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Genome-wide analysis identifies genetic 
effects on reproductive success and ongoing 
natural selection at the FADS locus

Identifying genetic determinants of reproductive success may highlight 
mechanisms underlying fertility and identify alleles under present-day 
selection. Using data in 785,604 individuals of European ancestry, we 
identified 43 genomic loci associated with either number of children ever 
born (NEB) or childlessness. These loci span diverse aspects of reproductive 
biology, including puberty timing, age at first birth, sex hormone regulation, 
endometriosis and age at menopause. Missense variants in ARHGAP27 were 
associated with higher NEB but shorter reproductive lifespan, suggesting 
a trade-off at this locus between reproductive ageing and intensity. Other 
genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and 
our results suggest a new role for the melanocortin 1 receptor (MC1R) in 
reproductive biology. As NEB is one component of evolutionary fitness, our 
identified associations indicate loci under present-day natural selection. 
Integration with data from historical selection scans highlighted an allele in 
the FADS1/2 gene locus that has been under selection for thousands of years 
and remains so today. Collectively, our findings demonstrate that a broad 
range of biological mechanisms contribute to reproductive success.

Variation in human reproductive behaviour and success is epidemio-
logically associated with disease risk and has profound psychological, 
clinical and societal implications. This is particularly true for infertil-
ity, where efforts to elucidate the underlying biological mechanisms 
have been limited by the lack of large, well-phenotyped cohorts with 
relevant outcomes. This situation is mirrored across many repro-
ductive traits and diseases, such as polycystic ovary syndrome1,2, 
where progress in identifying genetic determinants and underly-
ing mechanisms has lagged behind that of other complex diseases3. 
One reason for this is that natural selection limits the frequency of 
fertility-reducing alleles. The number of children ever born (NEB) to 
an individual has one of the highest degrees of polygenicity of any 
trait, consistent with a genetic architecture strongly influenced by 
negative selection4,5. Another reason is the fact that NEB is a behav-
ioural phenotype influenced by multiple social, economic and environ-
mental factors6–8. Nonetheless, studying the genetic basis of fertility 
may illuminate biological mechanisms underpinning infertility, with 
the advantage that the relevant measures are more readily available. 

For example, recent studies have identified genetic determinants 
of NEB, age at first sexual intercourse and age at first birth9–12. These 
have provided several aetiological insights, such as highlighting 
a neuro-behavioural role for the oestrogen receptor in men9 and 
identifying biological mechanisms linking reproductive ageing to  
late-onset diseases9,10,13,14.

Fertility-associated loci may act through a broad array of mecha-
nisms. They may have direct effects on reproductive biology or act 
through traits that contribute to partner selection or other aspects 
of behaviour and personality. For example, alleles associated with 
higher educational attainment are associated with lower fertility in 
some populations15,16, reflecting the link between higher education 
and older age at childbearing7. Finally, fertility-associated loci might 
represent alleles under selection for some trait entirely disconnected 
from reproductive biology. By definition, any variant that is under 
natural selection affects fitness. Variants that affect fecundity would 
be detected by a genome-wide scan for NEB, although this scan would 
not capture all components of fitness.
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efforts are likely to also identify signals there. To validate these find-
ings, we examined associations of these signals in 34,367 women from 
the FinnGen study (Methods). Since NEB was not recorded for men in 
FinnGen, we considered only the 41 signals identified in sex-combined 
or female-specific analyses. Despite the small replication sample, 35 of 
41 loci had the same direction of effect in FinnGen as in the discovery 
sample (binomial sign test, P = 5 × 10−6; Supplementary Table 7 and 
Supplementary Fig. 4).

Previous demographic research demonstrates that NEB is strongly 
influenced by socio-environmental factors such as education, employ-
ment uncertainty, religiosity, housing and larger trends such as eco-
nomic and unemployment trends, policy measures (for example, 
childcare and taxes) and contraceptive technologies6. None of our 
identified signals exhibited genome-wide significant associations with 
educational attainment, church attendance or social deprivation indi-
ces (all of which have reported genetic associations18,19) (Supplemen-
tary Table 9). To investigate the possibility of subtle stratification, we 
explored the effect of increasing the number of principal components 
in the GWAS model from 10 to 40 in UK Biobank and found little change 
in the sizes of effect estimates at the 43 significant loci (average change, 
−0.6%; range, −8.7% to +12.7%; Supplementary Table 10). However, since 
this type of stratification can never be fully controlled, we turned to 
alternative sources of information to identify plausible mechanisms 
and candidate genes to prioritize the association signals more likely 
to be driven by biology than by stratification.

Implicated genes and biological mechanisms
We used a combination of in silico fine-mapping and summary-based 
Mendelian randomization (SMR) using expression quantitative trait loci 
(eQTL) data integration to identify putatively causal genes (Methods 
and Supplementary Table 7). Four of the 43 signals were highly cor-
related (pairwise r2 = 0.9) with a non-synonymous variant, implicating 
ARHGAP27 (rs12949256, p.Ala117Thr), PIK3IP1 (rs2040533, p.Thr251Ser), 
ZFP82 (rs17206365, p.Leu59Met) and LRP4 (rs6485702, p.Ile1086Val). Of 
note, PIK3IP1 encodes a negative regulator of the PI3K/Akt/mTOR path-
way, which is an intracellular signalling pathway with well-established 
roles in cell cycle regulation. Oocyte-specific deletion of Pten in mice 
removes the inhibiting effect of the PI3K pathway on primordial follicle 
activation, leading to premature recruitment and exhaustion of the 
entire primordial follicle pool20.

We extended the approach of implicating genes using pre-
dicted deleterious variants by performing MAGMA21 multi-marker 
gene-burden analyses restricted to the same predicted deleterious 
variants (Supplementary Tables 11–13). This approach identified sig-
nificant genes within three of our identified regions (Supplementary 
Table 7), notably the gene encoding the MC1R (P = 1.6 × 10−8). This was 
driven by 13 independent non-synonymous variants, none of which 
were individually genome-wide significant (Supplementary Table 14).  
MC1R is expressed on the surface of skin and hair melanocytes and 
produces the pigment melanin by binding α-melanocyte stimulating 
hormone. Genetic variation at MC1R accounts for ~73% of the herit-
ability of red hair colour22, including our lead non-coding variant in this 
region (rs8051733, Supplementary Table 7) and the rarer coding alleles 
included in the MAGMA test. The NEB effect at this locus appeared 
significantly stronger in women than in men (Supplementary Table 7).  
Three sensitivity analyses suggested that hair colour association was 
not responsible for the observed NEB effect (due to either popula-
tion structure or mating preference). First, within women in the UK 
Biobank, the NEB effect remained significant when red-headed women 
were excluded from the analyses and showed a consistent direction 
of effect within women of the same hair colour (Supplementary  
Table 16). Furthermore, the inclusion of hair colour in the associa-
tion model reduced the effect size by only 20–25% (Supplementary  
Table 15), suggesting that mating preference based on hair colour 
is unlikely to fully explain the observed effect. Second, there was 

Our present study substantially builds on two earlier studies9,10 to 
identify individual genetic determinants of NEB. In contrast to these 
previous studies, we double the sample size to 785,604 individuals and 
increase the number of genetic loci associated with NEB from 5 to 43. By 
linking our findings to scans for ancient selection, we isolate a unique 
example of an allele that has remained under selection for thousands 
of years and remains under selection today. We also highlight a number 
of biological mechanisms that contribute to reproductive success and 
uncover a previously unknown role for the melanocortin 1 receptor 
(MC1R) in reproductive biology.

Results
We identified genetic determinants of NEB by performing a 
genome-wide association study (GWAS) in 785,604 individuals of 
European ancestry meta-analysed across 45 studies (Supplementary 
Tables 1–6). The detailed methodology for how this discovery analy-
sis was performed can be found in the Methods. Single nucleotide 
polymorphism (SNP) array data were imputed to at least the reference 
panel density of the 1000 Genomes Project (phase 1 version 3) across all 
studies. The distribution of genome-wide test statistics for NEB showed 
substantial inflation (λGC = 1.36); however, linkage disequilibrium (LD) 
score regression17 indicated that this was attributable to polygenicity 
rather than population stratification (LD intercept, 1.01; s.e., 0.008). In 
total, 5,283 variants reached genome-wide significance (P < 5 × 10−8) for 
association with NEB, which we resolved to 28 statistically independ-
ent signals (Fig. 1 and Supplementary Table 7). These include all five 
signals previously reported for NEB in overlapping samples of up to 
343,072 individuals9,10.

The genetic architecture of NEB was only moderately correlated 
between men and women (rg = 0.74; 95% confidence interval (CI), 
0.66–0.82). We therefore ran separate GWAS meta-analyses in men 
(N = 306,980) and women (N = 478,624) and identified six additional 
statistically independent signals (two in men and four in women). 
We found evidence of heterogeneity (Phet < 0.05) between sexes at 
13/34 NEB loci (greater than expected by chance; Pbinomial = 4 × 10−9) and 
an overall trend for larger effect sizes in women than in men (24/34, 
Pbinomial = 0.02). Two notable examples were rs58117425 in the testis 
expressed 41 (TEX41) gene, which was significant only in men, and 
6:152202621_GT_G in the oestrogen receptor alpha (ESR1), where the 
effect on NEB in women was double that in men (Supplementary Table 7).  
For all NEB-associated loci, we provide a summary of individual study 
effect estimates (Supplementary Table 8 and Supplementary Fig. 1).

In the absence of well-powered studies of infertility, we performed 
a GWAS on lifetime childlessness (CL) in UK Biobank (N = 450,082) 
and assessed the relevance of NEB-associated loci on susceptibil-
ity to CL. Effects on CL were modest, with the largest effect at the 
rs201815280-CADM2 locus (sex-combined odds ratio, 1.05; 95% CI, 
1.04 to 1.06; P = 6.8 × 10−18). Using LD score regression, we found that the 
genetic correlation between NEB and CL was very high but not perfect 
(rg = −0.90; 95% CI, −0.88 to −0.92). Accordingly, of the 16 independent 
loci identified for CL, 8 were distinct from the NEB signals (Fig. 1 and 
Supplementary Table 7). Sex-stratified analyses revealed one addi-
tional female-specific CL signal (rs7580304, PPP3R1, Supplementary  
Table 7). Several loci exhibited significantly smaller or larger effects 
on CL than expected given their effect on NEB (Supplementary Fig. 2 
and Supplementary Table 7).

In summary, we identified 43 independent signals comprising 28 
from the sex-combined NEB meta-analysis, 6 sex-specific NEB signals, 
8 additional sex-combined CL signals and 1 sex-specific CL locus. We 
did not identify any genome-wide significant signals on the X chromo-
some, probably due to a combination of chance and a slightly smaller 
discovery sample size (671,349 rather than 785,604 for autosomes). 
We note, however, that the heritability of all individual chromosomes—
including the X chromosome—was broadly proportional to their size 
(Supplementary Fig. 3), suggesting that future expanded discovery 
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no concordance between individual SNP effects on hair colour and 
NEB (Supplementary Table 14). For example, the red-hair-increasing 
allele at Arg151Cys decreased NEB (β = −0.02; 95% CI, −0.03 to −0.01; 
P = 1.3 × 10−4), while the red-hair-increasing allele at Val92Met increased 
NEB (β = 0.016; 95% CI, 0.004 to 0.028, P = 3.9 × 10−3). Finally, we 
assessed the impact of MC1R loss of function using exome sequence 
data in ~450,000 UK Biobank participants. The 1,511 carriers of MC1R 
loss-of-function alleles showed no difference in NEB (β = 0.01; 95% CI, 
−0.04 to 0.07; P = 0.65), but these loss-of-function alleles had a very 
robust effect on the presence of red hair (P = 1.8 × 10−792), suggesting 
an alternative mechanism. Collectively, these data suggest a new role 
of the MC1R in reproduction, consistent with the recent observations 
that other pigmentation genes are associated with puberty timing  
in males23.

MAGMA also highlighted three genes outside regions identified by 
the 43 loci: ATHL1 (6 variants), GLDN (11 variants) and RPS11 (2 variants). 
The association at RPS11 was primarily driven by a single rare variant 
(rs739346, p.Thr77Ser), which had a relatively large effect on NEB  
(‘T’ allele frequency, 0.13%; β = 0.18; 95% CI, 0.11 to 0.25; P = 9.7 × 10−9). 
This gene encodes a key component of the complex that forms the 
ribosome and is one of the most differentially expressed genes in the 
sperm of men with asthenozoospermia24.

Next, we systematically integrated publicly available gene expres-
sion QTL data with our GWAS meta-analysis results (Methods). To 
guide these analyses, we first assessed the relative genome-wide 
enrichment of NEB-associated variants near genes expressed in  
53 GTEx cell types. In sex-combined analyses, a number of neuronal 
cell types reached significance (Supplementary Table 17). This pat-
tern of enrichment is consistent with other reproductive traits such 

as puberty timing13, probably reflecting the established role of genes 
in the hypothalamic–pituitary–gonadal axis regulating fertility and 
reproductive ageing. Sex-stratified analyses demonstrated a similar 
enrichment while also highlighting genes expressed in the testis for 
men (Supplementary Table 17). Focusing on genes expressed in the 
brain, gonads and blood, SMR analyses suggest that 7 of our 43 genetic 
variants influence NEB through the expression levels of one or more 
nearby genes (Supplementary Table 7). This includes IKZF3, which 
encodes a haematopoietic-specific transcription factor involved in 
B-cell differentiation and proliferation, where correlated variants 
were recently reportedly associated with mosaic Y chromosome loss25.

While we were unable to putatively link all our significantly asso-
ciated genetic variants to gene function, we note that many are in or 
near genes with established links to aspects of reproductive biology 
(Supplementary Tables 7 and 18). This includes genes such as oes-
trogen receptor 1 (ESR1); ENO4, which is required for sperm motility 
and function as well as for male fertility in mice26; and WNT4, which 
encodes a regulator of Müllerian-duct formation and control of ovar-
ian steroidogenesis. This signal in WNT4 is the same as that previ-
ously reported for both uterine fibroids and endometriosis, with the 
disease-risk-increasing allele associated with lower NEB in women 
but not in men (Supplementary Table 7; βall = −0.01; 95% CIall, −0.02 
to −0.01; Pall = 3.6 × 10−8; βwomen = −0.01; 95% CI women, −0.02 to −0.01; 
Pwomen = 4.5 × 10−7; βmen = −0.004; 95% CI men, −0.011 to 0.002; Pmen = 0.19). 
We note that many of the gene-mapping approaches described above 
may identify multiple genes at individual loci, highlighting the chal-
lenges of moving from variant to gene function in complex trait genet-
ics. Further experimental work will be required to fully elucidate which 
genes our identified signals implicate.
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To further ascertain which loci might act directly on reproduc-
tive pathways, we integrated GWAS results from other reproductive 
traits (Fig. 2). We confirm previously reported systematic correlations 
between NEB and age at first birth, and between NEB and age at first 
sex10,11. However, other associations are less consistent. For exam-
ple, a missense allele (rs9730, r2 = 1 with rs12949256 / p.Ala117Thr) in 
ARHGAP27, which encodes a Rho GTPase (a small family of molecules 
involved in axon guidance), was associated with increased NEB but 
shorter reproductive lifespan—later age at menarche (β = 0.04 years; 
95% CI, 0.03 to 0.05; P = 1 × 10−11) and earlier menopause (β = −0.09 
years, 95% CI, −0.13 to −0.04; P = 3 × 10−5)—and with earlier age at first 
birth (β = −0.07 years; 95% CI, −0.09 to −0.04; P = 5.5 × 10−8), lower 
circulating testosterone concentrations in women (both bioavailable 
(β = −0.01 ln(nmol l−1); 95% CI, −0.02 to −0.01; P = 2.1 × 10−4) and total 
(β = −0.011 normalized units; 95% CI, −0.018 to −0.004; P = 2.1 × 10−3)), 
and higher testosterone concentrations in men (both bioavailable 
(β = 0.01 normalized units; 95% CI, 0.01 to 0.02; P = 3.5 × 10−4) and total 
(β = 0.03 normalized units; 95% CI, 0.02 to 0.03; P = 1.9 × 10−11)). Another 
NEB signal, rs4730673 near MDFIC, is correlated with the most sig-
nificantly associated GWAS signal reported for same-sex sexual behav-
iour27 (rs10261857; r2 = 0.74). At this locus, the NEB-increasing allele 
was associated with a lower likelihood of same-sex sexual behaviour.

Overlap between NEB and historical selection identifies the 
FADS locus
Another approach to prioritize the most likely associations is to search 
for variants that show evidence of natural selection—that is, they 
also affected fitness in ancient populations. Effect estimates for the  
34 genome-wide significant NEB loci ranged from 0.012 to 0.025 chil-
dren per allele. The population mean NEB is ~1.8 in UK Biobank; thus, an 

effect size of 0.02 per allele implies that a group of 25 people homozy-
gous for an NEB-increasing allele would have, on average, 46 children, 
compared with 45 children for a group of 25 people without that allele. 
Assuming no effect on pre-reproductive mortality, these effect sizes can 
be directly translated to selection coefficients of 0.67–1.4% per allele, 
which is within the range detectable by genome-wide historical selec-
tion scans28–30. Accordingly, we compared our NEB/CL GWAS results 
with the results of scans testing selection over different timescales 
from ~2,000 to ~30,000 years before the present28,29,31 (Methods) and 
evaluated overlap using Bayesian colocalization analysis32 (Supple-
mentary Tables 19 and 20).

The strongest overlap was observed at chr11:61.5 Mb, which exhib-
ited a posterior probability of 96% that the lead variants for ancient 
selection and NEB represent the same underlying signal (Fig. 3a). This 
locus contains the genes FADS1 and FADS2, which have been targeted by 
selection multiple times in human history33–36. In particular, the derived 
haplotype at this locus, which increases the expression of FADS1, has 
increased from a frequency of <10% 10,000 years ago to 60–75% in 
present-day European populations (Fig. 3b). While some of this increase 
is due to admixture, there is strong evidence of positive selection over 
the past few thousand years, even accounting for changes in ances-
try28,33–37. FADS1 and FADS2 encode enzymes that catalyse the ω-3 and 
ω-6 lipid biosynthesis pathways that synthesize long-chain polyunsatu-
rated fatty acids from short-chain precursors. It has been hypothesized 
that selection in Europe was driven by dietary transitions, in particular 
the Bronze Age transition to a diet based intensively on agricultural 
products with relatively low long-chain polyunsaturated fatty acid 
levels36,37. However, the mechanism through which this gene–envi-
ronment interaction might affect fitness is unclear. Indeed, the FADS 
locus is highly pleiotropic. It is one of the strongest GWAS signals for 
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circulating lipids38 and blood metabolites39 and is strongly associated 
with blood cell phenotypes, including erythrocyte and platelet sizes 
and counts (Supplementary Table 21).

In our data, each ‘C’ allele of the lead NEB SNP rs108499, which 
tags the selected FADS haplotype, increased NEB by 0.0134 children, 
corresponding to a selection coefficient of 0.74% (0.0134 divided by 
the mean NEB of 1.8). Consistent with this, in the ‘White British’ subset 
of UK Biobank, the derived allele increased in frequency by 0.009% per 
year between the 1938 and 1969 birth cohorts (Fig. 3c), corresponding 
to a selection coefficient of 1.2% (95% CI, −0.9% to 3.2%). One caveat is 
that GWAS results can always be affected by stratification. To provide 
additional evidence, we turned to exome sequence data as an inde-
pendent validation dataset. In UK Biobank exome sequence data, 242 
FADS1 loss-of-function carriers had lower NEB than non-carriers (Sup-
plementary Table 22; β = −0.21; 95% CI, −0.35 to −0.06; P = 5.3 × 10−3). 
The NEB-increasing allele increases FADS1 expression, so this effect is 
directionally consistent.

Further support for the association comes from three lines of 
evidence directly connecting FADS1 to reproductive biology. First, 
the NEB-increasing allele is associated with higher circulating 
sex-hormone-binding globulin (β = 0.009 ln(nmol l−1); 95% CI, 0.007 
to 0.011; P = 2.3 × 10−20), total testosterone (β = 0.013 normalized units; 
95% CI, 0.007 to 0.020; P = 1.9 × 10−5) and oestradiol concentrations 
(β = 0.003 normalized units; 95% CI, 0.001 to 0.005; P = 4 × 10−4) in 
men, and lower bioavailable testosterone concentrations in women 
(β = −0.009 ln(nmol l−1); 95% CI, −0.014 to −0.003; P = 1.5 × 10−3). Second, 
FADS1 is expressed in human oocytes and granulosa cells at various 
stages of development (Supplementary Table 23). Finally, in mice, 
knockout of Fads2 (which acts in the same pathway) leads to infertil-
ity in both sexes, which can be rescued by dietary supplementation of 
long-chain polyunsaturated fatty acids40. In contrast, when we assessed 
the dose–response relationship of all previously reported41 HDL, LDL, 
total cholesterol or triglyceride associated variants on NEB using a Men-
delian randomization framework, we found no association (P > 0.05 in 
all models) with or without inclusion of the FADS locus. This suggests 
that the FADS locus does not affect NEB indirectly via these pheno-
types. Ultimately, while further experimental work will be required to 

elucidate the mechanisms linking NEB-associated variants at this locus 
to reproductive success, our results support the association between 
FADS1 variation and NEB.

NEB-associated genes exhibit signatures of balancing selection
The most significant NEB-associated variants in the genome, in CADM2, 
show no evidence of historical positive selection. However, CADM2 is 
reported to exhibit one of the strongest genomic signals of long-term 
balancing selection42. Variants in CADM2 are associated with a range of 
behavioural and reproductive traits, plausibly explained by a primary 
effect on risk-taking propensity9,18,43. Variants that increase risk taking 
also increase NEB, with risk taking and behavioural disinhibition also 
linked to earlier reproductive onset11. ESR1—the gene identified with 
our second-most-significant association—also contains signals of bal-
ancing selection44, while other NEB-associated loci with nominal evi-
dence of balancing selection contain the genes PTPRD and LINC00871 
(Supplementary Table 24). Balancing selection related to pleiotropy 
or time-varying or environmentally varying selection might explain 
why variants with relatively large effects on NEB are able to remain 
segregating in the population.

Lack of contemporary selection at historical selection signals
We next tested whether there was any evidence of ongoing selection 
(as measured by association with NEB or CL) at regions identified by 
the three genome-wide historical selection scans (Supplementary  
Table 25). Other than the FADS locus, none of the other 53 regions tested 
exhibited a significant association with NEB, suggesting that few of the 
strong historical selective sweeps in humans are ongoing. For example, 
the sweep associated with lactase persistence—one of the strongest 
signals of selection in any human population, stronger than that on 
FADS—could not be shown to be ongoing in the European-ancestry 
populations in this study. Other sweeps, such as those associated with 
skin-pigmentation-decreasing loci, are probably not detected in the 
NEB GWAS because the selected variants are now virtually fixed among 
European-ancestry populations.

Different methods for detecting selection in humans are sensitive 
to selection across very different timescales, ranging from thousands 

9.1%

25.5%

36.7%

48.9%
50.9%

67.3%
63.1%

60.6%
62.1%

71.0%
75.2%

0

0.2

0.4

0.6

a b c
0.8

0
2,0

00
4,000

6,000
8,000

10
,000

12,
000

Years before present
rs

10
84

99
 C

 a
lle

le
 fr

eq
ue

nc
y

Population

Ancient

CEU

FIN

GBR

IBS

TSI

0
DDB1 SYT7

CPSF7

CYB561A3

DAK

SDHAF2

PPP1R32 RPLP0P2

FEN1

FADS2

MYRF

BEST1

INCENP

SCGB1D1

SCGB2A2

SCGB2A1

SCGB1D2

DAGLA RAB3IL1

FADS3

FTH1

SCGB1D4

DKFZP434K028

TMEM258

MIR1908

MIR6746

MIR611

FADS1

MIR4488

LRRC10B

LOC101927495

TMEM138

TMEM216

61.2 61.4 61.6
Position on chromosome 11 (Mb)

61.8 62.0

2
4
6
8

10 100
0

5

10

15

20

–l
og

10
(P

)
–l

og
10

(P
)

20
40
60
80

Recom
bination

rate (cM
 M

b
–1)

20
0

0

40
60
80
100 Recom

bination
rate (cM

 M
b

–1)

0.65

0.66

rs
10

84
99

 C
 a

lle
le

 fr
eq

ue
nc

y

0.67

1940 1950 1960

Year

0.8

rs174546

rs108499

r2

0.6
0.4
0.2

0.8
r2

0.6
0.4
0.2

Fig. 3 | Evidence for historical and ongoing selection at the FADS locus.  
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signal (bottom). b, Estimated allele frequency (the error bars indicate the 95% 
CIs) for the derived FADS allele in Europe, based on direct evidence from 595 
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in 1000 Genomes European populations are shown in blue (CEU, Utah residents 
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TSI, Toscani in Italia). c, Allele frequency (the error bars indicate the 95% CIs)  
of the derived FADS allele in UK Biobank as a function of birth year from 1938 to 
1968 using 274,318 individuals.
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to millions of years. Our GWAS can be interpreted as a genome-wide 
selection scan over the shortest timescale—living generations. The 
limited overlap between this and historical selection scans is con-
sistent with the limited overlap among historical scans, reflecting a 
highly dynamic landscape of selection. Positively selected loci either 
fix or stop being selected due to changing environmental pressures 
and remain at intermediate frequencies. Balancing selection related 
to changing environments, or pleiotropic effects on other com-
ponents of fitness, also helps maintain NEB-associated variants at 
intermediate frequencies. The FADS locus is unique in the sense that 
the selective sweep—starting at least several thousand years ago—is  
still ongoing.

In summary, our study identifies 38 signals that have not been 
previously reported for NEB and represent potential targets of ongoing 
natural selection. Further work should aim to parse these effects into 
mechanisms that directly influence reproductive biology, in contrast 
to those that affect behaviour or reduce fitness through premature 
morbidity or mortality. Finally, we note that our analysis includes 
only European-ancestry individuals and is heavily weighted by the UK 
Biobank, which is not representative of the UK population45. It remains 
to be seen which of these effects are consistent across cohorts and 
populations.

Methods
This study received ethical approval from the Department of  
Sociology, University of Oxford 2014/01/01/R3, on 28 January 2014 
(SOCIOGENOME), revised with extension SOC/R2/001/C1A/21/60 on 
7 July 2022 (CHRONO). Relevant ethical approval was obtained at the 
local level for the contributing datasets.

Phenotype definitions
NEB is treated as a continuous measure that was asked directly or could 
be created from several survey questions (for example, birth histories). 
A standard question in most surveys asks, ‘How many children have you 
given birth to?’ Another variant is ‘How many children do you have?’ In 
most cases, it was possible to distinguish between biological children, 
adopted children and step-children, and when this was possible, we 
refer to live-born biological children. Individuals were eligible for 
inclusion in the analysis if they were assessed for NEB and were at least 
age 45 for women and age 55 for men.

CL is a binary measure, derived from NEB, with a value of 1 for 
childlessness or 0 if an individual had children, with the same inclusion 
rules of biological live-born children and age restrictions that applied to 
NEB. Detailed measures for both phenotypes per cohort are described 
in Supplementary Table 2.

Participating cohorts and analysis plan
A total of 45 cohorts participated in our study (Supplementary Table 1). 
Supplementary Table 2 provides an overview of cohort-specific details, 
including an adjusted pooled analysis of women and men in the case of 
family data (see below). Cohorts who agreed to participate followed an 
Analysis Plan posted on the Open Science Framework preregistration 
site https://osf.io/b4r4b/ on 8 February 2017.

Cohort-level data were quality-controlled and meta-analysed by 
two separate independent centres at the University of Oxford and the 
University of Cambridge. We followed the quality control (QC) proto-
col of the GIANT consortium’s study of human height46 and employed 
the software packages QCGWAS47 and EasyQC48, which allowed us 
to harmonize the files and identify possible sources of errors in the 
association results. This procedure entailed that diagnostic graphs 
and statistics were generated for each set of GWAS results. In the case 
where apparent errors could not be amended by stringent QC and cor-
respondence with the local analyst of the respective cohort, cohorts 
were excluded from the meta-analysis. (See the section below for details 
on cohort inclusion and errors.)

For NEB, the total number of individuals in the pooled meta- 
analysis was 785,604. Not all cohorts provided data about the X 
chromosome (Supplementary Table 3), meaning that the X chromo-
some analysis included only 671,349 individuals. The CL analysis was 
restricted to UK Biobank, with 450,082 individuals for both the auto-
somal and X chromosomes.

Sample exclusion criteria
Individuals were eligible for inclusion if they met the following 
conditions:

 (a) They were assessed for NEB when at least age 45 for women and 
55 for men.

 (b) All relevant covariates (such as year of birth) were available for 
the individual.

 (c) They were successfully genotyped genome-wide (recommended 
individual genotyping rate >95%).

 (d) They passed the cohort-specific standard QCs (for example, 
excluding individuals who are genetic outliers in the cohort).

 (e) They were of European ancestry.

Genotyping and imputation
Supplementary Table 4 provides an overview of the cohort-specific 
details of the genotyping platform, pre-imputation QC filters applied 
to the genotype data, the imputation software used, the reference 
panel used for imputation and the presence of X chromosome data. 
We asked the cohorts to include all autosomal SNPs imputed from the 
1000 Genomes panel (at a minimum) to allow analyses across differ-
ent genotyping platforms. Cohorts with denser reference panels were 
asked to communicate this to our team. Cohorts were asked to provide 
unfiltered results since filters on imputed markers were applied at the 
meta-analysis stage.

Association testing models
Analysts ran linear regression models for NEB and logistic regression 
models for CL. The analysts were asked to include the birth year of the 
respondent (represented by birth year minus 1900) and its square and 
cube to control for nonlinear birth cohort effects. For cohorts with 
family-based data, we suggested controlling for family structure or 
excluding relatives. Combined analyses that included both men and 
women included interactions of birth year and its polynomials with 
sex. We asked the cohorts to include the top principal components to 
control for population stratification49 and cohort-specific covariates 
if appropriate. Some cohorts used only birth year and not the polyno-
mials because of multi-collinearity issues or convergence of the GWA 
analysis. Per-chromosome heritability estimates were calculated using 
restricted maximum likelihood implemented in BOLT-LMM50. This 
analysis was performed for NEB in UK Biobank using directly genotyped 
variants in unrelated individuals of European ancestry.

X chromosome analysis
Analysis of X chromosome variants was performed using one of two 
approaches, XWAS or SNPtest, the results of which could be combined 
by meta-analysis. In XWAS software (http://keinanlab.cb.bscb.cornell. 
edu/content/xwas), we used the var-het-weight command. In SNPtest, 
we used the method newml. Since this assumes complete X inactivation 
(that is, a hemizygous male is considered the same as a homozygous 
female), the effect estimates and standard errors (s.e.) approximate 
½ of those produced by XWAS.

Filters and diagnostic checks
We followed the QC protocol described by the GIANT consortium’s 
GWAS of height46. We used an adapted version of the software package 
QCGWAS47 (which allows the inclusion of structural variants) to stand-
ardize files across cohorts, and we used EasyQC48 to filter variants by QC 
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criteria and to produce diagnostic graphs and statistics as described 
below. Where errors could not be amended by combining stringent 
QC with file inspections, queries to cohorts and corrections, cohorts 
were excluded from the meta-analysis. See also Supplementary Tables 5  
and 6 for the QC results on autosomal and X chromosomes for NEB and 
CL. The specific individual filters were the following:

 (a) Missing data. We filtered variants for which information on 
both reference and other alleles was missing or for which the 
estimated effect, P value, s.e., expected allele frequency or  
number of observations was missing.

 (b) Implausible values. We filtered variants for which P values were 
>1 or <0, s.e. were 0 or infinite, expected allele frequencies were 
>1 or <0, N was <0, call rate was >1 or <0, an s.e. of the effect 
estimate was approximately 40% greater than the expected s.e. 
based on minor allele frequency (MAF) and standard devia-
tion, or R2 was >10% (see Winkler et al.48 for the approximation 
for quantitative traits and Rietveld et al.51 for quantitative and 
binary traits).

 (c) Quality thresholds. We filtered variants for which the expected 
allele frequency was 1 or 0 (monomorphic variants), N was <100 
(to guard against spurious associations due to overfitting of the 
model), the minor allele count was <6 (to guard against spuri-
ous associations with low-frequency SNPs and genotyped SNPs 
that were not in Hardy–Weinberg equilibrium, with significance 
thresholds of 10−3 if N < 1,000, 10−4 if 1,000 ≤ N < 2,000, 10−5 if 
2,000 ≤ N < 10,000 and no filter if N > 10,000), imputed markers 
had an imputation quality <40% and SNPs had a call rate <95%, 
or discrepancies between the reported and expected P values 
based on effect estimates and s.e. were detected (see also the 
next section on diagnostic graphs).

 (d) Data harmonization. We matched the cohort-based summary 
statistics with a 1000 Genomes phase 1 version 3 reference panel 
provided by Winkler et al.48. EasyQC drops mismatched variants 
that cannot be resolved, such as duplicates, allele mismatches or 
missing or invalid alleles. On the basis of graphical inspections 
(see below), we applied cohort-specific filters to drop variants 
with obvious deviations between the expected allele frequency 
based on the reference panel and the observed allele frequency.

Filtering results
Autosomal chromosomes. Overall, the quality of studies was good 
(for the full results of the QC filters described above, see Supplemen-
tary Tables 5 and 6 for autosomal SNPs). One cohort was excluded 
(INGI-Carlantino) due to the filter on sample size. For autosomal chro-
mosomes and NEB, the remaining 45 cohorts provided 81 files: 39 for 
women only, 29 for men only and 13 pooled (from cohorts with fam-
ily data). Two studies did not provide imputation quality (KORA F3, 
N = 1,066; and KORA F4, N = 1,111) and contributed only 584,866 and 
496,556 SNPs respectively. For the two HPFS cohorts, the results from 
our last discovery GWAS10 based on HapMap 2 reference panels were 
recycled with numbers of SNPs between 2,394,353 and 2,412,487. For all 
other cohorts, the number of variants in the analysis ranged between 
6,691,978 for men in LBC 1921 and 20,783,286 for women in EPIC with an 
average of 10,574,721. For CL, between 25,555,939 and 25,554,098 vari-
ants from the UK Biobank entered the GWAS, and between 13,539,540 
and 13,661,642 passed QC.

X chromosome. For NEB, 12 cohorts provided information on the X 
chromosome. Overall, we received 27 files: 12 for women, 10 for men 
and 5 for the pooled analysis if there were relatives in the data. On aver-
age, 325,872 variants passed QC, with a minimum of 191,880 in men 
from LBC 1921 and a maximum of 991,081 for the pooled UK Biobank 
sample. For CL, the UK Biobank provided results for between 980,779 
and 991,081 variants on the X chromosome after QC.

GWAS meta-analysis and signal selection
Cohort association results (after applying the QC filters) were com-
bined using sample-size weighted meta-analysis, implemented in 
METAL52. Sample-size weighting is based on Z scores and can account 
for different phenotypic measurements among cohorts53. The two 
QC centres agreed in using sample-size weighting to allow cohorts 
to introduce study-specific covariates in their cohort-level analysis. 
For each study, only SNPs that were observed in at least 50% of the 
participants for a given phenotype–sex combination were passed to 
the meta-analysis. SNPs were considered genome-wide significant at 
P values smaller than 5 × 10−8 (α of 5%, Bonferroni-corrected for one 
million tests). The meta-analyses were carried out by two independ-
ent analysts. Comparisons were made to ensure concordance of the 
identified signals between the two independent analysts. To identify 
independent signals, distance-based clumping (using a 1 Mb window) 
was used to identify the most significant SNPs in associated regions 
(termed ‘lead SNPs’). This was then supplemented by approximate 
conditional analysis implemented in GCTA54,55, where we required 
additional independent signals to be genome-wide significant in both 
pre and post conditional models.

We meta-analysed the GWAS results for NEB and CL in both 
sex-combined and sex-specific models. To understand the magnitude 
of the estimated effects, we used an approximation method to com-
pute unstandardized regression coefficients based on the Z scores of 
METAL output obtained by sample-size-weighted meta-analysis, allele 
frequency and phenotype standard deviation. Supplementary Table 8 
provides the forest plots of all genome-wide significant SNPs to provide 
a visualization of the effect size estimates for each cohort and the sum-
mary meta-analysis in addition to the 95% CIs. The genetic correlation 
between these two results was assessed using LD score regression56.

Replication
Replication was performed using the FinnGen study—a public–private 
partnership project combining genotype data from Finnish biobanks 
and digital health record data from Finnish health registries (https:// 
www.finngen.fi/en). Six regional and three country-wide Finnish 
biobanks participate in FinnGen, which also incorporates data from 
previously established populations and disease-based cohorts. Release 
4 of FinnGen includes 176,899 participants.

In this analysis, we included women that participated in FinnGen 
release 4 and were at least 45 years of age by 31 December 2017. This 
was the last date for which we had information from national registries. 
We also excluded women younger than 16 in 1969 (the start of the 
registries). Using these inclusion criteria, we included women born 
between 1953 and 1973 and children born between 1969 and 2017. We 
also excluded women that emigrated from Finland in the study period.

To determine whether a woman delivered a child, we used the fol-
lowing codes obtained from the national inpatient registry (HILMO):

•	 ICD-10 codes: O80–O84
•	 ICD-9 codes: 6440B, 6450B, 650[0–9]B–659[0–9]B
•	 ICD-8 codes: 650–662

When multiple codes were used within a ten-month period, we 
counted it as a single delivery. There were 37,741 women, the average 
(s.d.) number of children was 1.72 (1.32) and 20.4% of the women were 
childless.

For principal components analysis, the FinnGen data were com-
bined with the 1000 Genomes data. Related individuals (less than third 
degree) were removed using King software57. We considered common 
(MAF ≥ 0.05) high-quality variants: not in chromosome X, imputa-
tion INFO > 0.95, genotype imputed posterior probability > 0.95 and 
missingness < 0.01. LD-pruned (r2 < 0.1) common variants were used 
for computing the principal components analysis with PLINK v.1.92 
(ref. 58). SAIGE mixed model logistic regression (https://github.com/ 
weizhouUMICH/SAIGE/releases/tag/0.35.8.8) was used for association 
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analysis. Age, ten principal components and genotyping batch were 
used as covariates. Each genotyping batch was included as a covariate 
to avoid convergence issues.

Prioritizing and characterizing putatively functional genes in 
GWAS highlighted regions
We used three distinct approaches to identify putatively functional 
genes at each genome-wide significant locus. First, we assessed the 
coding impact of any variant in LD with our 43 lead index variants. 
We restricted our assessment to variants with r2 > 0.8 and predicted 
moderate- or high-impact effects on the basis of Variant Effect Predictor 
(VEP) annotations. We calculated LD using PLINK v.1.9 from best-guess 
genotypes for 1000 Genomes Phase 3/HRC imputed variants in ~10,000 
unrelated UK Biobank participants of white British ancestry. Second, 
we used MAGMA v.1.08 (ref. 21) to collapse multiple predicted deleteri-
ous variants (using the same VEP categories above) into a single gene 
score. Finally, we integrated our genome-wide summary statistics 
with eQTL data using SMR59. Publicly available expression datasets for 
ovary and testis tissues in GTEx v.7, in addition to a meta-analysis of 
eQTL brain tissues, were downloaded from the SMR website (https:// 
cnsgenomics.com/software/smr/#eQTLsummarydata). Whole-blood 
data in an eQTL meta-analysis of 31,684 samples was available from the 
eQTLGen consortium60. A Bonferroni-corrected P value threshold was 
used in each expression dataset individually, and only associations with 
HEIDI P > 0.01 were considered to avoid coincidental overlap due to 
extended patterns of LD. This resulted in a total of 11 (SMR P < 6.6 × 10−6) 
significant transcriptions in the brain, 12 in whole blood (P < 3.2 × 10−6) 
and 9 in the female-specific GTEx ovary analysis (SMR P < 3.2 × 10−5). 
We additionally performed tissue enrichment analysis using LD score 
regression to specifically expressed genes (LDSC–SEG)61. We used three 
datasets available on the LDSC–SEG resource page (https://github.
com/bulik/ldsc/wiki/Cell-type-specific-analyses), relating to cell- and 
tissue-specific annotations from GTEx62.

We characterized the phenotypic consequences of MC1R, FADS1 
and FADS2 loss of function using up to 454,756 exome sequences in 
the UK Biobank study63. The exome-based association with variants in 
MC1R and hair colour was assessed with an interim release of 184,135 
individuals. All variants were annotated using VEP, and we only consid-
ered those predicted to be high-impact loss of function defined by VEP. 
Individuals carrying one or more rare (MAF ≤ 0.1%) loss-of-function 
alleles in a given gene were grouped together. We created dummy 
variables on the basis of this definition for each gene and tested for 
association using BOLT-LMM50.

All lookup data for additional traits were taken from previously 
described analyses. This includes sex hormones64, number of sex-
ual partners and same-sex behaviour27, age at menarche and BMI13, 
Townsend deprivation index18, religious group attendance18 and years 
of education19.

Assessment of FADS1-3 expression in human oocytes and 
granulosa cells at various stages of development
We used processed RNA-seq data on fetal primordial germ cells from 
two studies:

•	 Li et al.65 (accession code: GSE86146) report data from 17 human 
female embryos ranging from 5 to 26 weeks post-fertilization.

•	 Zhang et al.66 (accession code GSE107746) report data from 
follicles at five different stages of development from fresh ovar-
ian tissue from seven adult donors, separated into oocytes and 
granulosa cell fractions.

We also generated new single-cell RNA-seq data from human 
MII oocytes. We performed sample QC and filtering of reads to 
remove low-quality reads, adaptor sequences and low-quality 
bases with Trimmomatic v.0.36 (ref. 67) in two steps using ILLUMI-
NACLIP:/ /Trimmomatic-0.36/adapters/NexteraPE-PE.fa:2:30:10 

(SLIDINGWINDOW, 4, 20; CROP, 72; HEADCROP, 10; MINLEN, 40; fol-
lowed by an extra trim of headbases with HEADCROP, 10). Subsequent 
to filtering, we used the remaining paired reads for alignment by hisat2 
(ref. 68) to the human genome GeneCode v.27 release with the paired 
GenCode v.27 GTF file containing gene annotations using: $HISAT2 
-p 22–dta -x.gencode.v27 -1 R1.fastq -2 R2.fastq -S sample.sam69. The 
resulting SAM files were sorted, indexed and transformed to BAM files 
using samtools70. QC measures of aligned reads were generated using 
Picard metrics (https://slowkow.github.io/picardmetrics) and the 
CollectRnaSeqMetrics tool from Picard tools (http://broadinstitute.
github.io/picard). We filtered the BAM files for mitochondrial reads and 
applied Stringtie to merge and assemble reference guided transcripts 
for gene-level quantifications of raw counts, and transcripts per mil-
lion69. Gene expression levels in transcripts per million are presented 
in Supplementary Table 20, as this unit allows efficient comparison of 
gene expression levels between samples from different studies.

Identifying overlap between NEB hits and previously 
identified selection signals
We assessed the overlap of our NEB signals with the results of three 
genome-wide selection scans: the Composite of Multiple Signals test31, 
which combines information from different statistics to detect selec-
tion on the order of the past 50,000 years; an ancient-DNA-based scan28 
that uses direct inference of allele frequency from ancient populations 
to infer selection over the past 10,000 years; and the Singleton Density 
Score29, which uses patterns of singleton variants to infer very recent 
selection, on the order of a few thousand years.

For the Composite of Multiple Signals test31, we used the rankings 
of CMSGW statistics to obtain an empirical P value for each SNP. For the 
Singleton Density Score29, we converted normalized SDS scores to 
two-tailed P values of the standard normal distribution. Finally, for the 
ancient-DNA-based selection scan28, we used the genomic control cor-
rected P values from the original scan. For each NEB hit, for each scan, we 
identified the SNP within 10 kb, with P < 10−6 for NEB that had the most 
significant selection scan signal (SNP1 and PVAL1 in Supplementary 
Tables 19 and 20). We also identified the SNP within 10 kb that had the 
most significant selection scan signal, regardless of its NEB P value (SNP2 
and PVAL2 in Supplementary Tables 19 and 20). Finally, we performed a 
Bayesian colocalization analysis using the coloc package32 using all SNPs 
within 10 kb of the lead NEB SNP. This computes posterior probabilities 
for the following hypotheses: H0, no causal SNPs; H1, causal SNP for selec-
tion but not for NEB; H2, causal SNP for NEB but not for selection; H3, one 
independent causal SNP for each trait; and H4, one shared causal SNP 
for both traits. We report the hypothesis with the maximum posterior 
probability (COLOC in Supplementary Tables 19 and 20).

We also tested for overlap with a scan for balancing selection using 
the NCD2 statistic44 for the GBR population of 1000 Genomes. We used 
the target frequency of 0.5 for these tests. For each SNP, we report the 
value of the window that overlaps that SNP, or, if more than one window 
overlaps a SNP, we report the lowest P value of any window within 10 kb. 
Finally, we report the lowest P value for genes within 10 kb of each SNP.

Estimating FADS1 allele frequencies from ancient DNA
We downloaded combined data from https://reich.hms.harvard.edu/ 
allen-ancient-dna-resource-aadr-downloadable-genotypes-present- 
day-and-ancient-dna-data (v.37.2, accessed 14 May 2019) and restricted 
them to 595 samples west of 40° E, north of 35° S, more recent than 
12,000 years before the present and with coverage at rs108499. We 
binned them into 2,000-year bins and computed estimated allele 
frequencies and bootstrap CIs. We also included the European sub-
populations from phase 3 of the 1000 Genomes Project71.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

http://www.nature.com/nathumbehav
https://cnsgenomics.com/software/smr/#eQTLsummarydata
https://cnsgenomics.com/software/smr/#eQTLsummarydata
https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86146
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107746
https://slowkow.github.io/picardmetrics
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://www.ncbi.nlm.nih.gov/snp/?term=rs108499
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Data availability
Upon publication, the GWAS summary statistics will be made available 
at https://doi.org/10.17863/CAM.88397. Access to individual-level data 
from the multiple sources used in this GWAS can be obtained by bona 
fide scientists through application to each specific data provider; each 
data source is described in the Supplementary Note. Source data are 
provided with this paper.

Code availability
No custom code was used in this study. All analyses and modelling used 
standard software as described in the Methods and the Supplementary 
Information.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Access to individuals level data from the 45 cohorts used in this GWAS can be obtained by bona fide scientists through application to the 
specific data providers, with information about each study listed in detail in the Supplementary Note

Data analysis Upon publication GWAS summary statistics will be made available at the GWAS catalog (www.ebi.ac.uk/gwas/downladds/summary-statistics). 
Analytical methods are described in the Methods section and in more detail in the Supplementary Note. Standard software with available 
code and algorithms was used, jamely: QCGWAS, EasyQC, BOLT-LMM, XWAS, SNPtest, METAL< GCTA, Eagle, SAIGFE, plink and various 
libraries in R for additional analyses and visualization (coloc, ggplot2). For the biological annotation, we used VEP, MAGMA, SMR (summary 
based Mendelian Randomisation, HEIDI and LDS-SEG.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Upon publication, GWAS summary statistics will be made available at the GWAS Catalog (www.ebi.ac.uk/gwas/downloads/summary-stastics). Access to individual 
level data from the multiple sources used in this GWAS can be obtained by bona fide scientists through application to each specific data providers, source described 
in the Supplementary Note.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender All analyses were performed in sex combined and sex-specific models. Furthermore we have been careful to distinguish 
between sex and gender where appropriate.  

Population characteristics Both males and females, if they met the exclusions criteria described.

Recruitment Recruitment varied over the 45 studies and is described in the supplementary information.

Ethics oversight Ethics was approved by the University of Oxford, but also for each individual data source locally.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample size was based on the maximum data sample size that could be collected. For Number of children ever born (NEB) N=785,604 
(Mlae = 306,980, Female = 478,624). For childlessness (CL) this was N=450,082. 

Data exclusions Individuals were eligible for inclusion if they met the following conditions; a) They were assessed for NEB at least at age 45 for women, age 55 
for men; b) Those who have both given birth to a child (parous) and those who have not (nullparous); c) All relevant covariates (e.g. year of 
birth) are available for an individual; d) They were successfully genotypes genome-wide (recommended individual genotyping rate > 95%); e) 
They passed the cohort-specific standard quality controls, e.g. excluding individuals who are genetic outliers in the cohort; f) They were of 
European ancestry. Data exclusions were specified in advance in the analysis plan pre-deposited in the Open Science Framework website: 
https://osf.io/b4r4b/ European ancestry samples were chosen due to the availability of large samples and for no biological or substantive 
reason.

Replication The study involves large discovery sample with GWAS summary statistics available at the GWAS Catalog upon publication (www.ebi.ac.uk/
gwas/downloads/summary-statistics). Partial replication in the FinnGen cohort using data from 37,741 women was used for replication, a 
binomial sign test was used to assess consistency of the results, and this was strongly significant. 

Randomization Not applicable as no intervention was provided to any participant.

Blinding Not applicable as no intervention was provided to any participant.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
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MRI-based neuroimaging
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