create an artificial metalloenzyme for the otherwise
chemically challenging enantioselective water addition reaction,
Roelfes and coworkers incorporated the copper-binding ncAA
(2,2’-bipyridin-5yl)alanine (BpyA) into the non-enzymatic pro-
tein scaffold LmrR.[298] An extensive computational framework
was used in the design: DFT calculations helped optimizing the
copper-BpyA interaction, the copper-BpyA complex was para-
meterized with MCPB, and the ligand docked with GOLD,[194]

due to its inbuilt parameters for metals. A subsequent MD
simulation then identified promising positions for installing a
catalytic acidic residue. In another study, BpyA was incorpo-
rated in a serine protease and a luciferase to engineer metal-
responsive reversible protein switches.[299] Based on the results

Figure 3. Examples of engineered enzymes containing non-proteogenic parts. Protein parts are represented as surface cross sections, where shades of purple
indicate homooligomers and differing colors indicate domain fusions. Non-proteinogenic parts, as well as the canonically catalyzed reactions, are shown as
structural formulas in the case of ncAAs and cofactors, or schematically for the nucleic acids involved in Cas9 catalysis.
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of extensive MD simulations, BpyA was introduced at two
positions observed to undergo maximal changes in distance
during the enzymes’ natural conformational sampling. Due to
the ncAA’s high metal affinity, the altered residues fixed the
protein in a closed conformation upon addition of divalent
cations. While BpyA was parameterized with literature data
using CHARMM’s CGENFF, the authors derived custom parame-
ters for the BpyA-metal interactions based on experimental
binding rates.

In more traditional biocatalysis research, pyridoxal
phosphate (PLP) cofactor-dependent transaminases are such a
popular target for enzyme engineering that a dedicated data-
base was established.[300] PLP forms a covalent reaction
intermediate to facilitate the exchange of an amino with a keto
group. ω-Transaminases are of particular interest, due to their
potential application in the synthesis of compounds of
pharmaceutical and agrochemical relevance.[301] One of the early
successes in the computational engineering of ω-transaminases
used docking and rational design in conjunction with directed
evolution. The resulting enzyme variant was able to efficiently
produce sitagliptin,[302] an anti-diabetic medication, whose tradi-
tional synthesis requires toxic heavy-metal catalysts.[303] In later
work, the enantioselectivity of ω-transaminases was boosted for
a host of substrates in a strategy employing RosettaDesign.[304]

To that end, the PLP-substrate covalent intermediate was
created manually, and its geometry and partial charges derived
via semi-empirical QM. A rotamer library created with YASARA
then was docked with Rosetta. This strategy produced 38
designs, whose experimental validation showed that the
docking energy correlated well with enantiomeric excess.
Nevertheless, outliers were observed and could only partially be
explained by a detailed analysis of active-site waters. Thermo-
stable ω-transaminases were also created, and a highly active
and cosolvent-tolerant variant with an increase in melting
temperature (Tm) from 62 °C to 85 °C was achieved using the
FRESCO protocol.[305] In a structure-independent engineering
approach, an in silico resurrected ancestral ω-transaminase
yielded a significantly more promiscuous enzymes with up to
10-fold increases in activity and a 10 °C increase in Tm.[306]

Flavin-containing enzymes are also frequently engineered
for biocatalysis. Flavin adenine dinucleotide (FAD) dependent
halogenases (FDHs) bear promise of industrial application due
to their ability to selectively introduce halides at C� H bonds,
which may improve bioactivity and -availability of
pharmaceuticals[307] or represent synthesis intermediates. As
FDHs tend to be catalytically inefficient and highly substrate
specific,[308] enzyme engineering was used to improve their
synthetic performance. To investigate the catalytic mechanism
and selectivity-conferring residues, QM/MM[309] and MD[310]

simulations were performed and opened the door for rational
design. One group also used a combination of docking, QM,
and MD to investigate the mechanism behind the selectivity of
an FDH’s halogenation site. Using RESP charges for FAD, the
authors found that docking in combination with QM calcula-
tions to exclude catalytically inactive binding poses provided an
effective predictor for site selectivity.[311] Another paper used
CAVER to improve the low efficiency of an FDH caused by the

leaky transfer of an intermediate. The workflow found three key
residues that formed a bottleneck for the diffusion of the
intermediate. Site-saturation mutagenesis on these residues
identified a mutant that displayed a threefold improvement in
catalytic efficiency and a serendipitous increase in Tm by 12 °C
due to improved hydrophobic interactions in the core.[312]

Among metal-dependent enzymes, heme-employing cyto-
chrome P450s are a popular enzyme class in synthetic
applications due to their ability to catalyze a broad range of
synthetically challenging oxidation reactions.[313] A commonly
studied enzyme is P450 BM3 (CYP102A1), a natural P450 and
P450 reductase fusion that makes it electronically self-sufficient.
In addition to heme, the full protein also contains FAD and FMN
as prosthetic groups and requires NADPH as electron donor.
The mechanism of P450 BM3 has been studied extensively
using QM/MM and MD,[314] most commonly to rationalize
experimentally found mutations. In this way, the regioselectivity
for the malaria drug artemisinin[315] and the regio- and
enantioselectivity for the antibacterial compounds thiochroma-
none and 1-tetralone were elucidated.[316] Computational pre-
dictions have, however, also been applied to aid in the rational
design of selectivity-altering P450 BM3 mutants.[317] A dedicated
review collecting molecular dynamics simulation studies of
P450 BM3 is available,[314] illustrating both the popularity of the
enzyme and the variety of approaches to model it appropri-
ately.

Rosetta was used to model the lowest energy transition
state to rationally design more promiscuous P450 BM3
mutants,[318] and CAVER to aid in the design of mutants that
reduce water diffusion for increased coupling efficiency.[319] An
ancestral sequence reconstruction of P450 BM3 resulted in a
highly active variant and an impressive increase in Tm of
30 °C.[320] Despite these successes, the complex structure and
mechanism of P450s have largely prevented the design of
mutants fit for industrial applications. As increases in activity
can easily come at the cost of desired properties like efficiency
or regioselectivity, a more holistic approach in designing these
parameters simultaneously has been suggested.[321]

With the number of reports on ML-based protein engineer-
ing steadily increasing, examples of ML-engineered enzymes
with non-proteogenic parts begin to enter the literature. A ML
algorithm specifically trained on the NADPH-dependent family
of alcohol-forming fatty acyl reductases (FARs) predicted
mutations that resulted in a twofold increase in activity.[322]

Another group successfully predicted thermostability and
activity-increasing mutations in DNA polymerases with
MutCompute.[323] ML models specifically trained to work in this
context could also predict the activity of artificial
metalloenzymes.[324]

In biomedical research, computational biology manifests
mostly in drug design, which largely relies on the same
procedures as enzyme engineering, but where the ligand, not
the protein is variable. The fields overlap, because – as is the
case for P450s – protein classes that make relevant drug targets
can also be useful biocatalysts. SAM-dependent meth-
yltransferases (Mtases), for instance, methylate proteins, nucleo-
tides, and small molecules with the help of S-Adenosyl
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methionine (SAM).[325] While a lot of insight was gained from the
computational study of Mtases from pathogens such as SARS-
CoV 2,[326–327] these enzymes can also be employed in the
synthetic methylation of pharmaceuticals, which can vastly
increase a drug’s potency (the “magic methyl effect”).[328]

Although most Mtases are highly specific, a few more
promiscuous variants form a promising starting point for the
methylation of a variety of compounds,[325] and the origin of
their promiscuity was studied via QM/MM and MD
simulations.[329] One promiscuous Mtase was engineered to
produce cis-α-irone, an important fragrance compound. To
increase specificity, a combination of MD and energy calcu-
lations was combined with experimental screening to find
mutants with an impressive >10,000-fold and >1000-fold
improvement in cis-α-irone activity and selectivity,
respectively.[330] Another computational strategy to affect sub-
strate specificity avoided modeling the SAM cofactor by using
Rosetta to design an MTase-fused recruitment domain as prey
that can capture a peptide-linked designed bait.[331] MTases
have also been designed using the FuncLib tool to find variants
capable of methylating pharmaceutically useful but biologically
uncommon unsaturated N-heterocycles.[332] Funclib has also
been applied to transform a promiscuous MTase into a new
pyrazole-alkylating enzyme by screening for variants that accept
natural SAM analogues (NSAs), which transfer other alkyl groups
besides methyl.[333] In both these works, the effect of the
discovered mutants was further characterized by DFT and MD,
using RESP charges parameterized by ANTECHAMBER for the
SAM cofactor.

Besides being catalysts for the production of small molecule
drugs, enzymes are also employed as drugs themselves. Use of
therapeutic enzymes is an established field with various drugs
already commercialized.[297] With the advent of mRNA therapeu-
tics, enzyme-encoding transcripts can also be delivered intra-
cellularly to address metabolic deficiencies in genetic
diseases.[334] Computationally engineered were for instance
superoxide dismutases (SOD), a family of metalloenzymes that
can scavenge oxygen radicals in the treatment of cancer,
arthritis, and neurodegenerative diseases.[335] A combination of
HotSpot Wizard and CUPSAT identified residues for site-directed
mutagenesis and resulted in a mutant with improved kinetics
and increased H2O2 tolerance in a mechanism elucidated via
MD simulations.[336]

A strategy for the potential cure of genetic diseases is gene
editing – a technology that in recent years made a leap toward
reality by the discovery of sequence-programmable nucleases.
To cleave their target DNA, a guide RNA and two catalytic
magnesium ions are required by the prototypical Cas9.[337] The
enzyme was the target of various computational enzyme
engineering efforts, aiming to alter properties such as cleavage
specificity or protospacer-adjacent motif (PAM)
requirements.[338] Due to its complex and highly dynamic nature,
a lot of effort has initially focused on investigating its precise
mode of action. The catalytic mechanism[339] and the structural
and catalytic role of the magnesium ions[340] were studied using
a mixture of MD and QM/MM. MD was also used to gain insight
into DNA/RNA binding,[341] enzyme activation via domain

rearrangements,[342] and to unravel the effect of mutations in
high-fidelity Cas9 variants.[343] The FuncLib tool allowed identi-
fication of highly active Cas9 variants,[344] and various ancestral
Cas9 variants were created that accept different PAMs and
guide RNA backbones.[345] Parameterizing the non-proteogenic
parts in Cas9 for MD required some additional care: for MDs,
DNA and RNA were generally simulated using either the
Parmbsc0 or Parmbsc1 force field refinements, while the
magnesium ions were usually modelled with refined non-
bonded force field parameters.[339–340,342]

Another pharmaceutical enzyme design study with non-
proteogenic compounds engineered cyclic GMP–AMP synthase
(cGAS). This enzyme produces the signaling molecule cGAMP
upon recognition and binding of cytosolic DNA, and so triggers
the cGAS–STING pathway – a part of the innate immune system
important for reporting cancer and viral activity.[346] Similarly to
Cas9, it binds DNA and requires two catalytic magnesium ions.
The employed MD simulations to investigate the mechanism
used the Bsc1 force field corrections for DNA, but did not refine
the magnesium ions.[347] To facilitate further studies of the
pathway, computational enzyme engineering was then used to
create a continuously active cGAS variant independent of DNA
binding. The workflow employed Rosetta to find mutations that
stabilize the active state in the absence of DNA.[348]

4. Summary and Outlook

Enzymes are powerful catalysts and are increasingly used in
biocatalytic and biomedical applications.[6] Given the high
fraction of enzymes containing non-proteogenic parts, in
particular among catalysts for valuable reactions, it is essential
that computational enzyme engineering tools can be reliably
used with them. While a certain attraction lies in sequence or
data-dependent methods that deal with non-proteinogenic
parts implicitly, emerging ML tools still lack broader validation,
and examples with proteins containing cofactors, ncAAs, or
other modifications are rare to date. Although the recent
breakthroughs in structure prediction[2] will further push the
frontiers of computational enzyme engineering, atomic preci-
sion is often paramount for realistic modeling. Protein structure
is only one (albeit essential) piece in mutant design workflows,
whose success equally depends on accuracy in the subsequent
steps of the various paths towards correct predictions. With
“empty” and monomeric AI protein models abundant, oligo-
meric structure generation followed by transplantation and
docking become the crucial next bottleneck. As manifested in
our inability to reliably design drug candidates in silico,[349]

docking in particular remains a computational challenge that
leaves a lot to be desired in terms of reliability and quantifiable
output.[350]

Although thoroughly performed MDs generally are an
established and reliable tool, simulations often need to (or are
too short to) compensate inaccurately docked complexes.
Further, although parameters are available for nucleic acids as
well as for common cofactors and non-standard residues, their
retrieval and implementation constitute a significant hurdle,
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while deriving and validating new parameters typically require
tools and skills unavailable to non-specialists. In this regard,
automation, standardisation, and a central parameter repository
might aid. Because computing power remains insufficient for
simulations of timescales relevant for many enzyme
reactions,[351] methods to increase sampling capacity are of
great interest.[128] Larger conformational changes as undergone
by many complex enzymes will likely remain unpredictable with
MD, however. Dedicated or tweaked AI tools for reliable
predictions of protein conformations would therefore represent
another major breakthrough; otherwise, experimental protein
structures, especially those with non-proteinogenic parts, may
remain an important cornerstone of enzyme redesign for longer
than some currently forecast.

Because experimental determination of many mutated
sidechain conformations is practically impossible, ligand-bind-
ing pocket redesign tools will remain essential for many
pipelines. While rotamer libraries and energy-based complex
predictions are constantly improving, the sword of Damocles in
form of generative ML models hangs also over this field. As
enzyme de novo design is starting to become feasible thanks to
implementing deep learning techniques,[352] the future role of
biophysical modeling in enzyme design is not certain. Similar to
how AI models and experimental protein structures are
currently used in parallel, it seems likely that force field and ML-
based design methods will also be used side by side and system
dependent. Likewise, enzyme design may in the future adopt a
hybrid strategy that integrates the current dualism of either de
novo constructing backbones given a fixed catalytic pocket or
sculpting a new active site into a fixed backbone. In such a
flexible approach, relevant protein parts may freely be
combined from natural proteins and engineered or from scratch
designed (/hallucinated[53]/diffusion model-derived[54]) as re-
quired.

While examples of enzyme engineering with systems
containing important PTMs are rare in literature (perhaps due
to a bias toward bacterial enzymes in biotech applications),
ncAA-dependent catalysts gain traction.[353] Computational
enzyme redesign with these residues is, however, still in its
infancy. While adapting existing or developing dedicated
machine-learning techniques for this task will be challenging
due to the scarcity of data, classical modeling can be more
readily adjusted, and the topic thus represents a chance for
rational design endeavours.
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