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Abstract: The co-existence for human and mobile robots in modern industrial environments is
increasingly common. Safety primitive behaviours are typically built-in mobile robots, to ensure
safety. However, when fleets of multiple robots are operating in such environments, robot path
planning becomes complicated and is often left sub-optimal to avoid compromising human,
equipment, or process safety. Enhanced performance can be achieved if path planning takes into
account not just current human presence, but projected human movement trajectories. While
this problem has received extensive attention in outdoor environments in autonomous driving
contexts, its indoors workspace equivalent has received less attention. This paper presents an
approach for human movement prediction in industrial work environments, based on past and
current heatmap occupancy grids and convolutional neural networks. The adopted heatmap
format is appropriate for dealing with privacy concerns so as to avoid individual person
identification. Obtained results from a range of simulation data are presented, following by
a discussion on limitations, and challenges to be handled by further work.
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1. INTRODUCTION

Although robots are capable of operating with efficiency
in many processes, they present lack of flexibility to deal
autonomously and with high operational efficiency in com-
plex dynamic environments. Therefore, often industries
seek to balance automation efficiency with the flexibility of
involving the human in the loop (El Zaatari et al. (2019)).
However, collaboration between robots and humans cre-
ates challenges for the safety of humans, equipment and
processes (Müller et al. (2016)). As a consequence, human-
robot collaboration spaces (HRCS) are being adapted to
make possible the coexistence of humans and robots in
a safe and secure manner (Robla-Gómez et al. (2017)).
In such co-existence settings, mobile robots are typically
equipped with systems that exhibit safety primitive be-
haviours, thus minimising relevant risks. Nonetheless, in
scenarios when fleets of moving vehicles are needed, the
operational performance impact of path planning ham-
pered by robot movement stoppages triggered by human
presence can be significant, leaving substantial room for
further optimisations. Given the uncertainty inherent in a
HRCS environment, it is desirable that a fleet of mobile
robots is able to adapt in advance its individual and collec-
tive path planning, anticipating the movement trajectories
of workers. Therefore, this paper deals with the problem
of predicting human movement in industrial work environ-
ments. Aiming to act as precursor to a fleet of mobile robot
vehicles paths planning, the developed predictive model
receives as input outcomes from a video analytics module
and produces as output projected heatmaps indicating
future human presence. The remainder of the paper is

structured as follows. Section 2 outlines related work. The
problem formulation and proposed method are presented
in section 3. Section 4 presents and analyses obtained
results. Section 5 concludes the paper.

2. RELATED WORK

To approach the problem of human movement prediction,
one can focus on the psychological perspective of the
movement. With this strategy, it is assumed that people
adjust their movement to the presence of other people and
obstacles (Pellegrini et al. (2010)). Social forces such as
desired destination and repulsion from other objects can
be taken into account and the destination of one person
could also affect the movement of other nearby people.
Models to predict human trajectories in the street basing
the models in social influences, position and velocity of
each person have been presented (Luber et al. (2010)). A
drawback of these approaches is that not all interactions
can be captured and it is difficult to apply in crowded
and complex scenarios. Regression models perform well on
situations with missing and uncertain data to movement
prediction of diverse targets and objects (Elnagar and
Gupta (1998), Cai et al. (2006)). Prediction of pedestrians
paths has been analysed through gaussian processes to
model the uncertainty of unpredictability in human mo-
tion (Ellis et al. (2009)).

One of the most widely applied models in this research
area is Hidden Markov model (HMM). HMM is based on
discrete sequences and it is suitable for human motion
prediction because the hidden state transition is useful
in scenarios where the results of motion recognition are



uncertain (Liu and Wang (2017)). A downside of the
HMMs is that they cannot learn the interactions between
moving people in crowded environments and predict based
on these interactions. Moreover, HMMs are only capable
of providing short-term high-confidence predictions for
motion planning. However, to make robot planning more
efficient, longer term predictions are needed (Rudenko
et al. (2020), Li and Fu (2014)).

Due to the spatio-temporal character of the data collected
in these types of scenarios, deep-learning techniques are
suitable (Wang et al. (2020)). Models such as convolu-
tional neural networks (CNNs), recurrent neural networks
(RNNs), and long-short term memory neural networks
(LSTM) can be adapted to this problem taking into ac-
count the time and spatial dimension of the data. RNN and
LSTM models can take into account sequences of time se-
ries data such as videos, which make them a popular mod-
eling approach for predicting human movement. In (Alahi
et al. (2016)) a trained LSTM allows sharing information
from the hidden states of the LSTM with neighbouring
moving individuals and adjusting the interactions between
people in crowded situations. Bartoli et al. (2018), define
a context-aware pooling layer that considers the fixed
elements in the environment and models human-space
interactions. LSTM models have also been applied to pre-
dict movement of pedestrians in crowded scenarios with
adequate results (Su et al. (2017)). These characteristics
make LSTM suitable for movement predictions in HRCS
for a longer time horizons than other methods.

Although there is ample literature related to human move-
ment prediction, research is more limited regarding such
prediction in industrial workspaces. The characteristics or
work spaces may have lower level of uncertainty com-
pared to outdoor settings, as they may related to fairly
well sturctured environments or specific work process
sequences. Context-aware LSTM-based methods to pre-
dict workers’ trajectories have also been proposed and
used to calculate the optimal path of robots in exterior
HRCSs. (Hu et al. (2020)). CNN models have been em-
ployed to predict human motion in work environments
where tasks are developed with human-robot collabora-
tion (Wang et al. (2018)). CNN models may be formulated
to exploit spatio-temporal relations to detect interactions
in dynamic environments, making them very suitable for
movement predictions in HRCS for relatively long time
horizons (Nikhil and Tran Morris (2019)).

Wang et al. (2015) considered mapping work environments
into cell grids. The cell to which a subject will move
is determined by the direction of cell entrance and the
global starting point of the subject. In this grid, each cell
represents a position in the workspace and is assigned
a probability of being occupied. Another perspective is
through a Bayesian approach of the problem in which the
probability of each cell of being occupied is estimated by
calculating a posteriori conditional probabilities, given a
sequence of measurement vectors (Robbiano et al. (2022)).
Nonetheless, complexity increases with higher grid dimen-
sions. Furthermore, in real work environments, privacy
concerns may limit the applicability of methods which can
lead to the identification of individual persons. Therefore,
methods which achieve adequate predictive performance,
without compromising privacy are needed.

3. PROBLEM STATEMENT AND PROPOSED
METHOD

Given a space that is partitioned into a grid of cells
P = {Pi, i = 1, ..., N} with N being the total number of
cells in the grid, for each cell in the grid, and for each
second t, a value Ct(Pi) is assigned as follows:

Ct(Pi) =

{
1, if the cell Pi is occupied.

0, if the cell Pi is not occupied.
(1)

The problem is to determine if, given a known sequence in
time {Ct(Pi), with t = 0, ..., T}, it is possible to estimate
the values of {CT+r(Pi), r > 0}, where r indicates the
future time window for the predicted human presence (grid
occupancy). The proposed model is based on the CNN
architecture, considering that CNNs can be applicable to
spatio-temporal data. To explore this problem, a simpli-
fication assumption is made to consider a time window
of three seconds in the time series of the occupancy grid.
This assumption is based on the intuitive idea that workers
have to go through the neighbouring cells to move from
one cell to another one. The time window could also be
set via estimating the average speed of a worker, during
movements, but this can be seen as a further enhancement
for the future. In a grid with N cells, the proposed strategy
is based on the representation of each cell as a vector
in Rn where n is the number of features obtained from
the information of the cell. For each time instance t (one
second in our experiments) and per each current cell Pi,
i = 1, ...N the features are defined as:

Ct(Pi) =

{
1, if the ith cell is occupied in second t.

0, if the ith cell is not occupied in second t.
(2)

The features Ct
s, D

t
s, are defined for s = 1, 2, 3 as:

Ct
s(Pi) =


1, if the ith cell was occupied

s seconds ago.

0, if the ith cell was not occupied

s seconds ago.

(3)

Ds
t (Pi) = Sum of neighbouring cells occupied s seconds

ago.

Ct+1(Pi) =


1, if the ith cell is occupied

for the next second in time.

0, if the ith cell is not occupied

for the next second in time.

(4)

Ct+1(Pi) is the label that represents the occupancy of the
cell Pi in the next second in time, t+1, and it is therefore
the targeted output value for the predictive model. Thus,
given a grid with N cells, at each time instance (each
second in our experiments) and for every cell Pi, i =
1, ...N , there is a vector vti = (Ct, Ct

1, C
t
2, C

t
3, D

t
1, D

t
2, D

t
3)i

∈ R7 that represents the features of the cell and a value
Ct+1(Pi) that is the label that the method will predict.
This feature set is employed for the training of the CNN-
based predictive model, on the basis of past and current
occupancy grid records.



3.1 Human trajectories data sets

In order to experiment with data sets which provide suffi-
ciently persistent excitation for model training, our exper-
iments are based on simulations which represent variations
of workplace scenarios. Such simulations are currently em-
ployed for assessing crowding and human movement for
critical infrastructure control centres, such as for airports
and train stations, and therefore offer a rich testbed for
creating realistic scenarios. This offers the possibility to
model working spaces of varying complexity, structure,
and with modifiable scenarios of human presence and
trajectories.

The aforementioned simulations present four different in-
dustrial workspace layouts, comprising 8 types of working
stations with 2 or 3 machines of each type, and supplemen-
tary attraction points. Such attraction points are used to
emulate short breaks, for example as coffee machines. An
example of a fictive factory can be seen in Fig. 1. In each of
these fictive factories two simulations have been developed
with 50 and 100 workers each. Thus, in total there are
eight different sets of data corresponding to the eight
simulations. Each simulation involves 4 types of persons,
each with a role linked to a specific business process. These
processes are mapped into sequences of worker visits to
workstations, choosing among workstations of the same
type the one with shortest queue. Furthermore, random-
ness is introduced using a uniform distribution over the
number of workers of each type and a normal distribution
over the worker movement speed. In addition, there is
a 0.1 probability that workers deviate from their work
process to go to the attraction point for such deviation,
the coffee machine in this case. Each simulation has a
duration of 2 hours and there is a text file representing
the occupancy map at each time instance (each second
in the reported experiments). Each text file represents an
occupancy grid with 10000 cells of 1m2 each one. For each
cell, there is a number indicating the number of workers
currently present in the cell, otherwise the value is ”0”.
These files also provide information about the immovable
objects, such as well, workstations, or additional attraction
points. Figure 2 represents a detail of the simulated work
environment in which there is a work station in cells from
one to eight, a wall in cells 12, 17 and 22. In cells 10,
11, 15 and 16 there are workers. It can be observed that
one worker can occupy more than one cell at the same
time. This implies that adding up the numbers in the
neighbouring cells does not give the count of workers in
the neighbouring cells as some of them may be counted
more than once when their presence is mapped to more
than one cell. Table 1 presents the average percentage of
cells occupied with workers in all simulations. It can be
observed that in all the cases the occupation is lower than
13%, which implies that the occupancy grid is sparsely
populated.

3.2 Training and test sets

To build the training set of the model, the earlier defined
features are extracted from each cell Pi in the data set.
The first seven components (Ct, Ct

1, C
t
2, C

t
3, D

t
1, D

t
2, D

t
3)i

are the input features of each sample in the data set and
the value of Ct+1(Pi) is the label that the model has to

Fig. 1. Example of fictive factory.

Fig. 2. Detail of the simulated work environment where in
cells from one to eight there is a work station, and in
cells 10, 11, 15 and 16 there are workers.

predict. The most crowded 15 minutes in each simulation
have been selected for training set and the next 60 seconds
of each one have been reserved as test set. An example
of the occupation of cells in a workstation can be seen in
Figure 3. Note that the number of occupied cells is not the
same with the number of workers, as commented before.

3.3 Structure of the CNN

To explore the predictive performance which can be ob-
tained by training CNN models with such data, experi-
ments involving different values of the hyperparameters
of CNNs have been performed. The CNN structure has
three convolutional layers with 128, 64 and 32 neurons,
with correspondioning kernel sizes of 5, 2, and 1 each, and
Rectified Linear Units (ReLU) as activation functions. A
MaxPooling layer is applied after each convolution. The

Table 1. Average percentage of occupied cells
in the different simulated environments.

Work
Nº of persons

% Cells with % Cells with
environment no presence presence

One
50 91.14 8.86
100 87.79 12.21

Two
50 90.87 9.13
100 87.63 12.37

Three
50 90.90 9.10
100 87.67 12.34

Four
50 90.93 9.07
100 87.60 12.40



Fig. 3. Occupation of the cells during the simulation.

selected dropout rate to compensate for potential overfit
was set at 0.2. The training has been performed for 100
epochs with a learning rate of 0.0001

3.4 Performance assessment

The performance of the methods is evaluated by the Root
Mean Square Error (RMSE) for the regression outcomes
of the model. When converting the model output to occu-
pancy, Accuracy, Recall and Precision, where involved, as
appropriate for classification:

Accuracy = TP+TN
TP+TN+FP+FN

Recall = TP
TP+FN , Precision = TP

TP+FP

With:
TP: Worker present in cell with model predicting presence.
FP: No worker in cell but model predicts presence.
TN: No worker present in cell, correctly predicted.
FN: Worker present in cell, correctly predicted.

4. RESULTS AND DISCUSSION

In this section the results obtained from the application
of the CNN approach are presented and discussed. The
CNN model directly produced outputs are real numbers,
which can loosely be seen as belief or likelihood that a gird
cell will be occupied, with higher values indicating higher
such belief or likelihood. If this needs to be interpreted
as a binary outcome (occupied or not), then network
output can be passed through a threshold unit to decide
whether the output of the model has to be interpreted
as occupied or unoccupied cell. Specifically, for values
higher than this threshold, the model will classify the
cell as occupied. Different performance metrics, such as
the values of root mean squared (RMSE), accuracy, recall
and precision offer a different insight into the precictive
performance. To analyse this influence, the CNN training
has been performed with different thresholds.

For visual interpretability of the results, heatmaps rep-
resenting the occupancy likelihood, as predicted by the

model, have been created. These are illustrated in Fig. 4,
Fig. 5, Fig. 6 and Fig. 7. Intuitively, for low thresholds
more predictions are interpreted by the model as presence
than with high thresholds. Therefore, low thresholds lead

Fig. 4. Generated heatmap in workspace with 50 workers
against the next second with threshold 0.3.

Fig. 5. Generated heatmap in workspace with 50 workers
against the next 15 seconds with threshold 0.3.

Fig. 6. Generated heatmap in workspace with 50 workers
against the next 30 seconds with threshold 0.3.



Fig. 7. Generated heatmap in workspace with 50 workers
against the next 60 seconds with threshold 0.3.

to higher TPs, while high thresholds lead to higher FNs.
Therefore, recall drops down significantly for thresholds
0.4, 0.5, 0.6 and 0.7 but increases for 0.2. However, lower
thresholds of 0.2 and 0.3 also lead to a high RMSE and
increased FPs. As it can be observed in Fig 8, for higher
thresholds such as 0.6 and 0.7, the opposite happens. For
these values, the probabilities of neighbouring cells are too
low to be interpreted as presence and TP decrease over
time. For instance, predictions obtained with threshold 0.6
one second ahead are very similar to the ones obtained
with threshold 0.3 (Fig. 4). Nevertheless, the number of
cells predicted as occupied after 15 seconds with threshold
0.6 represented in Fig. 9 is significantly lower than the
number of cells predicted as occupied after 15 seconds with
threshold 0.3 (Fig. 5). This is because the probabilities of
being occupied are too low to be interpreted as presence
and the number of cells predicted as occupied decreases
over time leading to error propagation. Predictions beyond
15 seconds for the 0.6 threshold are not presented as
not perceptible differences to the values obtained with 15
seconds have been found. It can be deduced that setting
the threshold too high results in a lower rate of correct
predictions of occupied cells (TP) for long time intervals.

Fig. 8. Generated heatmap in workspace with 50 workers
against the next second with threshold 0.6.

Table 2. Average RMSE, accuracy, recall and
precision for predictions against a time horizon

of 60 seconds with different thresholds.

No of
Thresh.

Average Average Average Average
workers RMSE accuracy recall precision

50

0.2 0.566 0.599 0.896 0.077
0.3 0.333 0.867 0.650 0.125
0.4 0.239 0.926 0.468 0.170
0.5 0.184 0.957 0.338 0.221
0.6 0.124 0.984 0.261 0.742
0.7 0.123 0.984 0.246 0.744

100

0.2 0.576 0.583 0.919 0.130
0.3 0.367 0.839 0.774 0.206
0.4 0.245 0.924 0.654 0.314
0.5 0.198 0.952 0.525 0.418
0.6 0.147 0.978 0.476 0.855
0.7 0.153 0.976 0.414 0.856

A summary of the results against a time horizon of 60
seconds with different thresholds is presented in Table 2.
The recall values in Table 2 are higher for the experiments
with 100 person than with 50 persons because the num-
ber of TPs is greater for experiments with 100 workers.
However, the number of FP predicted for the experiments
with 100 workers is also high, which results in a decrease
in overall accuracy and precision. In more detail, Table 3
shows the results with time horizons 1, 15 and 30 in work
space one with different thresholds for the cases of 50 and
100 workers respectively. It can be observed that accuracy
of 0.99 and RMSE of 0.08 have been obtained with one
step ahead predictions, but both values get worse when
projecting further ahead into the future, due to prediction
error accumulation. When the occupancy detection sensi-
tivity is increased, by lowering the classification threshold,
the higher is the number of cells that are predicted as
occupied. Safety of workers should be a high priority in
HRCS and therefore this justifies a higher rate of false
positives. However, this also results in more cautious and
therefore potentially sub-optimal path planning for the
robot fleet. FN measures the number of cells that are
occupied, but they are predicted as not occupied. If FN
increases, it could lead to less secure work spaces than
increasing FP. Thus, a low precision can be interpreted as
a lower risk than a low recall.

Fig. 9. Generated heatmap in workspace with 50 workers
against the next 15 seconds with threshold 0.6.



Table 3. RMSE and classification performance;
thresholds 0.2, 0.5; 50/100 workers.

50 workers

Threshold Second RMSE Accuracy Recall Precision

0.2
1 0.080 0.989 0.856 0.648
15 0.385 0.809 0.830 0.077
30 0.613 0.584 0.957 0.041

0.5
1 0.080 0.991 0.802 0.743
15 0.170 0.969 0.340 0.257
30 0.192 0.955 0.310 0.154

100 workers

Threshold Second RMSE Accuracy Recall Precision

0.2
1 0.123 0.974 0.803 0.747
15 0.385 0.809 0.837 0.147
30 0.614 0.581 0.919 0.073

0.5
1 0.090 0.988 0.876 0.801
15 0.170 0.964 0.557 0.499
30 0.213 0.947 0.528 0.345

5. CONCLUSION

This paper presented an exploratory analysis and a pro-
posed model formulation for predicting human movement
in indoor workspaces where humans and robots collabo-
rate. Among the advantages of the approach is the ability
to work without compromising individual person identifi-
cation, thus respecting privacy. Current limitations relate
to simplification assumptions, and the limited representa-
tion power of how input features are fed into the network.
Future work can also consider the application of a Bayesian
approach to align movement patterns to work process se-
quences, thereby biasing the prediction to the work context
and working with additional realistic scenarios. Current
work on mobile robot fleet planning is taking into account
the human movement prediction to adjust and optimise
the performance of the fleet, while ensuring human safety.
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