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a b s t r a c t

In software quality management, the selection strategy for proper metrics varies depending on the
application scenarios and measurement objectives. MicroService Architecture (MSA), despite being
commonly employed nowadays, still cannot be reliably measured and compared if the microservices
in a system are independent. Software managers and architects need to understand whether their
microservices are ‘‘decoupled enough’’, if not, which ones are over-coupled, and by how much. In this
paper, we contribute a novel set of metrics – Microservice Coupling Index (MCI) – derived from the
relative measurement theory. Instead of measuring coupling evidence with simple counts, we measure
how dependent and coupled the microservices are relative to the possible couplings between them.
We measured the MCI metrics for 15 open source projects that involve 113 distinct microservices.
Empirical investigation confirmed that MCIs differ quite significantly from existing coupling measures
and that they are more discriminative than existing ones for separating high and low degrees of
microservice couplings and thus more useful in comparing design alternatives. A series of experimental
studies were conducted, showing that the larger the MCIs, the less likely the bugs and changes can
be localized and separated, and the less likely that the individual microservices in a system can be
independently developed and evolved.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Measuring software systems in terms of properly selected
etrics is an integral step for software quality improvement

Galin, 2004). The strategy for selecting ‘‘appropriate’’ metrics
aries differently, depending on the specific application scenarios
nd measurement objectives of the software project management
ctivities. A significant scenario of software quality measurement
s to quantify how the system specifies quality requirements
ith respect to relevant quality factors (Fu and Cai, 2019), such
s maintainability. In addition, good software design is one of
he most important activities in the system development life-
ycle (Almugrin et al., 2016) and is crucial for the successful
mplementation of software systems that meet such quality re-
uirements. Software metrics have been used for long to compare
nd choose design alternatives (Mo et al., 2016), monitor or pre-
ict architecture degradation (Kirbas et al., 2014; Perepletchikov
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et al., 2007), and indicate refactoring opportunities in software
evolution.

Microservices architecture (MSA) (Jamshidi et al., 2018), is
described as an alternative to monolithic architecture, and an
approach for developing a single application as a suite of small
and independent services, each running in its own process and
communicating with lightweight mechanisms, such as RESTful
API (Lewis and Fowler, 2014). As one of the most predominant
architecture styles nowadays, the design of MSA also needs to be
gauged, monitored, and improved throughout the whole software
development lifecycle.

It has been widely acknowledged that cohesion and coupling
are key internal quality attributes of a software design. Gener-
ally, a good software design is characterized by the principle of
high cohesion and low coupling (Czibula et al., 2019), thereby
associated with low maintenance effort, while the main symptom
for badly-structured systems is considered as the violation of the
rule ‘‘Put together what belong together’’. The internal structure
of a software changes frequently during its evolution. In the
context of MSA, a typical changing scenario is service refactoring
and decomposition, where microservices are frequently split and
merged to find the most appropriate service granularity. For en-
suring a facile and efficient microservice evolution, it is essential
for software managers and architects to accurately estimate and
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Fig. 1. An illustrative example for showing the limitation of using absolute
metrics in comparing microservice coupling.

compare the quality of refactoring alternatives (Bogner et al.,
2019).

Coupling is considered an important indicator that negatively
mpacts software maintainability. Independent modules are eas-
er to fix, change, and extend during their maintenance and
volution. In the MSA community, the coupling property has
een considered as one of the minimum quality requirements
o be evaluated during the design of microservices (Cojocaru
t al., 2019; Waseem et al., 2021). Such a property is essential
ecause it enables the individual microservices in a system to be
ndependently developed, deployed, tested, and scaled. Therefore,
any MSA researchers and practitioners consider the indepen-
ent microservices as an essential trait of desirable architecture
esign (Li et al., 2019; Carvalho et al., 2020; Auer et al., 2021;
i Francesco et al., 2019).
Nevertheless, few coupling measurement in the SE literature

as been proposed for describing the degree to which the mi-
roservices in a software system are related. Instead, some cou-
ling metrics that were proposed for object-oriented or service-
riented paradigms have been adapted and applied now in MSA,
uch as Sellami et al. (2022), Carvalho et al. (2020), Mazlami et al.
2017) and Li et al. (2019). Most of these metrics are generally
ased on simple counts of coupling ‘‘evidence’’ in a system, such
s the number of dependencies (e.g., static calls) between mi-
roservices and the number of software elements (e.g., classes)
nvolved in the dependencies. These absolute scales can be ef-
ective tools for reflecting the magnitude of coupling between
icroservices. However, they fail to provide a comparative gauge
n to what extent the microservices in a system are coupled
and less independent), and fail to help maintainers identify and
efactor the least desirable dependencies which could possibly
ndermine the independence of individual microservices.
Take Fig. 1 as an example. Suppose there are three microser-

ices ma, mb, and mc in a system with their structural relation-
ships depicted as in the figure. Using absolute metrics, we might
find out that the coupling between ma and mb, and between ma
nd mc are equal, as there are two dependencies from ma to

mb and from ma and mc (as well as two elements involved in
the dependencies). However, given that the size of microservice
mb is only half that of mc , we know that the coupling between
microservices ma and mb is more severe and undesirable. After
all, every time microservice mb changes, microservice ma might
have to be changed as well, while this is less likely between
microservice ma and microservice mc . In short, it is not fair
enough to argue that two microservices are more detrimentally
coupled than other two microservices using absolute coupling
value.

The objective of this paper is to address the limitations of
absolute coupling measurements among microservices. Never-
theless, we admit that coupling measurement is a complex task
2

that covers diverse ‘‘connection’’ forms between software enti-
ties (Fregnan et al., 2019). Over the years, different coupling met-
rics have flourished in the literature, including structural (e.g., Mo
et al., 2016; Almugrin et al., 2016; Czibula et al., 2019), dy-
namic (e.g., Fu and Cai, 2019), semantic (e.g., Czibula et al., 2019),
and logical coupling (e.g., Alali et al., 2013). Additionally, in the
MSA context, the style of inter-service communication (i.e. syn-
chronous, asynchronous) can also affect how we model and mea-
sure microservices coupling. In this paper, we limit our research
scope to structural coupling measurement since it is the most
often used (Czibula et al., 2019) and the most fundamental in
assessing coupling degree (Bavota et al., 2013). In particular, we
focus on the coupling caused by synchronous inter-service depen-
dencies (Engel et al., 2018), because synchronous communication
is one of the most commonly used in service collaboration (New-
man, 2021).

This paper contributes a novel suite of microservice-level cou-
pling metrics: Microservice Coupling Index (MCI). Instead of mea-
suring the absolute coupling evidence, we measure how depen-
dent and coupled the microservices are relative to the possible
couplings between them. Based on the relative measurement
theory (Allen and Yen, 2001), these metrics are assumed to be,
very likely, capable to reflect and compare microservices cou-
pling degrees which cannot be captured using only the absolute
measures. Second, inspired by Martin’s seminal work in object-
oriented packaging, this study on microservice coupling further
explore the indicators of responsibility and dependence of in-
dividual microservices in a system. Finally, to better capture
the dependencies across microservices, in MCIs we distinguish
between interface classes that are intended to provide services
for the outer world (e.g, other microservices), and inner classes
for internal use within the microservice.

We measured the MCI metrics for 15 open sour projects from
GitHub and GitLab that involve overall 113 distinct microser-
vices and 10241 code files. Empirical investigation using statis-
tical and principal component analysis was conducted, showing
that the relative measures differ quite significantly from existing
coupling measures and that they can capture multiple aspects
of the interdependencies across microservices. In addition, we
emphasized that the MCI metrics are more discriminative than
classical coupling measures for measuring and separating high
and low degrees of microservice couplings, and thus more useful
in comparing and choosing design alternatives. To evaluate if
microservices with higher MCI are less independent in terms
of change impacts, we contributed a suite of change impact
measures that quantify the affected scope and frequency in a
microservice due to the changes of another microservice. A series
of experimental studies were designed to collect these measures
by simulating the revision history of 8 long-term projects. Our
results show that the larger the MCIs, the less likely the bugs and
changes can be localized and separated, and the less likely that
the individual microservices can be independently developed and
evolved.

This paper is organized as follows. We start by reviewing
in Section 2 the existing measurements from the literature, es-
pecially those adapted to MSA. Our proposal for the relative
microservice coupling measures MCIs is introduced in Section 3.
In Section 4, the comparison between MCIs and other existing
coupling measures are highlighted, especially their discriminative
power in separating high- and low-level of couplings, and their
capabilities in measuring microservices’ independence. Section 5
discusses the practical implications of MCIs and the threats to
validity that may affect the results of this study. Finally, Sec-
tion 6 concludes our paper and outlines some further research
directions.



C. Zhong, H. Zhang, C. Li et al. The Journal of Systems & Software 200 (2023) 111670

2

c
C
M
L
h
l
l
m
m
c
m
p
p
f
S
h
r

s
e
g
a
o
a
c
1
e
e
m
d
p
m
s
i
t

a
s
A
e
c
g
a
i
s
a
c
f
q
o
q
c
o
p
p

h
i
t
p
d
f
v

. Background and related work

Numerous metrics are well-known for measuring software
ode quality, such as Halstead metrics (Halstead, 1977), Mc-
abe Cyclomatic complexity (McCabe, 1976), and Lines of Code.
oreover, metrics such as CK (Chidamber and Kemerer, 1994),
K (Lorenz and Kidd, 1994), and MOOD (Harrison et al., 1998)
ave been proposed for measuring object-oriented software. Uti-
izing code quality metrics to aid software maintenance and evo-
ution has also been studied for a long-term. Oman and Hage-
eister (Oman and Hagemeister, 1994) proposed one of the
ost classic approaches, namely Maintainability Index, which is a
omposite model for predicting maintainability based on multiple
etrics, such as the average lines of code and cyclomatic com-
lexity per module. Recently, Papamichail and Symeonidis (Pa-
amichail and Symeonidis, 2020) built a generic identification
ramework of non-maintainable code components, by training
upport Vector Machines classifiers based on the complexity, co-
esion, coupling, and inheritance properties residing in software
epositories.

Using only objects or classes to model a software system is in-
ufficient for producing robust, stable, and maintainable designs,
specially when the size of the system is large. Accordingly, a
rouping of interrelated objects or classes has been acknowledged
s a better unit of organization in software design than a single
bject or class. The design quality of such groupings, also known
s modules (Mo et al., 2016), packages (Almugrin et al., 2016),
omponents (Fu and Cai, 2019), subsystems (Rumbaugh et al.,
991), etc, is often measured using architecture metrics. Some
xample studies of architecture-level metrics are as follows. Mo
t al. (2016) proposed an architecture maintainability metric that
easures how the software is decoupled into small and indepen-
ently replaceable modules. Almugrin et al. (2016) presented a
ackage-level coupling metric and used it as indicators to predict
aintainability and testability. Fu and Cai (2019) developed a
uite of metrics for run-time communication structure complex-
ty between distinct components and explored their relationships
o six quality factors including maintainability.

Outside the classic metrics, some measurements (e.g., Kramer
nd Kaindl, 2004; Kazemi et al., 2011) have been developed for
pecific domains (Fregnan et al., 2019), such as Service-Oriented
rchitecture (SOA). Among the SOA quality researchers, Alahmari
t al. (2011) proposed three metrics that cover service operation
omplexity, cohesion and coupling for indicating the optimal
ranularity of a service and their impacts on reusability, flexibility
nd maintainability. Athanasopoulos et al. (2014) provided three
nterface-level cohesion metrics for enabling the assessment of
ervice cohesion only with the specification of a service. The
uthors validated these metrics (related to message, domain, and
onversation-level similarity) using 22 real-world web services
rom Amazon and Yahoo. Perepletchikov et al. (2007) focused on
uantifying the structural coupling of design artifacts in service-
riented systems, and using the results as early predictors of
uality characteristics of maintainability. The coupling properties
onsidered include extra-service and inter-service, incoming and
utgoing coupling, which were evaluated using a controlled ex-
eriment with 10 participants and a number of corrective and
erfective maintenance activities.
Compared to other architecture metrics, only a few studies

ave focused on microservices-level metrics, despite the popular-
ty of MSA nowadays. Al-Debagy and Martinek (2020) proposed
hree metrics to measure the granularity, cohesion, and com-
lexity of individual microservices. Santos and Silva (2020) intro-
uced a complexity metric to estimate the effort of redesigning a
unctionality implemented in monolith into distributed microser-
ices. Jin et al. (2019) evaluated microservice-level cohesion by
3

adapting existing metrics from the SOA field. The quantification
of modularization ‘‘quality’’ from monolithic applications to mi-
croservices has been studied in Kalia et al. (2021), Kalia et al.
(2021), and Jin et al. (2019).

The idea behind MSA is to design a single large and complex
application as a suite of small and autonomous microservices (As-
sunção et al., 2021). It means that the microservices should be
designed in a way where a single service implements specific
cohesive business capabilities within its design, and the inter-
action between services should be kept at a low level. Different
from the SOA field where developers strive for the reusability
of integrations and some level of component sharing, MSA is
an area in which creating reusable components may result in
inter-service dependencies that reduce agility and resilience. As a
result, MSA developers generally prefer to reusing code and dupli-
cating data for improving the decoupling and independence level
of individual microservices (Valderas et al., 2020). However, inter-
service dependencies are required when microservices need to
cooperate with each other. The need of microservices cooperation
indicates that some form of dependencies are reasonable while
some are not. In terms of quantifying the dependencies among
microservices and determining the reasonable level of coupling,
MSA developers are more likely to be sensitive towards the
measurement results. Therefore, the assessment of microservice-
level coupling quality, by quantitatively describing microservices
dependencies needs to be more accurate and rigorous. Many
researchers (e.g., the authors from Li et al., 2019; Jin et al., 2019)
have also noticed the specific needs in evaluating the coupling
characteristics of microservices design.

Nevertheless, most metrics employed for microservice-level
coupling were adapted from traditional disciplines, such as object-
oriented and service-oriented paradigms. For example, Li et al.
(2019) used the classic Afferent Coupling (Ca) and Efferent Cou-
pling (Ce) metrics to quantify microservice coupling by calculat-
ing the number of classes in other services that depend upon
the service itself, and the number of classes in other services
that a service depends upon, respectively. Two more examples
from the SOA, Absolute Importance of the Service (AIS) and
Absolute Dependence of the Service (ADS), measure microservice
coupling by counting the number of other services that rely
on a service, and the number of other services that a service
depends on, respectively (Vera-Rivera et al., 2021). The problem
is that these metrics are only based on simple (absolute) count
of coupling ‘‘evidence’’ in a system and have not considered
the size of microservices. Working with our industrial partners,
we observed cases where a single microservice contained very
large number of code files. In these cases, even though the inter-
dependencies among services appeared to be high, they may not
be tightly coupled. In other cases, we observed that even though
the number of files was not large in a microservice, it has a
few dependents on others. In such cases, a microservice may
experience maintenance issues, despite its low dependencies.

Different from these existing metrics, our MCI is the only
metric suite that measures how dependent the microservices are
relative to the possible dependencies between them, based on the
relative measurement theory (Allen and Yen, 2001). Our objective
is not for maintainability prediction, because of the fact that
maintainability will be affected by many factors (Mo et al., 2016),
such as the size of a microservice. Instead, we aim at providing
a comparative gauge on to what extent the microservices in a
system are coupled and less independent, and a timely indicator
of architecture refactoring for decoupling them.
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Fig. 2. An example of microservice-pair dependency graph.

3. Proposed microservice coupling measures

In this section, we introduce the formal definitions and ratio-
ale of Microservice Coupling Index (MCI). Based on the relative
easurement theory, the MCI aims at measuring how dependent
nd coupled the microservices are relative to the possible cou-
lings between them. Thus, we first introduce the constituents
f a single microservice and the possible associations of inter-
ervice that may undermine the independence of individual mi-
roservices, as the theoretical basis. Next, we explain and in-
roduce the proposed relative microservice coupling measures,
ncluding the indicators for responsibility and dependence of a
ingle microservice in a system. Please note that in this section,
e use real examples from an open source microservice recruit-
ent project to illustrate how MCI can manifest microservice
ouplings.

.1. Basic definitions

A microservices-based software system is composed of a set
f standalone microservices, each having multiple constituent
lements inside. To measure the coupling between microservices,
e need to accurately describe to what extent their constituents
re associated, thereby a formal model of a single microser-
ice is required. Fig. 2 illustrates an excerpted design view of
wo microservices from the example project: ‘‘jobsys-auth’’ and
‘jobsys-system’’. The ‘‘jobsys-auth’’ service is responsible for au-
hentication (for all requests), while the ‘‘jobsys-system’’ service
ffers help for system login and registry. As present in Fig. 2,
ach of these microservices consists of two types of fundamental
lements: (i) classes that are intended to expose public services
o the outer world (e.g., other microservices, external clients), and
ii) classes for internal use within the microservice. In this paper,
we distinguish these two types of elements mainly for better
capturing the associations across microservices. In particular, we
employ the concept of interface classes and inner classes (Sellami
t al., 2022) to distinguish between the two aforementioned
lasses, respectively. In the meantime, we use the concept of
ntity to embody both of these classes within a microservice.
ormally:

efinition 1 (Microservice). A microservice Mi can be considered
s a set of entities Enti, including interface and inner classes
efined in the microservice. If Inti = {int1, int2, . . . , intn}, Inni =

inn1, inn2, . . . , innp
}
, and Enti = {ent1, ent2, . . . , ents}, where

ntk ∈ Inti represents an interface published by microservice Mi,
nnq ∈ Inni denotes an inner class implemented in microservice
, and ent ∈ Ent denotes either a published interface or an
i t i

4

inner class defined within the microservice, then it follows that
Mi = Enti = Inti ∪ Inni.

When examined from a lower level, an interface class within
a microservice is further constituted by a series of operations.
Each operation is a fine-grained API that corresponds to an inter-
service calling method and can be directly consumed by other mi-
croservices (Jin et al., 2018). The formal definition of an interface
follows:

Definition 2 (Interface Class).An interface class of a microservice,
inti, is characterized by a series of operations, which is denoted
by inti = Operationi. Specifically, Operationi = {op1, op2, . . . , opn},
where each operation opk ∈ Operationi corresponds to an inter-
service calling method that can be invoked by other microservices
using inter-service communication techniques, e.g., RESTful APIs.

On the other hand, when developed using object-oriented
design, an inner class is typically defined by multiple attributes
and methods. Nevertheless, this study focuses on measuring the
extent of microservice couplings due to their structural interde-
pendencies, in which the attributes of a class often do not directly
participate (discussed later in Section 3.2). We thus denote an
inner class as a series of methods that can directly invoke other
methods, e.g., public methods of other classes within the same
microservice, exposed operations from other microservices, etc.
Formally:

Definition 3 (Inner Class). An inner class in a microservice, inni,
an be considered as a set of methods declared in the class
tself, denoted by inni = Methodi. To be specific, Methodi =

md1,md2, . . . ,mdp
}
, where mdq ∈ Methodi represents a method

efined in inner class inni that could invoke or be invoked by
ther possible methods.

As aforementioned, we employ the entity concept to generally
epresent the constituents elements of a microservice: interface
lasses and inner classes. To be specific:

efinition 4 (Entity). An entity is a generalization of both an
nterface class and an inner class. That is, an entity can be either
n interface class or an inner class, and every interface class or
nner class is also an entity. The entities within a microservice
an be considered as the union of the interface class set and inner
lass set inside the microservice, formally Enti = Inti ∪ Inni.

Dependency analysis is one of the most studied core tech-
iques for quantifying the coupling relations among software
omponents (Fregnan et al., 2019). The more dependencies be-
ween two components, the greater the degree of coupling be-
ween the two components. To measure the coupling degree
etween microservices, in the following we thus discuss the
nterdependence among microservices.

In addition, the dependencies within a microservice can some-
imes lead to a ripple effect, i.e. when a change to one part of a
ystem has consequences to other parts of the same system (Ar-
anitou et al., 2015). If there is ripple between two microservices,
he dependencies within a microservice may increase this effect
y propagating it to more classes inside a microservice (for more
etails, see Section 3.2). Therefore, the intra-service dependencies
re also discussed as follows.
Dependence analysis across microservices. Given two mi-

roservices Mi and Mj in a microservices-based system, microservice
i depends on microservice Mj, which corresponds to a ‘‘Caller-
allee’’ relationship between them (as Fig. 2), if and only if:

• There exists an entity ent in microservice Mi that depends
on a public interface class int of microservice Mj, which
further requires:
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• There exists a method md in entity ent that directly invokes
at least one published operation in the interface class int .

To that end, the operation to be invoked has to be publicly
ublished in interface class int , and the method md in entity
nt has to explicitly subscribe the operation. This is determined
y the inter-service communication mechanisms in MSA, which
equires that microservices access each other’s resources only
hrough the published interfaces. In addition, due to the fact that
ach microservice is running in its own process, the cases where
ntities from distinct microservices directly call each other can be
voided (Lewis and Fowler, 2014).
Dependence analysis within a microservice. Given several

ntities (i.e. interface and inner classes) and their methods in a
icroservice, there exists the following kinds of dependencies:

• A method mdi directly depends on another method mdj, if
mdi calls mdj, where these methods can be from the same
entity or different entities in the microservice.

• A method mdi indirectly depends on another method mdj, if
mdi depends on another method mdk calling mdj, no matter
these methods are from the same entity or different entities
in the microservice.

• An entity enti directly depends on another entity entj, if a
method in enti directly depends on one method of entj.

• An entity enti indirectly depends on another entity entj, if a
method in enti indirectly depends on one method of entj and
no method in enti directly depends on any method of entj.

Please note that we did not discuss the indirect dependen-
ies between microservices, because, as mentioned earlier, for
upporting the loose-coupling microservices principle, the inter-
ervice dependencies occur through service interfaces, which are
enerally expected to be designed to be stable and robust over
volution and to prepare for future changes (Bogner et al., 2019;
hong et al., 2022). As a result, the cases where the interface
hanges in one microservice, lead to the contract changes of a sec-
nd microservice that further propagate to a third microservice
ould be very few. Considering that the indirect dependencies
etween microservices are likely to have much less influences
han direct ones, for the time being of this article they are not
onsidered.

.2. Microservice coupling index

This section first introduces the coupling measure between
wo microservices, then extends the definition to indicate the
oupling degree between one and multiple microservices. Specif-
cally, inspired by Martin’s work (Martin, 2003), we further define
wo additional coupling measures that estimate how much a mi-
roservice in a software system influences (responsibility) and is
nfluenced by (dependence) other microservices from the system.

Suppose there are two microservices in a project, and each
f them have multiple entities inside, including interface and
nner classes. If none of the entities in a microservice invoke the
ublished interfaces of another, it means that these two microser-
ices are likely to be independent and loose-coupled, and it is
ess likely that the developers of these services need to expend
ffort communicating with each other for possible functionality
hanges (Bogner et al., 2019). On the other extreme, if all the
ntities of a microservice, say Caller, depend on the interfaces of
nother microservice, say Callee, and all the interfaces of Callee
icroservice are depended upon by the Caller, then, it seems

hat these two services are over-coupled, and it is highly likely
hat every time the interfaces of microservice Callee are to be
odified, the developers have to communicate to resolve possible

onflicts among these two services. It is obvious that the coupling

5

egree between these two microservices, in the second case, is
uch higher than that in the first case.
However, these are not all the cases that make differences in

icroservice couplings. Even if all the entities of Caller microser-
ice rely on all the interfaces provided by the Callee, as in the
econd case, to what extent the entities of the Caller depend on
hose interfaces of Callee, e.g., directly or indirectly, can still make
he coupling between them vary in degree. To accurately quantify
he coupling level between two microservices, we compute a
anked list of the potential couplings based on the following
ssumptions:

• For a Caller microservice, the Callee microservices with
more interfaces consumed by the Caller, are more likely to
impose their influences on it, and thus more coupled with
it.

• For a Callee microservice, the Caller microservices with
higher number of entities that rely on the interfaces of the
Callee are more probably to be affected by its changes, and
thus more coupled with it.

• In a Caller microservice with multiple entities that depend
on microservice Callee, the entities further away from the
Callee are relatively less vulnerable to changes made to the
Callee and thus less coupled by it.

The first assumption tells us that for all the Callee microser-
ices that a microservice (Caller) depends on, the Callee microser-
ices having more interfaces being depended on by the Caller,
re more likely to propagate their changes to the Caller and thus
ave larger impacts on it. That is, the coupling degree between
he Caller microservice and such Callee microservices are more
etrimental.
The second assumption considers the number of possibly af-

ected entities due to inter-service dependencies, which implies
hat the degree of microservice Caller impacted by microservice
allee increases as more entities within the Caller depend on
he Callee, because more entities might have to change due to
he changes made to the Callee. The more the possibly affected
ntities in Caller, the higher the microservice Caller is coupled
ith the Callee.
Finally, the third assumption is about the distance on the

ependencies between microservices. Specifically, the possibil-
ty of an entity in microservice Caller that can be impacted by
hanges to microservice Callee decreases as the distance from
he entity to the depended interfaces in Callee becomes farther.
imilar arguments about dependency distance (Li et al., 2013)
ere observed in the change impact area. Take a special example,

or two entities i and j in the Caller microservice that both depend
n the same Callee microservice. Suppose entity i relies on the
allee microservice directly, and entity j indirectly, e.g., entity j
epends on the Callee through its dependence on entity i. We can
ake the 5th and 1st entity in the ‘‘jobsys-auth’’ service in Fig. 2
s an reference. Then we can state that entity i is more likely to
e impacted by the Callee, since its distance to the interfaces of
allee is closer than that of entity j. This assumption considers
he relations among the possibly impacted entities in Caller mi-
roservice and the interfaces of the Callee microservice that are
epended upon by them, rather than the arbitrary entities and
nterfaces among microservices.

According to these three assumptions, we thus define a metric,
icroservice Coupling Index, to quantify the coupling strength
etween two services. Specifically, the coupling index in the
irection from microservice Mi to microservice Mj, which is de-
oted by MCI(i, j), measures the likelihood that the entities in
icroservise Mi are impacted by microservise Mj. A higher MCI
alue indicates that the corresponding Caller microservice is more
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ightly coupled to the Callee. The MCI(i, j) metric is defined as
ollow:

|DepI (i, j)|
|Intj|

×

[
|DepE(i, j)|

|Enti|
+

|DepE(i, j)|∑
ent∈DepE (i,j)

min(dist(ent, Intj))

]
(1)

In this formula, DepI (i, j) is the set of multiple depended in-
erfaces in microservice Mj that are reachable from the entities in
icroservice Mi. A higher number of depended interfaces means

hat the Callee microservice is more coupled with the Caller.
epE(i, j) is the set of multiple dependent entities in microservice
i that are possibly impacted by changes made to microser-
ice Mj. The more the dependent entities, the higher coupled
he Caller microservice is with the Callee. The min(dist(ent, Intj))
s the least number of edges needing to traverse downward
opposite the dependency direction) from any of the depended
nterfaces in microservice Mj to the dependent entity ent in mi-
roservice Mi. We note that the min(dist(ent, Intj)) for entity ent
s not zero only when ent is downward reachable from interfaces
n microservice Mj (i.e. Intj), meaning that the actually accumu-
ated entities are equal to the possibly impacted entities in mi-
roservice Mi by microservice Mj, namely DepE(i, j). This formula
s clearly in line with the aforementioned three assumptions:
epI (i, j) represents the first assumption, DepE(i, j) expresses the
econd assumption, and

∑
ent∈DepE (i,j)

min(dist(ent, Intj)) is related
o the third assumption.

In the meantime, the number of interfaces in Callee microser-
ice, denoted by |Intj|, and the total number of entities in Caller,
xpressed as |Enti|, are employed in this formula, following the
elative measurement theory (Allen and Yen, 2001). This indicates
hat the more the interfaces in a microservice, the more likely
t will influence more entities in other microservices, and hence
ower MCI; the larger a microservice, the more opportunities for
t to invoke interfaces of other microservices, and thus lower MCI.

We note that the MCI values are always smaller than (or
qual to) 2, and it equals to 2, if and only if, all the interfaces
f microservice Mj influence all the entities in microservice Mi,
nd, all these influences are directly imposed, meaning that the
in(dist(ent, Intj)) of all entities in the formula are minimal to

1. To make a complete definition, if there is no dependency from
microserviceMi toMj, the corresponding MCI value is 0. Formally:

MCI(i, j) = 0, if DepI (i, j) = ∅ or DepE(i, j) = ∅ (2)

Finally, we note that the MCI values of MCI(i, j) and MCI(j, i)
are not equal according to the definition. It means that in this
study, we distinguish the direction of coupling between two
microservices in terms of how much two microservices depend
upon each other. Such differences can be made because of the
fact that the extent one service depends on (influences) another
service is not equal to that dependences (influences) from the
opposite direction. For example, in Fig. 2, the coupling value
from service ‘‘jobsys-system’’ to ‘‘jobsys-auth’’ is 0, smaller than
that from service ‘‘jobsys-auth’’ to ‘‘jobsys-system’’, which is 2

4 ×
3
5 +

3
1+2+3 ) =

11
20 , because the ‘‘jobsys-system’’ service does not

epend on the ‘‘jobsys-auth’’ service. In the following, we define
wo additional measures to estimate the coupling level between
ne and multiple microservices.
fferent Microservice Coupling Index (aMCI) : This coupling
etric is designed by measuring how much a microservice can

nfluence other microservices in a system. A higher degree of a
icroservice’s influences on other microservices, means that it
as more dependencies from others, and thus the more afferent
ouplings with others. Almugrin et al. (2016) stated that the
ore dependencies from others on a software module, the more

esponsibilities it has in the system. Thus, the higher the aMCI,
he more responsibilities the microservice has for others, and
6

thus a higher prestige of it in the context of the whole system.
A microservice would have a high aMCI if the summation of its
influences on other microservices is high. Considering the MCI
metric introduced in Formulae (1), we propose below a measure
to quantify the overall influences microservice Mi can impose on
others.⏐⏐⏐⋃j̸=i DepI (j, i)

⏐⏐⏐
|Inti|

×

⎡⎣ |DepEA(i)|⏐⏐⏐⋃j̸=i Entj
⏐⏐⏐ +

|DepEA(i)|∑
ent∈DepEA(i)

min(dist(ent, Inti))

⎤⎦
(3)

here DepEA(i) =
⋃

j̸=i DepE(j, i), denoting the set of overall
ntities in other microservices that depend on Mi. If a microser-
ice influences none of the other microservices, its aMCI value is
. This indicates a maximally irresponsible microservice, mean-
ng that it is very likely that this microservice can be changed
ndependently and with little effects on other microservices in
he system. While aMCI = 2 indicates a maximally responsible
icroservice, implying that this microservice is very important

n the system.
fferent Microservice Coupling Index (eMCI) : This coupling
etric aims to quantify how much a microservice can be influ-
nced by others in the system. The higher the degree a microser-
ice can be influenced, means that the more dependencies it has
n others, and thus the more efferent couplings with others. Since
oftware dependencies are the means for transferring changes
rom one artifact to another (Kretsou et al., 2021), changes ap-
lied to many of its depended microservices may propagate to it
nd cause it to change too. Therefore, this measure reflects the
ulnerability of a microservice to the changes of other microser-
ices in the whole system. A microservice will have high eMCI
f the summation of those influences that are imposed on it is
igh. Based on the defined MCI metric, the overall influences that
re imposed on microservice Mi by others in the system can be
alculated as follows.⏐⏐⏐⋃j̸=i DepI (i, j)

⏐⏐⏐⏐⏐⏐⋃j̸=i Intj
⏐⏐⏐ ×

⎡⎣ |DepEE (i)|
|Enti|

+
|DepEE (i)|∑

ent∈DepEE (i)
min

(
dist

(
ent,

⋃
j̸=i Intj

))
⎤⎦

(4)

Where DepEE(i) =
⋃

j̸=i DepE(i, j), indicating the set of overall
ntities in microservice Mi that depend on other microservices.
f a microservice does not rely on any others, its eMCI value is
. This indicates a maximally independent microservice, meaning
hat it has little risk to be changed due to the effects from other
icroservices. In addition, eMCI = 2 indicates a maximally depen-
ent microservice, suggesting that it has many efferent couplings
nd is very unstable in the context of the whole system.

.3. Tool support

We have built a program to calculate Microservice Coupling
ndex, which is currently programmed using Java language. Our
CI program takes the structural information within and across
icroservices as its inputs. The structural information of each
icroservice, is contained in a single XLS file, including the inter-

aces it declared, inner classes it implemented, and the dependen-
ies between them. The inter-dependencies across microservices
n a project are stored with another single XLS file. Given these
nputs, our tool (accessible on GitHub1) calculates the Microser-
ice Coupling Index values between every pair of microservices, as
ell as the aMCI and eMCI in the microservice level.

1 https://github.com/lemonheroine/MicroserviceMeasure
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Please note that the tool’s input is actually a microservice
rchitecture obtained from reverse engineering. That is, our cou-
ling measurement tool does not support reverse engineering.
his design is more portable because architectures derived from
arious reverse engineering techniques can be used as input. Nev-
rtheless, considering the popularity of the Spring Cloud frame-
ork, we also built another tool called ‘‘MicroParser’’ to auto-
atically recover the microservice architecture developed with

ava language and OpenFeign technology (see Section 4.1). ‘‘Mi-
roParser’’ is also available on the GitHub.

. Evaluation

The objective of this evaluation is to investigate how the MCI
etrics behave when measuring microservice couplings, which is

hree-fold. First, we aim at studying the relations between MCIs
nd the existing coupling metrics in MSA, in order to demonstrate
he practicality of measuring microservice-level coupling using
CIs. Second, we aim at assessing the discriminative power of

he MCI metrics, in order to demonstrate their superiority over
xisting metrics in separating high-coupled and low-coupled mi-
roservices. Third, we aim at investigating the implications of
icroservice-level coupling to the independence of individual
ervices in terms of change impacts, in order to demonstrate the
ractical usefulness of measuring MCIs for understanding, com-
aring, and even improving microservices’ independence. This
ection focuses on clarifying the guiding research questions, and
hen presenting the objects of study, data analysis and results of
ach of the questions.

Q1: Are the MCI measurements correlated with but signifi-
cantly different from the existing absolute coupling values
when assessing microservices?

– Positive answers to this question imply that the MCI met-
rics are practical in measuring microservice-level coupling,
because the relative coupling level calculated by them are
reasonable for their associations with the absolute mea-
surements of coupling. More importantly, the proposed
metrics differ quite significantly from existing measure-
ments because they capture the ratio scales uniquely.

Q2: Is the discriminative power of MCI metrics in separating
high and low coupled microservices higher than that of
existing absolute measurements?

– Positive results of this question indicate that the MCI
metrics can distinguish the microservices with the same
absolute coupling measurements but with different rela-
tive coupling levels, so that a manager can reliably em-
ploy them to determine which microservices in a system
are relatively more coupled, and thus possibly need to be
decoupled.

Q3: Does higher MCI values of two microservices mean that
these microservices are less independent than other two
microservices with lower MCI values?

– A positive answer to this question implies that it is
possible to quantitatively compare the extent of indepen-
dence, as well as the induced change impacts among dif-
ferent microservices or design alternatives for the same
microservices. Thus, if we measure the MCI metrics for a
large number of microservices, a maintainer could consult
this dataset and determine whether the most coupled mi-
croservices in the system is in the ‘‘healthy’’ range or need
to be improved by refactoring.
 w

7

Since several coupling metrics have been adapted and applied
or measuring microservice coupling, we would like to know
hether the MCI metrics are more reliable than the existing
nes. Therefore, we will answer the three questions using MCIs
nd these metrics comparatively. Specifically, for measuring the
fferent coupling of a microservice (aMCI), we used the Ca and
IS metrics (see Section 2). To estimate a microservice’s efferent
oupling, we employed the Ce and ADS metrics as baselines.
To the best of our knowledge, there are few metrics for mea-

uring the coupling degree between two specific microservices.
hus, we extended the definitions of Ca, Ce, AIS, and ADS and
erived the following ones for evaluation purposes.

• Afferent Coupling between Two services (CaT): number of
classes in another microservice that depend upon (interface)
classes within the microservice itself.

• Efferent Coupling between Two services (CeT): number of
(interface) classes in another microservice that the classes
in the microservice depend upon.

• Absolute Coupling between Two services (ACT): whether a
given microservice depends upon another microservice.

It can be seen that the definitions of CaT and CeT are adapted
rom that of Ca and Ce, respectively. For the coupling metrics AIS
nd ADS, only one metric namely ACT is adapted, because the
asic definitions of these two metrics are the same, meaning that
dapting two metrics here may lead to information redundancy.
herefore, in the following sections, the MCI for coupling between
wo microservices will be compared with these three metrics.

.1. Subjects selection and preparation

To minimize the possible bias caused by project selection,
e randomly searched our subjects in GitHub and GitLab. At

irst, the projects that are marked as ‘‘microservice’’ or its syn-
nyms (e.g., ‘‘micro service’’), or described as microservices-based
oftware systems were considered as the candidates. With this
riterion, we first derived dozens of code repositories, but most
f them are microservices frameworks or development kits with
ittle business functionalities in their modules (microservices). To
etter analyze the dependency relationships between microser-
ices and measure their coupling, we further chose the candidates
y filtering out those projects with little business functions (the
econd criterion). Third, driven by the popularity of the Spring
loud framework, most of the microservice projects we found
ere implemented in Java and used the Spring Cloud OpenFeign
echnology for inter-service communication. In order to consis-
ently automate the extraction of inter-service dependencies, we
ocus on Java and Spring Cloud projects in this paper. Finally, we
ollected 15 microservice projects with various domains, sizes
nd ages, as shown in Table 1.
To calculate the microservice coupling measures in the subject

rojects, we chose the latest version of each project (in early June
022), downloaded its source code, and then reversed-engineered
t. In our study, the recovery of microservices architecture is ma-
orly about identifying microservices and their interdependencies
as discussed in Section 3.3). To this end, we first extracted mi-
roservices based on the documentation descriptions of a project
nline, including architecture diagrams and textual descriptions.
f a project does not describe its microservices, we then manu-
lly analyzed its package structure for identifying microservices,
.g., those modules with YAML configuration files. That is, we
onsidered a microservice as a component that can be indepen-
ently deployed (according to the system configuration files),
hich is consistent with the microservices characteristics (Lewis
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Table 1
Studied projects.
Subjects #Services History length #Files LOC #Commits Description

Recruita 8 3 months 273 5k 43 Intelligent recruitment system
Enarxb 7 1 month 386 1k 34 Human resource management system
Cangjinggec 7 21 months 114 2k 66 Online novel platform
Mall-swarmd 7 50 months 780 66k 439 Microservice mall system
Xaviuse 5 30 months 120 2k 44 A solution to add/remove services
Madao-servicef 6 39 months 776 14k 1431 Blog platform
Mall-cloudg 13 15 months 1010 106k 71 Microservice mall system
RuoYih 7 25 months 676 18k 730 Rights management system
Light-readingi 4 19 months 192 4k 80 Reading application
EPRj 4 56 months 84 1k 81 Product management platform
Zscatk 13 57 months 1509 49k 117 Online shopping mall
Snowyl 10 18 months 2755 136k 194 Rights management system
Job-offersm 8 2 months 660 13k 123 Internet recruitment platform
Rpushn 6 8 months 380 10k 110 Message push system
Groceryo 8 3 months 526 11k 50 Microservice mall system

ahttps://github.com/stalary/microservice-recruit.
bhttps://github.com/paulohvescovi/springcloud-course.
chttps://github.com/lgasyou/cangjingge.
dhttps://github.com/macrozheng/mall-swarm.
ehttps://github.com/AlaaMezian/spring-boot-microservices.
fhttps://github.com/GuoGuang/madao_service.
ghttps://github.com/mtcarpenter/mall-cloud-alibaba.
hhttps://github.com/yangzongzhuan/RuoYi-Cloud.
ihttps://github.com/Zealon159/light-reading-cloud.
jhttps://github.com/bharathmit/SpringCloud-MSA.
khttps://gitee.com/infowangxin/sc.
lhttps://gitee.com/xiaonuobase/snowy-cloud.
mhttps://gitee.com/su-aiya/susu713.
nhttps://gitee.com/shuangmulin/rpush.
ohttps://gitee.com/zx_l/grocery-micro-service.
Fig. 3. Architecture of one of the analyzed systems.
nd Fowler, 2014). As a result, we derived overall 113 distinct
ervices from these projects (as Table 1).
On the other hand, the inter-services dependencies in our

tudy were collected via static code analysis from the source
ode. This can be done by detecting and leveraging the spe-
ific code fragments applied for inter-service communications,
.g., the ‘‘@RequestMapping’’ annotation for HTTP request. Driven
y the popular Spring Cloud OpenFeign technique in all our sub-
ects, we created an recovery tool called ‘‘MicroParser’’ that can
utomatically extract microservices dependencies by leveraging
he specification of OpenFeign. Our extraction of microservices
ependencies is theoretically in line with the state-of-the-art
echniques for microservices reconstruction used by Zdun et al.
2022), and our researchers checked the extraction results. The
ode and recovered data set are provided as an open source
rtifact on GitHub1 to enable reproducibility of this study. In
8

particular, Fig. 3 presents an illustrative example of the archi-
tecture recovered from the systems we analyzed. Please note
that for the convenience of presentation, Fig. 3 only shows a
part of microservice entities and dependencies. The complete
architecture information can be found in our replication data set.

Our reverse-engineering process outputs, for each project, a
set of XLS files containing all the file-level dependency infor-
mation within and across microservices. Given these XLS files,
we used our measurement tool (introduced in Section 3.3) to
calculate the MCIs and other microservice coupling metrics for
each project.

Table 2 reports the statistics of the microservice coupling
values obtained from these projects. This table shows that the
minimum coupling values calculated from all the open source
projects are 0. In the meantime, more than 50% of the ana-
lyzed units have coupling values equal to 0 (zero). Specifically,

https://github.com/stalary/microservice-recruit
https://github.com/paulohvescovi/springcloud-course
https://github.com/lgasyou/cangjingge
https://github.com/macrozheng/mall-swarm
https://github.com/AlaaMezian/spring-boot-microservices
https://github.com/GuoGuang/madao_service
https://github.com/mtcarpenter/mall-cloud-alibaba
https://github.com/yangzongzhuan/RuoYi-Cloud
https://github.com/Zealon159/light-reading-cloud
https://github.com/bharathmit/SpringCloud-MSA
https://gitee.com/infowangxin/sc
https://gitee.com/xiaonuobase/snowy-cloud
https://gitee.com/su-aiya/susu713
https://gitee.com/shuangmulin/rpush
https://gitee.com/zx_l/grocery-micro-service
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Fig. 4. Histogram distribution of non-zero microservice coupling values (Normalized).
Table 2
Metric summary for all subject projects.
Statistics Min Max Avg Median

Couplings of
microservice-
pairs
(N = 842)

MCI 0.000 1.220 0.047 0.000
CaT 0.000 3.000 0.091 0.000
CeT 0.000 3.000 0.087 0.000
ACT 0.000 1.000 0.074 0.000

Afferent
coupling
(N = 113)

aMCI 0.000 1.110 0.232 0.000
Ca 0.000 7.000 0.681 0.000
AIS 0.000 4.000 0.549 0.000

Efferent
coupling
(N = 113)

eMCI 0.000 1.150 0.077 0.000
Ce 0.000 6.000 0.646 0.000
ADS 0.000 6.000 0.549 0.000

the proportion of microservice-pair coupling, afferent coupling,
and efferent coupling with non-zero value is 7.4% (62), 34.5%
(39), and 38.9% (44) respectively, meaning that most of the mi-
croservices in these subjects have no inter-dependencies between
them. This could be attributed to two reasons. The first reason
is the principle of independent services that is advocated in the
MSA community. Second, MSA is an architecture paradigm that
requires many development costs, and as such most of these
(non-profit) open source projects are of small and intermediate
scale and with low complexity. In addition, it shows that the
worst MCI is 1.22, rather than the value of 2 as we theoretically
explained. This also indicates that these subjects comply to a cer-
tain extent with the service independence principle as advocated.
Fig. 4 further shows the data distribution of all the non-zero
microservice coupling values. It can be observed that while the
values of other coupling metrics are majorly concentrated be-
tween 0.5 and 1, the MCI values are relatively evenly distributed
in multiple intervals from 0 to 1.5. The other characteristics of
these metrics are discussed later.

4.2. RQ1: Relation to other coupling measures

This analysis is conducted to answer the first research ques-
ion, namely whether there is an association but a statistically sig-
ificant difference between the MCI metrics and the
xisting coupling measures in literature. If so, it indicates that MCI
ontributes a uniquely significant/informative perspective in
9

measuring microservice coupling that the existing metrics cannot
subsume. Next, we first compare the values of MCIs and other
measurements to illustrate their ‘‘associations’’ and ‘‘differences’’,
and then use statistical analysis to test the significance of these
relationships.

From the reporting in Section 4.1, we found that over 90% of
these microservice-pairs have a coupling value of zero, meaning
that they do not explicitly depend on each other. Moreover, all
the employed metrics consistently assigned zero to such cases,
suggesting that all these metrics agree that if there is no inter-
dependency between two microservices, it is very likely that they
are not coupled. On the other hand, by observing the remaining
62 pairs of microservices with MCI > 0 (approx. 8%), we see
that the developed MCI metric shows a different model from that
of CaT, CeT, and ACT. Fig. 5(a) depicts the 62 pairs of microser-
vices, sorted ascending by MCI values (e.g., the far left presents
the microservice-pair with the lowest MCI value, and its other
coupling measurements, i.e., CaT, CeT, and ACT). From this figure,
we can notice a broader range of MCI values, exemplifying the
representative power of the metric for distinguishing to what
extent the entities of a Caller microservice depend upon the
interfaces from Callee.

Furthermore, the proportion of non-zero afferent couplings
and efferent couplings is 34.5% and 38.9%, respectively. That is, in
over 60% of the cases where the microservices are not afferently
or efferently coupled with others in a system, both our MCIs and
other metrics assign zeros to them. In Fig. 5(b) and 5(c), we focus
on the microservices with afferent and efferent coupling greater
than zero, respectively. From these, we see that the MCI differ
from other metrics.

To answer this question more rigorously, we used the Spear-
man’s rank correlation coefficient (Spearman, 1961) – a measure
of the strength of correlation between two sets of variables – to
test the association between these coupling metrics. While the
Pearson correlation focuses on the linear relationship between
two variables, the Spearman correlation is a measure of the
monotone association (Hauke and Kossowski, 2011) and does
not require the data to be normally distributed. In Spearman’s
rank correlation, the coefficient values range from −1 to 1. A
correlation of −1 and 1 between two variables A and B indicates
that they are perfect correlated to each other (either positive
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Fig. 5. Coupling between microservices (Normalized).

Table 3
Correlation analysis with existing coupling metrics.

aMCI eMCI Ca Ce AIS

eMCI coef. 0.19
sig. 0.04

Ca coef. 0.93 0.26
sig. 8E−51 0.005

Ce coef. 0.19 0.96 0.27
sig. 0.04 2E−61 0.003

AIS coef. 0.94 0.27 1.00 0.28
sig. 3E−52 0.004 5E−143 0.002

ADS coef. 0.21 0.97 0.30 0.99 0.31
sig. 0.02 1E−66 0.001 1E−96 0.001

or negative). While a correlation of 0 means that there is no
tendency for B to either increase or decrease when A increases.

The correlations from Table 3 suggest monotone associations
mong the afferent and efferent coupling metrics. Please note that
e did not conduct the correlation analysis of the microservice-
air couplings, because, due to the dominated zero-measurements
over 90% of the sample), the exhibited correlation coefficient
ould be highly skewed. The present correlation results in Table 3
re on the basis of afferent and efferent coupling measurements
both with less than 40% of non-zero values). Specifically, the
orrelations between aMCI and Ca, and that between aMCI and
IS settle at 0.93 and 0.94 respectively, while the correlation
etween Ca and AIS is as high as 1.00. Likewise, the correlations
etween eMCI and other microservices efferent coupling metrics
10
Table 4
Principal component analysis with existing coupling metrics.

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Eigenvalues 2.88 2.09 0.57 0.42 0.05 0.04
Percentage 56.57 38.13 3.03 1.18 0.83 0.25
Cum. percentage 56.57 94.70 97.73 98.91 99.75 100

aMCI 0.30 −0.41 0.78 −0.30 0.17 0.07
eMCI 0.38 0.37 0.34 0.76 0.05 −0.15
Ca 0.38 −0.46 −0.45 0.22 0.61 0.16
Ce 0.45 0.38 0.15 −0.47 0.23 0.60
AIS 0.43 −0.45 0.20 0.08 −0.71 0.25
ADS 0.48 0.38 0.09 −0.22 −0.20 0.73

(Ce and ADS) are 0.96 and 0.97 respectively, while Ce and ADS
are perfectly correlated with a coefficient quite near to 1.

The above statistical results are mostly within our expectation.
Specifically, Ca and AIS, as well as Ce and ADS have the high-
est correlation in the results, because both Ca and AIS (Ce and
ADS) are calculated using only the inter-service dependencies.
By contrast, the correlations between our developed metrics and
the existing ones are relatively small (although also over 0.9).
The relatively small coefficients are because our metrics still
consider the size of microservices compared to existing coupling
metrics, following the relative measurement theory. Furthermore,
the high correlation between relative and absolute measurements
is reasonable, because all their calculations utilize inter-service
dependencies. Particularly, in more than 60% cases, the num-
ber of inter-service dependencies is 0 (zero), so their coupling
measurements are all 0 (zero). In general, this implies that the
microservices relied on by many other microservices (AIS) or
many elements of other microservices (Ca) are likely to have high
afferent coupling (aMCI) and vice versa, and the same can be said
regarding the microservices efferent coupling.

Whilst the correlation results show that these measures are
statistically associated, we now explain whether there is a signif-
icant difference between MCIs and other measures from a statis-
tical point of view. To verify from a statistical viewpoint that the
our measures differ significantly from the existing coupling met-
rics, we employed Principal Component Analysis (PCA) (Abdi and
Williams, 2010)—an unsupervised machine learning algorithm for
exploring the underlying relations of several input parameters.
PCA is a technique that has been widely used (e.g., in Baig et al.
(2019), Cazzola and Favalli (2022), Al Dallal and Briand (2012))
to identify the orthogonal dimensions that explain the relation-
ships between software quality metrics. Here it is used to un-
derstand the relationship between the existing coupling metrics
and the proposed ones. In addition, it also demonstrates that our
proposed microservice coupling metrics capture new measure-
ment dimensions. To be specific, if aMCI and eMCI are influential
metrics contributing to the principal components, it means that
these metrics capture new measurement dimensions that are
not addressed by any of the other coupling metrics considered
in the analysis. This paper used singular value decomposition
(SVD) (Klema and Laub, 1980) to perform PCA.

Table 4 presents the results with all six principal components
(PC), as well as the PC eigenvalues, explained variance ratio, and
accumulated variance ratio. The PC eigenvalues represent the rel-
ative share of total variance that is explained by the component.
A higher eigenvalue of PC means that the component is of higher
magnitude and more significance. For every PC, the correlation
coefficients between the measures and the identified PCs are
also reported. The absolute of these coefficients represent how
much the metrics contribute to the captured dimensions. Based
on recommendations from the literature, we applied a 0.45 cutoff
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o interpret the metrics as relevant to components, and applied
0.63 as very good (Finch et al., 2017). Each of these principal
omponents are analyzed with the coefficients as follows:

• PC 1: The efferent coupling metrics Ce and ADS are influ-
ential metrics for this PC, with coefficient values of 0.45
and 0.48, respectively. Whereas all the other metrics have
a relative weak influence on this PC (but with at least 0.30
coefficient).

• PC 2: The afferent coupling metrics Ca and AIS are influential
for this PC, with coefficient values of −0.46 and −0.45,
respectively. In the meantime, we see that other measures
also contributed a lot to this component.

• PC 3: The proposed aMCI metric is the most influential
metric for this PC, and has a fairly high coefficient value,
i.e. 0.78 (higher than 0.63).

• PC 4: eMCI and Ce are the metrics that matter for this
component. Moreover, the coefficient value of eMCI in this
PC is good enough that arrives at 0.76.

• PC 5: Ca and AIS are influential for this PC, with high enough
coefficients at 0.61 and −0.71, respectively.

• PC 6: For this PC, Ce and ADS are influential whose coeffi-
cients reach 0.60 and 0.73.

The principal component analysis shows that our proposed
icroservice coupling metrics cover two new dimensions as they
re significant factor in PC 3 and 4 respectively, and these compo-
ents both take a relatively important share of the total variance
according to the eigenvalues). This proves that aMCI and eMCI
oth capture a new dimension in terms of microservice couplings.
hese evidence supports our answer of this RQ that the proposed
CI metrics are correlated with and significantly different from
xisting microservice coupling measures.

.3. RQ2: The discriminative power of MCI

One objective of measuring microservice coupling is to allow
or comparing different designs, and to use the results as indi-
ators for selecting the best design and improving the quality of
eakly coupled microservices. The discriminative power focused

n this RQ is an assessment about whether a metric is capable of
eparating high-quality and low-quality components (Arvanitou
t al., 2015). For microservice coupling, if a metric’s discrim-
native power is poor, it means that the chances that it will
ifferentiate between differently coupled microservices are low;
hus its usefulness as a coupling indicator is questionable. As a
esult, there exists a high percentage of cases in which the metric
ncorrectly considers different microservices to be the same in
erms of coupling, which may to some degree discourage soft-
are developers from applying the metric to assess their product
uality.
The root question is, how to measure the discriminative power

f a metric? In this section, we first adapt a discriminative power
easurement from Al Dallal (2010) that can be extracted from

he code repository of a software system. After that, we use this
easure to compare the discriminative power of the coupling
etrics under consideration.

.3.1. Discriminative power measurement
We first focus on the discriminative power of a metric in

uantifying the coupling between two microservices, and then
xtend the measurement to other types of coupling metrics. We
llustrate the rationale using five cases depicted in Fig. 6.

The coupling-related information between two microservices
an be depicted using the connections between the services’
embers. The way in which the members are connected and
oupled is referred to here as the Connectivity Pattern (CP) (Al
 i

11
allal, 2010). Suppose there are two microservices in a system,
ay Caller and Callee, the Caller service has implemented two
ntities (e.g., interface and inner classes), and the Callee service
as published two interfaces. In the first case in Fig. 6, all en-
ities in Caller rely on all the public interfaces of Callee; on the
ther extreme, none of the entities in Caller depend upon the
nterfaces of Callee; in the third case, half of the entities in Caller
icroservice invoke all interfaces of Callee. It is obvious that, in

hese cases, the two microservices are differently coupled: in the
irst case, they have the worst coupling; in the second case, they
re least coupled. A microservice coupling metric with high dis-
riminative power, is expected to clearly indicate such differences
n the degrees of coupling. From the three cases, we see that
he differences in their connectivity patterns are manifested in
he number of Coupling Interactions (CI) between microservices.
hat is, a discriminative coupling metric has a high probability of
btaining different values for the different CIs among them.
Furthermore, the sizes of microservices can make a difference

n the possible connectivity patterns between two microservices.
enerally, as interface number of the Callee and entity number of
he Caller increase, the possible number of coupling interactions
n the microservices becomes larger (see the 4th and 5th cases in
ig. 6). Accordingly, the connectivity pattern from microservice
aller Mi to microservice Callee Mj can be defined by entity

number of the Caller |Enti|, interface number of the Callee |Intj|,
nd number of coupling interactions among them |CIi,j|. Formally,
t can be considered as a triplet: CP(Mi,Mj) = (|Enti|, |Intj|, |CIi,j|).
ake Fig. 6 as an example, overall 5 distinct connectivity patterns
an be derived due to their distinct values of entity, interface and
oupling interaction numbers. We thus propose the following dis-
riminative power measure for metrics that quantify the coupling
etween two microservices.
Discriminative Power Measure (DPM): the probability that a

etric will obtain different coupling values for two microservices
ith different connectivity patterns in terms of the sizes of Caller
ntities and Callee interfaces, as well as coupling interactions
mong them. Formally, the discrimination measure of metric m
n a microservice system M is defined as:

PM(M,m) =
#DistCV (M,m)
#DistCP(M)

Where #DistCP(M) is considered the number of possible con-
nectivity patterns between every two microservices in system
M, #DistCV(M,m) is the total number of distinct coupling values
when metric m is applied to all the distinct connectivity patterns
of M .

The same DPMmeasure can be applied to the afferent coupling
metrics of a microservice, but the connectivity pattern is now de-
fined by the entity number of all the Caller services, the interface
number of the Callee, and the coupling interaction number from
all the Caller services to the Callee. Similarly, the connectivity
pattern for the efferent coupling metrics is defined by the entity
number of the Caller service, the interface number of all the Callee
services, and the coupling interaction number from the Caller to
all the Callee services. Next we estimate the discriminative power
of the MCI metrics using the DPM measure.

4.3.2. Results and analysis
Given the discriminative power measure, we executed a pro-

gram (also accessible on GitHub1) on each of the open source
rojects to calculate the DPM measure of the microservice cou-
ling metrics under consideration and listed the results as Ta-
le 5. The first and second columns of Table 5 show the name
f the project and its number of services. The third, 8th, and 12th
olumns report the number of all distinct connectivity patterns
n each project, in terms of microservice-pair coupling, afferent
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Fig. 6. Illustrative examples for DPM.
Table 5
Discriminative power of microservice coupling metrics.
Project #Services Microservice-pair coupling Afferent coupling Efferent coupling

DistCP MCI CaT CeT ACT DistCP aMCI Ca AIS DistCP eMCI Ce ADS

Light-reading 4 10 0.40 0.30 0.20 0.20 4 0.75 0.75 0.75 4 0.75 0.75 0.75
EPR 4 5 0.40 0.40 0.40 0.40 3 0.67 0.67 0.67 3 0.67 0.67 0.67
Xavius 5 11 0.27 0.18 0.18 0.18 5 0.60 0.40 0.40 5 0.60 0.60 0.60
Madao_service 6 24 0.25 0.17 0.13 0.08 6 0.67 0.50 0.50 6 0.83 0.50 0.50
Rpush 6 17 0.24 0.18 0.12 0.12 5 0.60 0.60 0.60 5 0.80 0.40 0.40
Enarx 7 12 0.25 0.17 0.17 0.17 6 0.50 0.33 0.33 6 0.50 0.33 0.33
Cangjingge 7 19 0.11 0.11 0.11 0.11 6 0.33 0.33 0.33 6 0.33 0.33 0.33
Mall-swarm 7 38 0.21 0.05 0.08 0.05 7 0.71 0.43 0.43 7 0.71 0.57 0.57
RuoYi 7 26 0.12 0.08 0.12 0.08 7 0.43 0.29 0.29 7 0.43 0.43 0.29
Recruit 8 28 0.36 0.07 0.07 0.07 8 0.88 0.63 0.63 8 0.88 0.50 0.50
Job-offters 8 37 0.11 0.05 0.08 0.05 8 0.38 0.38 0.38 8 0.50 0.38 0.25
Grocery 8 30 0.10 0.10 0.10 0.07 8 0.25 0.25 0.25 8 0.38 0.38 0.25
Snowy 10 60 0.03 0.03 0.03 0.03 10 0.20 0.20 0.20 10 0.20 0.20 0.20
Mall-cloud 13 102 0.09 0.04 0.04 0.02 13 0.54 0.23 0.31 13 0.54 0.31 0.31
Zscat 13 113 0.05 0.04 0.03 0.02 13 0.23 0.15 0.23 13 0.46 0.23 0.15

Average 7.53 35.47 0.13 0.07 0.07 0.06 7.27 0.48 0.36 0.38 7.27 0.54 0.39 0.36
coupling, and efferent coupling, respectively. Generally, when the
number of services increases, the number of distinct connectivity
patterns per project increases. The calculated DPM values for
the considered microservice coupling metrics are listed in the
remaining columns, in which the best results for each project is
highlighted in boldface.

In most of the cases, the DPM values of a coupling metric
ecrease as the service number in a project increases. This is due
o the fact that mostly the number of distinct coupling values
ncreases much slower than the number of unique connectivity
atterns, as the number of services increases. This means that
ostly the likelihood of lacking discrimination anomaly (LDA) (Al
allal, 2010) of coupling measurement increases as the size of
software system increases. However, this observation does not
lways hold. For example, in the Recruit project with 8 services,
he DPM value of MCI is 0.36, much higher than that in the
rojects with 7 services, where the DPM values vary from 0.11
o 0.25. On the other hand, the DPM values of CaT, CeT, and ACT
n this project are 0.07, generally smaller than that in those 7-
ervices projects. It means that in some projects, a discriminative
etric can significantly mitigate the LDA issue in microservice
oupling measurements.
It can be noticed that MCI has the largest DPM values among

ll the metrics considered for microservice-pair couplings, af-
erent couplings, and efferent coupling in Table 5. For example,
n the Mall-swarm project, the discriminative power of MCI is
stimated as 0.21, while that of CaT, CeT, and ACT vary from 0.05
o 0.08, merely 23.8% to 38.1% of MCI. In addition, in the afferent
oupling metrics, aMCI outperforms others with an average DPM
f 0.48; and in the efferent ones the average of eMCI is high at
.54. This indicates that the MCIs metrics are most capable in
eparating high and low coupled microservices, and it is more
12
reliable to use MCIs as an indicator for the quality management
of microservices.

The other metrics also reach the highest DPM values in some
projects. This is in part due to that in such projects (e.g., EPR),
the inter-service dependencies are quite few, which leaves most
microservices with a coupling degree of zero and insignificant
differences of MCI and other metrics in discriminating coupling
degrees. In addition, the smallest DPM values in terms of the
afferent (efferent) couplings are usually related to both Ca and
AIS (or both Ce and ADS). It suggests that all these existing
coupling metrics are poorly discriminative for measuring mi-
croservice coupling.

4.4. RQ3: Association with change impacts

This RQ aims to investigate if microservices with higher MCI
values are less independent, and as a result, they are more dif-
ficult to fix and change during their evolution. Change impact,
implying that a software artifact is less independent because it
has to change due to changes in other artifacts of the system,
has been considered as one of the most significant maintenance
issues in software development (Kretsou et al., 2021). On the
other hand, recent industrial survey shows that microservice cou-
plings could lead to ripple effects on changes which make adding
or changing functionality slower and error-prone (Bogner et al.,
2019). Thus, in this paper, we focus on empirically evaluating
the association between MCI metrics and the independence of
microservices using change impact analysis.

Such an empirical evaluation can be achieved using either
targeted controlled experiments under research settings, or case
studies of industrial (or open source) software products (Briand
et al., 1999). Both strategies can have a contrasting effect on the
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Fig. 7. Core elements in change impact analysis.

nternal and external validity (Siegmund et al., 2015) of the eval-
ation results. More specifically, controlled experiments provide
reater support for minimizing instrumentation effects which
an influence the internal validity of the evaluation, but can
egatively affect external validity because such experiments are
ot necessarily representative of real-world cases (Perepletchikov
nd Ryan, 2010). In contrast, case studies maximize external
alidity, but could be affected by instrumentation effects. Thus,
n this section, we present a study that follows the first ap-
roach since it has been suggested that the internal validity
f a study should be investigated prior to establishing external
alidity (Perepletchikov and Ryan, 2010).
MSA is an architecture style where polyglot technology stacks

re often employed in practice (Lewis and Fowler, 2014), in-
luding polyglot interprocess communication and programming
anguages, and as such it is time-consuming and laborious to
onduct a large-scale industrial investigation at this stage of
he study. Moreover, although we can find some open source
icroservice projects developed using a unified technology stack,
e found that most of these projects have only a short evolu-
ionary history. The reason is probably because MSA architectures
equire high development costs, and as a result, most of these
non-profit) open source projects are of small or intermediate
cale, and with low complexity. However, from these projects, we
an only capture a few instances of inter-service change impacts,
hich are not enough for statistical analysis with the proposed
oupling metrics to draw valid conclusions.
In the following, we first analyze and model the change im-

acts among microservices and then propose a suite of measures
or quantifying them for evaluation purpose in this study. After
hat, we introduce their measurement process using a series of
imulation-based experiments, and their correlations to MCIs and
ther baseline coupling metrics. Please note that we first focus on
he change impacts among two microservices, and then extend
he analysis of change impacts in other more complex situations.

.4.1. Change impact analysis
Regarding to the change impacts between two microservices,

he core elements are depicted in Fig. 7 in form of a class di-
gram. Specifically, a service being called (Callee) corresponds
o a service that calls it (Caller), which forms an unique state
f inter-service dependencies between them. At the same time,
he invocation dependencies within the Caller service are also
nique. Based on this architectural state, the Callee service may
ndergo several change events, each having a different impact on
he Caller service. Next we detail the introduction of each of the
lements.
1. Callee service: The microservice Callee is the one being

epended upon by another microservice, e.g., the jobsys-system
ervice in Fig. 2. Although each microservice is constituted by
set of interface and inner classes, the changes made to those

nner classes of a Callee often do not influence its dependents
13
Fig. 8. Dependency matrices constructed for Fig. 2.

(because the contracts are not changed). Therefore, in the analysis
of microservice change impacts, only the interface classes of a
Callee are of our interests. Generally, the changes made to a
allee have the potential to affect the Caller that depends on it,
f and only if, all of the following conditions are satisfied:

• The changes are made to its interfaces, because only the
interfaces of a Callee service have the potential to be directly
invoked by other microservices in MSA.

• The changes made are about a deletion or modification of
an existing operation, while the addition of a new operation
may not affect the Caller service. Note that an operation’s
modification can be considered as first deletion and then
addition, thus we collectively refer to the changes that could
impact other microservices here as operation deletion.

• The deleted operation is directly called by the Caller service.
In such cases, the microservice Caller has to make corre-
sponding changes to avoid conflicts, or else it may invoke
a non-existent operation.

2. Caller service: Each microservice that depends on others
lays the role of Caller service, e.g., the jobsys-auth service in
ig. 2. Each Caller service consists of multiple entities (including
nterface and inner classes), each of which could possibly invoke
he published interfaces of Callee. The ripple effects on a Caller
hat are imposed by a change made to Callee can be divided into
wo aspects: direct and indirect ripple effects.

• Direct ripple effect: the entities in a Caller service that
directly invoke a Callee service, could be directly affected by
the changes made to the Callee. For example, the 5th entity
of Caller in Fig. 2 could be directly affected by changes made
to the third and 4th interfaces of Callee.

• Indirect ripple effect: the directly affected entities in Caller,
could further emit changes to its dependents, thereby caus-
ing those dependents to be indirectly affected by the Callee.
Take Fig. 2 as an example, the affected 5th entity of Caller
could lead to changes to the first entity, if the 5th entity
modifies the declaration of its publish methods.

3. Inter-service Dependency Matrix (InterDM): As aforemen-
ioned, a prerequisite for whether the change of a Callee will
nfluence its Caller is that the Caller directly depends on the inter-
aces that are modified. To represent the dependency relationship
etween two microservices, a binary matrix whose row number
is the number of Caller entities and whose column number l is
he number of interfaces in Callee is leveraged (see the left sub-
atrix in Fig. 8). The matrix has rows indexed by the entities of
aller and columns indexed by the interfaces of Callee, and so for
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≤ i ≤ k, 1 ≤ j ≤ l, we write:

InterDMij =

⎧⎨⎩
1 if the ith entity of Caller remotely

invokes the jth interface of Callee
0 otherwise

For example, the InterDM53 is set to 1 due to the dependency
from the 5th entity of Caller to the third interface of Callee. Nev-
ertheless, this 2D dependency matrix is not enough to accurately
describe the change impacts. Because, the changes of an interface
in Callee can only propagate to Caller’s entities if these enti-
ties directly invoke the changed operations, as discussed earlier.
Therefore, in order to accurately analyze such impacts, it is nec-
essary to model the operations. In more details, every interface of
Callee, int , can be represented as a non-empty operation vector,
Opint . For every entity of Caller microservice, ent , that depends
pon int , the operation subset of int that are invoked directly
y ent , denoted by Opent,int , is utilized, where the Opent,int ⊂ Opint
elation is ensured.

4. Intra-service Dependency Matrix (IntraDM): Based on the
nterDM , the entities of Caller that will be directly impacted by
hanges made to Callee can be determined, which corresponds to
he direct ripple effects. In addition, the affected entities in Caller
ould further emit changes to other entities that depend on them,
hich results in the indirect ripple effects of Callee. To describe
uch indirect effects, another binary matrix can be constructed to
epresent the dependencies within the Caller microservice (see
he right sub-matrix in Fig. 8), where the rows and columns of
his matrix are both the entity number of Caller. More specifically,
his matrix has rows and columns both indexed by the entities of
aller, and so for 1 ≤ i ≤ k, 1 ≤ j ≤ k, we have:

ntraDMij =

{
1 if the ith entity invokes the jth, i ̸= j
0 otherwise

Here we set the diagonal values in intraDM as zeros, be-
ause such cells represent dependencies within an entity itself
e.g., an reference from a method of an inner class to its attribute),
hich would not affect other entities and cause additional change

mpacts.

.4.2. Change impact modeling
From the above analysis, we see that there exist both de-

erministic and non-determinate factors in the change impacts
mong microservices. For example, it is interminate if a change
ade to a Callee microservice is about the interfaces. Gener-
lly, the uncertainty, affecting architecture’s modification, can
e attributed to many facets, such as changes in feature re-
uirements and developers’ decision makings. For modeling the
on-determinate factors, we now try to build a probabilistic
14
odel based on Bayesian approach which is appropriate for
odeling quality issues with uncertainties, such as change im-
acts (Tang et al., 2007; Salama and Bahsoon, 2017). We adhere
o the Bayesian approach – an ideally suited knowledge repre-
entation for reasoning and decision making under uncertainty –
n the probabilistic modeling, because it is guaranteed to define
unique probability distribution over the network variables. By
odeling the unknown parameters of the sampling distribution

hrough a probability structure, the Bayesian approach supports
quantitative discourse on these parameters (Robert, 2007).
The probabilistic modeling based on Bayesian consists of two

omponents: the structure often referred as the qualitative model,
nd the parameters (i.e. conditional probabilities) referred as the
uantitative one (Kjaerulff and Madsen, 2008). Thus, we first
educe a probabilistic relational model for microservice change
mpacts, as depicted in the center of Fig. 9. In the relational model,
he elements that are depicted are from only two microservices,
amely Callee and Caller, for showing how the changes made to
he Callee can be propagated to the Caller. An edge within the
allee service represents a ‘‘whole-part’’ relationship, meaning
hat a Callee service is represented by a set of interfaces and an
nterface constituted by a set of operations. In the meantime, if
‘‘whole’’ changes, then, each of its elements (i.e. ‘‘parts’’) will
ave a certain possibility (the ρ and σ probability in Fig. 9) of

changing. Otherwise, all of the parts will remain in a stable state.
That is, the changes made to the whole and part elements are
causally connected. Second, the edge of a solid line, which corre-
sponds to a remote invocation between microservices, expresses
a deterministic change impact between them. For example, if an
entity of Caller subscribes an operation that has to be deleted in
Callee in a commit, then, in the following commits this entity will
have to make corresponding changes to avoid potential errors.
According to these edges, we can definitely determine whether
the changes made to the Callee service will affect the Caller, and
which entities will be affected. Finally, each dashed edge within
the Caller service corresponds to a direct dependency and an
invocation between two entities, and thus the changes made to a
dependee would possibly affect the dependent (corresponding to
γ in Fig. 9), if the changes are about the contracts between them.

The relational model could be read as follows: if the Callee
service changes, each of its interfaces will have a certain proba-
bility (ρ) to be modified. The modification made to an interface,
generally imposed on its constituent operations, could affect the
Caller microservice that depends on it only when the changes are
about the deletion of existing operations, as aforementioned in
Section 4.4.1. If an interface changes, then, each of its existing
operations will have a probability (σ ) to be deleted. Once there
is an operation deleted in Callee service, the entities in Caller
that directly invoke the operation will definitely have to make
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orresponding changes, which lead to the direct ripple effects
n Caller. Moreover, as discussed before, the directly affected
ntities may further propagate their changes to other entities
with probability γ ), which are referred as the indirect ripple
ffects.
Next we discuss the quantitative non-deterministic factors

i.e. conditional probability parameters) in the relational model:

• Interfaces changing rate (ρ): how likely an interface will be
changed if its microservice is modified. The higher the rate,
the more change-prone an interface is.

• Operations deletion rate (σ ): how likely an operation will be
deleted if its interface changes. A higher score, means that
the changes of a microservice have more opportunities to
impact others.

• Changes propagation rate in a service (γ ): how likely the
changes on an entity will be propagated to the other entities
that depend on it. The higher the value, the larger the indirect
ripple effects of inter-services.

The above three rates all describe a probability of a Boolean-
alued question, e.g., changed or not (stable). For estimating
he value of these rates, each of them can be considered as a
arameter that obeys the Binomial distribution population (Shao,
003), if any ‘‘interface changing’’/‘‘operation deletion’’/‘‘change
ropagation’’ events are pair-wise independent. Take the inter-
aces changing rate as an example, suppose X is used to represent
he number of changed interfaces, X =1 denotes that the interface
as been changed, X =0 denotes a stable interface. Given that we
sed ρ to express the changing interface rate, then, X follows a
inomial distribution: P(X =1)=ρ, and P(X =0)=1−ρ.
To estimate the values of these parameters (ρ, σ , and γ )

nd build the change impact quantitative model (i.e. Bayesian
etwork), we quantitatively analyzed and measured these pa-
ameters in the open source projects and then used the mea-
urements as prior knowledge base. For this purpose, we chose
out of the 16 open source projects as the analysis subjects

n the parameters estimation. We chose these projects, rather
han using all 16 projects mainly because they have at least
ix months of revision history from which we can extract suffi-
ient maintenance data for probability calculation. In the follow-
ng, we first discuss whether the ‘‘interface change’’/‘‘operation
eletion’’/‘‘change propagation’’ events are independent of each
ther so that ρ, σ , and γ can be considered as parameters that
bey the Binomial distribution population, then estimate the
alues of these parameters using the point estimation method in
tatistics (Shao, 2003).
Before doing so, please note that the goal of this section is

o build a Bayesian network for modeling how a change event
ade to a Callee service can impact its Caller. For simplicity,
e limit the scope of a change event to a code commit, which
15
s usually considered the smallest unit of software changes (Liu
t al., 2020). Furthermore, the commit concept has been broadly
sed as a unit for describing and quantifying maintenance activ-
ties (e.g., Mo et al., 2016; Xiao et al., 2022). To provide a fair
asis for our analysis of the change impact, we consistently use
his change granularity (i.e. a code commit) in all our modeling,
easurements, and experiments.
Intuitively, whether an interface is modified or not is not

elated to another interface. From the open source projects, we
bserved that in most of the commits no more than one interface
s modified. More specifically, for 25 out of the 35 services with
nterfaces changed, at least 60% of the commits contained only
ne interface modification (see Fig. 10). In addition, the interface-
airs that are modified simultaneously in more than one commit
ccount for only 0.07% of all possible interface-pairs. These indi-
ate that changes made to interfaces are likely to be independent
f each other. At the same time, the deletion of each operation in
n interface is also independent of each other to a certain extent,
ecause each operation is the smallest functional unit released
y the interface, and thus the coupling between each other is
elatively small. In addition, only one deletion event may occur
o an operation, and it is difficult to observe that two operations
re deleted simultaneously in more than one commit. Finally,
hether modifications of different entities will affect the entities
hat depend on them are independent of each other, because
he modifications made by these entities are often unrelated to
ach other. It is conceivable that even though these entities are
odified for the same reasons, the modifications performed in

he different entities could be very different due to the business
equirements and developers’ understandings.

Fig. 9 shows that among the 8 analyzed open source projects,
total of 4347 service changing events have occurred to the

evision history. When a service changes, each of its interfaces
ill have a certain chance to be modified. Thus, in all these
ervice changing events, overall 33575 interface changes may
ave occurred, but in reality, we only observed 613 interface
hanging events, see Fig. 9. (A). Based on recommendation from
he literature (Shao, 2003), we apply the mean (0.02) as the
oint estimation of ρ value. Similarly, as shown in Fig. 9. (B), in
he 613 interface changing events that occurred, each operation
f the interfaces (832 in total) would have a certain possibility
o be deleted. But in fact, we observed 279 operations deletion
vents, and the remaining 563 operations were categorized as
ot deleted. These un-deleted operations may just have their
mplementation modified, or just remain stable (i.e. changing
ther operations). Therefore, we used the average of 0.33 as the
oint estimation of operations deletion rate σ . When estimating
he third parameter, we only used the latest versions of these
pen source projects. We chose the last versions, rather than
sing all versions mainly because, according to our observations,
hese latest versions are often more stable than their historical
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ersions and thus less subject to large chunk of requirements
pdate that could possibly bring many misjudged ‘‘co-changes’’.
mong the 247 service changing events of the latest version, a
otal of 243 entity changing events occurred wherein a depended
ntity was changed. Each of such changes may further affect other
ntities that directly depend on the changed entity, so these 243
imes of entity changing could have further caused 455 entities
o change. However, we actually observed that only 8 entities
ere affected by the changed entities, as Fig. 9. (C), meaning
hat eight commits of depended entities are followed by changes
ccurred to the dependents in a successive commit, indicating
hat these dependents have changed possibly due to the ripple
ffects from the corresponding depended entities. Hence, the γ

alue is estimated using the mean value of 0.02 to represent the
ate of change propagation within a service.

.4.3. Change impact measurement
Based on the above analysis and modeling of change impacts,

n this section we propose a suite of measures for quantifying
uch impacts across microservices. Suppose there are two mi-
roservices from a project, Caller and Callee. If every time changes
ade to the service Callee result in several files of Caller to
hange, it means that the change impact of Callee on Caller is
o severe that the service Callee is not independently changeable
nd that the service Caller is unstable. On the other extreme, if the
ervice Caller rarely reacts to changes made to service Callee, or
he reaction is quite small, it means that these microservice can
e changed independently to some extent. It is obvious that, in
he first case, the microservices have the most change impacts,
nd in the second case the least impacts. We then propose the
ollowing measures to quantify the change impacts of service
allee on service Caller:

• Directly Affected Scope (DAS): number of changed code files
(‘‘scope’’) in the Caller service due to the direct ripple effects
of the Callee. The higher the score, the more affected the
microservice is.

• Directly Affected Frequency (DAF): number of times the files
in the Caller service have to change directly due to changes
made to the Callee.

• Overall Affected Scope (OAS): number of changed code files
in the Caller service due to the direct and indirect (overall)
ripple effects from the Callee service.

• Overall Affected Frequency (OAF): number of times the files
of in the Caller service were changed due to the direct and
indirect ripple effects from the Callee service.

These measures manifest how much a microservice was af-
ected and how costly (in terms of frequency) were the affected
hanges due to its dependencies on another microservice. The fol-
owing section introduces how we collect these measures based
n their corresponding definitions.

.4.4. Measurement strategy and process
The above measures manifest how a microservice was affected

y another during its maintenance. To fairly collect such mea-
urements, ideally, a set of microservices projects of various sizes
nd domains should be chose firstly. To investigate the change
mpacts among microservices during their maintenance, for each
roject, the microservices that have reached their stable design
hould be selected, on which there is no significant require-
ents changes themselves. Given these microservices, we should
easure their MCI values, then monitor and collect the change

mpacts their depended services imposing on them for a long
nough period of time to get statistically valid results. Ideally, the

hange impacts from each of their depended services should be

16
analyzed separately, so that we can compare if the services that
have higher MCIs with them indeed impose larger ripple effects
on them, and thus they are less independent of these services.

However, finding such controlled microservices projects is not
trivial in reality. Together with the consideration of the polyglot
nature of MSA (discussed at the beginning of Section 4.4), we
decided to investigate the change impacts between microservices
and analyze their association with MCI metrics through a se-
ries of experiments. In the following, we introduce an algorithm
we designed for simulating such impacts for this experimental
evaluation. Please note that the algorithms used in this section
are also provided online as an open access artifact1 to enable
reproducibility.

The algorithm in Fig. 11 shows how to estimate the change
impacts of service Callee on service Caller. The algorithm uses a
binary k × l matrix to represent the inter-service dependencies,
and a binary k × k matrix for the intra-dependencies within the
Caller service, where k is the number of entities of Caller and l
is the number of interfaces of Callee. In addition, a set of vectors
with ranging sizes are employed to represent the operation set
of these interfaces and how the entities depend on the interfaces.
In the meantime, the algorithm uses four parameters, where the
three probabilities ρ, σ , and γ are set to simulate an random
change event to service Callee and its ripples effects on service
Caller, as aforementioned, and the time of iterations t is designed
to represent the times of change events for reducing the effect of
chance factors on experimental results.

The algorithm first generates the core constituents of the
Caller and Callee services. These are two randomly created binary
matrices to represent the inter- and intra-dependencies, as well
as the operation sets of all the interfaces and the operation sub-
sets for showing how the entities depend on the interfaces. After
that, the coupling values between Caller and Callee are measured
using the four microservice-pair coupling metrics ACT, CaT, CeT,
and MCI.

In the next step, we simulate t change events made to the
Callee service, and measure how much the Caller service will be
impacted and how costly will be the affected changes using the
four change impact measures. For every interface of the Callee
service, if it is to be changed according to the probability ρ,
then, for each of its operations, we further check whether it
is to be deleted using the predefined probability σ . If none of
its operations is to be deleted, the interface is ignored because
it represents a change that will not impact the Caller service.
Otherwise, the deleted operations are added to the list of doL.

Using the deleted operation set, we now quantify the impacts
that are directly imposed on the Caller service (Step 5.3 to 5.6).
From each operation that has been ‘‘deleted’’, we now traverse
the inter-dependency matrix and the corresponding dependent
operation sets to find the entities that directly invoke this opera-
tion. Detecting an entity relying on a ‘‘deleted’’ operation suggests
that it has to be changed accordingly to avoid potential conflicts.
Hence, once such an entity is detected, the affected frequency
increases by one, and the entity is added to the list of directly
affected entities. After traversing from all the deleted operations,
we calculate the DAS and DAF value of this iteration. These
are expressed as the number of entities in the directly affected
entities list and the affected change frequency, respectively.

Based on the directly affected entities, we need to further
traverse the intra-dependency matrix so as to estimate the in-
direct ripple effects on the service Caller (Step 5.7 to 5.9). More
specifically, from each of the directly affected entities, we traverse
forward the entities that depend on it along with the depen-
dency path and ripple the changes by predicting whether the
entities in the path will be affected. For determining whether an
entity will be affected, we consider the fact that if all the direct
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Fig. 11. Algorithm for simulating the change impacts of service Callee on service Caller.
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ependents of an entity have not be changed, then the current
ntity will not be affected. Otherwise, we use the probability γ

o randomly decide whether to ripple the entity. After traversing
ll directly affected entities, we calculate the OAS and OAF values
sing the number of entities in the OAEL list that includes all
he directly and indirectly affected entities, and the number of
ffected change frequency, respectively.
This algorithm is implemented as a Java-based tool. After sim-

lating all t times of changes to the Callee, the tool generates the
verage change impact values for each of the four measurements
nder consideration.

.4.5. Experiment and analysis
Given the measures of change impacts—Directly Affected

cope (DAS), Directly Affected Frequency (DAF), Overall Affected
cope (OAS), and Overall Affected Frequency (OAF), and the
esigned simulation algorithm for collecting these measures, we
ow conducted a series of experiments to explore the correlation
etween MCIs and the change impacts among microservices.
or the correlation analysis, we decided to use Spearman’s rank
orrelation coefficient due to the non-parametric nature of the
tudied microservice metrics. In this section, the Spearman’s
orrelation coefficient provides a measure of the association
17
etween microservice coupling values and the four change im-
act measures within the simulation samples. Note that we first
ocus on the correlation between couplings among two microser-
ices and their change impacts, and then extend the simulation
lgorithm for exploring the correlation between other types of
oupling measures and the corresponding change impacts.
. Coupling between a microservice-pair
In this subsection, we aim to investigate if two microservices,

.e. Caller and Callee, with higher MCIs are involved in larger
hange impacts. For benchmarking purposes, we let each Caller
ervice implement 4 to 28 entities, each Callee service publish
to 4 interfaces, and each of the interfaces provide 3 to 7

ublic operations. These parameters were set based on the lower
nd upper quartiles of the statistical observations from the open
ource projects. For every pair of the randomly generated Caller
nd Callee services, we first calculated their coupling values using
he MCI, CaT, CeT, and ACT metrics. In the meantime, we mea-
ured the average change impacts by simulating 1000 times of
hange events made to the Callee service. To account for the effect
f microservice sizes on change impacts, we further normalized
hem by computing the change impacts of per Callee interface
n per Caller entity—dividing the ripple effects by the product
f number of Callee interfaces and number of Caller entities.
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Table 6
Correlation of microservice-pair couplings and change impacts.

DAS DAF OAS OAF

MCI coef. 0.87 0.87 0.87 0.87
sig. 1E−31 2E−31 8E−32 1E−31

CaT coef. 0.71 0.71 0.76 0.78
sig. 1E−16 10E−17 4E−20 3E−21

CeT coef. 0.32 0.35 0.34 0.36
sig. 1E−3 3E−4 6E−4 3E−4

ACT coef. 0.52 0.52 0.52 0.52
sig. 3E−8 3E−8 3E−8 3E-8

Finally, we analyzed the relations between the coupling degree
and the normalized change impacts within 100 samples. In this
way, we were able to investigate whether there is a correlation
between the MCI coupling values and the change impacts among
a microservice-pair.

Table 6 presents the coefficient and significance values of
he correlation analysis. All of these significance values are less
han 0.05, indicating these correlated relationships are statisti-
ally significant. This table shows that all the four change impact
easures have the highest positive correlation with MCI, mean-

ng the higher the MCI, the more severe the change impacts of
he corresponding service Callee on service Caller, and the less
ndependent these services are. The CeT and ACT metrics similarly
how positive correlations but the correlations are much weaker
han with MCI. Although CaT also displays positive correlations
ith these change impact measures, its correlations with DAS and
AF are much lower, meaning that this coupling measure is less
orrelated with the direct ripple effects among microservices.
. Afferent microservice coupling
In a second experiment, we investigated the relation between

icroservice afferent couplings and the corresponding change
mpacts by configuring ten coexisting Caller services and one
allee service, and analyzing the ripple effects of changes made to
he Callee service on these Caller services. This experiment aims
o explore the change impacts of one service on other services in a
ystem. The simulation experiment configuration makes sure that
he ripple effects on these Caller services are imposed by the same
hanges made to the Callee service. Given our aim to conduct a
ontrolled experiment, an effort was made in the configuration
o manipulate only the afferent coupling while keeping the size
f service Callee (controlled variables) as constant in order to
revent its effect on the experimental results. Note that we still
sed random sizes of the Caller services (i.e. ranging from 4 to 28
ntities) for simulating a real software project.
The microservice afferent couplings are calculated using aMCI

nd other baseline metrics: Ca and AIS. For measuring the change
mpacts of the Callee on all the Caller services, we accumulated
he ripple effects that are imposed on each of the Caller services.
o account for the influences of microservice sizes on change
mpacts, we further normalize them by computing the ripple
ffects per entity—dividing the four ripple effects measures by
he number of overall entities in these Caller services. The cor-
elation results are shown in Table 7. Table 7 shows that aMCI
as the highest positive correlation with the four change impact
easures, meaning that the greater the afferent coupling of a
ervice, the larger the impacts of its changes on other services in
he system, and it is less likely that this service is independently
hangeable.
. Efferent microservice coupling
In a third experiment, we analyzed the change impacts of ten

oexisting Callee services on one Caller service and their correla-
ion with the microservice efferent couplings. In this experiment
onfiguration, the changes made to each of the Callee services are
18
Table 7
Correlation of afferent couplings and change impacts.

DAS DAF OAS OAF

aMCI coef. 0.60 0.57 0.60 0.55
sig. 5E−11 9E−10 4E−11 2E−9

Ca coef. 0.35 0.32 0.40 0.37
sig. 3E−4 1E−3 4E−5 2E−4

AIS coef. 0.14 0.15 0.11 0.12
sig. 0.175 0.135 0.280 0.229

Table 8
Correlation of efferent couplings and change impacts.

DAS DAF OAS OAF

eMCI coef. 0.48 0.47 0.44 0.39
sig. 4E−7 7E−7 4E−6 5E−5

Ce coef. 0.13 0.17 0.08 0.09
sig. 0.183 0.082 0.440 0.393

ADS coef. 0.28 0.26 0.26 0.25
sig. 0.005 0.008 0.010 0.012

independently generated (using the basic simulation algorithm),
meaning that we do not concern about their ripple effects on
each other for simplifying experimental design. Given our aim
of conducting a controlled experiment, in the configuration an
effort was made to only manipulate the efferent coupling while
keeping the size of service Caller (controlled variables) as con-
stant in order to prevent the effect on experimental results. In
addition, in order to simulate a real software system, we designed
these Callee services with various sizes, i.e. ranging from 1 to 4
interfaces.

Table 8 shows the correlation between microservice efferent
couplings that are computed using eMCI, Ce, and ADS, and the
corresponding change impacts of ten Callee services on one Caller
service. The accumulated ripple effects are further normalized by
dividing them by the total number of interfaces in the Callee
services, on account of the size effects of changing interfaces.
From Table 8, eMCI is the one mostly correlated with the four
change impact measures. This indicates that the greater the effer-
ent coupling value of a service, the more likely it will be affected
by the changes made to other services in the system, and thus
this service is more unstable.

5. Discussion

This section discusses the comparison of MCIs with other
related metrics, their practical implications, and the threats to
validity of this research.

5.1. Comparison with other related metrics

In this section, we compare the proposed microservice cou-
pling metrics MCIs with the metrics adapted from the MSA lit-
erature. In addition to Ca, Ce, AIS, and ADS, several metrics were
also applied to measure microservice-level coupling based on the
interdependencies among services, such as CBM (Coupling Be-
tween Microservice) (Taibi and Systä, 2019), ExterCoup (External
Coupling) (Selmadji et al., 2020), and FEC (Frequency of External
Calls) (Taibi and Systä, 2019). All these metrics have been used to
assess microservice decomposition alternatives in the migration
from a monolithic architecture to an MSA (Li et al., 2019; Daoud
et al., 2021).

The problem is, even though these metrics that reflect the
absolute magnitude of ‘coupling evidence’ (e.g., call paths) be-
tween microservices have been demonstrated to be useful for
MSA design in a system-level, they rarely focus on comparing
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he independence of individual microservices and identifying the
ost detrimentally coupled microservices in a system. Bogner
t al. (2019) also pointed out the absence of coupling measures
o assess individual microservices in architecture refactoring and
SA evolution.
Different from these existing metrics, our MCI is the only

etric suite that measures how dependent the microservices are
elative to the possible dependencies between them, based on the
elative measurement theory (Allen and Yen, 2001). Our objective
s microservices’ comparison and refactoring support, i.e. identi-
ying the most over-coupled microservices to indicate refactoring
pportunities and comparing design alternatives for refactoring
olutions selection. To the best of our knowledge, we are not
ware of an existing metric that has successfully demonstrated
ts capability in comparing the coupling (and less independence)
evel of individual microservices in a system. Our empirical in-
estigation indicates that MCIs outperform the existing metrics
n separating groups of high and low coupled microservices (see
ection 4.3) and in the positive correlation with microservices’
ndependence (see Section 4.4). This suggests that MCI has the po-
ential to be valuable for measuring, comparing, and refactoring
icroservices architecture.

.2. Practical implications of MCI

MCIs’ supports for refactoring. The experimental results suggest
hat a microservice having high eMCI is potentially change-prone,
ue to the ripple effect on changes of other services. In the
eantime, a microservice with high aMCI value can potentially

mpose a large change impact on other services in the system.
hese implications largely confirm the downsides of high ef-
erent and afferent coupling (Almugrin et al., 2016). As such,
oftware managers and architects could use eMCI and aMCI to
dentify the services that are change-prone in the future and the
ervices that are likely to be the root of unstable architecture.
hese represent clear refactoring opportunities for improving
SA design. For example, one can identify the most vulnerable
icroservices in the system (e.g., most unstable), then compare refac-

oring solutions and select the one with the least interdependencies.
onetheless, refactoring with aMCI and eMCI could be time-
onsuming and labor-intensive for many start-up teams if there
re many involved microservices. In such cases, software man-
gers may find beneficial to consider micro-refactoring (Zhong
t al., 2022) with MCI, i.e. refactoring two microservices that are
he most detrimentally coupled in a system.

Possible means to improve MCIs. The results on MCI measure-
ents revealed that a higher MCI value is generally negative for
uality, as it is a significant indicative of larger change impacts
n software maintenance. To address this issue, microservices
evelopers are recommended to attain and maintain a low degree
f dependencies (and a high degree of independence) between
icroservices. One promising strategy of reducing inter-service
ependencies is to implement functionalities by promoting code
euse among microservices. Existing research (Fu and Cai, 2019)
as shown that functionality overlap among software compo-
ents can also benefit quality through enhancing understandabil-
ty and lowering security vulnerabilities. However, this may cause
emantic coupling (Fregnan et al., 2019) among microservices.
f the relevant functionalities are changed frequently, this could
ntroduce the ‘‘modularity violation’’ smell (Mo et al., 2019),
hich may increase the change impacts between microservices.
his implies that practitioners have to take care of structure,
emantic, and evolutionary information together when adopting
his strategy. In addition, microservices developers may choose to
educe inter-service dependencies following the ‘‘microservices
19
estructuring/refactoring’’ strategy (Zhong et al., 2022), e.g., ex-
racting the code files involved in the intricate dependencies into
new microservice.

.3. Threats to validity

This section explains the threats to the validity of our study
Wohlin et al., 2012; Siegmund et al., 2015), primarily in terms
f how they were mitigated, but also about limitations in a few
ases where they were not adequately addressed.
Internal Validity: stems from the conclusions that can be

rawn about the causal effect of independent variables on depen-
ent variables.
Selection. How the subjects are selected from a larger group

an lead to the selection effects with respect to causality. To
educe this effect, we used randomly selected microservice open
ource projects as the subjects for case studies and used randomly
enerated Caller and Callee microservices in the experiments of
oupling measurements and change impact analysis.
Reverse engineering. The accuracy of architecture recovery

as the potential to affect causality. For recovering the inter-
ervice dependencies, our reverse engineering tool MicroParser
utomatically identified the HTTP requests and responses that
ere explicitly declared by developers using the OpenFeign an-
otations. Nonetheless, it is possible for developers to declare
ome incorrect requests or responses. To address this risk, our re-
earchers performed a manual validation of the derived requests
nd responses.
Multiple groups. The control group and the selected experi-

ent group are affected in the same way except the employed
icroservice coupling metrics for correlation analysis for reduc-

ng the potential effects of multiple groups experiments.
Experimental setting. The simulated experiments for change

mpact analysis in this paper depends on three parameters, ρ,
, and γ , which represents the rate of interface changing in a
ervice, operations deletion, and changes propagation between
ntities, respectively. For minimizing these threats, we performed
mpirical investigation on eight open source projects to collect
ufficient data for these parameters estimation. We also collected
dditional evidence in these projects to show that the change of
ach interface and the deletion of operations are independent to
ach other.
External Validity: refers to the degree to which the obtained

esults can be generalized to other MSA-based systems.
Languages. Driven by a series of popular technology

rameworks, e.g., SpringBoot and SpringCloud, most of the
icroservices-based systems we found in GitHub and GitLab
ere implemented using Java language. Thus, we focused on Java
rojects in this paper, and cannot claim that MCI is applicable to
icroservices projects written in other languages, such as Go or

avascript.
Technology frameworks. As aforementioned, the popularity

f SpringCloud has been widely embraced by microservices de-
elopers. In addition, the Spring Cloud OpenFeign technique – a
eclarative REST client – makes the published service interfaces
nd operations explicit in codes, from which we are able to stat-
cally scan and detect inter-service dependencies. Hence, in this
aper we measured microservices projects that use SpringCloud
nly and cannot claim MCI’s generalization to projects using other
echniques like RPC.

Environments. We only studied 15 open-source projects from
itHub and GitLab, which poses another threat to external va-
idity. The reason is the scarcity of microservice projects (with
lenty of deployable services and complex business logic) in
he current open source community. To reduce this threat, we
ried to choose projects of different sizes and domains. We also
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nalyzed several versions of the projects, as well as all commits
vailable in these versions. Nevertheless, it is undeniable that
he empirical data used in the current study are not sufficient.
e have to further extend the empirical evaluation on industrial
icroservices projects, to test if the results of our study can be
pplied to this types of projects.
Construct Validity: refers to the degree to which experimen-

tal variables accurately quantify the concepts they purport to
measure.

In the dependent variables used to measure change impacts,
the Directly Affected Scope (DAS) and Overall Affected Scope
(OAS) of the number of modified files quantify the amount of
change (Stevanetic and Zdun, 2018), and the Directly Affected
Frequency (DAF) and Overall Affected Frequency (OAF) quantify
the change-proneness of an artifact (Misirli et al., 2016) by mea-
suring the frequency of revisions in which a file has changed. The
indicators have been already studied and validated in the change
impact analysis literature (Kretsou et al., 2021), and thus can be
considered constructively valid.

6. Conclusion

This paper proposes a novel suite of metrics, Microservice Cou-
pling Index, to measure the independence of individual microser-
vices. Based on the relative measurement theory and Martin’s
principles, these metrics aim to provide a comparative gauge
on to what extent the microservices in a system are dependent
and coupled and a timely indicator of architecture refactoring for
decoupling them.

We performed case studies using 15 open source projects,
which has revealed that the relative coupling measures outper-
form the classical ones in each of the comparisons in discrimi-
nating high and low coupled microservices, and thus are more
helpful in comparing design alternatives. We also collected four
measures using a series of simulation-based experiments to indi-
cate microservices’ independence in terms of change impacts, and
confirmed that in all comparisons the developed MCI metrics are
more correlated with these measures than other baselines. The
larger the MCIs, the less likely the changes can be localized and
the individual microservices can be independently evolved. Our
investigation suggests that MCIs have the potential to be valuable
metrics for measuring, comparing, and improving microservices
independence.

In the future, the experimental evaluation should be extended
on industrial software systems in order to better assess the ef-
ficiency of the proposed MCI measures in the change impacts
and independence analysis of microservices architecture. A sec-
ond possible direction for improvement would be to consider a
method level granularity for MCI, instead of a class level gran-
ularity, as in the current proposal. Furthermore, it would be
interesting to investigate the possibility of applying the relative
measurement theory to other aspects of microservices measure-
ment, such as other types of coupling (e.g., dynamic, semantic,
and logical coupling), style of communication (i.e. asynchronous)
and the cohesion of microservices.
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