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Session types are a well-established approach to communication correctness in message-
passing processes. Widely studied from a process calculi perspective, here we pursue an 
unexplored strand and investigate the use of the Maude system for implementing session-
typed process languages and reasoning about session-typed process specifications.
We present four technical contributions. First, we develop and implement in Maude 
an executable specification of the operational semantics of a session-typed π-calculus 
by Vasconcelos. Second, we also develop an executable specification of its associated 
algorithmic type checking, and describe how both specifications can be integrated. Third, 
we show that our executable specification can be coupled with reachability and model 
checking tools in Maude to detect well-typed but deadlocked processes. Finally, we 
demonstrate the robustness of our approach by adapting it to a higher-order session π-
calculus, in which exchanged values include names but also abstractions (functions from 
names to processes).
All in all, our contributions define a promising new approach to the (semi)automated 
analysis of communication correctness in message-passing concurrency.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

This paper presents several executable rewriting semantics for a π -calculus equipped with session types. Widely known 
as the paradigmatic calculus of interaction, the π -calculus [19,26] offers a rigorous platform for reasoning about message-
passing concurrency. Session types are arguably the most prominent representative of behavioral type systems [14], which 
can statically ensure that processes respect their ascribed interaction protocols and never exhibit errors and mismatches.

The integration of (variants of) the π -calculus with different formulations of session types has received much attention 
from foundational and applied perspectives. As a result, our understanding about (abstract) communicating processes and 
their typing disciplines steadily reaches maturity. Despite this progress, rigorous connections with more concrete represen-
tation models fall short. In particular, the study of session-typed π -calculi within frameworks and systems like Maude [4]
seems to remain unexplored. This gap is an opportunity to investigate the formal systems underlying session-typed π -
calculi (reduction semantics and type systems) from a fresh yet rigorous perspective, taking advantage of the concrete 
representation given by executable semantics in Maude.
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Looking at session-typed π -calculi from the perspective of Maude is insightful, for several reasons. First, Maude enables 
the systematic validation of such formal systems and their results, improving over pen-and-paper developments. Second, as 
there is not a canonical session-typed π -calculus, but actually many different formulations (with varying features and prop-
erties), an implementation in Maude could provide a concrete platform for uniformly representing them all. Third, resorting 
to Maude as a host representation framework for session-typed π -calculi could help in addressing known limitations of 
static type checking for deadlock detection, leveraging tools already available in Maude.

This paper presents our work on pursuing these directions. Our contributions are as follows:

1. We implement in Maude the session-typed π -calculus developed by Vasconcelos [30], dubbed sπ in the following. 
Specifically, for this typed language, we first implement its (untyped) reduction semantics as a rewriting semantics, es-
sentially extending prior work on representing the π -calculus in Maude (see below). Then, we implement its associated 
algorithmic type system, also given in [30].

2. Well-typedness in [30] ensures fidelity (i.e., well-typed sπ processes respect at runtime their ascribed protocols) but 
does not rule out deadlocks and other kinds of insidious circular dependencies. This is a known shortcoming, which we 
address by leveraging reachability and model checking of formulas in Linear Temporal Logic (LTL) in Maude.

3. Finally, we show that our approach for implementing sπ in Maude extends also to a different session process language, 
namely the higher-order session π -calculus (HOπ ), introduced and studied by Kouzapas et al. [17,18]. The typed calculus 
HOπ is interesting because it allows one to exchange names (as in sπ ) as well as abstractions (functions from names 
to processes). We develop an executable semantics and type checking for HOπ in Maude, the latter based on a new 
algorithmic type system that we develop here.

The rest of this paper is organized as follows. Next, Section 2 summarizes the syntax and semantics of sπ . Section 3
describes the definition of our rewriting semantics for sπ in Maude. Section 4 addresses types: it presents the rewriting 
implementation of the algorithmic type checking system for sπ introduced in [30]. Section 5 presents our developments 
on deadlock detection. Section 6 extends our approach to the higher-order case: we recall the syntax of HOπ , define its 
rewriting semantics, develop a new algorithmic type checking system, and implement it in Maude. Section 7 discusses 
related works and collects some concluding remarks. Additional material has been collected in the appendices.

This paper is an extended and revised version of the WRLA’22 paper [23], extended with the treatment of higher-order 
session processes in Section 6, which is entirely new to this presentation. Our Maude developments are publicly available 
online:

https://gitlab .com /calrare1 /session -types

2. A session-based π -calculus

The process calculus sπ is a variant of the synchronous π -calculus [19] with session constructs [15], formalized by 
Vasconcelos [30]. Here we summarize its syntax and semantics.

Syntax The calculus sπ relies on a base set of variables, ranged over by x, y, . . .. Variables denote channels (or names). 
Processes interact to exchange values, which can be variables or booleans. Variables can be seen as consisting of (dual) 
endpoints on which interaction takes place. Rather than non-deterministic choices among prefixed processes, there are two 
complementary operators: one for offering a finite set of alternatives (called branching) and one for choosing one of such 
alternatives (selection). More formally, the syntax of values, qualifiers, and processes is presented below:

v ::= x | true | false q ::= un | lin

P ::= 0 | xv.P | q x(y).P | P1 | P2 | (νxy)P

| if v then P1 else P2 | x � {li : Pi}i∈I | x � l.P

The inactive process is denoted as 0. The output process xv.P sends the value v along x and continues as P . The process 
q x(y).P denotes an input action on x, which prefixes P . The qualifier q is used for inputs, which can be linear (to be 
executed exactly once) or shared. The process un x(y).P denotes a persistent input action, which corresponds to (input-
guarded) replication in the π -calculus. The parallel composition P1 | P2 denotes the concurrent execution of P1 and P2. The 
process (νxy)P declares the scope of co-variables x and y to be P . These co-variables are intended to be the complementary 
ends of a communication channel. Given a boolean v , the process if v then P1 else P2 continues as P1 if v is true; otherwise 
it continues as P2. The branching process x � {li : Pi}i∈I offers multiple alternative branches P1, P2, . . . (each with a label
l1, l2, . . .), along x; it is meant to interact with a selection process x � l.P , which uses x to indicate the choice of the 
alternative labeled l and then continues as P .

As usual, q x(y).P binds variable y in P and (νxy)P binds co-variables x, y in P . The sets of free and bound variables of 
a process P , denoted fv(P ) and bv(P ), are defined accordingly. Process P [v/y] denotes the capture-avoiding substitution 
of variable y by value v in process P .
2
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P | Q ≡ Q | P P | 0 ≡ P
P | (Q | R) ≡ (P | Q ) | R (νxy) 0 ≡ 0
(νxy)(νwz)P ≡ (νwz)(νxy)P (νxy)P | Q ≡ (νxy)(P | Q ) If x, y /∈ fv(Q )

if true then P1 else P2 ≡ P1 if false then P1 else P2 ≡ P2

Fig. 1. Structural congruence Rules for sπ .

(νxy)(xv.P | lin y(z).Q | R) −→ (νxy)(P | Q [v/z] | R)
[R-LinCom]

(νxy)(xv.P | un y(z).Q | R) −→ (νxy)(P | Q [v/z] | un y(z).Q | R)
[R-UnCom]

j ∈ I

(νxy)(x � l j .P | y � {li : Q i}i∈I | R) −→ (νxy)(P | Q j | R)
[R-Case]

P −→ P ′

P | Q −→ P ′ | Q

P −→ P ′

(νxy)P −→ (νxy)P ′ [R-Par] [R-Res]

P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q

P −→ Q
[R-Struct]

Fig. 2. Reduction semantics for sπ .

Semantics The operational semantics for sπ is given as a reduction semantics, which, as customary, relies on a structural 
congruence relation, the smallest congruence relation on processes that satisfy the axioms in Fig. 1. Structural congruence 
includes the usual axioms for inaction and parallel composition as well as adapted axioms for scope restriction, scope 
extrusion, and conditionals.

Armed with structural congruence, the rules of the reduction semantics are presented in Fig. 2. Rules [R-LinCom] and 
[R-UnCom] induce different patterns for process communication, depending on the qualifier of their corresponding input 
action. Indeed, processes xv.P and q y(z).Q can synchronize if x and y are co-variables. This is only possible if both 
processes are underneath a scope restriction (νxy). When this occurs, processes xv.P and q y(z).Q continue respectively 
as P and Q [v/z]. When q = un then process q y(z).Q remains (Rule [R-UnCom]); otherwise, process q y(z).Q disappears 
(Rule [R-LinCom]). Rule [R-Case] stands for the case synchronization: processes x � l j .P and y � {li : Q i}i∈I can synchronize 
if they are underneath a scope restriction (νxy). Process x � l j .P reduces to process P and process y � {li : Q i}i∈I reduces 
to process Q j . Rules for parallel composition, scope restriction, and structurally congruent processes (Rules [R-Par], [R-Res], 
[R-Struct]) are as usual.

Example 2.1. Consider the process P = (νx1 y1)(νx2 y2)(P1 | P2 | P3) where:

P1 = un y1(t).t false.0

P2 = lin y1(w).w true.0

P3 = x1x2.lin y2(z).az.0

Starting from P , there are two possible sequences of reductions depending on the processes involved in the initial 
synchronization in the co-variables x1, y1.

• Suppose P1 and P3 synchronize via an application of rule [R-UnCom] over co-variables x1, y1 and thereafter rule [R-

LinCom] is used over x2, y2. Then we would have:

P −→−→ (νx1 y1)(νx2 y2)(P1 | P2 | afalse.0)

• On the other hand, if P2 and P3 synchronize then rule [R-LinCom] can be applied twice, first over co-variables x1, y1

and after over x2, y2. In this case, we would have:

P −→−→ (νx1 y1)(νx2 y2)(P1 | atrue.0)

The standard form of a process, defined in [30], will be crucial for the executable specification of the reduction semantics. 
We say P is in standard form if it matches the pattern expression (νx1 y1)(νx2 y2) . . . (νxn yn)(P1 | P2 | . . . | Pk), where each 
Pi is a process of the form xv.Q , q x(y).Q , x � l.Q or x � {li : Q i}i∈I . Every process is structurally congruent to a process in 
standard form.
3
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3. Rewriting semantics for sπ

3.1. Syntax

Our rewriting semantics for sπ adapts the one by Thati et al. [28], which is defined for an untyped π -calculus with-
out sessions. There is a direct correspondence between the syntactic categories (values, variables, qualifiers, and terms) 
and Maude sorts (Value, Chan, Qualifier, and Trm, respectively). We also have some auxiliary sorts such as Guard, 
Choice, and Choiceset.

sorts Value Chan Qualifier Trm Guard Choice Choiceset .
subsort Choice < Choiceset .
subsort Chan < Value .

op _{_} : Qid Nat -> Chan [prec 1] .
ops lin un : -> Qualifier [ctor] .
ops True False : -> Value [ctor] .
op __(_) : Qualifier Chan Qid -> Guard [ctor prec 5] .
op _<_> : Chan Value -> Guard [ctor prec 6] .
op nil : -> Trm [ctor] .
op new[__]_ : Qid Qid Trm -> Trm [ctor prec 10] .
op _|_ : Trm Trm -> Trm [ctor assoc comm prec 12 id: nil] .
op if_then_else_fi : Value Trm Trm -> Trm [ctor prec 8] .
op _ << _._ : Chan Qid Trm -> Trm [ctor prec 15] .
op _ >> {_} : Chan Choiceset -> Trm [ctor prec 17] .
op _._ : Guard Trm -> Trm [ctor prec 7] .
op _:_ : Qid Trm -> Choice .
op empty : -> Choiceset [ctor] .
op __ : Choiceset Choiceset -> Choiceset [ctor assoc comm id: empty] .

Following the syntax in Section 2, values can be variables or booleans. We represent booleans as the constructors True 
and False whereas we distinguish variables (sort Chan) as values through the subsort relation. The only constructor for 
variables _{_} takes a Qid and a natural number. Each production rule for processes is represented using a constructor, 
as expected. Notice that the constructor for input guards __(_) is preceded by a qualifier. Process 0 is denoted as nil 
and a single guarded term is represented by the constructor _._. The constructor for scope restriction new[__]_ uses two 
instances of Qid, since it declares a pair of co-variables. The constructor for conditionals is parametric on an instance of 
Value. We add constructors for selection and branching process terms; their definition is as expected. In particular, the 
constructor for branching processes relies on instances of Choiceset, which consists of sets of pairs of Qid and process 
terms. We use instances of Qid to represent labels.

Substitutions As we have seen, the semantics of sπ relies on substitutions of variables with values. To deal with substitu-
tions in Maude, we follow Thati et al.’s approach [28] and use Stehr’s CINNI calculus [25], an explicit substitution calculus, 
which provides a mechanism to implement α-conversion at the language level. The idea behind CINNI is to syntactically 
associate each use of a variable x to an index, which acts as a counter of the number of binders for x that are found before 
it is used. In CINNI, there are three types of substitution operations:

Type Meaning

Simple substitution [a := x] a{0} 	→ x [a := x] a{n+ 1} 	→ a{n}
[a := x] b{m} 	→ b{m}

Shift substitution ↑a a{n} 	→ a{n+ 1} ↑a b{m} 	→ b{m}
Lift substitution ⇑a (S) a{0} 	→ a{0} ⇑a (S) a{n+ 1} 	→ ↑a (S a{n})

⇑a (S) b{m} 	→ ↑a (S b{m})

A simple substitution of a variable a for a variable x takes place if the index of x is 0; the index is decreased by 1 otherwise. 
A shift substitution over a increases by 1 the index and a substitution S can be lifted to skip one index. Any substitution 
over a variable a has no effect on other variables.

We now present the definition of explicit substitutions for sπ using an approach similar to Stehr’s. We first present 
the definition of the variable substitutions. We use the sort Subst and the substitution application is performed by the 
operator __, which takes a substitution and a variable. We define equations for the three substitutions above:

sort Subst .
op [_:=_] : Qid Value -> Subst .
op [shiftup_] : Qid -> Subst .
op [lift__] : Qid Subst -> Subst .
op __ : Subst Chan -> Chan .
4
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eq [ a := v ] a{0} = v .
eq [ a := v ] a{s(n)} = a{n} .
ceq [ a := v ] b{n} = b{n} if a =/= b .
eq [ a := v ] val(a) = v .
eq [ shiftup a ] a{n} = a{s(n)} .
ceq [ shiftup a ] b{n} = b{n} if a =/= b .
eq [ lift a S ] a{0} = a{0} .
eq [ lift a S ] a{s(n)} = [ shiftup a ] S a{n} .
ceq [ lift a S ] b{n} = [ shiftup a ] S b{n} if a =/= b .

Equipped with these elements, we adapt to the syntax of sπ the equations associated to the explicit substitutions for 
the process terms as follows:

op __ : Subst Trm -> Trm [prec 3] .
op subst-aux : Subst Choiceset -> Choiceset .
eq S nil = nil .
eq S (new [x y] P) = new [x y] ([lift x S] [lift y S] P) .
eq S (q a(y) . P ) = q (S a)(y) . ([lift y S] P) .
eq S (a < b > . P) = (S a) < (S b) > . (S P) .
ceq S (a < v > . P) = (S a) < v > . (S P) if v == True or v == False .
ceq S (if v then P else Q fi) = if v then (S P) else (S Q) fi

if v == True or v == False .
eq S (if val(x) then P else Q fi) = if (S val(x)) then (S P) else (S Q) fi .
eq S (a >> {CH}) = (S a) >> { subst-aux(S, CH) } .
eq S (a << x . P) = (S a) << x . (S P) .
eq S (P | Q) = (S P) | (S Q) .
eq subst-aux(S, empty) = empty .
eq subst-aux(S, (x : P) CH) = (x : (S P)) subst-aux(S, CH) .

In each equation, we deal with a specific production rule for process terms. In each process, the substitution S is applied 
in each variable and each subprocess, as expected. In particular, a lift substitution is performed over x, y, and S to skip the 
index 0 and perform the substitution in the remaining indices for the scope restriction operator. In this way, the substitution 
S has the expected effect.

Structural congruence To represent the rules in Fig. 1, we exploit the Maude equational attributes assoc, comm, and id to 
declare the associative, commutative, and identity axioms for parallel composition, with process nil acting as its identity. 
This suffices to cover the rules on the two first lines of Fig. 1. The remaining rules are explicitly declared via the equations 
below:

eq new[x y] nil = nil .
eq if True then P else Q fi = P .
eq if False then P else Q fi = Q .
ceq P | new[x y] Q = new [x y] (Q | [shiftup x] [shiftup y] P)

if P =/= nil /\ Q =/= nil /\ CS := free\mathit{vars}(P) /\ x{0} in CS and y{0} in CS .
ceq P | new[x y] Q = new [x y] (Q | [shiftup x] P)

if P =/= nil /\ Q =/= nil /\ CS := free\mathit{vars}(P) /\ x{0} in CS and not y{0} in CS .
ceq P | new[x y] Q = new [x y] (Q | [shiftup y] P)

if P =/= nil /\ Q =/= nil /\ CS := free\mathit{vars}(P) /\ not x{0} in CS and y{0} in CS .
ceq P | new[x y] Q = new [x y] (Q | P)

if P =/= nil /\ Q =/= nil /\ CS := free\mathit{vars}(P) /\ not x{0} in CS /\ not y{0} in CS .

Scope extrusion is represented through four equations corresponding to the four cases in the presence of x, y in the free 
variables of process P. Function freevars stands for the Maude implementation of the function fv over processes.

3.2. Operational semantics

Combined, the Maude rewriting rules, the equational attributes, and the explicit equations associated to variables of sort 
Trm can appropriately express the reduction semantics of sπ and manipulate terms in a compositional fashion. A process 
is reduced to a simpler equivalent form by virtue of the equational theory; a process is rewritten as long as it satisfies the 
structure required for a rule wherever the process is located. As a consequence, subprocesses are also rewritten and we do 
not need to explicitly represent the contextual rules ([R-Par] and [R-Res]).

A process is converted into standard form using the explicit congruence rules. This way, the scope of every unguarded 
occurrence of the new operator is extended to the top level.

Process interaction in sπ can only occur through co-variables; therefore, processes involved in a synchronization must be 
underneath a scope restriction over such co-variables. Nonetheless, since in the standard form the order of the unguarded 
occurrences of the new operator is irrelevant, it would be necessary to explicitly look for the processes that are enabled to 
interact, which would affect the efficiency of the rewriting specification. To counter this, we include an auxiliary operator, 
5
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dubbed new*, which declares a list of pairs of new co-variables, rather than just a single pair. This is equivalent to using 
nested new operators, i.e., the term new* [x1 y1 x2 y2 ... xn yn] P is equivalent to the term

new [x1 y1] new [x2 y2] ... new [xn yn] P.

We declare the constructor for the sort QidSet with the equational attribute comm to ensure that the order among the 
pairs of new co-variables is irrelevant.

This way, the entire process will be underneath a scope restriction new* and interaction will be poss

sorts QidPair QidSet . subsort QidPair < QidSet .
op __ : Qid Qid -> QidPair [ctor] .
op mt : -> QidSet [ctor] .
op __ : QidSet QidSet -> QidSet [ctor comm assoc id: mt] .
op new* [_] _ : QidSet Trm -> Trm [ctor] .

Given a process P , let us write �P� to denote its representation in Maude. A reduction rule P −→ Q can be associated 
to a rewriting rule l : �P� => �Q �. The reduction rules can be stated as follows:

crl [FLAT] : P => P’ if P’ := flatten(P) /\ P =/= P’ .
rl [LINCOM] : new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | R .
rl [UNCOM] : new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .
rl [CASE] : new* [(x y) nl] (x{N} << w . P) | (y{N} >> { (w : Q) CH }) | R =>

new* [(x y) nl] P | Q | R .

Rule FLAT normalizes the whole process. Hence, in addition to the implicit rewriting performed by the equations associated 
to the congruence rules, the nested new declarations are stated as a flat declaration new*. We use an auxiliary operation 
flatten, which is defined as follows:

op flatten : Trm -> Trm .
eq flatten(new [x y] P) = flatten(new* [x y] P) .
eq flatten(new* [nl] new [x y] P) = flatten(new* [nl x y] P) .
eq flatten(new* [nl] new* [nl’] P) = flatten(new* [nl nl’] P) .
eq flatten(P) = P [owise] .

Rules LINCOM, UNCOM and CASE correspond to the specification of the reduction rules related to synchronization in the 
calculus semantics (see Fig. 2). In these rules, nl stands for the additional co-variables being declared. Rules LINCOM
and UNCOM substitute the variable z for the value v. It is worth to highlight that these rules require the process term is 
underneath an operator new* whereby synchronization is only possible when the communication pattern occurs at the top 
level of the process and in this way we prevent the rewriting of guarded subprocesses.

We also include some equations which capture natural equivalences for processes involving the auxiliary operator new*.

eq new* [nl] nil = nil .
eq new* [x y nl] y{N} < v > . P | q x{N}(z) . Q | R =

new* [y x nl] y{N} < v > . P | q x{N}(z) . Q | R .
eq new* [x y nl] (y{N} << w . P) | (x{N} >> { CH }) | R =

new* [y x nl] (y{N} << w . P) | (x{N} >> { CH }) | R .

Given a pair of co-variables x y, we assume that the first action on x is an output or a selection and the first action on 
y is an input or a branching. When this is not the case, the last two equations swap x and y to enable the execution of the 
rewriting rules. The type system detailed in Section 4 ensures that for typable process this swap occurs at most once in a 
pair of co-variables.

Our rewriting specification enables us to directly execute a possible sequence of reductions over a process using the 
Maude command ‘rew’. In this way, we can obtain a stable (final) reachable process, which cannot reduce further. Moreover, 
we can use the reachability command ‘search’ to: (i) perform all possible sequence of reductions of a process and obtain 
every possible stable process and (ii) check whether a process that fits some pattern is reachable or if a specific process is 
reachable. In Section 4, we leverage commands ‘search’ and ‘modelCheck’ to detect deadlocked sπ processes.

Specification correctness The transition system associated to our rewrite theory in Maude can be shown to coincide with 
the reduction semantics in Section 2. This operational correspondence result is detailed in Appendix A.
6
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4. Algorithmic type checking for sπ

4.1. Type syntax

We present a Maude implementation of the algorithmic type checking given in [30]. The type system considers typing 
contexts, denoted �, which associate each variable to a specific type, denoted T . Typing contexts and types are defined 
inductively as follows:

� ::= ∅ | �, x : T q ::= lin | un

p ::= ?T .T | !T .T | &{li : Ti}i∈I | ⊕ {li : Ti}i∈I

T ::= bool | end | q p | a | μa.T

Above, q stands for qualifiers and p stands for pretypes; Moreover, x denotes a variable, each li denotes a label and a
denotes a general variable. For simplicity, we assume a single basic type for values (bool). For a given type T, we also use 
the predicate un(T), which holds whenever T= bool or T= un p, for a pretype p.

Each variable is associated to a (session) type, which represents its intended protocol. In the above grammar, these types 
correspond to qualified pretypes. The pretype ?T1.T2 (resp. !T1.T2) is assigned to a variable that first receives (resp. sends) a 
value of type T1 and then proceeds to type T2. The pretype &{li : Ti}i∈I (resp. ⊕{li : Ti}i∈I ) is assigned to a variable that can 
offer (resp. select) li options and continues with type Ti depending on the label selected. The type end (empty sequence) 
denotes the type of a variable where no interaction can occur. Recursive types can express infinite sequences of actions; in 
the type μa.T , a corresponds to a type variable that must occur guarded in T . Following [30], type equality is defined equi-
recursively; thus, instead of dealing directly with recursive types of the form μa.T , an equivalent type is taken. Unfolding
is the mechanism used to obtain the new type, where substitutions T [μa.T /a] are performed until the type does not start 
with the binder ‘μa’.

We encode session types in Maude by associating the non-terminals context, qualifiers, pretypes, and types to sorts 
Context, Qualifier, Pretype, and Type.

sorts Pretype Type Context ChoiceT ChoiceTset .
subsort ChoiceT < ChoiceTset .
op ?_._ : Type Type -> Pretype . op !_._ : Type Type -> Pretype .
op +{_} : ChoiceTset -> Pretype . op &{_} : ChoiceTset -> Pretype .
ops bool end : -> Type . op __ : Qualifier Pretype -> Type .
op u [_] _ : Qid Type -> Type . op var : Qid -> Type .
ops nil invalid-context : -> Context .
op _:_ : Value Type -> Context .
op _,_ : Context Context -> Context [ctor assoc comm id: nil] .
op _:_ : Qid Type -> ChoiceT . op empty : -> ChoiceTset .
op __ : ChoiceTset ChoiceTset -> ChoiceTset [assoc comm id: empty] .

Each production rule is given as a specific constructor. In particular, constructors +{_} and &{_} represent the pre-
types ⊕{li : Ti}i∈I and &{li : Ti}i∈I , respectively. The pairs of labels li and subtypes Ti are defined as instances of the sort 
ChoiceTset. The recursive type μa.T is given as the constructor u [_] _ and the type variables are given as the con-
structor var.

Typing contexts are defined as expected. An empty context is denoted as nil whereas a single context is associated 
to the constructor _:_. General contexts are provided by the constructor _,_, which is annotated with the equational 
attributes assoc, comm and id since the order is irrelevant in typing contexts and the construction is associative. Finally, 
we added a constant invalid-context to denote an error in type checking.

4.2. Algorithmic type checking

We follow the system for algorithmic type checking proposed (and proven correct) in [30]. This type system enables type 
checking of the sπ processes from Section 2, with a minor caveat: algorithmic type checking uses processes in which the 
restriction operator has a corresponding type annotation, i.e., it uses (νxy : T )P instead of (νxy)P . Consequently, we add a 
constructor for the sort Trm in the Maude specification:

op new[__:_]_ : Qid Qid Type Trm -> Trm [ctor prec 28] .

Following [30], we implement the type checking algorithm by relying on some auxiliary functions for type duality (i.e., 
compatibility), type equality, and context update and difference, among others. They are implemented by means of functions 
and equations in Maude. The details of the Maude implementation for type duality (function mclo-dual), context update 
(function +), and the context difference (function \) can be found in Appendix B.
7
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� � true : bool;� [A-True] �1, x : lin p,�2 � x : lin p; (�1,�2) [A-LinVar]

� � false : bool;� [A-False]
un(T )

�1, x : T ,�2 � x : T ; (�1, x : T ,�2)
[A-UnVar]

Fig. 3. Typing rules for values, � � v : T ;�.

� � 0 : �; ∅ �1 � P : �2; L1 �2 ÷ L1 � Q : �3; L2

�1 � P | Q : �3; L2
[A-Inact] [A-Par]

�1, x : T , y : T � P : �2; L

�1 � (νxy : T ) P : �2 ÷ {x, y}; L\{x, y} [A-Res]

�1 � v : q bool;�2 �2 � P : �3; L �2 � Q : �3; L

�1 � if v then P else Q : �3; L
[A-If]

�1 � x : q!T .U ;�2 �2 � v : T ;�3 �3 + x : U � P : �4; L

�1 � xv.P : �4; L ∪ (if q = lin then {x} else ∅)
[A-Out]

�1 � x : q2?T .U ;�2 (�2, y : T ) + x : U � P : �3; L q1 = un ⇒ L\{y} = ∅
�1 � q1x(y).P : �3 ÷ {y}; L\{y} ∪ (if q2 = lin then {x} else ∅)

[A-In]

�1 � x : q&{li : Ti}i∈I ;�2 �2 + x : Ti � Pi : �3; Li ∀i∈I, j∈I Li\{x} = L j\{x}
�1 � x � {li : Pi}i∈I : �3; L ∪ (if q = lin then {x} else ∅)

[A-Branch]

�1 � x : q ⊕ {li : Ti}i∈I ;�2 �2 + x : T j � P : �3; L j ∈ I

�1 � x � l j .P : �3; L ∪ (if q = lin then {x} else ∅)
[A-Sel]

Fig. 4. Typing rules for processes, � � P : �; L.

Algorithmic type checking is expressed by sequents of the form �1 � v : T ; �2 (for values) and �1 � P : �2; L (for pro-
cesses). These sequents have an input-output reading: sequent �1 � v : T ; �2 denotes an algorithm that takes �1 and v as 
input and returns T and �2 as output; similarly, sequent �1 � P : �2; L denotes an algorithm that takes �1 and P as input 
and produces �2 and L as output. While �2 is a residual context, the set L collects linear variables occurring in subject po-
sition. Intuitively, L tracks the linear variables that are used in P to prevent their reuse in another process. Both algorithms 
are given by typing rules, which we specify in Maude as an equational theory.

Fig. 3 shows the typing rules for values, which correspond to the rules in [30]. The rules for boolean values 
(Rules [A-True] and [A-False]) produce as results the type bool and the input context � remains unaltered. There are 
two rules for a variable x: if x has a linear type lin p then the entry x : lin p is removed from the returned context (Rule 
[A-LinVar]); otherwise, if x : un p for a pretype p, then the entry x : un p is kept in the returned context (Rule [A-UnVar]). 
The algorithm for type checking of values is then implemented as a function type-value, which is defined as follows:

op type-value : Context Value -> TupleTypeContext .
eq type-value(C, True) = [C bool] . ---[A-TRUE]
eq type-value(C, False) = [C bool] . ---[A-FALSE]
ceq type-value(((a : T), C), a) = [((a : T), C) unfold(T)] ---[A-UNVAR]

if unrestricted(T) .
eq type-value(((a : lin p), C), a) = [C (lin p)] . ---[A-LINVAR]
eq type-value(((a : u [x] T), C), a) =

type-value(((a : unfold(u [x] T)), C), a) . ---[A-LINVAR]
eq type-value(C, v) = ill-typed [owise] .

Function type-value produces an instance of the sort TupleTypeContext. This sort groups a context and a type or 
a set of variables and it has only one constructor [_ _]. The equations related to the typing of boolean values arise as 
expected, according to the corresponding typing rule. In those cases, a tuple that contains the unmodified context and the 
type bool is produced. For unrestricted variables, given that some types are infinite, the unrestricted types are unfolded
before the update (cf. the unfold operation). If a type T is a recursive type μa.U then the substitution U [μa.U/a] is 
performed. Otherwise, the type T remains unaltered. For linear variables, we also unfold the type when necessary and the 
linear type is returned and removed from the context.

Fig. 4 shows the typing rules for sπ processes; they largely correspond to the rules in [30]. Rule [A-Inact] proceeds 
as expected. Process 0 is well-typed and the typing context � remains unaltered and the set of linear variables is empty. 
Rule [A-Par] handles parallel composition: to check a process P | Q over a context �1, the type of P is checked and the 
resulting context �2 is used to type-check process Q , making sure that the linear variables used for P are first removed 
by using the context difference function (�2 ÷ L1). This ensures that free linear variables are used only once. The output 
8
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of the algorithm for Q (context �3 and set L2) then corresponds to the output of the entire process P | Q . Rule [A-Res]
type-checks a process (νxy : T )P in a context �1: it first checks the type of sub-process P in the context �1 extended with 
the association of variables x, y to the type T and its dual type, denoted T . It is expected that if type T (T ) is linear then 
it should not be in the resulting context �2; otherwise, if type T (T ) is unrestricted then it will appear in �2. We require 
that variables x, y are deleted from the residual context (�2 ÷ {x, y}) and from the set L of linear variables.

Rule [A-If] verifies that type of value v is bool in the context �1, and requires that the typecheck of P and Q in the 
context �2 generate the same residual context �3 and the same set L, since both processes should use the same linear 
variables.

Rule [A-Out] handles output processes: it uses the incoming context �1 to check the type of x, which should be of the 
form q!T .U . Then, it checks that the type of v in the residual context �2 is T . The type of the continuation P is checked in 
the context �3 + x : U , which stands for the context �3 updated with the association of x and the continuation type U . The 
context update ‘+’ operator enforces that types q!T .U and U must be equivalent when x is unrestricted (i.e., q = un). The 
rule returns a context �4 and a set of variables L joined with x, if linear. Rule [A-In] presents some minor modifications 
with respect to the one in [30]. We require that in the case of replication there are no (free) subjects on linear variables in 
process P except possibly the input variable y. Other than this, this rule is similar to Rule [A-Out].

Rule [A-Sel] looks the type of x in the incoming context �1. This type must be of the form q ⊕ {li : Ti}i∈I . Subsequently, 
the continuation P is type-checked under the resulting context �2 updated with a new assumption for x, which is associated 
to a type T j . In this way, when q = un we must have ⊕{li : Ti}i∈I = T j . This rule produces as result the context �3 and the 
set of linear variables L is augmented with x if linear. Context �3 and set L also corresponds to the output of the type 
checking of process P . Finally, we have Rule [A-Branch], which has some minor modifications with respect to the rule 
in [30]. More precisely, this rule has been adjusted to require that the sets of (free) subjects on linear variables Li only 
differ in the input variable y. Other than this, this rule is quite similar to Rule [A-Sel].

Example 4.1. As an example of type checking, if T = lin !bool.lin ?bool.end then we can establish the following sequent:

a : bool � (νx1 y1 : T )(lin y1(v).y1v.0 | x1a.lin x1(z).0) : (a : bool); {x1, y1}

We implement the type-checking algorithm as a function type-term that receives an instance of the sort Context and 
an instance of the sort Trm. Moreover, it produces an instance of the sort TupleTypeContext that groups the resulting 
typing context and the set L of linear variables that were collected during type-checking. Each rule is implemented by an 
equation:

op type-term : Context Trm -> TupleTypeContext .
eq type-term(C, nil) = [C mt] . --- [A-INACT]
ceq type-term(C, P | Q) = [C2 L2] --- [A-PAR]

if [C1 L1] := type-term(C, P) /\ [C2 L2] := type-term(C1 / L1, Q) .
ceq type-term(C, new [x y : T] P) = --- [A-RES]

[(C1 / (x{0} y{0})) remove(remove(L1, x{0}), y{0})]
if [C1 L1] := type-term((C, (x{0} : T), (y{0} : mclo-dual(T))), P) .

ceq type-term(C, if v then P else Q fi) = [C2 L1] --- [A-IF]
if [C1 bool] := type-value(C, v) /\

[C2 L1] := type-term(C1, P) /\ [C2 L1] := type-term(C1, Q) .
ceq type-term(C, a < v > . P) = --- [A-OUT]

[C3 (if q == lin then (L1 a) else L1 fi)]
if [C1 (q ! T . U)] := type-value(C, a) /\

[C2 T’] := type-value(C1, v) /\ /\ equal(T, T’)
[C3 L1] := type-term((C2 + a : U), P) .

ceq type-term(C, un a(y) . P) = [(C2 / y{0}) mt] --- [A-IN]
if [C1 (un ? T . U)] := type-value(C, a) /\

[C2 L] := type-term((C1, (y{0} : T)) + a : U, P) /\
remove(L, y{0}) == mt .

ceq type-term(C, lin a(y) . P) = [(C2 / y{0}) (remove(L, y{0}) --- [A-IN]
(if q == lin then a else mt fi))]

if [C1 (q ? T . U)] := type-value(C, a) /\
[C2 L] := type-term((C1, (y{0} : T)) + a : U, P) .

ceq type-term(C, a>>{CH}) = check-branch(C1, a, CH, CHT,q) --- [A-BRANCH]
if [C1 (q & { CHT })] := type-value(C, a) .

ceq type-term(C, a << x . P) = --- [A-SEL]
[C2 (if q == lin then (L1 a) else L1 fi)]

if [C1 (q + { (x : T) CHT })] := type-value(C, a) /\
[C2 L1] := type-term((C1 + a : T), P) .

eq type-term(C, P) = ill-typed [owise] .

When type checking is successful, function type-term produces an outgoing type context and a set of variables. Those 
elements are grouped using the constructor [__], which is associated to the sort TupleTypeContext. We use a Maude 
comment to annotate each equation with the corespondent typing rule. The correspondence is quite intuitive; we highlight 
9
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some important details. An empty set of variables is represented with the constant mt. We remark that the operator / 
stands for the context difference operation that removes some variables of a type context, whereas operator ‘remove’ drops 
a variable of a variable set. In the equation for Rule [A-Out], we do not use the same variable T in the type associated to 
variable a and the type associated to value v as it would be expected, since the types are possibly infinite and there are 
many possible representations for the same infinite type. Instead, we use another variable T’ and we check that T and T’ 
are equivalent, using function equal.

We split Rule [A-In] in two different equations for linear and unrestricted inputs. In the linear case, it is possible that the 
type of the subject a is linear or unrestricted; when the variable is linear it must be included in the returned set of linear 
variables. In the unrestricted case, the type of subject a is required to be unrestricted in as much as the attempt to use a 
linear variable in an unrestricted fashion must be rejected. Moreover, we require that the only free linear variable used in 
process P is y{0} (condition remove(L, y{0}) == mt).

Example 4.2. The process

(νx1x2)(x1x1.0 | un x2(z).(P | x1z.0))

defines P as a replicated process (see [30]). For simplicity, we will assume P = w true.0. Additionally, we assume 
w :μb.un !bool.b and x1 :μa.un !a.a. The Maude implementation of this process is as follows:

op Replication : Trm .
ops TypeP Typex1 : -> Type .
eq TypeP = u[’b’]un ! bool . var(’b’)) .
eq Typex1 = u[’a’] un ! var(’a’) . var(’a’)) .
Replication = new[’x1’ ’x2’ : Typex1]

(’x1’{0}< ’x1’{0} > . nil | un ’x2’{0}(’z’) . (’P’{0}< True > . nil |
’x1’{0}< ’z’{0} > . nil))) .

Using the function type-term we obtain the following result for type-checking:

reduce in TEST : type-term(’w’{0} : TypeP, Replication) .
rewrites: 174 in 0~ms cpu (0~ms real) (~ rewrites/second)
result TupleTypeContext: [(’w’{0} : un ! bool . u[’b’]un ! bool . var(’b’)) (mt).Chanset]

As output we obtain a term of sort TupleTypeContext whose first component has no linear types and there are no 
linear channels in subject position ((mt).Chanset), which tells us that the process is well typed.

4.3. Type soundness, now executable in Maude

Vasconcelos [30] established that the type system for sπ is sound: a closed, well-typed process is guaranteed to have a 
well-defined behavior according to the ascribed protocols and the reduction semantics of the calculus. Also, the algorithmic 
type checking, as implemented in this section, is proven correct. With these two elements, we can integrate (i) the rewriting 
specification of the operational semantics and (ii) the implementation of the algorithmic type checking. This way, we only 
execute well-typed processes. For this purpose, we use two auxiliary functions well-typed and erase. The former checks 
whether a process does not have typing errors:

op well-typed : Trm -> Bool .
eq well-typed(P) = (type-term(nil, P) =/= ill-typed) .

Function well-typed applies the type checking algorithm type-term over a process P and returns true when type-
checking is successful, i.e. when the result is not ill-typed. Function erase proceeds inductively on the structure 
of a process; when it reaches an annotated subprocess ‘new [x y : T] P’, it removes the annotation to produce 
‘new [x y] P’—see Appendix B for details.

Correspondingly, we extend our specification of the reduction semantics to enable the execution of annotated processes, 
i.e., processes that use the operator (νxy : T )P instead of the operator (νxy)P :

rl [TYPED] : new [x y : T] P => if well-typed(new [x y : T] P)
then erase(new [x y] P) else ill-typed-process fi .

We check whether process new [x y : T] P is well-typed; if so, we rewrite it as an equivalent process in which 
each occurrence of new [x y : T] is replaced by new [x y] through the function erase. Otherwise, process 
new [x y : T] P is rewritten as ill-typed-process, a constant that denotes that the process has a typing error 
and cannot be executed.
10
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Example 4.3. The process

P1 = (νx1 y1)(νx2 y2)(νx3 y3)(x3 true.x1 true.x2 false.0 | lin y3(z).lin y2(x).lin y1(w).0)

can be implemented in Maude as:

op P1 : -> Trm .
eq P1 = new[’y1’ ’x1’ : lin ? bool . end]

new[’y2’ ’x2’ : lin ? bool . end]
new [’y3’ ’x3’ : lin ? bool . end]
(’x3’{0} < True > . ’x1’{0} < True > . ’x2’{0} < False > . nil |
lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’y1’{0}(’w’) . nil) .

Then, by using the function well-typed we can confirm that P1 is well-typed:

reduce in TEST : well-typed(P1) .
rewrites: 143 in 0~ms cpu (0~ms real) (~ rewrites/second)
result Bool: true

5. Lock and deadlock detection in Maude

Although the type system for sπ given in [30] enables us to statically detect processes whose variables are used accord-
ing to their ascribed protocols (expressed as session types), there are processes that are well-typed but that still exhibit 
unwanted behaviors, in particular deadlocks.

Example 5.1. As a simple example, consider the process

P = x3 true.x1 true.y2 false.0 | lin y3(z).lin x2(w).lin y1(t).0

P is well-typed in a context x1 : lin !bool.end, y1 : lin ?bool.end, x2 : lin ?bool.end, y2 : lin !bool.end, x3 : lin !bool.end, y3 :
lin ?bool.end. Process (νx1 y1x2 y2x3 y3)P can reduce but becomes deadlocked after such a synchronization, due to a circular 
dependency on variables x1, y1, x2, y2.

In this section we characterize deadlocks in sπ and we show how to use the rewrite specification of the operational 
semantics and the Maude tools for detecting processes with deadlocks.

5.1. Definitions

We follow the formulation of deadlock and lock freedom given by Padovani [20], which uses the notion of pending 
communication. We start by defining the reduction contexts C:

C ::= [ ] | (C | P ) | (νxy)C

The notion of pending communication in a process P with respect to variables x, y is defined with the following auxiliary 
predicates:

in(x, P )
def⇐⇒ P ≡ C[lin x(y).Q ] ∧ x /∈ bv(C)

in∗(x, P )
def⇐⇒ P ≡ C[un x(y).Q ] ∧ x /∈ bv(C)

out(x, P )
def⇐⇒ P ≡ C[xv.Q ] ∧ x /∈ bv(C)

sync(x, y, P )
def⇐⇒ (in(x, P ) ∨ in∗(x, P )) ∧ out(y, P )

wait(x, y, P )
def⇐⇒ (in(x, P ) ∨ out(y, P )) ∧ ¬sync(x, y, P )

where we assume the extension of function bv(.) to reduction contexts. Intuitively, the first three predicates express the 
existence of a pending communication on a variable x. More in details:

• Predicate in(x, P ) holds if x is free in P and there is a subprocess of P that is able to make a linear input on x. Predicate 
in∗(x, P ) is its analog for unrestricted inputs.

• Predicate out(x, P ) holds if x is free in P and a subprocess of P is waiting to send a value v .
• Predicate sync(x, y, P ) denotes a pending input on x for which a synchronization on y is immediately possible.
• Predicate wait(x, y, P ) denotes a pending input/output for which a synchronization on x, y is not immediately possible.
11
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Let us write −→∗ to denote the reflexive, transitive closure of −→. Also, write P � if there is no Q such that P −→ Q . 
With these elements, we may now characterize the deadlock and lock freedom properties. We say process P is

• deadlock free if for every Q such that P −→∗ (νx1 y1)(νx2 y2) . . . (νxn yn)Q � it holds that ¬wait(xi, yi, Q ) for every xi .
• lock free if for every Q such that P −→∗ (νx1 y1)(νx2 y2) . . . (νxn yn)Q and wait(xi, yi, Q ) there exists R such that 

Q −→∗ R and sync(xi, yi, R) hold.

This way, a process is deadlock free if there are not stable states with pending inputs or outputs; a process is lock free if it 
is able to eventually perform a synchronization in any pending input or output.

5.2. Verification in Maude

To verify deadlock freedom and lock freedom for typed processes, we can use Maude’s reachability tool search and 
the built-in LTL model checker modelCheck. These tools can only be used for processes whose set of reachable states is 
finite [4,10]. We remark that infinite state processes in the sπ calculus can only be defined using input-guarded replication. 
Correspondingly, termination is only guaranteed for processes P for which the set Reach(P ) = {Q | P −→∗ Q } is finite.

We start by representing the previous predicates over process terms as functions in Maude over instances of the sorts 
Trm and Chan:

ops in out in* : Chan Trm -> Bool .
ops sync wait : Chan Chan Trm -> Bool .
op wait-aux : QidSet Trm -> Bool .
eq in(a, lin a(x) . Q | R) = true .
eq in(a, P) = false [owise] .
eq in*(a, un a(x) . Q | R) = true .
eq in*(a, P) = false [owise] .
eq out(a, a < v > . Q | R) = true .
eq out(a, P) = false [owise] .
eq sync(a, b, P) = (in(a, P) or in*(a, P)) and out(b, P) .
eq wait(a, b, P) = (in(a, P) or out(b, P)) and not sync(a, b, P) .
eq wait-aux(mt, P) = false .
eq wait-aux((x y) nl, P) = wait(x{0}, y{0}, P) or wait(y{0}, x{0}, P) or wait-aux(nl, P) .

Above, we use function wait-aux to determine if a group of pairs of co-variables contains a pair for which there is a 
pending communication.

The deadlock freedom property imposes that there should be no stable states in which there are pending communica-
tions. Consequently, we can use the Maude command search as follows to find counterexamples:

search init =>! new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .

Above, init denotes the initial state for the process to be checked. We recall that the search command with the arrow 
=>! looks for final (stable) states. In this way, init is deadlock free if the search returns no solution. Solutions to this 
search are states in which there is no further reduction and the wait property holds for at least a pair of co-variables.

The lock freedom property requires checking some intermediate states and so the reachability tool cannot be used. 
Liveness properties such as lock freedom can be verified by model checking [7]. Given a process (νx1, y1) . . . (νxn, yn)P in 
sπ , lock freedom can be stated by means of the following Computation Tree Logic (CTL) formula:∧

(xi ,yi)∈vars(P )

A�(wait(xi, yi, Q ) −→ E♦sync(xi, yi, R)) (1)

Formula (1) says that in every execution path of P , whenever a state (process) Q satisfies wait(xi, yi, Q ), there is a path in 
which a state R satisfying sync(xi, yi, R) is reachable.

Currently, Maude does not support the verification of CTL formulas (which may require verifying the existence of specific 
paths); instead, it supports the verification of LTL formulas. Consequently, we state the following LTL formula:∧

(xi ,yi)∈vars(P )

�(♦wait(xi, yi, Q ) −→ ♦sync(xi, yi, R)) (2)

which is different to (1) and can be read as: for every execution path of P , whenever a state Q holding the wait(xi, yi, Q )

property is reached, then in every path starting in Q the property sync(xi, yi, R) will hold in some reachable process R . 
The difference is subtle: while Formula (2) states that sync(xi, yi, R) must hold for all execution paths where wait(xi, yi, Q )

holds, Formula (1) states that sync(xi, yi, R) must hold for some execution path.
We can verify Formula (2) by using Maude’s built-in LTL model checker. This formula is sound, i.e., if P satisfies (2) then 

P is lock free. Completeness is not guaranteed in general, however; it holds for well-typed processes with no replicated 
12
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input (see Appendix C). Consequently, we can use Maude to verify lock freedom in finite-state processes without infinite 
execution paths.

Below, we define the Maude predicates psync and pwait that we will use in the LTL model checker:

ops pwait psync : Chan Chan -> Prop [ctor] .
eq new* [(x y) nl] P |= pwait(x{0}, y{0}) = wait(x{0}, y{0}, P) or wait(y{0}, x{0}, P) .
eq new* [(x y) nl] P |= psync(x{0}, y{0}) = sync(x{0}, y{0}, P) or sync(y{0}, x{0}, P) .

In the predicates psync and pwait, we use normalized processes, i.e., processes where the nested scope restrictions 
are flattened in an equivalent process that uses the operator new*. This assumption simplifies the definitions. Both psync 
and pwait predicates use the functions in, in*, out, sync, and wait as expected according to the definition.

The Kripke structure that is generated for Maude will use such a normalized process term as the initial state. The Maude 
predicates pwait and psync hold with respect to a pair of dual variables if there is a pending communication and there 
is a synchronization in the process associated to a state. The lock freedom property imposes for each variable that if in any 
state there is a pending communication then eventually there will be a synchronization. Formalizing lock freedom requires 
to check each possible subject; accordingly, the LTL formula associated to this property depends on the variables being used 
in the process. We define a function build-lock-formula that takes the used variables and builds the corresponding 
LTL formula:

op build-lock-formula : QidSet -> Formula .
eq build-lock-formula(mt) = True .
eq build-lock-formula((x y) nl) = [] (<> pwait(x{0}, y{0}) -> <> psync(x{0}, y{0})) /\

build-lock-formula(nl) .

This way, function build-lock-formula recursively builds the Maude encoding for the LTL formula in (2). The resulting 
LTL formula corresponds to the conjunction of the LTL subformulas associated to each dual variable. It is worth highlighting 
that the Maude operators -> and /\ stand for the logical implication and conjunction, respectively, whereas operators [] 
and <> stand for the always and eventually temporal operators, respectively.

The model checker can be used as follows:

red modelCheck(init, build-lock-formula(vars)) .

where init and vars stand for the process term and a set of pairs of co-variables, respectively. If init is lock free then 
the invocation of modelCheck will produce true. Otherwise, the invocation will show a counterexample with a sequence 
of rules that produces a state where the formula is not fulfilled; counterexamples are shown as a pair consisting of two lists 
of transitions separated by a comma:

counterexample(
{State_0, RuleLabel_0}{State_1, RuleLabel_1} ... {State_i, RuleLabel_i},
{State_i+1, RuleLabel_i+1} ... {State_n, RuleLabel_n})

Above, each transition {State_i, RuleLabel_i} gives the current state and the rule to be applied. The first list of 
transitions corresponds to a finite execution path starting with init, and the transition list after the comma describes a 
loop; in the literature, this kind of counterexamples is often referred to as “lasso-shaped”. In general, when an LTL formula 
ϕ is not satisfied by a finite Kripke structure, then there is a counterexample of ϕ having a lasso shape [6]. However, since 
we are dealing with finite state processes, the counterexamples can be interpreted as a list separated by a comma in which 
a pending synchronization is never performed. Examples can be found in Section 5.3.

5.3. Examples

We give a couple of examples of well-typed processes in sπ , with different lock- and deadlock-freedom properties. 
Appendix C develops additional examples.

P1 = (νx1 y1)(νx2 y2)(νx3 y3)(x3 true.x1 true.x2 false.0 | lin y3(z).lin y2(x).lin y1(w).0)

P2 = (νx1 y1)(νx2 y2)(νab)(x1b.0 | a true.0 | un y1(z).x2z.0 | un y2(w).x1 w.0)

Process P1 reduces to a deadlock immediately after a synchronization on the co-variables x3, y3, whereas P2 is a process 
where the variable b is repeatedly shared through communications on x1, y1, x2, y2. The process is not lock-free: b is never 
used to synchronize with its co-variable a. Fig. 5 gives the Maude terms associated to these processes.

Notice that process P1 is well-typed, as shown in Example 4.3. We analyze P1 using Maude by executing:
13
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ops P1 P2 : -> Trm .
eq P1 = new* [(’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’)]

(’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |
lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil) .

eq P2 = new* [(’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’)]
(’x1’{0} < ’b’{0} > . nil | ’a’{0} < True > . nil |
un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |
un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil ) .

Fig. 5. Processes in Maude.

search P1 =>! new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .
red modelCheck(P1, build-lock-formula((’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’))) .

We obtain the following results, which confirm that P1 is not deadlock free and not lock free:

search in TEST : P1 =>! new*[nl:QidSet]P:Trm such that wait-aux(nl:QidSet, P:Trm) = true .

Solution 1 (state 1)
states: 2 rewrites: 178 in 0~ms cpu (0~ms real) (~ rewrites/second)

nl:QidSet --> (’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’
P:Trm --> ’x1’{0} < True > . ’x2’{0} < False > . nil |
lin ’y2’{0}(’x’) . lin ’y1’{0}(’w’) . nil

No more solutions.

result ModelCheckResult: counterexample(
{new*[(’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’]
’x3’{0} < True > . ’x1’{0} < True > . ’x2’{0} < False > . nil |
lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’y1’{0}(’w’) . nil,’LINCOM},
{new*[(’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’]
’x1’{0} < True > . ’x2’{0} < False > . nil |
lin ’y2’{0}(’x’) . lin ’y1’{0}(’w’) . nil,deadlock})

The solution for the deadlock search tells us that the process

(νx1 y1)(νx2 y2)(νx3 y3)(x1 true.x2 false.0 | lin y2(x).lin y1(w).0)

is deadlocked and reachable from P1. Model checking shows that after one reduction step with the Rule LINCOM, P1 reaches 
a process which is deadlocked and therefore P1 is also locked.

Consider now a similar execution for process P2. This process can be implemented in Maude as follows:

ops TypeX1 TypeX2 Typea : -> Type .
eq TypeX1 = (u[’i’]un !(un ? bool . end) . var(’i’)) .
eq TypeX2 = (u[’j’]un !(un ? bool . end) . var(’j’)) .
eq Typea = (u[’k’]un !(bool) . var(’k’)) .
eq P2 = new[’x1’ ’y1’ : TypeX1]new[’x2’ ’y2’ : TypeX2]new[’a’ ’b’ : Typea]

(’x1’{0}< ’b’{0} > . nil | un ’y1’{0}(’z’) . ’x2’{0}< ’z’{0} > . nil |
un ’y2’{0}(’z’) . ’x1’{0}< ’z’{0} > . nil) .

We first verify that it is well-typed by using function well-typed:

reduce in TEST : well-typed(P2) .
rewrites: 251 in 0~ms cpu (0~ms real) (~ rewrites/second)
result Bool: true

Now we analyze its (dead)lock properties:

search P2 =>! new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .
red modelCheck(P2, build-lock-formula((’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’))) .

Maude returns the following results, which confirm that P2 is an infinite, deadlock free process:

search in TEST : P2 =>! new*[nl:QidSet]P:Trm such that wait-aux(nl:QidSet, P:Trm) = true .

No solution.

result ModelCheckResult: counterexample(nil,
{new*[(’a’ ’b’) (’x1’ ’y1’) ’x2’ ’y2’]
14
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n ::= a,b | s, s

u, w ::= n | x, y, z

V , W ::= u | λx. P | x, y, z

P , Q ::= u!〈V 〉.P | u?(x).P | u � l.P | u � {li : Pi}i∈I | V u | | P | Q | (ν n)P | 0 | X | μX .P

Fig. 6. Syntax of HOπ .

’a’{0} < True > . nil | ’x1’{0} < ’b’{0} > . nil |
un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |
un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil, ’UNCOM}

{new*[(’a’ ’b’) (’x1’ ’y1’) ’x2’ ’y2’]
’a’{0} < True > . nil | ’x2’{0} < ’b’{0} > . nil |
un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |
un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil, ’UNCOM})

Because the model checking technique for lock freedom is not complete in general, we cannot ensure that P2 is locked 
from the fact that there is a counterexample.

6. The case of higher-order session processes

In higher-order process calculi, processes can communicate names but also abstractions (functions from names to pro-
cesses). Here we consider HOπ , a higher-order process calculus with session constructs; this is an interesting formalism, as 
it distills and supports directly the essential features of functional languages with concurrency. The fundamental theory of 
HOπ (behavioral equivalence, relative expressiveness) has been thoroughly investigated by Kouzapas et al. [17,18]. In this 
section we illustrate how our approach to executable specifications and type checking in Maude for sπ can be suitably 
adapted to HOπ .

We largely follow the structure and results that we developed for sπ in Sections 2–5. In Section 6.1 we summarize the 
syntax, semantics, and type system of HOπ , following [18]. Then, in Section 6.2 we present its executable semantics in 
Maude. The implementation of session type checking in Maude requires an algorithmic type system, which existed for sπ
but not for HOπ . Hence, in Section 6.3 we first develop an algorithmic type system for HOπ and prove its correspondence 
with the type system in Section 6.1. Subsequently, we present and illustrate the Maude implementation of this type system. 
Finally, in Section 6.4 we adapt the approach for deadlocks and locks detection from sπ to HOπ .

6.1. The typed process model HOπ

6.1.1. Syntax and semantics
Names a, b, c, . . . (resp. s, s, . . . ) range over shared (resp. session) names. Names m, n, t, . . . are session or shared names. 

Dual endpoints are n with s = s and a = a. Variables are denoted with x, y, z, . . . , and recursive variables are denoted 
with X, Y , . . . . An abstraction λx. P is a process P with name parameter x. Values V , W , . . . include identifiers u, v, . . . and 
abstractions λx. P (first- and higher-order values, resp.).

The syntax of HOπ calculus is presented in Fig. 6. Process terms P , Q , . . . include usual prefixes for sending and receiving 
values V . Processes u � l.P and u � {li : Pi}i∈I constructs for selection and branching. Process V u denotes application; it 
substitutes name u on the abstraction V . Typing ensures that V is not a name. Recursion μX .P binds the recursive variable 
X in P . Constructs for inaction 0, parallel composition P1 | P2, and name restriction (ν n)P are standard.

Notation 1. We shall write ∗ P to denote a replicated process P , representable as μX .(P | X).

In sπ , session name restriction was based on co-variables and denoted (νxy)P . Differently, session name restriction in 
HOπ is based on dual endpoints s and s and denoted (ν s)P ; the idea is that this construct simultaneously binds s and s
in P . Functions fv(P ), fn(P ), and fs(P ) denote, respectively, the sets of free variables, names, and session names in P , 
and are defined as expected. We assume V in u!〈V 〉.P does not include free recursive variables X . If fv(P ) = ∅, we call P
closed.

In a statement, a name (resp. variable) is fresh if it is not among the names (resp. variables) of the objects (processes, 
actions, etc.) of the statement. We shall follow Barendregt’s convention: all (session) names and variables in binding occur-
rences, in any mathematical context, are pairwise distinct but also distinct from free (session) names and variables.

Operational semantics The operational semantics of HOπ is defined in terms of a reduction relation, denoted −→, whose 
rules are given in Fig. 7 (top). We briefly describe the rules. Rule [App] defines name application. Rule [Pass] defines a shared 
interaction at n (with n = n) or a session interaction. Rule [Sel] is the standard rule for labeled choice/selection. Other rules 
are standard π -calculus rules. Reduction is closed under structural congruence, noted ≡ and given in Fig. 7 (bottom). We 
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(λx. P ) u −→ P {u/x} [App]
n!〈V 〉.P | n?(x).Q −→ P | Q {V/x} [Pass]

n � l j .Q | n � {li : Pi}i∈I −→ Q | P j ( j ∈ I) [Sel]
P −→ P ′ ⇒ (ν n)P −→ (ν n)P ′ [Res]
P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ Q −→ Q ′ ≡ P ′ ⇒ P −→ P ′ [Cong]

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 (ν n)0 ≡ 0

P | (ν n)Q ≡ (ν n)(P | Q ) (n /∈ fn(P )) μX .P ≡ P {μX .P/X} P ≡ Q if P ≡α Q

Fig. 7. Operational semantics of HOπ .

U ::= C | L

C ::= S | 〈S〉 | 〈L〉
L ::= C →� | C��
S ::= !〈U 〉.S | ?(U ).S | ⊕ {li : Si}i∈I | &{li : Si}i∈I | μt.S | t | end

Fig. 8. Syntax of session types for HOπ .

write ≡α to denote α-conversion and assume the expected extension of ≡ to values V . We write −→∗ for a multi-step 
reduction.

Example 6.1. Consider the HOπ process

P = a!〈λx. x!〈t〉.0〉.0 | a?(z).(z h1) | a?(w).(w h2) | h1?(v).Q 1 | h2?(r).Q 2

where Q 1 and Q 2 are left unspecified. Suppose the first and second sub-processes synchronize on a: by applying 
Rules [Pass] and [App] in Fig. 7, we would have:

P −→−→ h1!〈t〉.0 | a?(w).(w h2) | h1?(v).Q 1 | h2?(r).Q 2

Then, by applying Rule Pass, we obtain:

P −→∗ a?(w).(w h2) | Q 1{v/t} | h2?(r).Q 2

Now suppose that the first reduction step from P concerned the first and third sub-process. Then we would have:

P −→∗ a?(z).(z h1) | h1?(v).Q 1 | Q 2{v/r}

6.1.2. Session types for HOπ
The syntax of types for HOπ is given in Fig. 8. We write � to denote the process type. Value type U includes first-order 

types C and higher-order types L. Types C →� and C�� denote shared and linear higher-order types, respectively. Session 
types, denoted by S , follow the session type syntax for sπ , given in Section 4, with the extension that carried types U may 
be higher-order. Shared channel types are denoted 〈S〉 and 〈L〉.

As expected, the session type system for HOπ depends on a notion of duality on types. As in sπ , duality is obtained by 
swapping ! by ?, ? by !, ⊕ by &, and & by ⊕, including the fixed point construction. In this section, we write S1 dual S2 to 
mean that S1 and S2 are dual; the formal definition is coinductive, and given in [17].

We consider shared, linear, and session environments, denoted �, �, and 	, resp.:

� ::= ∅ | �, x : C →� | �, u : 〈S〉 | �, u : 〈L〉 | �, X : 	
� ::= ∅ | �, x:C��
	 ::= ∅ | 	, u : S

� maps variables and shared names to value types, and recursive variables to session environments; it admits weakening, 
contraction, and exchange principles. � maps variables to linear higher-order types; 	 maps session names to session types. 
Both � and 	 are only subject to exchange. The domains of �, �, and 	 are assumed pairwise distinct. We write 	1, 	2
for the disjoint union of 	1 and 	2. We write �\x to denote the environment obtained from � by removing the assignment 
x : U →�, for some U . Similarly, we write 	1\	2 and �1\�2 with the expected reading.
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(Sess)

�; ∅; {u : S} � u � S
(Sh)

�, u : U ; ∅;∅ � u � U

(LVar)

�; {x : C��};∅ � x � C��
(RVar)

�, X : 	; ∅;	 � X � �

(Abs)

�;�;	1 � P � � �; ∅;	2 � x � C

�\x;�;	1\	2 � λx. P � C��

(App)

�;�;	1 � V � C �� �∈ {�,→} �; ∅;	2 � u � C

�;�;	1,	2 � V u � �

(Prom)

�; ∅;∅ � V � C��
�; ∅;∅ � V � C →�

(EProm)

�;�, x : C��;	 � P � �
�, x : C →�;�;	 � P � �

(End)

�;�;	 � P � T u /∈ dom(�,�,	)

�;�;	, u : end � P � �

(Rec)

�, X : 	; ∅;	 � P � �
�; ∅;	 � μX .P � �

(Par)

�;�i;	i � Pi � � i = 1,2

�;�1,�2;	1,	2 � P1 | P2 � �
(Nil)

�; ∅;∅ � 0 � �

(Send)

u : S ∈ 	1,	2 �;�1;	1 � P � � �;�2;	2 � V � U

�;�1,�2; ((	1,	2) \ u : S), u :!〈U 〉.S � u!〈V 〉.P � �

(Req)

�;�;	1 � P � � �; ∅;∅ � u � 〈U〉 �; ∅;	2 � V �U U ∈ {S, L}
�;�;	1,	2 � u!〈V 〉.P � �

(Rcv)

�;�1;	1, u : S � P � � �;�2;	2 � x � U

�\x;�1\�2;	1\	2, u :?(U ).S � u?(x).P � �

(Acc)

�;�1;	1 � P � � �; ∅;∅ � u � 〈U〉 �;�2;	2 � x �U U ∈ {S, L}
�\x;�1\�2;	1\	2 � u?(x).P � �

(Bra)

∀i ∈ I �;�;	, u : Si � Pi � �
�;�;	, u : &{li : Si}i∈I � u � {li : Pi}i∈I � �

(Sel)

�;�;	, u : S j � P � � j ∈ I

�;�;	, u : ⊕{li : Si}i∈I � u � l j .P � �

(ResS)

�;�;	, s : S1, s : S2 � P � � S1 dual S2

�;�;	 � (ν s)P � �

(Res)

�,a : 〈S〉;�;	 � P � �
�;�;	 � (ν a)P � �

Fig. 9. Typing rules for HOπ .

Given the above intuitions for environments, the typing judgments for values V and processes P are denoted �; �; 	 �
V � U and �; �; 	 � P � �, respectively.

Fig. 9 gives the typing rules. We now describe some of them; see [17] for a full account. The shared type C →� is 
derived using Rule (Prom) only if the value has a linear type with an empty linear environment. Rule (EProm) allows us 
to freely use a shared type variable as linear. Abstraction values are typed with Rule (Abs). Application typing is governed 
by Rule (App): we expect the type C of an application name u to match the type of the application variable x (i.e., C ��
or C →�). In Rule (Send), the type U of value V should appear as a prefix in the session type !〈U 〉.S of u. Rule (Rcv) is 
its dual. Rules (Req) and (Acc) type interaction along shared names; the type of the sent/received object (S and L, resp.) 
should match the type of the sent/received subject (〈S〉 and 〈L〉, resp.).

We state type soundness for HOπ , as established in [17]. We require two auxiliary definitions. First, we focus on balanced
session environments:

Definition 6.1 (Balanced environments). We say that a session environment 	 is balanced if whenever s : S1, s : S2 ∈ 	 then 
S1 dual S2.

Second, we define a notion of reduction for session environments:

Definition 6.2. We define the relation −→ on session environments 	 as:

	, s :!〈U 〉.S1, s :?(U ).S2 −→ 	, s : S1, s : S2

	, s : ⊕{li : Si}i∈I , s : &{li : S ′}i∈I −→ 	, s : Sk, s : S ′ (k ∈ I)
i k
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Client
def= (ν h1)(ν h2)(s1!〈λx. Pxy{h1/y}〉.s2!〈λx. Pxy{h2/y}〉.0 |

h1?(x).h2?(y).if x ≤ y then

h1 � accept.h2 � reject.0 else h1 � reject.h2 � accept.0)

Pxy
def= x!〈room〉.x?(quote).y!〈quote〉.y �

{
accept : x � accept.x!〈credit〉.0 ,

reject : x � reject.0

}

Fig. 10. A possible HOπ implementation of the Hotel Booking scenario [17].

We write −→∗ to denote multi-step reduction.

We then have:

Theorem 6.1 (Type soundness [17]). Suppose �; ∅; 	 � P � � with 	 balanced. Then P −→ P ′ implies �; ∅; 	′ � P ′ � � and 	 = 	′
or 	 −→ 	′ with 	′ balanced.

6.1.3. An example
We illustrate processes and types by recalling the hotel booking scenario developed in [17,18]. The scenario involves a 

Client process that wants to book a hotel room. Client narrows the choice down to two hotels, and requires a quote from 
the two in order to decide. The round-trip time (RTT) required for taking quotes from the two hotels is not optimal, so the 
client sends mobile processes to both hotels to automatically negotiate and book a room.

Fig. 10 gives an implementation of this scenario in HOπ . We write if e then P1 else P2 to denote a conditional 
process that executes P1 or P2 depending on boolean expression e (this process is encodable using labeled choice). The 
implementation is given by process Client: it sends two abstractions with body P xy , one to each hotel, using sessions s1
and s2. In P xy , name x is meant to be instantiated by the hotel as the negotiating endpoint, whereas name y is used to 
interact with Client. Intuitively, process P xy : (i) sends the room requirements to the hotel; (ii) receives a quote from the 
hotel; (iii) sends the quote to Client; (iv) expects a choice from Client whether to accept or reject the offer; (v) if the choice 
is accept then it informs the hotel and performs the booking; otherwise, if the choice is reject then it informs the hotel 
and ends the session. Client instantiates two copies of P xy as abstractions on session x. It uses fresh endpoints h1, h2 to 
substitute channel y in P xy . This enables communication with the mobile code(s): Client uses the dual endpoints h1 and 
h2 to receive the negotiation result from the two remote instances of P and then inform the two processes for the final 
booking decision.

To illustrate the type system of HOπ , we give types to the client processes. Assume

S = !〈quote〉.&{accept : end, reject : end}
U = !〈room〉.?(quote). ⊕ {accept :!〈credit〉.end, reject : end}

where quote, room, and credit are (first-order) base types. We then have:

∅;∅; y : S � λx. P xy � U ��
∅;∅; s1 : !〈U ��〉.end, s2 : !〈U ��〉.end � Client � �

6.2. Rewriting semantics for HOπ

In this section we present the rewriting semantics for HOπ . We base our presentation on the rewriting semantics for 
sπ , given in Section 3, highlighting differences where appropriate.

6.2.1. Syntax
As for sπ , we use the Maude sorts Value, Chan, Trm, which correspond to the syntactic categories values, names, 

and terms. Similarly, we also have the auxiliary sorts Choice and ChoiceSet and some additional sorts (Variable, 
SessionName, and SharedName).

sorts Trm Guard Choice Choiceset Chan Value SessionName SharedName Variable .
subsort Chan < Value .
subsort SessionName < Chan .
subsort SharedName < Chan .
subsort Variable < Value .
subsort Choice < Choiceset .

op _{_} : Qid Nat -> SessionName [ctor prec 1] .
op _(_) : Qid Nat -> SharedName [ctor prec 1] .
op lambda(_)._ : Qid Trm -> Value [ctor prec 5] .
18
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op _<_> : Chan Value -> Guard [ctor prec 6] .
op _(_) : Chan Qid -> Guard [ctor prec 4] .
op nil : -> Trm [ctor] .
op new[_]_ : Qid Trm -> Trm [ctor prec 10] .
op _{_} : Value Chan -> Trm [ctor prec 18] .
op rec : Qid -> Trm [ctor] .
op u[_]._ : Qid Trm -> Trm [ctor prec 20] .
op _|_ : Trm Trm -> Trm [ctor assoc comm prec 12 id: nil] .
op _ << _ . _ : Chan Qid Trm -> Trm [ctor prec 15] .
op _ >> {_} : Chan Choiceset -> Trm [ctor prec 17] .
op _._ : Guard Trm -> Trm [ctor prec 7] .
op _:_ : Qid Trm -> Choice .
op empty : -> Choiceset [ctor] .
op _;_ : Choiceset Choiceset -> Choiceset [ctor assoc comm id: empty] .

Following the syntax in Section 6, values can be names, variables or abstractions. The distinction between names and 
values as well as the association of shared and session names like types of names are both obtained by means of the subsort 
relation. There is a specific constructor for each type of name: _{_} for session names and _(_) for shared names. Both 
constructors take a Qid and a natural number. The constructor for abstractions, denoted lambda(_)._,takes a Qid and a 
Trm, as expected.

Constructors for guards are as in Section 3 but without the qualifier in the input, which is not needed here. The con-
structor associated to the production rules for the process 0 and the guarded, parallel, selection, and branching terms are 
also as in Section 3. The constructor for restriction new[_]_ only uses one Qid, as co-names are implicitly declared in 
HOπ . We add constructors for the recursive variables and for process application: the former is denoted rec and takes 
a Qid, whereas the latter is denoted _{_} and relies on a Value and a Chan, as HOπ has first-order abstractions. The 
definition of the constructor for recursion is as expected.

6.2.2. Substitutions and structural congruence
Similarly as sπ , the semantics of HOπ relies on substitutions of names with values. We also adopt the CINNI calcu-

lus [25] to define explicit substitutions. In addition to the definitions given in Section 3, we add some equations for dealing 
with shared names and the co-name operator.

eq [ a := v ] a(0) = v .
eq [ a := v ] a(s(n)) = a(n) .
ceq [ a := v ] b(n) = b(n) if a =/= b .
eq [ shiftup a ] a(n) = a(s(n)) .
ceq [ shiftup a ] b(n) = b(n) if a =/= b .
eq [ lift a S ] a(0) = a(0) .
eq [ lift a S ] a(s(n)) = [ shiftup a ] S a(n) .
ceq [ lift a S ] b(n) = [ shiftup a ] S b(n) if a =/= b .
eq S *(x) = *(S x) .

As before, we specify the equations that enable the explicit substitutions for the process terms according to the syntax 
of HOπ . Each rule is concerned to a specific production rule. Next we report the equations associated to the production 
rules that differ from of the ones given in Section 3:

eq S (new [x] P) = new [x] ([lift x S] P) .
eq S (a < V > . P) = (S a) < apply-subst(S, V) > . (S P) .
eq S rec(x) = rec(x) .
eq S (u[x] . P) = u[x] . ([lift x S] P) .
eq S (V {a}) = apply-subst(S, V) {(S a)} .
eq apply-subst(S, a) = (S a) .
eq apply-subst(S, lambda(x) . P) = lambda(x) . ([lift x S] P) .
eq apply-subst(S, val(x)) = val(x) .
eq apply-subst(S, V) = V [owise] .

Notice that, for output terms, the substitution must be applied over the subject name, the value being sent, and the 
continuation process. The auxiliary operation apply-subst applies a substitution over each type of value (names, ab-
stractions, and variables).

For structural congruence, we follow a similar approach to the one for sπ . We declare the associative, commutative, 
and identity axioms for parallel composition by marking the respective constructor with the Maude equational attributes 
assoc, comm, and id, respectively. Consequently, we only need to specify some equations for the remaining rules in Fig. 7.

eq new[x] nil = nil .
ceq P | new[x] Q = new [x] (Q | [shiftup x] P)

if P =/= nil /\ Q =/= nil /\ x{0} in freevars(P) .
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6.2.3. Operational semantics
Following the implementation of sπ , to improve the efficiency of the rewriting specification, we adapt the auxiliary 

operator new* defined in Section 3. In the case of HOπ , this operator declares a list of names (and implicitly their co-
names), rather than just a single name. It is worth highlighting that we use a set of Qid (rather than a list of Qid) since 
the order of the names being declared is irrelevant.

sorts QidSet .
subsort Qid < QidSet .
op mt : -> QidSet .
op __ : QidSet QidSet -> QidSet [ctor comm assoc id: mt] .
op new* [_] _ : QidSet Trm -> Trm [ctor] .

A process term is converted into standard form by using the explicit congruence rules and as a result of the associative, 
commutative and identity equational attributes. Subsequently, the scope of every unguarded occurrence of the new oper-
ator is extended to the outermost level and the operator flatten is used to state the nested new declarations as a flat 
declaration new*.

op flatten : Trm -> Trm .
eq flatten(new [x] P) = flatten(new* [x] P) .
eq flatten(new* [nl] new [x] P) = flatten(new* [nl x] P) .
eq flatten(new* [nl] new* [nl’] P) = flatten(new* [nl nl’] P) .
eq flatten(P) = P [owise] .

The reduction rules for HOπ in Fig. 7 (top) can then be stated as follows:

crl [FLAT] : P => P’ if P’ := flatten(P) /\ P =/= P’ .
rl [SESS-COM1] : new* [x nl] (x{N} < V > . P | *(x{N}) (z) . Q | R) =>

new* [x nl] (P | [z := V] Q | R) .
rl [SESS-COM2] : new* [x nl] (*(x{N}) < V > . P | x{N} (z) . Q | R) =>

new* [x nl] (P | [z := V] Q | R) .
rl [SH-COM] : new* [x nl] (x(N) < V > . P | x(N) (z) . Q | R) =>

new* [x nl] (P | [z := V] Q | R) .
rl [SESS-SEL1] : new* [x nl] ((x{N} << w . P) |

(*(x{N}) >> { (w : Q) ; CH }) | R) =>
new* [x nl] (P | Q | R) .

rl [SESS-SEL2] : new* [x nl] ((*(x{N}) << w . P) |
(x{N} >> { (w : Q) ; CH }) | R) =>

new* [x nl] (P | Q | R) .
rl [SH-SEL] : new* [x nl] ((x(N) << w . P) |

(x(N) >> { (w : Q) ; CH }) | R) =>
new* [x nl] (P | Q | R) .

rl [APP] : new* [nl] (((lambda(x) . P) {a}) | Q) => new* [nl] ([x := a] P | Q) .
rl [REC] : new* [nl] ((u[x] . P) | Q) => new* [nl] (unfold(u[x] . P) | Q) .

We briefly discuss the rules. Rule FLAT rewrites a process term into a normalized process term. Rules SESS-COM1, 
SESS-COM2, and SH-COM correspond to the specification of reduction rules related to input-output communication. In 
particular, Rules SESS-COM1 and SESS-COM2 deal with communication by means of session names: they only differ in 
the usage of the co-name *(x{N}) for the input or the output. Rule SH-COM handles communication through shared 
names. Rules SESS-SEL1, SESS-SEL2, and SH-SEL are specifications for the reduction rules concerned with labeled 
choices. As before, we distinguish between synchronizations on session names (Rules SESS-SEL1 and SESS-SEL2) and 
synchronizations on shared names (Rule SH-SEL).

Rules APP and REC implement process application and recursion. The latter rule explicitly applies the structural con-
gruence rule associated to recursive process. In this case, the auxiliary operator unfold replaces each occurrence of the 
variable x for the term u[x].P. We specify this congruence rule as a rewriting rule (rather than as an equation) to prevent 
infinite unfolding. This way, we only unfold process terms where the recursion process is at the top level. The operator 
unfold and the auxiliary operators replace and replace-aux are defined as follows:

op unfold : Trm -> Trm .
op replace : Qid Trm Trm -> Trm .
op replace-aux : Qid Trm Choiceset -> Choiceset .

eq unfold(u[x] . P) = replace(x, u[x] . P, P) .
eq unfold(P) = P [owise] .
eq replace(x, P, nil) = nil .
eq replace(x, P, new[y] Q) = new[y] replace(x, P, Q) .
eq replace(x, P, rec(x)) = P .
eq replace(x, P, (lambda(y) . Q) {a}) = (lambda(y) . replace(x, P, Q)) {a} .
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1 ÷ ∅ = 
1
u /∈ dom(
1)


1 ÷ u = 
1


1 ÷ N = 
2, u : end


1 ÷ (N, u) = 
2

Fig. 11. Context difference for HOπ .

eq replace(x, P, G . Q) = G . replace(x, P, Q) .
eq replace(x, P, a >> {CH}) = a >> { replace-aux(x, P, CH) } .
eq replace(x, P, a << x . Q) = a << x . replace(x, P, Q) .
eq replace(x, P, u[y] . Q) = u[y] . replace(x, P, Q) .
eq replace(x, P, Q | R) = replace(x, P, Q) | replace(x, P, R) .
eq replace(x, P, Q) = Q [owise] .
eq replace-aux(x, P, empty) = empty .
eq replace-aux(x, P, (y : Q) ; CH) = (y : replace(x, P, Q)) ; replace-aux(x, P, CH) .

We can use our rewriting specification for HOπ to execute a sequence of reductions over a process term by using the 
Maude command rew. Moreover, we can use the search command to perform reachability analyses.

6.3. Algorithmic type checking

As mentioned above, to implement HOπ in Maude we must start by developing an algorithmic type checking system 
for HOπ . We are confronted with the same difficulties present in the case of sπ , namely the non-deterministic splitting 
operation, and the problem of guessing the type to be included in the context when dealing with bound names, as in Rules
ResS, Res, Abs, and Rec (see Fig. 9).

Definitions Following Vasconcelos [30], we avoid the context splitting when type checking a complex process by considering 
judgments as a function such that, given an input context and a process (or value), type-checks the process (or value) and 
returns the unused part of the input context. The resulting output context can be passed on to type-check the next process 
in a parallel composition. We use judgments of the form

�;
1 � D � T ;
2

where D denotes either a process or a value and T = � in the former case. �, 
1, and P denote the input to the algorithm, 
T stands for the resulting type, and 
2 denotes the residual context. For notational convenience, 
 merges the contexts �
and 	 used in the typing system of Section 6.1.2, which admit the exchange principle. In the following, we refer to 
 as 
the linear context; elements of 
 are denoted s : θ .

To avoid guessing types, we add explicit annotations to the scope restriction, the abstraction, and the recursive construc-
tors. Thus, we write (ν s : S)P , where the session name s will have type S in P whereas s will have type S ′ , with S ′ being 
the dual type of S . Process (ν a : 〈S〉)P means that only a : 〈S〉 has to be included in the shared context, since a = a. Given 
a set of names N , we write μ(X : N).P to specify that P uses the names in N with the corresponding type association in 
the shared and linear contexts. Both λx : S. P and λx : 〈S〉. P have the expected meaning.

To manage linear resources we use the auxiliary function ÷. Given a context 
, a (possibly empty) set of names N , and 
a channel u, then 
 ÷ u returns the context 
 with the channel u removed if u : end (see Fig. 11). This enables us to check 
that a linear channel is only removed from the output context when all its resources have been consumed and is of type 
end. Note that for any other type, the operation ÷ is undefined, and then the rule itself would not be considered defined 
and could not be part of a valid typing derivation. Thus, in writing �; 
1 � D � T ; 
2 we assume that both 
1 and 
2 are 
well-defined.

Typing rules Figs. 12 and 13 give the rules of the algorithmic type system for HOπ . Before discussing some of them, we 
introduce an auxiliary notation. Given a linear context 
, the function split splits it into its higher-order and first-order 
parts. Given 
 = 
1, 
2, we write

split(
) = 
1 ∗ 
2

to denote that 
1 and 
2 are the higher-order and first-order fragments of 
, respectively.
Rules A-Sess, A-Sh, A-LVar, and A-Nil allow any linear context to pass through the judgment. Rule A-RVar checks that 


1 is a subcontext of the input and then it outputs the remaining context. Here 
1 cannot contain higher order types; this 
is checked using the function split.

Rule A-Send has three premises. The first one checks that u has an output type in 
1. Then it takes 
2, the unused 
part of the first judgment together with u : S , to type-check V . The output 
3 of this premise is then used to type-check 
P , which produces an output 
4. The output of the rule is then 
4 ÷ u; thus, if u consumed all the resources, i.e., its type 
in 
4 is end, the process is well typed. Note that u : S is added to the input context of V since this is allowed according to 
Rule Send in Section 6.1; it is also important to remark that this does not produce any conflict with the type of the channel 
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(A-Nil)

�;
1 � 0;
1

(A-Sess)

�;
1, u : S � u � S;
1

(A-Sh)

�, u : U ;
1 � u � U ;
1

(A-RVar)

split(
1) = ∅ ∗ 
1

�, X : 
1;
2,
1 � X;
2

(A-LVar)

�;
1, x : C�� � x � C��;
1

(A-SAbs)

�;
1, x : S � P ;
2

�;
1 � λx : S. P ;
2 ÷ x

(A-ShAbs)

�, x : 〈U 〉;
1 � P ;
2

�;
1 � λx : 〈U 〉. P ;
2

(A-Rec)

�, X : 
1;
1,
2 � P ;
2 N ⊆ dom(
1) split(
1) = ∅ ∗ 
1

�;
1,
2 �μ(X : N).P ;
2

(A-Send)

�;
1 � u � !〈U 〉.S;
2 �;
2, u : S � V � U ;
3 �;
3 � P ;
4

�;
1 � u!〈V 〉.P ;
4 ÷ u

(A-SRcv)

�;
1 � u � ?(U ).S;
2 �;
2, u : S, x : U � P ;
3

�;
1 � u?(x).P ;
3 ÷ {u, x}
(A-ShRcv)

�, x : 〈U 〉;
1 � u � ?(U ).S;
2 �, x : 〈U 〉;
2, u : S � P ;
3

�;
1 � u?(x).P ;
3 ÷ u

(A-App)

�;
1 � V � C � �;
2 �;
4 � u � C;
5 split(
2) = 
3 ∗ 
4

�;
1 � V u;
3,
5

(A-Sel)

�;
1 � u � ⊕{li : Si}i∈I ;
2 �;
2, u : S j � P ;
3

�;
1, u : ⊕{li : Si}i∈I � u � l j .P ;
3 ÷ u

(A-Bra)

�;
1 � u � &{li : Si}i∈I
2 �;
2, u : Si � Pi;
i
3 ∀i, j NotEnd(
i

3) = NotEnd(

j
3)

�;
1 � u � {li : Pi}i∈I ;∩i∈I 

i
3 ÷ u

Fig. 12. Algorithmic type checking rules for HOπ (Part 1).

u, since given the case that the first premise is verified, u is not part of the output 
2 (by Rule A-Sess). If u : S is not used 
to type-check V , then u : S would be in the output context 
3, hence it would be available to type-check P .

Example 6.2. We give an algorithmic type derivation for the process u!〈x〉.u!〈y〉.0, with � = ∅ and 
1 = x : S, y : S ′, u :
!〈S〉.!〈S ′〉.end, where S and S ′ are session types.

∅; x : S, y : S ′, u :!〈S〉.!〈S ′〉.end � u�!〈S〉.!〈S ′〉.end; x : S, y : S ′ (3)

∅; x : S, y : S ′, u :!〈S ′〉.end � x � S; u :!〈S ′〉.end, y : S ′ (4)

∅; u :!〈S ′〉.end, y : S ′ � u�!〈S ′〉.end; y : S ′ (5)

∅; u : end, y : S ′ � y � S ′; u : end (6)

∅; u : end � 0; u : end (7)

Then we have:

(5) (6) (7)

∅; u :!〈S ′〉.end, y : S ′ � u!〈y〉.0; {u : end} ÷ u = ∅ (8)

(3) (4) (8)
′ ′ (9)
∅; x : S, y : S , u :!〈S〉.!〈S 〉.end � u!〈x〉.u!〈y〉.0; ∅ ÷ u = ∅
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(A-Par)

�;
1 � P ;
2 �;
2 � Q ;
3

�;
1 � P | Q ;
3

(A-Prom)

�;
1 � V � C��;
1

�;
1 � V � C →�;
1

(A-EProm)

�;
1, x : C�� � P � �;
2

�, x : C →�;
1 � P � �;
2

(A-ResS)

�;
1, s1 : S1, s̄2 : S2 � P ;
2 S1 dual S2

�;
1 � (ν s : S1)P ;
2 ÷ {s1, s2}

(A-Res)

�,a : 〈S〉;
1 � P ;
2

�;
1 � (ν a : 〈S〉)P ;
2

(A-SAcc)

�′, u : 〈U 〉;
′
1, x : C � u � 〈U 〉;
′

1, x : C �′, u : 〈U 〉,
′
1, x : C � P ;
2

�;
′
1 � u?(x).P ;
2 ÷ x

(A-ShAcc)

�′, u : 〈U 〉, x : 〈C〉;
1 � u � 〈U 〉;
1 �′, u : 〈U 〉, x : 〈C〉;
1 � P ;
2

�′, u : 〈U 〉;
1 � u?(x).P ;
2

(A-Req)

�′, u : 〈U 〉;
1 � u � 〈U 〉;
1 �′, u : 〈U 〉;
3 � V � U ;
4 �′, u : 〈U 〉;
2,
4 � P ;
5 split(
1) = 
2 ∗ 
3

�′, u : 〈U 〉;
1 � u!〈V 〉.P ;
5

Fig. 13. Algorithmic type checking rules for HOπ (Part 2).

In a bottom-up reading, judgment (3) verifies that u has an output type. Judgment (4) takes the output of the previous 
one together with the continuation type of u, !〈S ′〉.end, to type-check the value x. Again, the previous output is taken as 
the context input to type-check the continuation process u!〈y〉.0 in (8). Because the continuation is itself an output process, 
the same procedure is done again in (5), (6), and (7). Note that in judgment (7) the output context is u : end, and then by 
Rule A-Send and definition of ÷, the output context of (8) is {u : end} ÷ u = ∅; the same reasoning applies to (8) and (9) to 
obtain the output ∅ ÷ u = ∅.

On the other hand, it is easy to see that taking as input, e.g., 
′
1 = x : S, y : S ′, w : Ŝ, u :!〈S〉.!〈S ′〉.!〈 Ŝ〉.end, produces 

an undefined output, since u does not consume all the resources. Similarly, an input 
′′
1 = x : S, u :!〈S〉.end would not 

successfully type-check the process.

Rule Rcv in Fig. 9 is broken down in two different algorithmic rules: Rule A-SRcv and Rule A-ShRcv. The former is used 
when x is typed as either session or higher-order types; the latter when x has shared type. Both rules first check that the 
channel u has an input type, and then take the resulting output to type-check P together with the type continuation of 
u; to type-check P , x : U is also included either in � or 
 depending on U . Rule A-SRcv checks that both u and x have 
consumed all the resources and then removes them from the output context. Rule A-ShRcv checks that u has consumed all 
the resources (its type is end) and it also removes u and x from the respective context.

Similar to Rule Rcv, Rule Abs in Fig. 9 is broken into two algorithmic rules: A-SAbs and A-ShAbs. The former is used 
when x has a session type and the latter when x has a shared type. The two rules check that P is typable with the input 
context. Rule A-SAbs checks that x has consumed all the resources and then removes it from the output context.

Rule A-Sel first checks that u has type ⊕{li : Si}i∈I , and then type-checks P using the remaining portion of 
1 and the 
continuation type u : S j , resulting with an output 
3; the rule then checks that u : end. Rule A-Bra first checks that the 
channel u has a branch type, and then uses the remaining (linear) context and the respective typing u : S j to type-check 
each branch. The procedure succeeds if all the output contexts 
i

3 are the same or they only differ in the channels with 
type end. This is checked by the following function

NotEnd(
) = {u : T | u ∈ dom(
) ∧ T �= end}
The output of the rule is ∩i∈I


i
3 ÷ u: hence, it contains the common unused part, as well as channels of type end not used 

in any branch.
Rule A-Rec type-checks P provided that 
1 is a subset of the linear input context that does not contain higher-order 

types. To check this, we use the auxiliary function split. Rule A-App type-checks V and then splits the remaining context 

2 in the higher-order part 
3 and the first-order part 
4. Context 
4 is used to type-check the channel u. The output of 
the rule is 
3, 
5, since 
3 might be necessary to type check other processes.

The following theorem states the correspondence between HOπ and the algorithmic system. Because we added annota-
tions, this language is not exactly the same presented in Section 6.1. To remove them, we give a function erase inductively 
defined as:

erase(λx : U . P ) = λx.erase(P )
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erase((ν s : S)P ) = (ν s)erase(P )

erase((ν a : 〈S〉)P ) = (ν a)erase(P )

μ(X : N).P = μX .erase(P )

and as a homomorphism for the other constructs.
In addition, given a context 
, End(
) states that for all u ∈ dom(
), u : end.

Theorem 6.2 (Correctness of algorithmic type checking). Given contexts �, �, 	, a process or abstraction D, a type T , and w (name 
or variable) we have the following:

• �; �; 	 � w � T iff �; 
1 � w � T ; ∅, where 
1 = �, 	.
• �; �; 	 � erase(D) � T (where either T = � or T = C � �) iff �; 
1 � D � T ; 
2 where 
2 = ∅ or End(
2), and 
1 = �, 	.

Proof. See Appendix D. �
6.3.1. Implementation in Maude

In this section we present a Maude implementation of the algorithmic type checking system given in the previous 
section. Because we encode types following the same insights presented for sπ in Section 4, in the following we only 
highlight important modifications.

sorts Type SessionType SharedType LinearType Context SessionContext
TupleTypeContext ChoiceT ChoiceTset .
subsort SessionType < LinearType < Type .
subsort SharedType < Type .
subsort ChoiceT < ChoiceTset .
subsort SessionContext < Context .
op ?_._ : Type SessionType -> SessionType .
op !_._ : Type SessionType -> SessionType .
op +{_} : ChoiceTset -> SessionType .
op &{_} : ChoiceTset -> SessionType .
op u [_] _ : Qid SessionType -> SessionType .
op var : Qid -> SessionType .
op end : -> SessionType .
op lin proc(_,_) : Type Type -> LinearType .
op un proc(_,_) : Type Type -> SharedType .
op [_]: Type -> SharedType .
op <> : -> Type .
ops nil invalid-context : -> Context .
op nil : -> SessionContext .
op _:_ : SharedName SharedType -> Context [ctor] .
op _:_ : Variable SharedType -> Context [ctor] .
op _:_ : Variable SessionContext -> Context [ctor] .
op _,_ : Context Context -> Context [ctor assoc comm id: nil] .
op _:_ : SessionName LinearType -> SessionContext [ctor] .
op _:_ : Variable LinearType -> SessionContext [ctor] .
op _,_ : SessionContext SessionContext -> SessionContext [ctor assoc comm id: nil] .

Again each production rule is given as a specific constructor. General contexts are associated to sort Context, which 
deals with shared contexts. We use the subsort relation to specify that linear contexts are a specific kind of context, 
containing only session types. Type <> denotes the process type. Types C �� and C →� are given as the constructors 
lin proc(_,_) and un proc(_,_) respectively. This way, e.g., a value λx : S. P will be typed as lin proc(S,<>).

The algorithm for type checking values follows the same intuitions as the one for sπ . Function type-value receives an 
instance of the sort Context, an instance of the sort SessionContext and a value, which could be a name, a variable 
or an abstraction. It returns an instance of the sort TupleTypeContext, which has [_ _] as the only constructor.

This constructor groups a type and a (output) context. Rules A-SESS and A-SH first check whether the channel is 
recursive, to perform a step of the unfold operation when necessary. In the equation for Rule A-SABS, S ranges over 
terms of sort SessionType, thus avoiding nested abstractions, since lin proc(T,T’) is of sort LinearType. It also 
calls the function type-term (explained below) to type-check the abstracted process.

op type-value : Context SessionContext Value -> TupleTypeContext .
eq type-value(C, ((u : S), SC), u) = [SC unfold(S)] . --- [A-SESS]
eq type-value(C, ((u : L), SC), u) = [SC L] . --- [A-SESS]
eq type-value(((n : [T]), C), SC, n) = [SC [unfold(T)]] . --- [A-SH]
eq type-value(((n : (un proc(T, T’))), C), SC, n) = [SC (un proc(T, T’))] . --- [A-SH]
eq type-value(((val(x) : (un proc(T, T’))), C), SC, val(x)) =
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op type-term : Context SessionContext Trm -> TupleTypeContext .
ceq type-term(C, SC, u[x : CX] . P) = type-term((C, val(x) : SC’), SC, P) --- [A-REC]
if SC’ := get-context(CX, SC) /\

SC1 ; SC2 := split(SC’, nil ; nil) /\ SC1 == nil .
ceq type-term((C, (val(x) : SC’)), (SC’, SC), rec(x)) = [SC <>] --- [A-RVAR]
if SC1 ; SC2 := split(SC’, nil ; nil) /\ SC1 == nil .

ceq type-term(C, SC, u < V > . P) = [(SC’ / u) <>] --- [A-SEND]
if [SC1 (! T . S)] := type-value(C, SC, u) /\

[SC2 T’] := type-value(C, (SC1 , u : S) , V) /\
[SC’ <>] := type-term(C,(SC2), P) /\ equal(T, T’) /\
(SC’ / u) =/= invalid-context .

ceq type-term(C, SC, u(y) . P) = [((SC’ / u) / y{0}) <>] --- [A-SRCV]
if [SC1 (? L . S)] := type-value(C, SC, u) /\

[SC’ <>] := type-term(C, (SC1, (y{0} : L), (u : S)), P) /\
((SC’ / u) / y{0}) =/= invalid-context .

ceq type-term(C, SC, V{a}) = [(SC’, SC2) <>] --- [A-APP]
if [SC1 (lin proc(T, <>))] := type-value(C, SC, V) /\

SC2 ; SC3 := split(SC1, nil ; nil) /\ [SC’ T] := type-value(C, SC3, a) .
ceq type-term(C, SC, V{a}) = [(SC’, SC1) <>] --- [A-APP]
if SC1 ; SC2 := split(SC, nil ; nil) /\

[SC (un proc(T, <>))] := type-value(C, SC, V) /\
[SC’ T] := type-value(C, SC2, a) .

ceq type-term(C, SC, n < V > . P) = [SC’ <>] --- [A-REQ]
if SC1 ; SC2 := split(SC, nil ; nil) /\ [SC [T]] := type-value(C, SC, n) /\

[SC3 T’] := type-value(C, SC2, V) /\
[SC’ <>] := type-term(C, (SC1, SC3), P) /\ equal(T, T’) .

ceq type-term(C, SC, n(y) . P) = [(SC’ / ’y’{0}) <>]
if [nil [S]] := type-value(C, nil, n) /\

[SC’ <>] := type-term(C, (SC, (y{0} : S)), P) . --- [A-SACC]
ceq type-term((C, (val(x) : (un proc(T, <>)))), SC, P) = [SC’ <>]

if [SC’ <>] := type-term(C, (SC, (val(x) : (lin proc(T, <>)))), P). --- [A-EPROM]
eq type-term(C, SC, P) = ill-typed [owise] .

Fig. 14. Type checking for processes in Maude.

[SC (un proc(T, T’))] . --- [A-SH]
eq type-value(C, ((val(x) : lin proc(T, T’)), SC), val(x)) =

[SC (lin proc(T, T’))] . --- [A-LVAR]
ceq type-value(C, SC, lambda(x : S) . P) = [(SC’ / x{0}) (lin proc(S, <>))]

if [SC’ <>] := type-term(C, (SC, (x{0} : S)) , P) . --- [A-SABS]
ceq type-value(C, SC, lambda(x : U) . P) = [SC’ (lin proc(U, <>))]

if [SC’ <>] := type-term((C, (x(0) : U)), SC, P) . --- [A-SHABS]

The algorithm for type checking processes is implemented as the function type-term, which also receives an instance 
of the sort Context, a linear context (an instance of sort SessionContext), and an instance of sort Trm. Like function 
type-value, type-term produces an instance of the sort TupleTypeContext.

Fig. 14 presents the implementation of some of the rules for the algorithmic type system; the remaining cases are either 
similar to the ones presented in Section 4 or similar to the ones presented here. Each equation in Fig. 14 corresponds to a 
typing rule in Fig. 12. The operator / stands for the operator ÷ in Fig. 11.

Rule A-REC uses an auxiliary function get-context that receives a set of names and a context, and returns the 
restriction of such a context to the provided set of names. In this way, the context to be assigned to val(x) is extracted. 
It also uses the auxiliary function split, which is the Maude implementation for the function split used in the previous 
section. Accordingly, split takes as parameter a context SC and returns an instance of the sort SessionContextPair 
of the form SC1;SC2, where SC1 is the subcontext of SC that contains the higher-order names, and SC2 contains the 
remainder context.

Rule A-APP has two cases, depending on the possible types for the value V: lin proc(T,<>) or un proc(T,<>). 
In both cases, the type of the name a is checked by using the subcontext where there are no higher-order types. Such a 
context is obtained using function split. If the type of the abstraction value V is linear then function split is applied 
over the linear context that is returned from type checking V; otherwise, if the value V is a shared abstraction, then function 
split takes the original context SC.

Rule A-REQ is defined similarly. In order to type-check the sent value V, it is passed to the first-order part of the linear 
context, which is obtained by applying the function split over the input linear context SC. The additional aspects of that 
rule are as in the algorithm for sπ for Rule A-OUT.

Finally, the Maude implementation for the rules A-SEND and A-SRCV, concerned to the input and output in session 
names, are quite similar to the implementation of the analogous rules in the sπ calculus. In both rules, the subject name 
u is removed from the output context SC’ through the operator /. Nevertheless, it is required that the type of u is end; 
otherwise the operator / produces as result the constant invalid-context and the type checking is not successful.
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6.3.2. Example
We type-check the mobile process from the hotel booking example discussed in Section 6.1.3. The implementation in 

Maude is as follows:

op r : -> Trm .
ops u s : -> SessionType .
eq u = ! Quote . ? Quote . +{(’accept’ : ! NNat . end ) ; (’reject’ : end)} .
eq s = ! Quote . &{(’accept’ : end) ; (’reject’ : end)} .
eq r = ’x’{0} < Room > . ’x’{0}(’z’) . ’y’{0} < Room > .

(’y’{0} >> {(’accept’ : ’x’{0} << ’accept’ . ’x’{0}< 24 > . nil) ;
(’reject’ : ’x’{0} << ’reject’ . nil)}) .

For the sake of convenience, we include types NNaT and Quote as basic types; we type-check this process by executing 
type-value(nil, ’y’{0} : s, lambda(’x’ : u). r) and we obtain the following result:

reduce in TEST : type-value(nil, ’y’{0} : s, lambda(’x’ : u). r) .
rewrites: 105 in 0~ms cpu (0~ms real) (~ rewrites/second)
result TupleTypeContext: [nil lin proc(! Quote . ? Quote .

+{(’accept’ : ! NNat . end) ; ’reject’ : end},<>)]

Note that we run type-value since the term to be checked is an abstraction. In addition, it is important to highlight 
that the result corresponds to an instance of the sort TupleTypeContext of the form [nil lin proc(T,<>)], where 
the output (linear) context nil tells us that all the information provided in the input context was consumed and the rest 
corresponds to the (expected) type of the value.

Similarly, the process Client in Fig. 10 is implemented as follows:

ops l1 l2 : -> Value .
ops p q : -> Trm .
ops t1 t2 u s : -> SessionType .
eq u = ! Quote . ? Quote . +{(’accept’ : ! NNat . end ) ; (’reject’ : end)} .
eq s = ! Quote . &{(’accept’ : end) ; (’reject’ : end)} .
eq t1 = ! (lin proc(u,<>)) . end .
eq t2 = ! (lin proc(u,<>)) . end .
eq l1 = lambda(’x’ : u ) . ’x’{0} < Room > . ’x’{0}(’z’) . ’h1’{0}< Room > .

(’h1’{0} >> {(’accept’ : ’x’{0} << ’accept’ . ’x’{0} < 24 > . nil) ;
(’reject’ : ’x’{0} << ’reject’ . nil)}) . ---[Mobile Process 1]

eq l2 = lambda(’x’ : u ) . ’x’{0} < Room > . ’x’{0}(’z’) . ’h2’{0}< Room > .
(’h2’{0} >> {(’accept’ : ’x’{0} << ’accept’ . ’x’{0} < 24 > . nil) ;

(’reject’ : ’x’{0} << ’reject’ . nil)}) . ---[Mobile Process 2]
eq p = ’s1’{0}< l1 > . ’s2’{0}< l2 > . nil .
eq q = *(’h1’{0})(’z’) . *(’h2’{0})(’w’) .

(’c’{0} >> {(’XLessThanY’ : *(’h1’{0}) << ’accept’ . *(’h2’{0}) << ’reject’ . nil) ;
(’XGreaterThanY’ : *(’h1’{0}) << ’accept’ . *(’h2’{0}) << ’reject’ . nil) }) .

Here l1 and l2 refer to the mobile processes to be sent to the hotels. Terms p and q refer to the left-hand side and 
right-hand side processes of the parallel composition. Thus, by executing

reduce in TEST : type-term(nil, (’s1’{0} : t1),
(’c’{0} : &{(’XGreaterThanY’ : end) ; ’XLessThanY’ : end}),
’s2’{0} : t2,

new[’h1’ : s]new[’h2’ : s]p | q) .
rewrites: 671 in 0~ms cpu (0~ms real) (~ rewrites/second)
result TupleTypeContext: [nil <>]

we obtain the expected result, i.e., a TupleTypeContext [nil <>] which indicates that the process was successfully 
type-checked.

Finally, if we had defined mistakenly u as

eq u = ! NNat . ? Quote . +{(’accept’ :! NNat . end ) ;(’reject’ : end)} .

We would have obtained an ill-typed message:

reduce in TEST : type-value(nil, ’y’{0} : s, lambda(’x’ : u). p) .
rewrites: 89 in 0~ms cpu (0~ms real) (~ rewrites/second)
result TupleTypeContext: ill-typed
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6.3.3. Executable type soundness
Theorem 6.1 ensures that the type system for HOπ is sound: well-typed processes are guaranteed to always respect the 

ascribed session protocols. Also, the algorithmic type system was proven to be correct (Theorem 6.2). Therefore, as in the 
case of sπ , we can also integrate both the rewriting specification of the operational semantics and the implementation of 
the algorithmic type checking for HOπ . Hence, we only execute well-typed processes. Thus, we adapt the definition of the 
functions well-typed and erase to HOπ . We remark that function well-typed checks whether a process does not 
have typing errors:

op well-typed : Trm -> Bool .
ceq well-typed(P) = true if [SC <>] := type-term(nil, nil, P) /\ consumed(SC) .
eq well-typed(P) = false [owise] .

This function applies the algorithm for type checking type-term over a process P and returns true when type-
checking succeeds. This occurs when the resulting type is <> and the output context SC is consumed, i.e. all of its linear 
names have type end. Function erase, given above, inductively removes the annotations in restriction, abstraction and 
recursive subprocesses.

We add one rewriting rule to enable the execution of annotated processes, i.e. processes using (ν n : T )P , λx : T . P and 
μ(X : N).P instead of (ν n)P , λx. P and μX .P , respectively.

rl [TYPED] : new [x : T] P => if well-typed(new [x : T] P)
then erase(new [x] P) else ill-typed-process fi .

Thereby, if process new [x : T] P is well-typed then it is rewritten as an equivalent process in which each an-
notation is dropped through the function erase. Otherwise, the process new [x : T] P is rewritten as the constant 
ill-typed-process.

6.4. Deadlock-freedom

Similar to sπ , the type system for HOπ does not exclude locks and deadlocks. We extend the approach for their detec-
tion, following Section 5. We focus on the main details specific to HOπ processes, and omit the aspects that are similar to 
those for sπ .

Deadlock and lock freedom are formulated following the notion of pending communication given in [20]. We adapt the 
notion of reduction contexts given in Section 5 as follows:

C ::= [ ] | (C | P ) | (ν x)C
Likewise, we adapt the definition of the auxiliary predicates in, out, sync, and wait given in Section 5 to the HOπ syntax:

in(u, P )
def⇐⇒ P ≡ C[u?(x).Q ] ∧ u /∈ bv(C)

out(u, P )
def⇐⇒ P ≡ C[u!〈V 〉.Q ] ∧ u /∈ bv(C)

sync(u, P )
def⇐⇒ in(u, P ) ∧ out(u, P )

wait(u, P )
def⇐⇒ (in(u, P ) ∨ out(u, P )) ∧ ¬sync(u, P )

We remark that predicate in (resp. out) holds if the process P can input (resp. output) in the free name u. Similarly, 
predicate sync holds whether a synchronization through name u (and its co-name u) is immediately possible. Predicate wait
holds when there is an output or input in a free name u but an immediate synchronization is not possible.

With these elements in mind, we say process P is

• deadlock free if for every Q such that P −→∗ (ν x1)(ν x2) . . . (ν xn)Q � it holds that ¬wait(xi, Q ) for every xi .
• lock free if for every Q such that P −→∗ (ν x1)(ν x2) . . . (ν xn)Q and wait(xi, Q ) there exists R such that Q −→∗ R and 

sync(xi, R) hold.

We represent the auxiliary predicates in, out, wait and sync as functions in Maude as follows:

ops in out : Chan Trm -> Bool .
ops sync wait : Chan Trm -> Bool .
op wait-aux : QidSet Trm -> Bool .

eq in(a, a(x) . P | R) = true .
eq in(a, P) = false [owise] .
eq out(a, a < V > . P | R) = true .
eq out(a, P) = false [owise] .
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eq sync(a, P) = in(a, P) and out(*(a), P) .
eq wait(a, P) = (in(a, P) or out(*(a), P)) and not sync(a, P) .
eq wait-aux(mt, P) = false .
eq wait-aux(x nl, P) = wait(x{0}, P) or wait(*(x{0}), P) or wait-aux(nl, P) .

Function wait-aux corresponds to the extension of function wait to a set of variables.
Now, as in Section 5, the checking of the deadlock free property is essentially a reachability problem. In this way, it is 

necessary to determine whether there is not a reachable final process with an input or output pending for synchronization. 
As before, we can check the deadlock free property by leveraging the Maude reachability tool search. Given a process 
term init to be checked, in order to verify the deadlock free property, we write:

search init =>! new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .

It is not possible to check the lock property by using the reachability tool since the verification of this property requires 
the checking of some intermediate states. As in Section 5, this property corresponds to a formula in CTL, which is not 
supported by Maude. For this reason, we adapt the LTL formula in (2) to predicates for the HOπ calculus. Given an HOπ

process (ν x1) . . . (ν xn)P , the corresponding LTL formula is as follows:
∧

(xi)∈vars(P )

�(♦wait(xi, Q ) −→ ♦sync(xi, R)) (10)

As before, this formula is sound and but not complete—completeness is only guaranteed for processes without the recursion 
operator. We can use the LTL model checker to verify if a process is lock free. In order to describe the LTL formula, we need 
the predicates pwait and psync, which are defined next. Additionally, we give an alternative definition for the auxiliary 
function build-lock-formula, now adapted to HOπ .

ops pwait psync : Chan -> Prop [ctor] .

eq new* [x nl] P |= pwait(x{0}) = wait(x{0}, P) or wait(*(x{0}), P) .
eq new* [x nl] P |= pwait(x(0)) = wait(x(0), P) .
eq new* [x nl] P |= psync(x{0}) = sync(x{0}, P) or sync(*(x{0}), P) .
eq new* [x nl] P |= psync(x(0)) = sync(x(0), P) .

op build-lock-formula : QidSet -> Formula .
eq build-lock-formula(mt) = True .
eq build-lock-formula(x nl) = [] (<> pwait(x{0}) -> <> psync(x{0})) /\

build-lock-formula(nl) .

Then, given the process term init and the associated names vars, the model checker can be used as follows:

red modelCheck(init, build-lock-formula(vars)) .

7. Closing remarks

Related work Maude has been successfully used for the analysis of specifications in different models of concurrency, includ-
ing process calculi (such as CCS [34] and the π -calculus [28]) and Petri Nets [24]. Our work builds upon and extends this 
line of developments.

To our knowledge, we are the first to represent session-typed π -calculi using Maude. Prior works have used rewriting 
logic to investigate the operational semantics for variants of the π -calculus. Viry [33,32] defines the reduction semantics of 
a synchronous π -calculus as a rewrite theory, which is implemented in ELAN. The work of Thati et al. [28] considers an 
untyped, asynchronous π -calculus, whose labeled transition semantics is implemented as a rewrite theory, which is used 
to formalize an associated may-testing preorder. The work of Pitsiladis and Stefaneas [22] concerns a typed process calculus 
but in a different context, in which types are used to enforce privacy properties. Their work gives a Maude implementation 
of the labeled transition semantics of a privacy-oriented variant of the π -calculus and a Maude implementation of its 
associated type system, which is implemented as a membership equational theory.

Bartoletti et al. [1,2] rely on Maude in their study of formal languages for the analysis and verification of contract-
oriented systems. In their setting, contracts describe behavior that is required and offered by services; they model these 
contracts as processes in a process calculus called CO2. There are high-level similarities between contracts in CO2 and 
session-typed processes in sπ and HOπ ; arguably the key distinguishing aspect between them is that in the contract-
oriented setting agents can behave dishonestly, i.e., they can behave differently from their declared contracts, whereas 
session-typed processes are assumed to always stick to their ascribed protocol. This makes enforcing honesty (and iden-
tifying dishonest agents) a key issue for correctness. Similarly to our developments, the authors formalize CO2 in Maude 
and develop a model checking technique for soundly approximating honesty.
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One salient aspect of our work is the use of model checking to (soundly) characterize deadlock and lock freedom proper-
ties. Ensuring deadlock-freedom using type systems based on sessions is known to be challenging, especially in the presence 
of useful constructs like delegation (session passing) and session interleaving (as in, e.g., a single process that implements 
two or more sessions); the central issue is how to detect and rule out circular dependencies between different sessions. 
A number of previous works have developed sophisticated static approaches; see, for instance [3,5,9,29,31]. In contrast, our 
work develops a complementary approach based on model checking of LTL properties, following the formalization given by 
Padovani [20].

Conclusion Session types were introduced in the late 90s [15], and have been widely studied since then. In this paper, we 
have developed implementations of session-based concurrency in Maude. To our knowledge, we are the first to consider 
Maude as a target system for session-based process languages. We first considered sπ , a session-typed π -calculus proposed 
by Vasconcelos in [30]. We developed an executable specification of its operational semantics and associated algorithmic 
type-checking system. We integrated both specifications closely following his formulation. Because typing in [30] does not 
exclude deadlocks, we leverage built-in tools in Maude and executable specifications to detect well-typed dead-locked pro-
cesses. We then moved to consider HOπ , a higher-order session π -calculus, which incorporates the passing of abstractions 
within session protocols. We showed how our approach to executable specifications, type checking, and deadlock detec-
tion in Maude applies also to HOπ . This required developing a new algorithmic type-checking system for HOπ . In our 
view, these developments establish a promising starting point to the automated analysis of message-passing concurrency 
specifications.

Future work Our work unlocks many exciting directions for future work; we briefly discuss some of them. We intend 
to adapt our equational theories to leverage the confluence checker tool available in Maude. We also plan to extend our 
executable specifications to accommodate subtyping [12,11] and to analyze processes that implement multiparty session types, 
as formalized in [27]. Likewise, we plan to consider connections between our executable implementations and type systems 
derived from the Curry-Howard correspondence between session types and linear logic [8,35]. More in general, it would be 
relevant to compare the expressivity and features of our Maude developments against existing libraries and tools for session 
types (see, e.g., [21,16]).
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Appendix A. Appendix to §3: Operational Correspondence

Here we prove that the transition system associated to the rewrite theory in our Maude specification coincides with the 
reduction semantics for sπ . Given an sπ process P , we use the notation �P� to denote its representation in Maude. We 
state the operational correspondence between them with two theorems, completeness and soundness:

Theorem A.1 (Completeness). Let P an sπ process and let �P� be its corresponding representation in the rewrite theory (�, E, φ, R)

of Section 3. Then, if P −→ P ′ then there is a rewriting rule l : �P� → �P ′� that can be applied.

Proof. By induction on the reduction P −→ P ′ , with a case analysis on the last rule being applied. We have three base 
cases, corresponding to the forms of direct communication in the calculus (Rules [R-LinCom], [R-UnCom], and [R-Case]) and 
three inductive cases (Rules [R-Par], [R-Res] and [R-Struct]). For each case, we show the correspondence with a rewriting 
rule l : �P� → �P ′�.

1. Rule [R-LinCom]: This rule in the operational semantics of the calculus (see Fig. 2) is stated as:
(νxy)(xv.P | lin y(z).Q | R) −→ (νxy)(P | Q [v/z] | R)
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Then, we must show that there is a rewrite rule that corresponds to this rule, i.e., we need to determine a rewrite rule 
in our rewrite theory such that:

�(νxy)(xv.P | lin y(z).Q | R)� −→ �(νxy)(P | Q [v/z] | R)�

The correspondence with the rewriting rule labeled LINCOM is quite intuitive:

new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>
new* [(x y) nl] P | [z := v] Q | R .

Clearly, it holds that

�(νxy)(xv.P | lin y(z).Q | R)� =
new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R

and

�(νxy)(P | Q [v/z] | R)� = new* [(x y) nl] P | [z := v] Q | R

where nl = mt. It is easy to check that in virtue of the mathematical induction, any possible reduction involving 
subprocess R corresponds to a different application of some reduction rule.

2. Rule [R-UnCom]: Then the reduction proceeds as follows:

(νxy)(xv.P | un y(z).Q | R) −→ (νxy)(P | Q [v/z] | un x(y).Q | R)

Again, we must show a corresponding rule in our rewrite theory such that:

�(νxy)(xv.P | un y(z).Q | R)� −→ �(νxy)(P | Q [v/z] | un x(y).Q | R)�

The correspondence with the rewrite rule UNCOM arises immediately:

new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>
new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .

Then, it is evident that

�(νxy)(xv.P | un y(z).Q | R)� = new* [(x y) nl] xN < v > . P | un yN(z) . Q | R

and
�(νxy)(P | Q [v/z] | un x(y).Q | R)� = new* [(x y) nl] P | [z := v] Q | un yN(z) . Q | R

where nl = mt. It is easy to check that in virtue of the mathematical induction, any possible reduction involving 
subprocess R corresponds to a different application of some reduction rule.

3. Rule [R-Case] Then the reduction proceeds as follows:

j ∈ I

(νxy)(x � l j .P | y � {li : Q i}i∈I | R) −→ (νxy)(P | Q j | R)

As in the previous cases, there is also a direct correspondence with the rule CASE in the rewrite theory:

new* [(x y) nl] (x{N} << w . P) | (y{N} >> { (w : Q) CH }) | R =>
new* [(x y) nl] P | Q | R .

As in the other cases, any possible reduction involving subprocess R corresponds to a different application of some 
reduction rule.

4. Rules [R-Par], [R-Res]: These rules capture the compositionality of the operational semantics but in themselves they do 
not express any additional alternative of reduction. The effect of these rules is obtained for free in Maude as an effect 
of the equational theory underlying the rewrite theory and the fact that Maude allows subterm rewriting.
• Rule [R-Par]: This rule in the operational semantics of the calculus is stated as:

P −→ P ′

P | Q −→ P ′ | Q

We assume as inductive hypothesis that for a process P −→ P ′ it holds that there is a rewriting rule l : �P� → �P ′�
that can be applied. We must show that there is a rewrite rule such that:
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�P | Q � −→ �P ′ | Q �

Now, given that the rewriting rules in a system module of Maude allow to rewrite specific subterms of a term, and 
given that �P� is a subterm of �P | Q �, the latter will be rewritten to �P ′ | Q � by means the application of the same 
rewrite rule l.

• Similarly, in the case of the Rule [R-Res], which is stated as:

P −→ P ′

(νxy)P −→ (νxy)P ′

We also assume as inductive hypothesis that for a process P −→ P ′ we have a rewriting rule l : �P� → �P ′� that can 
be applied. We must show that there is a rewrite rule such that:

�(νxy)P� −→ �(νxy)P ′�
Again, the Maude term �(νxy)P� includes the subterm �P� and consequently, the term �(νxy)P� will be rewritten to 
�(νxy)P ′� by using the rewrite rule l.

5. Rule [R-Struct]: This rule captures the effect of the operational semantics modulo the structural congruence relation. 
In this way, any possible reduction of a process P such that P ≡ Q is also possible for process Q . This rule is clearly 
correspondent to the rewrite rule FLAT:

P => P’ if P’ := flatten(P) /\ P =/= P’ .

We recall that the function flatten produces an equivalent process where the occurrences of the scope restriction 
operator are taken to the top-level. �

Theorem A.2 (Soundness). Let T, T’ be instances of the sort Trm in the rewrite theory (�, E, φ, R) of Section 3 and TC be the canonical 
form of T. Then, if there is a rewrite rule l : TC → T′ that can be applied then there exist processes P , Q such that T = �P�, T′ = �Q �, 
and:

• P ≡ Q or
• P −→ Q

The rewriting rule l : T → T’ can be preceded by a sequence of applications of some equations in the equational theory underlying 
the rewrite theory.

Proof. By a case analysis on the rewriting rule being applied over the Maude term T and the correspondence with an 
sπ reduction. We have four cases corresponding to the rewrite rules FLAT, LINCOM, UNCOM, and CASE in the rewrite 
theory. For each case, we show the correspondence with a specific reduction over processes P , Q related to the Maude 
term being rewritten. We remark that there is a one-to-one correspondence between the process terms (see Section 2) and 
the instances of the Maude sort Trm (see Section 3). For this reason, for each Maude term P there is a process P such that 
P= �P�.

1. Rule FLAT: This rule is stated in Maude (see Section 3) as:

crl [FLAT] : P => P’ if P’ := flatten(P) /\ P =/= P’ .

Here, the Maude term P is rewritten as the term P’, which is obtained by the function flatten. As already mentioned, 
the function flatten produces an equivalent process where the occurrences of the scope restriction operator are taken 
to the top-level. Consequently, the Maude term P’ is the Maude representation of a process Q such that Q ≡ P , as 
expected.

2. Rule LINCOM: This rule is stated in Maude (see Section 3) as:

new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>
new* [(x y) nl] P | [z := v] Q | R .

Again, in virtue of the one-to-one correspondence among the process terms syntax and the sort and constructors in the 
equational theory, we have that there exist processes P and Q such that:

�P� = new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R

�Q � = new* [(x y) nl] P | [z := v] Q | R
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dual(T ) = dual(T , ε) dual(μX T , σ ) = μXdual(T , [μX T /X];σ)

dual(end, σ ) = end dual(X, σ ) = X
dual(q?T .U , σ ) = q!(Tσ).dual(U , σ ) dual(q!T .U , σ ) = q?(Tσ).dual(U , σ )

dual(q ⊕ {li : Ti}i∈I , σ ) = q&{li : dual(Ti , σ )}i∈I dual(q&{li : Ti}i∈I , σ ) = q ⊕ {li : dual(Ti , σ )}i∈I

Fig. 15. Message-closure duality.

Clearly, process P must be equivalent to a process matching a pattern
(νxy) . . . xv.P ′ | lin y(z).Q ′ | R and process Q must be equivalent to a process matching a pattern (νxy) . . . P ′ | Q ′ | R . 
Consequently, P −→ Q , as expected.

3. Rule UNCOM: This rule is stated as follows (see Section 3):

new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>
new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .

As before, there exist processes P and Q for which holds:

�P� = new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R

�Q � = new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R

Then, process P is of the form (νxy) . . . xv.P ′ | un y(z).Q ′ | R and process Q is of the form
(νxy) . . . P ′ | Q ′ | un y(z).Q ′ | R and P −→ Q , as expected.

4. Rule CASE: This rule is stated in the rewrite theory as:

new* [(x y) nl] (x{N} << w . P) | (y{N} >> { (w : Q) CH }) | R =>
new* [(x y) nl] P | Q | R .

Once again, in virtue of the one-to-one correspondence among the process term syntax and the Maude sorts and 
constructors, we have that there exist processes P and Q such that:

�P� = new* [(x y) nl] (x{N} « w . P) | (y{N} » (w : Q) CH ) | R

�Q � = new* [(x y) nl] P | Q | R

Process P is equivalent to a process matching the pattern (νxy) . . . x �l j .P ′ | y �{li : Q i}i∈I | R and process Q is equivalent 
to a process matching the pattern (νxy) . . . P ′ | Q j | R . Thereafter, we have that P −→ Q , as expected. �

Appendix B. Appendix to §4: Omitted material on algorithmic type checking

The duality operation on session types is essential to enforce communication correctness; it is defined in Fig. 15 where 
σ is a substitution and ε is the empty substitution. In Maude, the operation mclo-dual, given next, enables us to obtain 
the dual of a type. It takes an instance of the sort Type and produces an instance of the same sort:

op firstv : -> Qid .
op e : -> Type .
sort Qidset Typeset .
subsort Type < Typeset .
subsort Qid < Qidset .
var QS : Qidset .
var TS : Typeset .
op replace-dual-aux(_,_,_) : Qidset Typeset Type -> Type .
op replace-dual-aux-strict(_,_,_) : Qidset Typeset Type -> Type .
op mclo-dual : Type -> Type .
op mclo-dual : Qidset Typeset Type -> Type .
op mclo-dual-aux : Qidset Typeset ChoiceTset -> ChoiceTset .
op TpEmpty : -> Typeset .
op QiEmpty : -> Qidset .
op _,_ : Typeset Typeset -> Typeset [assoc id: TpEmpty] .
op _,_ : Qidset Qidset -> Qidset [assoc id: QiEmpty] .
eq mclo-dual(T) = mclo-dual(firstv , e, T) .
eq mclo-dual(QS ,TS , var(x)) = var(x) .
eq mclo-dual(QS, TS, end) = end .
eq mclo-dual(QS, TS, bool) = bool .
eq mclo-dual(QS, TS , q ! T . T’) =
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x : U �∈ �

� + x : U = �, x : U

un(T )

(�, x : T ) + x : T = (�, x : T )

� ÷ ∅ = �
�1 ÷ L = �2, x : T un(T )

�1 ÷ (L, x) = �2

�1 ÷ L = �2 x �∈ dom(�2)

�1 ÷ (L, x) = �2

Fig. 16. Definition of context update (top) and context difference (bottom).

q ? (replace-dual-aux(QS, TS, T)) . mclo-dual(QS, TS, T’) .
eq mclo-dual(QS, TS , q ? T . T’) =
q ! (replace-dual-aux(QS, TS, T)) . mclo-dual(QS, TS, T’) .

eq mclo-dual(QS, TS, (u[x] T) ) = u[x] mclo-dual( (QS, x),(TS ,(u[x] T) ), T ) .
eq mclo-dual-aux(QS,TS, empty) = empty .
eq mclo-dual-aux(QS, TS, (y : T) CHT) = (y : mclo-dual(QS, TS, T)) mclo-dual-aux(QS,TS, CHT) .
eq mclo-dual(QS, TS, q +{CHT}) = q &{(mclo-dual-aux(QS,TS,CHT))} .
eq mclo-dual(QS, TS, q &{CHT}) = q +{(mclo-dual-aux(QS,TS,CHT))} .
eq replace(firstv , e, T) = T .
eq replace-dual-aux(firstv , e, T) = T .
eq replace-dual-aux(QiEmpty, TpEmpty, T) = T .
eq replace-dual-aux((x , QS) , (T , TS) , (T’)) =

replace-dual-aux(QS, TS, replace(x,T ,T’)) [owise] .

In essence, mclo-dual calculates the dual of a recursive type, replacing recursive variables when they occur in 
an input or an output (see [13] for a discussion on this transformation). When it is applied to a non-recursive type, 
it returns the usual dual type, i.e., it swaps ! and ? and + and &. In the first two arguments, function mclo-
dual : Qidset Typeset Type -> Type accumulates some substitutions that are initialized by the equation:

eq mclo-dual(T) = mclo-dual(firstv , e, T) .

New substitutions are created by the equation:

eq mclo-dual(QS, TS, (u[x] T)) = u[x] mclo-dual((x , QS),( (u[x] T) , TS), T) .

Function replace-dual-aux forwards the substitutions to replace so that a list of substitutions is applied to a 
type.

Another important operation in the algorithmic type checking is context update, denoted ‘+’. This operation enables us 
to extend a type context with a new type for a variable; it is used when checking the type of input, output, branching, 
and selection processes. The formal definition is shown in Fig. 16 (top). There are two rules: the first one requires linear 
variables not to be in the context; the second one requires that unrestricted types remain unchanged.

The context update operation is implemented in Maude by means of the operator _+_:_, which takes a type context, a 
value and a type and produces a new context.

op _+_:_ : Context Value Type -> Context .
ceq C + v : T = (C, (v : T)) if not v in C .
ceq (C, (v : T1)) + v : T2 = (C, (v : T2’))

if unrestricted(T1) /\ T1’ := unfold(T1) /\ T2’ := unfold(T2) /\ equal(T1’, T2’) .
eq C + v : T = invalid-context [owise] .

Each rule is associated to a previous equation and it proceeds as expected. Particularly, for the case of unrestricted 
variables, given that some types are infinite then before the update the unrestricted types are unfolded (cf. operation 
unfold). Type unfolding is the mechanism that we use to deal with infinite types. Given a type T , it is defined as follows: 
if T is a recursive type μa.U then unfolding means performing the substitution U [μa.U/a]. Otherwise, T remains unaltered. 
The types T1 and T2 involved in the update operation are unfolded and the resulting types must be equal. Lastly, we add 
an additional equation to produce the constant invalid-context when the context update can not be performed.

The context difference function, denoted ‘÷’, is the mechanism that prevents the use of linear variables in several threads. 
This operation removes the variables in a set from a typing context. This function is defined inductively as shown in Fig. 16
(bottom). It is implemented in Maude as follows:

op _/_ : Context Chanset -> Context .
eq C / mt = C .
eq ((a : T), C) / (a L1) = C / L1 .
eq C / L1 = C [owise] .
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On the other hand, the function erase (used in Section 4.3) inductively analyzes a process; when it reaches an anno-
tated subprocess (i.e. a process new [x y : T] P), it returns a non-annotated process (i.e., a process new [x y] P). 
This function is defined in Maude as follows:

op erase : Trm -> Trm .
op erase-aux : Choiceset -> Choiceset .
eq erase(nil) = nil .
eq erase(a < v > . P) = a < v > . erase(P) .
eq erase(q a(x) . P) = q a(x) . erase(P) .
eq erase(if v then P else Q fi) = if v then erase(P) else erase(Q) fi .
ceq erase(P | Q) = erase(P) | erase(Q) if P =/= nil and Q =/= nil .
eq erase(a >> {CH}) = a >> { erase-aux(CH) } .
eq erase(a << x . P) = a << x . erase(P) .
eq erase-aux(empty) = empty .
eq erase-aux((x : P) CH) = (x : erase(P)) erase-aux(CH) .
eq erase(new [x y] P) = new [x y] erase(P) .
eq erase(new [x y : T] P) = new [x y] erase(P) .

Appendix C. Appendix to §5: Omitted material on lock and deadlock detection

Here we prove that our approach to the lock free verification relying on the LTL formula in Section 5 is sound for 
arbitrary sπ processes. Moreover, we also prove that this approach is complete for finite sπ processes, i.e., processes without 
replicated input. Finally, we show some examples of the usage of the Maude tools for deadlock and lock detection as 
presented in Section 5.

C.1. Soundness and completeness for lock detection

Given an sπ process (νx1, y1) . . . (νxn, yn)P such that ∅ � P , lock freedom can be stated by means of the following LTL 
formula:

φ =
∧

(xi ,yi)∈vars(P )

�(♦wait(xi, yi, Q ) −→ ♦sync(xi, yi, R))

It is worth to remark that predicates wait and sync are represented in the Kripke structure in Maude by means of the 
predicates pwait and psync. Moreover, in the following we use the notation ρ ∈ Path(K)P to denote the set of execution 
paths in K starting in P .

Theorem C.1 (Soundness). Let K be the Kripke structure in Maude for process P . If K, P |= φ then P is lock free in the sense stated in 
Section 5.

Proof. We assume K, P |= φ and suppose for the sake of contradiction that P is a locked process. Then, there is a process 
Q such that P −→∗ Q , Q |= pwait(x j, y j) for some 1 ≤ j ≤ n, and there is no process R such that Q −→∗ R and R |=
psync(x j, y j). Let ρ ∈ Path(K)P an execution path such that ρ(m) = Q for some m ∈N . By definition ρ � φ, and thereby 
K, P � φ which contradicts the hypothesis. We then conclude that P is lock free. �
Theorem C.2 (Completeness for processes without replicated input). Let K be the Kripke structure for process P . If P has no replicated 
input and is lock free, then K, P |= φ .

Proof. We assume that P is lock free; for the sake of contradiction we suppose K, P � φ. Then, there is an execution path 
ρ ∈ Path(K)P such that ρ ��(♦pwait(x j, y j) −→ ♦psync(x j, y j)) for some 1 ≤ j ≤ n, that is, there is an m ∈N such that 
ρ(m) |= pwait(x j, y j) and ρ(k) � ♦psync(x j, y j), for all k ≥ m. Given that P does not have replicated input, each of its 
execution paths is finite; hence, there is a process R in the execution path ρ such that P −→∗ R � and R |= pwait(x j, y j), 
then P is deadlocked, therefore it is locked as well, which is a contradiction. We thus conclude that if P is lock free then 
K, P |= φ. �
C.2. Examples

We now present a few examples of well-typed processes in sπ , with different lock- and deadlock-freedom properties:

P1 = (νx1 y1)(νx2 y2)(νx3 y3)(x3true.x1 true.x2 false.0 | lin y3(z).liny2(x).liny1(w).0)

P2 = (νx1 y1)(νx2 y2)(νab)(x1b.0 | a true.0 | un y1(z).x2z.0 | un y2(w).x1 w.0)
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P3 = (νzw)(νxy)(zx.lin y(v).0 | lin w(t).t true.0)

P4 = (νx1 y1)(νx2 y2)(νx3 y3)(νx4 y4)(νx5 y5)(νx6 y6)(νx7 y7)(
x2 true.un x1(w).wx4.0 | lin y2(b).liny4(z).0 | lin y6(a).lin y5(b).0 |
y1x3.lin y3(z).zx7.0 | x5 true.x6 false.0

)
P5 = (νx1 y1)(νx2 y2)(νx3 y3)

(x1 true.0 | y1(z)x1 true.0 | x2 � {T : x3 true.0, F : x3 false.0} | y2 � F .0 | lin y3(k).0)

Processes P1 and P2 were discussed in the main text. We first check that P3, P4, and P5 are typable. Processes P3 and P4
are implemented as follows:

---- P3
ops Typez Typey : -> Type .
ops P31 P32 : -> Trm .
eq Typez = lin !(lin ! bool . end) . end .
eq Typey = lin ? bool . end .
eq P31 = ’z’{0}< ’x’{0} > . lin ’y’{0}(’v’) . nil .
eq P32 = lin ’w’{0}(’t’) . ’t’{0} < True > . nil .
eq P3 = new[’z’ ’w’ : Typez] new[’y’ ’x’ : Typey](P31 | P32) .
----- P4
ops P41 P42 P43 P44 P45 : -> Trm .
eq Typex14 = (u[’a1’] un ?( u[’a3’] un !( u[’a4’] un ! ( end ) .

var(’a4’)) . var(’a3’)) . var(’a1’)) .
eq Typex24 = (lin ! (bool) . end) .
eq Typex34 = (u[’a3’] un ! ( u[’a4’] un ! ( end ) . var(’a4’) ) . var(’a3’)) .
eq Typex44 = (u[’a4’] un ! ( end ) . var(’a4’)) .
eq Typex54 = (lin ! (bool) . end) .
eq Typex64 = (lin ! (bool) . end) .
eq Typex74 = end .

eq P41 = ’x2’{0} < True > . un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . nil .
eq P42 = lin ’y2’{0}(’b’) . lin ’y4’{0}(’z’) . nil .
eq P43 = ’y1’{0} < ’x3’{0} > . lin ’y3’{0}(’z’) . ’z’{0} < ’x7’{0} > . nil .
eq P44 = ’x5’{0} < True > . ’x6’{0} < False > . nil .
eq P45 = lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’). nil .

eq P4 = new[’x1’ ’y1’ : Typex14 ] new[’x2’ ’y2’ : Typex24] new[’x3’ ’y3’ : Typex34]
new[’x4’ ’y4’ : Typex44]new[’x5’ ’y5’ : Typex54] new[’x6’ ’y6’ : Typex64]
new[ ’x7’ ’y7’ : Typex74](P41 | P42 | P43 | P44 | P45) .

Process P5 is implemented as follows:

eq Typex51 = (u[’a’] un ! bool . var(’a’)) .
eq Typex52 = (u[’b’] un &{(’T’ : var(’b’))(’F’ : var(’b’))}) .
eq Typex53 = lin ! bool . end .
eq P52 = (’x2’{0}>>{(’T’ : ’x3’{0}< True > . nil)
(’F’ : ’x3’{0}< False > . nil)}) | (’y2’{0} << ’T’ . nil) | lin ’y3’{0}(’k’) . nil .
eq P51 = ’x1’{0}< True > . nil | un ’y1’{0}(’z’) . ’x1’{0}< True > . nil .
eq P5 = new[’x1’ ’y1’ : Typex51 ]

new[’x2’ ’y2’ : Typex52]
new[’x3’ ’y3’ : Typex53] (P51 | P52) .

Now we check these processes are well-typed:

reduce in TEST : well-typed(P3) .
rewrites: 103 in 0~ms cpu (0~ms real) (~ rewrites/second)
result Bool: true
==========================================
reduce in TEST : well-typed(P4) .
rewrites: 504 in 0~ms cpu (0~ms real) (~ rewrites/second)
result Bool: true
==========================================
reduce in TEST : well-typed(P5) .
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ops P1 P2 P3 P4 P5 : -> Trm .
eq P1 = new* [(’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’)]

(’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |
lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil) .

eq P2 = new* [(’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’)]
(’x1’{0} < ’b’{0} > . nil | ’a’{0} < True > . nil |
un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |
un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil ) .

eq P3 = new* [(’z’ ’w’)(’x’ ’y’)]
(’z’{0}< ’x’{0} > . lin ’y’{0}(’v’) . nil) | lin ’w’{0}(’t’) . ’t’{0} < True > . nil) .

eq P4 = new*[(’x1’ ’y1’)(’x2’ ’y2’)(’x3’ ’y3’)(’x4’ ’y4’)(’x5’ ’y5’)(’x6’ ’y6’)(’x7’ ’y7’)]
’x2’{0} < True > . un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . nil |
lin ’y2’{0}(’b’) . lin ’y4’{0}(’z’) . nil |
’y1’{0} < ’x3’{0} > . lin ’y3’{0}(’z’) . ’z’{0} < ’x7’{0} > . nil |
’x5’{0} < True > . ’x6’{0} < False > . nil |
lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’). nil .

eq P5 = new*[(’x1’ ’y1)(’x2’ ’y2’)(’x3’ ’y3’)]
(x1’{0}< True > . nil | un ’y1’{0}(’z’) . ’x1’{0}< True > . nil |
(’x2’{0}>>{(’T’ : ’x3’{0}< True > . nil)(’F’ : ’x3’{0}< False > . nil)}) |
(’y2’{0} << ’T’ . nil) | lin ’y3’{0}(’k’) . nil) .

Fig. 17. Processes in Maude.

rewrites: 322 in 0~ms cpu (0~ms real) (~ rewrites/second)
result Bool: true

Some intuitions for the other processes follow:

• Process P3 is a simple lock and deadlock free process.
• Process P4 is not deadlock free and not lock free. The deadlock is reached after some synchronizations in the pairs of 

co-variables x1, y1, x2, y2, x3, y3 and x4, y4.
• Process P5 is both lock and deadlock free.

Fig. 17 gives the Maude terms associated to these processes.

C.3. Detecting (dead)locks in Maude

We give the execution of both commands with respect to process P3, which is deadlock and lock free:

search P3 =>! new* [nl:QidSet] P:Trm
such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P3, build-lock-formula((’z’ ’w’) (’x’ ’y’))) .

We obtain:

search in TEST : P3 =>! new*[nl:QidSet] P:Trm
such that wait-aux(nl:QidSet, P:Trm) = true .

No solution.

reduce in TEST : modelCheck(P3, build-lock-formula((’x’ ’y’) ’z’ ’w’)) .
result Bool: true

We perform a similar analysis for process P4; first we check the deadlock property:

search P4 =>! new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .

Then, we obtain:

search in TEST : P4 =>! new*[nl:QidSet]P:Trm such that wait-aux(nl:QidSet, P:Trm) = true .

Solution 1 (state 13)
states: 14 rewrites: 1744 in 4~ms cpu (0~ms real) (436000 rewrites/second)
nl:QidSet --> (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’) (’x6’ ’y6’) (’x7’ ’y7’) ’y1’ ’x1’
P:Trm -->’x5’{0} < True > . ’x6’{0} < False > . nil | lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’) . nil |
un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . nil
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No more solutions.
states: 14 rewrites: 1744 in 4~ms cpu (0~ms real) (436000 rewrites/second)

Process P4 reaches a deadlock involving variables x5, y5, x6, y6; then we also know that the process is locked.
Now we analyze process P5 as we have done before. We obtain:

search in TEST : P5 =>! new*[nl:QidSet]P:Trm such that wait-aux(nl:QidSet, P:Trm) = true .

No solution.

reduce in TEST : modelCheck(P5, build-lock-formula((’x1’ ’y1’) (’x2’ ’y2’) ’x3’ ’y3’)) .
rewrites: 3236 in 4~ms cpu (1~ms real) (809000 rewrites/second)
result Bool: true

As expected, the results show the process is both lock and deadlock free.

Appendix D. Appendix to §6: Algorithmic type checking for HOπ

This section is dedicated to the proof of the Theorem 6.2, which states the correspondence between the type system 
in Section 6.1.2 and the algorithmic type system in Section 6.3. As usual, the proof is divided in two parts: soundness and 
completeness.

D.1. Preliminaries

The following lemma is necessary to ensure that strengthening is well defined.

Lemma D.1. If �; 
1 � D � T ; 
2 then 
2 ⊆ 
1 .

Proof. When the last rule applied is one of the following: A-Inact, A-Sess,A-Sesh, A-RVar, A-LVar or A-Prom then the result 
follows by a straightforward inspection of the rules involved.

Suppose that the last rule applied is A-ResS, then we have �; 
1 � (vs1 : S1)P ; 
2 ÷ {s1, s2}; by inductive hypothesis 
we have 
2 ⊆ 
1, s1 : S1, s2 : S2 (1) and by definition of ÷, 
2 ÷ {s1, s2} ⊆ 
2 (2). Thus, by (1), (2) and the fact that 

2 ÷ {s1, s2} does not contain si for i = 1, 2, then we know 
2 ⊆ 
1. When the derivation ends with A-Bra, we have 
�; 
1 � u � {li : Pi}i∈I ; ∩i∈I


i
3 ÷ u, then it is clear that ∀i ∈ I ∩i∈I 
i

3 ÷ u ⊆ 
i
3 and u /∈ dom(∩i∈I


i
3 ÷ u) (3). By inductive 

hypothesis 
i
3 ⊆ 
2, u : S and 
2 ⊆ 
1. By (3) ∩i∈I


i
3 ÷ u ⊆ 
2, and then by transitivity ∩i∈I


i
3 ÷ u ⊆ 
1. The remaining 

cases follow the same reasoning. �
The following theorem allows us to add extra information when necessary; it is essential to prove completeness.

Theorem D.1 (Weakening). If �; 
1 � D � T ; 
2 then �; 
1, y : θ � D � T ; 
2, y : θ , for y : θ /∈ 
1 .

Proof. When D is either a name or the 0 process, the proof follows from a simple analysis of the rules A-Sess, A-Sh, A-LVar

and A-Nil. Proofs for the other cases follow by induction on the typing derivation:

• When the derivation ends with A-Send, by induction on u, V and P we obtain �; 
3, y : θ � P ; 
4, y : θ . Since y : θ /∈

1, y �= u, thus 
4, y : θ ÷u = 
′

4, y : θ for 
′
4 not containing u. When the derivation ends with A-Sel the proof follows 

the same reasoning.
• When the derivation ends with A-Bra by induction on u and the induction on Pi for all i ∈ I we know �; 
2, y : θ �

Pi; 
i
3, y : θ , then y : θ ∈ ∩i∈I


i
3. Since y �= u, by definition of ÷ we obtain �; 
1, y : θ � u � {li : Pi}i∈I ; 
′

3, y : θ , where 

′

3 = ∩i∈I

i
3 ÷ u.

• When the last rule applied is A-SRcv, then we have �; 
′
1 � u?(x).P ; 
3 ÷ {u, x}. Take y �= u, x, and by inductive hy-

pothesis we have �; 
′
1, y : θ � u�?(U ).S; 
2, y : θ , and by induction on the second branch we have �; 
2, u : S, x :

U , y : θ � P ; 
3, y : θ , hence applying Rule A-SRcv we obtain �; 
′
1, y : θ � u?(x).P ; 
3, y : θ ÷ {u, x}, and by definition 

of ÷ 
3, y : θ ÷ {u, x} = 
′
3, y : θ for some 
′

3 that does not contain x or u.
• When the last rule applied is A-ResS, then take y : θ �= s1, s2, and by inductive hypothesis we know �; 
1, s1 : S1, s̄2 :

S2, y : θ � P ; 
2, y : θ , then the proof concludes by applying rule A-ResS and the fact that y : θ �= s1, s2. The same 
reasoning is used for the proof for A-SAbs.

The remaining cases follow by straightforward induction. �
The following theorem is essential for proving soundness since it enables us to eliminate extra information from the 

input context when necessary.
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Theorem D.2 (Strengthening). If �; 
1 � D � T ; 
2, y : θ then 
1 = 
′
1, y : θ and �; 
′

1 � D � T ; 
2 .

Proof. The case for names and the 0 process follows by an inspection of Rules A-Sess, A-Sh, A-LVar and A-Nil. The proof 
for the other cases follow by induction on the structure of the derivation.

• If the derivation ends with Rule A-Send, suppose that �; 
1 � u!〈V 〉.P ; (
4 ÷u), x : R . Note that (
4 ÷u), x : θ = (
4, x :
θ) ÷ u; induction on P says that 
3 = 
′

3, x : R and �; 
′
3 � P ; 
4; the proof concludes by induction on V and U and 

the application of rule A-Send.
• If the derivation ends with rules: A-ShRcv, A-SRcv, A-Sel or A-Bra, we know that y �= u (also y �= x in the case of

A-SRcv), then 
3 = 
′
3, y : θ . The proof follows by induction on the subprocess(es) and then induction on the name u, 

and concludes by applying A-ShRcv, A-SRcv, A-Sel or A-Bra respectively.
• When the derivation ends with rule A-ResS, then y �= si, s2, thus by inductive hypothesis and then rule A-Ress we get 

the result. A similar reasoning is followed for A-SAbs. The remaining cases follow by straightforward induction. �
Note that Rule End in Fig. 9 allows to introduce new channels of type end, then the algorithm allows channels of type 

end to pass freely through the judgment, hence we say that the algorithm succeeds when the output context is either empty 
or only contains channels of type end.

D.2. Completeness and soundness

The following results establish the algorithmic correctness with respect to HOπ . In this way, this corresponds to the 
proof of the Theorem 6.2 in Section 6.3. As mentioned before, we divided Theorem 6.2 in two parts corresponding to the 
completeness and the soundness theorems. Recall that, given a linear context 
, End(
) means that every channel in 
 is 
of type end.

Theorem D.3 (Completeness). Given contexts �, �, 	, a process D, a type T , and w (name or variable) we have the following:

• If �; �; 	 � w � T then �; 
1 � w � T ; ∅, where 
1 = �, 	.
• If �; �; 	 � erase(D) � T (where either T = � or T = C � �) then �; 
1 � D � T ; 
2 where 
2 = ∅ or End(
2), and 


1 = �, 	.

Proof. Completeness for names follows by a straightforward inspection of the algorithmic type checking rules. The proof 
for the remaining cases follows by induction on the structure of derivations for the hypothesis.

• If the derivation ends with Rule Send, then we have �; �1, �2; ((	1, 	2) \ u : S), u :!〈U 〉.S � erase(u!〈V 〉.P ) ��, where 
either u : S ∈ 	1 or u : S ∈ 	2, thus we consider two cases. We detail the case u : S ∈ 	2, that is, 	2 = 	′

2, u : S . By 
induction (on V ) we have �; 
1 � V � U ; 
3 where 
3 = ∅ or End(
3), and 
1 = �1, 	1. Induction on P tells us 
�; 
2 � P ; 
4 (1), where either 
4 = ∅ or End(
4), and 
2 = �2, 	2 (and 
′

2 = �2, 	′
2). By weakening on V we get 

�; 
1, 
2 � V � U ; 
3, 
2.
– If 
3 = ∅ we have �; 
1, 
′

2, u : S � V �U ; 
′
2, u : S (2). It is clear that �; ∅; u :!〈U 〉.S � u�!〈U 〉.S , and by completeness 

of values and weakening �; 
1, 
′
2, u :!〈U 〉.S � u�!〈U 〉.S; 
1, 
′

2 (3), thus applying Rule A-Send to (1)-(3) we obtain 
�; 
1, 
′

2, u :!〈U 〉.S � u!〈V 〉.P ; 
4 ÷ u. Note that by definition of ÷, either 
4 ÷ u = ∅ or End(
4 ÷ u). If 
4 = ∅, 
then 
4 ÷ u = ∅. If End(
4) and x ∈ dom(
4) then 
4 = 
′

4, x : end where End(
′
4) and 
4 ÷ u = 
′

4. If x /∈ dom(
4)

then 
4 ÷ u = 
4.
– If End(
3) by weakening on P we have �; 
2, 
3 � P ; 
4, 
3 (1’) and �; 
1, 
′

2, u : S � V � U ; 
2, 
3 (2’), thus 
applying A-Send to (1’),(2’) and (3), we obtain �; 
1, 
′

2, u :!〈U 〉.S � u!〈V 〉.P ; 
3, 
4 ÷ u. By definition of ÷ either 

3, 
4 ÷ u = ∅ or End(
3, 
4 ÷ u).

Note that


1,

′
2, !〈U 〉.S = (�1,	1), (�2,	

′
2), !〈U 〉.S

= (�1,�2), (	1,	
′
2), !〈U 〉.S

= (�1,�2), ((	1,	2) \ u : S), !〈U 〉.S
When u : S ∈ 	1 the proof es similar to the case u : S ∈ 	2.

• When the derivations end with Rule Rcv there are three cases, depending on the type of x. We detail the case when x :
S ′ . we have �; �1; 	1, u :?(S ′).S � erase(u?(x).) � �, and by inductive hypothesis �; 
1, u : S, x : S ′ � P ; 
2 (1) where 
either 
2 = ∅ or End(
2), and 
1 = �1, 	1. It is clear that �; ∅; u :?(S ′).S � u�?(S ′).S , hence by completeness of values 
and weakening we know that �; 
1, x : S ′, u :?(S ′).S � u�?(S ′).S; 
1, x : S ′ (2), then by applying A-SRcv to (1) and (2) 
we get �; 
1, u :?(S ′).S � u?(x).P ; 
2 ÷ {x, u}. Definition of ÷ says that either 
2 ÷ {x, u} = ∅ or End(
2 ÷ {x, u}). It is 
also clear that 
1, ?(S ′).S = �1, 	1, ?(S ′).S . The proofs when x is of higher-order type or shared type are similar.
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• If the derivation ends with Rule Par, we have �; �1, �2; 	1, 	2 � erase(P |Q ) � � and by induction we get �; 
1 �
P ; 
3 (1), and �; 
2 � Q ; 
4 (2) where either 
3 = ∅ or End(
3), either 
4 = ∅ or End(
4), 
1 = �1, 	1 and 

2 = �2, 	2. If 
3 = ∅, by weakening on P we get �; 
1, 
2 � P ; 
2 (3), then applying A-Par to (2) and (3) we 
obtain �; 
1, 
2 � P |Q ; 
4. If End(
3), by weakening P and Q we get �; 
1, 
2 � P ; 
2, 
3 (4) and �; 
2, 
3 �
Q ; 
3, 
4 (5), and then applying A-Par to (4) and (5) to obtain �; 
1, 
2 � P |Q ; 
3, 
4; note that either case for 
4, 
End(
3, 
4). It is clear that 
1, 
2 = �1, �2, 	1, 	2.

• When the derivation ends with Rule Abs there are two cases depending on the type of x. If x : S , we have �; �1; 	1 �
erase(λx : S.P ) � S � �, then by definition of erase( ), �; �1; 	1 � λx.erase(P ) � S � �, thus by inductive hypothe-
sis �; 
1, x : S � P ; 
2, where 
2 = ∅ or End(
1), and 
1, x : S = �1, 	1, x : S , hence 
1 = �1, �2. By A-SAbs we have 
�; 
1 � λx : S.P ; 
2 ÷ x and by definition of ÷, either 
2 ÷ x = ∅ or End(
2 ÷ x). When x is of a shared type the proof 
proceeds similar to the previous case.

• When the derivation ends with Rule Sel we have �; �1; 	1, u : ⊕{li : Si}i∈I � erase(u � l j .P ) � � = u � l j .erase(P ) � �. 
By inductive hypothesis �; 
1, u : S j � P ; 
2 (1) for some j ∈ I with 
2 = ∅ or End(
2), and 
1, u : S j = �1, 	1, u : S j , 
thus 
1 = �1, 	1. It is clear that �; ∅; u : ⊕{li : Si}i∈I � u �⊕{li : Si}i∈I , hence by completeness of values and weakening 
�; 
1, u : ⊕{li : Si}i∈I � u � ⊕{li : Si}i∈I ; 
1 (2), then applying A-Sel to (1) and (2) we obtain �; 
1, u : ⊕{li : Si}i∈I �
u � l j .P ; 
2 ÷ u. Definition of ÷ says that either 
2 ÷ u = ∅ or End(
4).

• When the derivation ends with Rule Acc the proof depends on the type of x. If x : S , we have �; �1; 	1 �
erase(u?(x).P ) ��; by induction we have �; ∅ � u � 〈S〉; ∅ (1) and �; 
1, x : S � P ; 
2 (2), where 
1, x : S = �1, 	1, x :
S , thus 
1 = �1, 	1. By weakening on (1) we obtain �; 
1 � u � 〈U 〉; 
1 (3). The proof concludes by applying rule
A-SAcc and definition of ÷. When x is typed at higher-order types the proof is follows the same intuition. When x is 
of a shared type, the proof proceeds similarly but applies A-ShAcc instead of A-SAcc.

• Suppose that the derivation ends with Rule Bra, then we have �; �2; 	2, u : &{li : Si}i∈I � erase(u � {li : Pi})i∈I � �, 
and by properties of erase( ), we have �; �2; 	2, u : &{li : Si}i∈I � u � {li : erase(Pi)}i∈I � �. By induction on each 
branch we have �; 
2, u : Si � Pi; 
i

3 where 
2, u : S j = �2, 	2, u : S j and either 
i
3 = ∅ or End(
i

3) (1), however in 
each case NotEnd(
i

3) = NotEnd(

j
3) = ∅ for all i, j ∈ I . We have that �; ∅; u : &{li : Si}i∈I � u � &{li : Si}i∈I , thus by 

completeness of values and weakening �; 
2, u : &{li : Si}i∈I � u � &{li : Si}i∈I ; 
2. The proof concludes by applying Rule
A-Bra to obtain �; 
1 � u � {li : Pi}i∈I ; ∩i∈I


i
3 ÷ u. By (1) we know that ∩i∈I


i
3 = ∅ or End(∩i∈I


i
3), then by definition 

of ÷, ∩i∈I

i
3 ÷ u = ∅ or End(∩i∈I


i
3 ÷ u).

• When the derivation ends with rule Req, we have �; �2; 	1, 	2 � erase(u!〈V 〉.P ) � �. By induction on each branch 
we obtain �; ∅ � u � 〈U 〉; ∅, �; 
1 � V � U ; 
3, and �; 
2 � P ; 
4 where 
i = ∅ or End(
i) for i = 3, 4, 
1 = 	1, 
and 
2 = �2, 	2; it is clear that split(
1) = ∅ ∗ 
1. The result follows from weakening u and V and then applying 
Rule A-Req.

• When the derivation ends with rule RVar we have �, X : 	; ∅; 	 � X � �, then taking 
 = 	 is clear that split(
) =
∅ ∗ 
, thus we have �, X : 
; 
 � X; ∅.

• If the derivation ends with Rule Rec, we have �; ∅; 	 � erase(μX .P ) �� = μX .erase(P ) ��, and by inductive hypoth-
esis we obtain �, X : 
; 
 � P ; ∅, where 
 = 	; it is clear that split(
) = ∅ ∗
, thus by A-Req �; 
 �μ(X : N).P ; ∅.

• When the derivation ends with Rule App then we have �; �1; 	1, 	2 � V u � �, and by inductive hypothesis on each 
branch �; 
1 � V ; 
3 where either 
3 = ∅ or End(
3), and 
1 = �1, 	1. �; 
2 � u; 
4 where either 
4 = ∅ or 
End(
4), and 
2 = 	2 (1). If 
3 = ∅ we weaken V , thus �; 
1, 
2 � V ; 
2 and split(
2) = ∅ ∗ 
2, hence by 
applying Rule A-App �; 
1, 
2 � V u; 
4. Note that 
1, 
2 = �1, 	1, 	2. If End(
3) (2) we weaken both V and u to 
obtain �; 
1, 
2 � V ; 
3, 
2 and �; 
3, 
2 � u; 
3, 
4. By (1) and (2) we have that split(
3; 
2) = ∅ ∗ 
3, 
2, 
hence by applying Rule A-App we obtain the result.

The remaining cases follow by straightforward induction. �
The following lemma is used in the proof of soundness since it allows us to relate the output of the full process with 

the output of the last subprocess.

Lemma D.2.

• 
 ÷ u = ∅ then 
 = ∅ or 
 = u : end.
• End(
 ÷ u) then 
 = 
′, u : end with End(
′) or u /∈ 
 and End(
).

Proof. By definition of the function ÷. �
The following is the soundness theorem, which corresponds to the converse of Theorem D.3. This theorem is necessary 

to complete the proof of Theorem 6.2.

Theorem D.4 (Soundness). Given contexts �, 
, a process D, a type T , and w (name or variable) we have the following:
39



C.A. Ramírez Restrepo, J.C. Jaramillo and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 133 (2023) 100872
• If �; 
 � w � T ; ∅ then �; �; 	; � w � T , where �, 	 = 
.
• If �; 
 � D � T ; 
2 , for D a process or an abstraction and 
2 = ∅ or End(
2), then �; �; 	; � erase(D) � T , where �, 	 = 
.

Proof. The proof of soundness for names follows by a straightforward inspection of the algorithmic type checking rules and 
the definition of the function erase( ).

The proof for processes and abstractions follows by induction on the typing derivation.

• If the derivation ends with A-Send, we have �; 
1 � u!〈V 〉.P ; 
4 ÷ u with 
4 ÷ u = ∅ or End(
4 ÷ u); by Lemma D.2
we know that either 
4 = ∅ or End(
4) and then by induction �; �3; 	3 � erase(P ) � � (1), where �3, 	3 = 
3. We 
also have �; 
2, u : S � V � U ; 
3, and by strengthening �; (
2, u : S) \ 
3 � V � U ; ∅. Inductive hypothesis on V says 
�; �2; 	2 � erase(V ) � U (2), where �2, 	2 = (
2, u : S) \
3, then applying Send to (1) and (2), and by properties of 
erase( ) we obtain �; �2, �3; ((	2, 	3) \ u : S), u :!〈U 〉.S � erase(u!〈V 〉.P ) � �
Note that by �; 
1 � u�!〈U 〉.S; 
2 we know that 
1 = 
′

1, u :!〈U 〉.S and 
′
1 = 
2. Note that

(
2, u : S) \ 
3 = �2,	2

((
2, u : S) \ 
3),
3 = �2,	2,�3,	3


2, u : S = �2,	2,�3,	3


2, u : S = �2,�3, (	2,	3)


2 = �2,�3, (	2,	3) \ u : S

thus 
1 = 
2, u :!〈U 〉.S = �2, �3, ((	2, 	3) \ u : S), u :!〈U 〉.S .
• If the derivation ends with A-SRcv, we have �; 
1 � u?(x).P ; 
3 ÷ {x, u} for some context 
3 and 
3 ÷ {x, u} = ∅ or 

End(
3 ÷ {x, u}); by Lemma D.2 and induction we obtain �; �2; 	2, u : S, x : S ′ � erase(P ) � �, where �2, 	2, u : S, x :
S ′ = 
2, u : S, x : S ′ , then �2, 	2 = 
2, thus applying Rcv we obtain �; �2; 	2, u :?(S ′).S � erase(u?(x).) � � (1). By 
�; 
1 � u�?(S ′).S; 
2 we know that 
1 = 
′

1, u :?(S ′).S and 
′
1 = 
2, hence 
1 = �2, 	2, u :?(S ′).S . The proof when 

x : C�� is similar.
• When the derivation ends with Rule A-ShRcv, the proof is similar to A-SRcv.
• When the derivation ends with Rule A-Par suppose we have �; 
1 � P |Q ; 
3 with 
3 = ∅ or End(
3) then by in-

duction we have �; �2; 	2 � erase(Q ) � � where �2, 	2 = 
2; applying strengthening to �; 
1 � P ; 
2 and then 
induction we obtain �; �1; 	1 � erase(P ) � �, where �1, 	1 = 
1 \ 
2 then by Rule Par and properties of erase()

we obtain �; �1, �2; 	1, 	2 � erase(P |Q )� and �1, �2; 	1, 	2 = (
1 \ 
2), 
2 = 
1.
• When the derivation ends with Rule A-SAbs then we have �; 
1 � λx : S.P ; 
2 ÷ x, where 
2 ÷ x = ∅ or End(
2 ÷ x); 

by Lemma D.2 we know 
2 = ∅ or End(
2). Thus by induction �; �1; 	1, x : S � erase(P ) (1), where �1, 	1, x : S =

1, x : S , then by Rule Abs �; �1; 	1 � λx. erase(P ), hence �; �1; 	1 � erase(λx. P ).

• When the derivation ends with Rule A-ShAbs, the proof is similar to the one for Rule A-SAbs.
• When the derivation ends with the Rule A-Sel, we have �; 
1 � u � l j .P ; 
3 ÷ u with 
3 ÷ u = ∅ or End(
3 ÷ u), 

and by Lemma D.2 and inductive hypothesis �; �2; 	2, u : S j � erase(P ) � �, where �2, 	2, u : S j = 
2, u : S j . Thus 
by applying Rule Sel we obtain �; �2; 	2, u : ⊕{li : Si}i∈I � erase(u � l j .P ) � �. By �; 
1 � u � ⊕{li : Si}; 
2 we know 

1 = 
′

1, u : ⊕{li : Si}, 
2 = 
′
1, hence 
1 = �2, 	2, u : ⊕{li : Si}.

• When the derivation ends with Rule A-Bra we have �; 
1 � u � {li : Pi}i∈I ; ∩i∈I

i
3 ÷ u where ∩i∈I


i
3 ÷ u = ∅ or 

End(∩i∈I

i
3 ÷ u).

– in the first case ∩i∈I

i
3 = ∅ or ∩i∈I


i
3 = u : end. Since ∀i, j ∈ I NotEnd(
i

3) = NotEnd(

j
3), ∩i∈I


i
3 = ∅ implies 

that ∀i ∈ I NotEnd(
i
3) = ∅. The same reasoning is applied when ∩i∈I


i
3 = u : end.

– If End(∩i∈I

i
3 ÷ u) we know that either ∩i∈I


i
3 = 
, u : end for some 
 and End(
) or u /∈ dom(∩i∈I


i
3) and 

End(∩i∈I

i
3). In any case ∀i ∈ I NotEnd(
i

3) = ∅.
thus then (by induction on every branch) �; �2; 	2, u : Si � erase(Pi) � �, where �2, 	2, u : Si = 
2, u : Si then we 
apply Rule Bra to obtain �; �2; 	2, u : &{li : Si}i∈I � u � {li : erase(Pi)}. By �; 
1 � &{li : Si}i∈I ; 
2 we know 
1 =

′

1, u : &{li : Si}i∈I and 
2 = 
′
1, hence 
1 = �2, 	2, u : &{li : Si}i∈I .

• When the derivation ends with Rule A-SAcc, then we have �; 
1 � u?(x).P ; 
2 ÷ x where 
2 ÷ x = ∅ or End(
2 ÷ x), 
and by Lemma D.2 
2 = ∅ or End(
2), then by inductive hypothesis �; �1; 	1, x : S � erase(P ) � �, where �1, 	1, x :
S = 
1, x : S and θ is a Session type. Strengthening on u gives �; ∅ � u � 〈S〉; ∅. Induction tells us that �; ∅; ∅ � u � 〈θ〉, 
then result follows by applying Rule Acc.

• If the derivation ends with Rule A-ShAcc, the proof is similar to the previous case.
• When the derivation ends with Rule A-RVar we have �, X : 
1; 
1, 
2 � X; 
2 where split(
1) = ∅ ∗ 
1 and ei-

ther 
2 = ∅ or End(
2). If 
2 = ∅ we take 	 = 
1 and then we have �, X : 	; ∅; 	 � X � �. If End(
2), we apply 
strengthening and then we take 	 = 
1.

• When the derivation ends with Rule A-Rec we have �; 
1, 
2 � μ(X : N).P ; 
2, where 
2 = ∅ or End(
2). If 
2 = ∅
then �; 
1 �μ(X : N).P ; ∅ where split(
1) = ∅ ∗ 
1, hence by inductive hypothesis �, X : 	1; ∅; 	1 � erase(P ) � �
40
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where 	1 = 
1, then by Rule Rec �; ∅; 	1 � μX .erase(P ) �� = erase(μX .P ) ��. If End(
2), then we first strengthen 
the derivation and then follow the previous reasoning.

• When the derivation ends with Rule A-Req, then we have �; 
1 � u!〈V 〉.P ; 
5 where 
5 = ∅ or End(
5). By inductive 
hypothesis we have �; �2; 	2 � erase(P ) �� (1), where �2, 	2 = 
2, 
4 and split(
1) = 
2 ∗
3. By strengthening 
on both �; 
1 � u � 〈U 〉; 
1 and �; 
3 � V � U ; 
4 and then by inductive hypothesis we have both �; ∅; ∅ � u � 〈U 〉 (2) 
and �; ∅; 	1 � erase(V ) � U (3), where 	1 = 
3 \ 
4. Applying Req we obtain �; �2; 	1, 	2 � erase(u!〈V 〉.P ). Note 
that �2, 	1, 	2 = (
3 \ 
4), 
2, 
4 = 
2, 
3 = 
1.

• When the derivation ends with Rule A-App, then �; 
1 � V u; 
3, 
5 where either 
3, 
5 = ∅ or End(
3, 
5). If 

3, 
5 = ∅ then split(
2) = ∅ ∗ 
4 (1), and then by inductive hypothesis �; ∅; 	2 � u � C where 	2 = 
4. Strength-
ening V and induction produces �; �1; 	1 � V � C � � where 
1 \ 
2 = �1, 	1, thus by App �; �1; 	1, 	2 � V u � �. 
By (1) is clear that 
2 = 
4, thus �1, 	1, 	2 = (
1 \ 
2), 
4 = (
1 \ 
2), 
2 = 
1. When End(
3, 
5) we strengthen 
u and then the reasoning is the same as before.

The remaining cases follow by straightforward induction. �
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