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Distributed Adaptive Formation Control for
Uncertain Point Mass Agents with Mixed

Dimensional Space
M.R. Rosa and B. Jayawardhana

Abstract— We propose distance-based distributed adap-
tive formation control of point mass agents in port-
Hamiltonian (pH) framework that can deal with parameter
uncertainties and with mixed dimensional space (2D, 3D or
mixed 2D/3D). Adaptive control mechanism is subsequently
proposed to maintain formation of uncertain pH systems
with unknown damping parameters. Numerical simulations
are presented for both known and uncertain point mass
agents in mixed 2D/3D space.

Index Terms— Distributed formation control, adaptive
control, port-Hamiltonian systems, constrained control.

I. INTRODUCTION

MULTI-robot systems have been studied and deployed
for the past decade in a wide range of robotic ap-

plications, such as, in construction works [1], in object
transportation [2], and in surveillance and exploration [3].
For completing the group tasks in these applications, the
coordination of these multi-robot systems can be done in a
centralized or distributed fashion [4]. In the former approach,
a centralized robot (or a global coordinator/orchestrator) is
typically required to process information from all other robots.
In the latter approach, each agent relies only on local measure-
ment and relative information from its neighbors to accomplish
the group tasks. Such distributed method provides advantages
over the former approach, including resilience against single-
node failure, scalability, and robustness [5].

Existing distributed formation control methods can be dif-
ferentiated based on the type of relative information used to
maintain the formation. Some of the well-known methods
are the distance-based, position-based, and displacement-based
distributed formation control methods. The distance-based
formation control has been widely used due to its simplicity
and its ease-of-implementation using only the local frame of
reference of every agent [6]. The trade-off in the distance-
based formation control is the requirement of rigidity and
persistency on the underlying graph [7]. Recent works that
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explore the use of different relative information are bearing-
based [8], [9] and internal-angle-based formation control [10].

In most literature, every agent is commonly described
as a single-integrator [11] or a double-integrator [12]. The
physics-based model has also been considered in the design of
distributed formation control to represent the physical systems
accurately. One such approach is using the port-Hamiltonian
(pH) framework to describe the agent’s dynamics [13]. Recent
research on the distributed control for moving formation con-
trol of pH systems is discussed in [14], and a study that covers
both distance-based and displacement-based approaches is
discussed in [15]. The incorporation of energy in the pH
framework suits well to the formation control problem as it can
be formulated as a design problem of virtual mechanical spring
coupling where the minimum energy (associated with the
equilibrium point) corresponds to the desired formation shape.
In the presence of algebraic constraints, which may arise from
physical/interconnection constraints, the pH framework leads
to pH differential algebraic equations (pHDAE) [16], [17].

As one of our main results, we present a distance-based
formation control method for pHDAE systems that is applied
to point mass agents moving in a mixed 2D and 3D space,
which we will refer to as the mixed 2D/3D space. While
the approach works well for known parameters, the pres-
ence of uncertainties can negatively affect the performance
of closed-loop systems. For instance, temperature-dependent
friction constant can greatly influence the dynamics of electro-
mechanical systems involving motors that generate heat [18].
In the existing literature, adaptive control can be combined
with a distributed distance-based formation control to handle
system uncertainties such as unknown and bounded distur-
bance [19]. As our next contribution, we design an adaptive
control for the proposed distance-based formation control
of phDAE systems. In summary, the main novelties of our
proposed approach are as follows:

• A distributed distance-based formation control design
for non-linear point mass agents is defined as pHDAE
systems that can deal with heterogeneous pH systems
moving in a mixed 2D/3D space.

• Adaptive distance-based formation control design for
pHDAE systems with uncertain non-linear damping term.

The paper is organized as follows. In Section II, we present
the notation, dynamics of the multi-agent system (MAS) in
pH, and a short overview on rigidity graph framework. The



proposed distributed distance-based formation control strategy
for pH systems is presented in Section III. Subsequently, the
development of an adaptive control strategy is given in Section
IV. Simulation results are presented in Section V. Finally, we
conclude the paper with conclusions in Section VI.

II. PRELIMINARIES

As usual, we denote the n-dimensional identity matrix by
In. For a given square matrix R, we denote R̄ = R ⊗ In,
where n = 2 or n = 3 for agents that move in the 2D space
or 3D space, respectively. For a set of vectors xi ∈ Rn, i ∈
{1, ..., k}, we write the corresponding stacked vector x ∈ Rkn

as x ≜
[
x⊤
1 x⊤

2 . . . x⊤
k

]⊤
. For a set of sub-matrices

xi ∈ Rm×n, i ∈ {1, ..., k}, we define the corresponding block
diagonal matrix by Dx = diag(xi)i∈{1,...,k} ∈ Rkm×kn. The
space L2(R+) is the space of all continuous-time signals x :
R+ → Rn that are square-integrable, i.e.

∫∞
0

∥x(t)∥2dt < ∞.
The space L∞(R+) is the space of all continuous-time signals
x : R+ → Rn that are essentially bounded.

A. Graph and infinitesimally rigid formation framework
Throughout this paper, we consider a graph G = (V , E ),

where V = {1, ..., |V |} is a set of nodes and E ⊆ V × V
is the corresponding edge set. Each node of G is associated
to an agent, and together with the position of all agents
q, the tuple (G, q) defines a framework for the formation.
In this case, each edge represents a relative measurement
between two connected nodes in G, which can be distance,
bearing, internal angle or other mode of relative measurement.
As described in the Introduction, this paper focuses on the
distance-based formation control so that each edge Ek ∈ E
represents the distance between the two nodes in Ek. For
describing the distance-based formation framework, the graph
G is represented by an undirected graph.

In the following, let us present the formulation of a rigid
formation framework using the tuple (or framework) (G, q).
Define the relative position at the edge (i, j) = Ek by zk =
qi − qj . Using this notation, the associated incidence matrix
B ∈ R|V |×|E | is used to describe the relative position in all
edges and is defined by bik = −1 whenever i = E head

k , bik = 1
whenever i = E tail

k , and bik = 0 otherwise, where E head
k and

E tail
k are the head and the tail nodes, respectively, of the edge

Ek. Using the incidence matrix B, we can define the relative
position z in a compact form by z = B̄q, whereas defined
before B̄ = B ⊗ Ip with p = 2 or 3 for 2D or 3D space,
respectively.

Let us recall the notion of infinitesimally rigid framework,
which has been discussed in detail in [20], [21]. For defining
a desired formation shape using distance variables, we firstly
define an edge function by fG(q) = col(i,j)∈E {∥qi−qj∥}. The
rigidity matrix R(z) of the framework (G, q) is defined by the
Jacobian of the edge function fG(q), which satisfies R(z) =
D⊤

z B̄
⊤. For a given desired formation shape where the desired

distance on every edges is given by d∗ := col(i,j)∈E {d∗ij}
with d∗ij be the desired distance for the edge (i, j), the set of
all equilibrium points that satisfy such distance constraint is
E := {q | fG(q) = d∗}. The corresponding desired framework

(G, q∗) with the desired distance d∗ is said to be infinitesimally
rigid if the rank of R(z) is 2|V | − 3 for 2D formation,
and 3|V | − 6 for 3D formation. For distance-based forma-
tion framework, the admissible infinitesimal displacement is
translational and rotational motion.

B. Point-mass Agents as Port-Hamiltonian Systems
In this section, we focus on the design of distributed

formation control law for heterogenous MAS described by
point mass systems moving in 2D/3D space. In particular, for
every agent i, we consider a pH system of the form[

q̇i
ṗi

]
=

[
0 Ini

−Ini
−Ri(pi)

] [
∇Hqi(qi, pi)
∇Hpi

(qi, pi)

]
+

[
0
Ini

]
ui, (1)

where qi ∈ Rni is the generalized position in a ni-D space
with ni ∈ {2, 3}, pi ∈ Rni is the generalized momentum, H
is the Hamiltonian function, and Ri(pi) ≥ 0 is the damping
matrix. In this pH formulation, the interconnection and input
matrices are given by identity matrices. For the point-mass
systems, the Hamiltonian function H is given by the kinetic
energy and potential energy

H(q, p) =

|V |∑
i=1

1

2mi
||pi||2 +

|V |∑
i=1

P (qi), (2)

where mi > 0 is the mass of agent i, P (qi) is the potential
energy of agent i.

Distance-based distributed formation control design
problem of pH systems with mixed 2D/3D space: For a
given infinitesimally rigid framework with the agents be as in
(1) and with the desired distance vector d∗, design a distributed
control law ui for all i ∈ V such that fG(q(t)) → d∗ as
t → ∞.

III. DISTANCE-BASED DISTRIBUTED FORMATION
CONTROL

Corresponding to the distance-based distributed formation
control problem above, we define the distance error at every
edge k by ek = ∥zk∥ℓ − dℓk where dk is the desired distance
for the k-th edge, ℓ ≥ 1 can be any positive integer number
[22]. By utilizing distance error ek and relative position z, one
can obtain that distance error time-derivative satisfies

ė = ℓD̄z̃D
⊤
z B̄

⊤q̇, (3)

where Dz = diag(zk), Dz̃ = diag(∥zk∥ℓ−2). Following [13],
we will solve the formation control problem by assigning
virtual springs between paired agents. In this case, let us
consider the following potential energy of the virtual springs
at every edge

Hs =
1

2ℓ

|E |∑
k=1

Kk(||zk||ℓ − d∗ℓk )2, (4)

where Kk is a positive constant for every k ∈ {1, ..., |E |}.
This setup provides flexibility in designing the parameter ℓ.
In the case where ℓ is equal to one, we have a linear virtual
spring, and for values of ℓ greater than one, we have non-linear
virtual springs.



Proposition III.1. For a given infinitesimally rigid framework
with the agents be as in (1) and with the desired distance
vector d∗, the following distributed control law

u = ∇P (q) +
(
R(p)−Rd

)
D̄m̃p− B̄DzD̄

⊤
z̃ D

⊤
Ke, (5)

where Dm̃ = D⊤
m̃ = diag( 1

mi
), DK = D⊤

K = diag(Kk),
Rd = diag(Rdi) > 0 with Rdi be the desired damping
matrix for each agent i solves the problem of distance-based
distributed formation control of pH systems locally and expo-
nentially. Particularly, for all initial conditions (q(0), p(0)) in
the neighborhood of the desired shape with zero momentum
E×(0, 0), the distance error ek converge exponentially to zero
for all k ∈ {1, ..., |E |}, all agents’ position qi(t) is bounded
and converges exponentially to the desired formation shape,
i.e., fG(q(t)) → d∗ as t → ∞, and all agents’ momentum
pi(t) converge exponentially to zero for all i in {1, ..., |V |}.

The design of distributed control law in (5) is inspired
by the Interconnection and Damping Assignment Passivity-
Based Control (IDA-PBC) method as presented in [23]. The
topic of non-adaptive distributed implementation of IDA-PBC
for heterogeneous, underactuated, and non-holonomic systems
has been explored in a recent study [24]. By employing the
IDA-PBC approach, the closed-loop systems’ Hamiltonian
function, interconnection, and damping matrices can be shaped
by the assignment of suitable control laws. This method is
particularly noteworthy as it preserves both the passivity and
the pH structure of the systems. In our proposed control law,
we assign the damping of the closed-loop systems to be equal
to Rd and add the virtual spring potential energy Hs to the
Hamiltonian H .

Proof. Firstly, we will show the asymptotic convergence of
error e and momenta p to zero by using the following
Lyapunov function, which combines the Hamiltonian function
(2) and the potential energy of the virtual spring (4),

V (p, e) =
1

2
p⊤D̄m̃p︸ ︷︷ ︸
H(p)

+
1

2ℓ
e⊤DKe︸ ︷︷ ︸
Hs

, (6)

where DK = diagk∈{1,...,|E |}(Kk). A routine computation to
the time-derivative of (6) along the trajectory gives

V̇ = p⊤D̄m̃ṗ+ e⊤DKD̄z̃D
⊤
z B̄

⊤q̇,

= p⊤D̄m̃

(
∇P (q)−RD̄m̃p+ u

)
+e⊤DKD̄z̃D

⊤
z B̄

⊤D̄m̃p.

By substituting (5) to the above equation, we obtain

V̇ = −∇P (q)− p⊤D̄m̃RD̄m̃p+ e⊤DKD̄z̃D
⊤
z B̄

⊤D̄m̃p

+ p⊤D̄m̃

(
∇P (q) + (R−Rd)D̄m̃p− B̄DzD̄

⊤
z̃ D

⊤
Ke

)
,

= −p⊤D̄m̃RdD̄m̃p ≤ −λmin∥p∥2. (7)

where λmin is the smallest eigenvalue of D̄m̃RdD̄m̃. From this
inequality, it follows that p ∈ L2. Furthermore, it follows from
this inequality also that V is non-increasing and bounded for
all time t ≥ 0. In particular, |e(t)| ≤ 1

Kk,min

√
V (0) for all t.

In the following, we consider the initial condition p(0) in the
neighborhood of 0, q(0) in the neighborhood of E such that

1
Kk,min

√
V (0) < d∗k,min. Hence, we have |ek(t)| < d∗k for all t

so that ∥zk(t)∥ > 0 holds for all t.
By the definition of V , the inequality (7) implies that

p, e ∈ L∞. Correspondingly, from the control law (5), we
have that ui is bounded (by the boundedness of p and e and
the boundedness of z follows from the relation ∥zk∥ = ek+d∗k
for all k). As a result of having all closed-loop signals bounded
and inequality (7), we have p ∈ L2. It follows from the
state equation (1) and the boundedness of ∇Hpi that ṗ is
also bounded. Consequently, we have V̈ ∈ L∞, p ∈ L2, and
ṗ ∈ L∞, which, by applying the generalized Barbalat’s lemma
[25], implies that p(t) → 0 as t → ∞. Let us now analyse the
closed-loop system given by

q̇ = D̄m̃p (8)

ṗ = −RdD̄m̃p− B̄DzD̄
⊤
z̃ D̄

⊤
Ke (9)

ė = D̄z̃D
⊤
z B̄

⊤D̄m̃p (10)

where Dz can be expressed as a function of the state q.
Note that the convergence of p to zero is exponential as V
is quadratic w.r.t. p, and its derivative in (7) is also bounded
by a quadratic term of p. Accordingly, we can conclude from
(9) that e also converges to zero exponentially and from (8)
that q is bounded.

The closed-loop systems of pH agent with control law (5)
can be described as a Hamiltonian systems of the form[ q̇

ṗ
ė

]
=

[
0 In 0

−In −Rd −B̄DzD̄
⊤
z̃

0 D̄z̃D
⊤
z B̄⊤ 0

] [∇Vq(p,e)
∇Vp(p,e)
∇Ve(p,e)

]
.

In the mixed 2D/3D pH agents, the 2D agents can only move
on the (x, y)-axis, while the 3D agents can move on (x, y, z)-
axis. Thus, the distributed formation control among these sub-
systems is subjected to the kinematic constraint q̇iz = 0 for
all 2D agent i. In this case, the 2D agent is described as a
pHDAE system of the form[

I 0 0
0 I 0
0 0 0

] [ q̇i
ṗi

λ̇i

]
=

[
0 Ini 0

−Ini −Ri(pi) Ci

0 −C⊤
i 0

] [∇Hqi
(qi,pi)

∇Hpi
(qi,pi)

λi

]
+

[
0

Ini
0

]
ui,

(11)
where Ci = [ 0 0 1 ]

⊤, and λ represents the Lagrange multipli-
ers associated with the kinematic constraints. The kinematic
constraint on the z-axis is given by q̇iz = 0, i.e. C⊤

i ∇Hpi
= 0

and Ciλi is the vector of constraint force in the z direction.

Proposition III.2. Consider a set of point mass agents in a
port-Hamiltonian (pH) framework composed of mixed 2D/3D
agents interacted under a framework (G, q) that is infinitesi-
mally rigid with the desired distance constant d∗. Let each 2D
agent i described by a pHDAE as in (11) with the Hamiltonian
H in (2). Then using the distributed control law as in (5) which
also accounts for the kinematic constraints on the relevant
axes, the closed-loop system under the presence of kinematic
constraints solves the problem of distance-based distributed
formation control of pH systems locally and exponentially.

Proof. We will show the asymptotic convergence of error e
and momenta p for all the phDAE agents to zero by using
the Lyapunov function (6) whose time-derivative along the
trajectory is given by

V̇ = p⊤D̄m̃ṗ+ e⊤DKD̄z̃D
⊤
z B̄

⊤q̇,



= p⊤D̄m̃

(
−∇P (q)−RD̄m̃p+ u+ Ciλ

)
+e⊤DKD̄z̃D

⊤
z

B̄⊤D̄m̃p,

= −∇P (q)− p⊤D̄m̃RD̄m̃p+ p⊤D̄m̃u+ p⊤D̄m̃Ciλ

+ e⊤DKD̄z̃D
⊤
z B̄

⊤D̄m̃p.

Due to the constraint force C⊤
i ∇Hpi

= 0 (as noted after (11)),
we have p⊤D̄m̃Ci = 0. By substituting (5) and this constraint
force relation to the above equation, we obtain

V̇ = −∇P (q)− p⊤D̄m̃RD̄m̃p+ e⊤DKD̄z̃D
⊤
z B̄

⊤D̄m̃p

+ p⊤D̄m̃

(
∇P (q) + (R−Rd)D̄m̃p− B̄⊤DzD̄z̃D

⊤
Ke

)
,

= −p⊤D̄m̃RdD̄m̃p ≤ −λmin∥p∥2. (12)

Following the same proof of Proposition III.1, we can con-
clude the proof of the boundedness of all signals and local
exponential convergence of p → 0 and e → 0 as t → ∞
for the distance-based formation control of mixed 2D/3D pH
agents.

We remark that the closed-loop system of pHDAE agents
with the control law (5) can be described as a Hamiltonian
system of the form[

q̇
ṗ

λ̇
ė

]
=

 0 In 0 0

−In −Rd Ci −B̄DzD̄
⊤
z̃

0⊤ −C⊤
i 0 0

0 D̄z̃D
⊤
z B̄⊤ 0 0

[∇Vq(p,e)
∇Vp(p,e)

λ
∇Ve(p,e)

]
.

IV. DISTRIBUTED ADAPTIVE DISTANCE-BASED
FORMATION CONTROL

In practice, we may encounter parameter uncertainties in the
modeling of electro-mechanical systems. A nice review on the
design of adaptive control for a single pH system is presented
in [26] that can handle uncertain pH systems. In this letter, we
investigate the design of distributed adaptive formation control
for pH agents where the uncertainties come from the nonlinear
damping term Ri. The uncertainties in the nonlinear damping
function Ri have been investigated in literature, and they can
arise from various physical phenomena, such as, temperature-
dependent friction constants as studied in [18]. In this case,
the controller (5) cannot be implemented as it requires precise
knowledge on the nonlinear damping terms. In order to address
this, we propose the following modified control law

u = ∇P (q) + (ΘRξR(p)︸ ︷︷ ︸
R̂

−Rd)D̄m̃p− B̄⊤DzD̄
⊤
z̃ D

⊤
Ke, (13)

where R̂ is the estimated nonlinear damping term that is split
in a linear-in-the-parameter form, and it comprises of block
diagonal matrices as in R(p) in Proposition III.1; thus, they
can be described in a distributed way. Here, the regressand
and the regressor are defined by Θ and ξ, respectively, and
correspondingly, we can define the linear-in-the-parameter
form of the actual damping parameters by R∗ = Θ∗

RξR.
We note here that ΘR and ξR is a square block matrix that
combines the regressand and the regressor for each agent,
respectively. The error between the estimated and real damping
parameters satisfies Θ̃R = ΘR −Θ∗

R.

Proposition IV.1. Consider a set of point mass agents in
the port-Hamiltonian (pH) framework interacted under a rigid

formation framework (G, q) that is infinitesimally rigid with
the desired distance constant d∗. Suppose that each agent i
is described by a pH system in (1) with uncertain nonlinear
damping term Ri and the Hamiltonian H is as in (2). Then
the closed-loop uncertain MAS with the distributed control law
defined in (13), and the distributed adaptive law

˙̃ΘR = −ΓRpp
⊤D̄⊤

m̃ξ⊤RD̄⊤
m̃, (14)

where ΓR = Γ⊤
R > 0 is the adaptive gain, solves the problem

of distance-based distributed formation control of pH systems
locally and exponentially.

Proof. Let us consider the following Lyapunov function

V (e, p, Θ̃R) =
1

2
p⊤D̄m̃p︸ ︷︷ ︸
H(p)

+
1

2ℓ
e⊤DKe︸ ︷︷ ︸
Hs

+
1

2
tr(Θ̃RΓ

−1
R Θ̃⊤

R).

(15)
The time-derivative of (15) satisfies

V̇ = −∇P (q)− p⊤D̄m̃RD̄m̃p+ p⊤D̄m̃u+ e⊤DKD̄z̃D
⊤
z

B̄⊤D̄m̃p+ tr(Θ̃RΓ
−1
R

˙̃Θ⊤
R).

By substituting the control law (13) to the above equation, we
obtain

V̇ = −∇P (q)− p⊤D̄m̃RD̄m̃p+ e⊤DKD̄z̃D
⊤
z B̄

⊤D̄m̃p

+ p⊤D̄m̃

(
∇P (q) + (ΘRξR −Rd)D̄m̃p− B̄⊤DzD̄z̃,

D⊤
Ke

)
+tr(Θ̃RΓ

−1
R

˙̃Θ⊤
R),

= p⊤D̄m̃Θ̃RξRD̄m̃p+ tr(Θ̃RΓ
−1
R

˙̃Θ⊤
R)− p⊤D̄m̃RdD̄m̃p,

= −p⊤D̄m̃RdD̄m̃p+ tr(Θ̃R(Γ
−1
R

˙̃Θ⊤
R + pp⊤D̄⊤

m̃ξ⊤RD̄⊤
m̃)).

(16)
Here we use the property a⊤b = tr(ab⊤) in the above
computation. By substituting the adaptive laws (14), we obtain

V̇ = −p⊤D̄m̃RdD̄m̃p ≤ −λmin∥p∥2. (17)

From (17), it follows that p ∈ L2 and V ∈ L∞. The
boundedness of V implies that p, e, Θ̃R ∈ L∞. Because the
actual parameters in Θ∗

R are bounded, the boundedness of ΘR

follows suit. It is obvious that the control law (13) is bounded
by the boundedness of p, e,ΘR. Then from state equation (1)
and boundedness of ∇Hpi

, we can conclude that ṗi is also
bounded. By generalized Barbalat’s lemma [25], p ∈ L2 and
ṗ ∈ L∞ imply that p(t) → 0 as t → ∞. Subsequently, let us
analyse the closed-loop system

q̇ = D̄m̃p (18)

ṗ = −RdDmp+ Θ̃RξRD̄m̃p− B̄⊤DzD̄z̃D
⊤
Ke (19)

ė = D̄z̃D
⊤
z B̄

⊤D̄m̃p. (20)

As before, the convergence of p to zero is exponential since V
is quadratic w.r.t. p and its derivative in (17) is also bounded
by a quadratic term of p. Accordingly, we can conclude from
(19) that e also converges to zero exponentially, and from (18)
that q is bounded.

In mixed 2D/3D case with uncertain pHDAE agent, we can
obtain the same conclusion, which is similar to the results
presented in Proposition III.2.



V. NUMERICAL SIMULATIONS

In this section, we validate our main results in the previous
two sections via numerical simulations. The formation control
simulations are performed using four agents that move in
mixed 2D/3D space. We consider three pH systems that can
only move in 2D space (x, y)-axis, which are labeled as pH1,
pH2 and pH3, respectively, and another pH system that can
move in 3D space (x, y, z)-axis. For simulation setup, we
consider the setup of heterogeneous agents where the initial
conditions and nonlinear functions of Ri for each agent are
presented in Table I.

TABLE I
PH SYSTEM INITIAL CONDITIONS AND PARAMETERS.

Init.cond.
qi[x, y, z]

Init.cond.
pi[px, py , pz] Ri(pi) Rdi

pH 1 [0,0,0] [0,0,0]
[
q̇1x 0 0
0 q̇1y 0

0 0 q̇1z

] [
1 0 0
0 1 0
0 0 1

]
pH 2 [3,4,0] [1,0,0]

[
2q̇2x 0 0
0 2q̇2y 0

0 0 2q̇2z

] [
2 0 0
0 2 0
0 0 2

]
pH 3 [4,3,0] [0,1,0]

[
3q̇3x 0 0
0 3q̇3y 0

0 0 3q̇3z

] [
3 0 0
0 3 0
0 0 3

]
pH 4 [3,1,3] [1,1,1]

[
4q̇4x 0 0
0 4q̇4y 0

0 0 4q̇4z

] [
4 0 0
0 4 0
0 0 4

]

In this research, only the 3D agent that has potential energy
along the z-axis corresponding to the gravity. An exemplary
application to this setup is the collaboration of autonomous
ground vehicles with an autonomous aerial vehicle that con-
duct a joint task, such as goods transportation or retrieval.
Here, we define P (qi) = mig

⊤
i qi, and the vector gravitational

gi = 0 for agent i ∈ {1, 2, 3}, and g4 = [ 0 0 9.8 ]
⊤. The

incidence matrix B, the masses mi, and the virtual spring
constant Kk are set as

B =

[
1 −1 −1 0 0 0
−1 0 0 1 −1 0
0 1 0 −1 0 −1
0 0 1 0 1 1

]
, ℓ = 2,m1 = 1,m2 = 2,m3 = 3,

m4 = 4,K1 = 1,K2 = 2,K3 = 3,K4 = 4,K5 = 5,K6 = 6.

A. Non-adaptive pHDAE Distributed Formation Control
In this subsection, we show the first numerical result where

we use the non-adaptive version of our distributed formation
control for mixed 2D/3D pH systems. We set the desired
distance d∗k = 5 for all six edges k that represent a tetrahedron
shape.

Fig. 1. Simulation result of a distributed formation control of 4 pHDAE
systems in mixed 2D/3D space.

It can be seen in Figure 1 that the 2D agents pH1, pH2 and
pH3 remain on the 2D plane due to the kinematic constraints
q̇iz , and only the pH4 that moves freely in x, y, z-axis. All
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Fig. 2. The plot of distance error of 4 pHDAE systems in the numerical
simulation of non-adaptive pHDAE distributed formation control.
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Fig. 3. The plot of momentum norm of 4 pHDAE systems in the numer-
ical simulation of non-adaptive pHDAE distributed formation control.

agents converge to the desired tetrahedron shape as desired.
The plots of the distance and momentum errors are shown in
Figure 2 and Figure 3 where all of them converge to zero

B. Adaptive pHDAE Distributed Formation Control
After validating the non-adaptive version of pHDAE dis-

tributed formation control, let us evaluate the performance of
the adaptive one. We use the same pH systems setup as before
and use the following setup for the regressor

ΘR(0) = diag(01×12), ξR = diag(q̇1, q̇2, q̇3, q̇4) (21)

with the adaptive gains given by ΓR = I12×12.

Fig. 4. Simulation result of a distributed adaptive formation control of 4
uncertain pHDAE systems in mixed 2D/3D space.
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Fig. 5. The plot of distance error of 4 uncertain pHDAE systems in the
numerical simulation of distributed adaptive formation control.
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Fig. 6. The plot of momentum norm of 4 uncertain pHDAE systems in
the numerical simulation of distributed adaptive formation control.
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Fig. 7. The evolution of estimated damping parameters for each of 4
uncertain pHDAE systems.

Figure 4 shows that all agents always move within the
space that they are constrained to and converge to the desired
tetrahedron shape as expected. The distance and momentum
error plots (Figure 5 and Figure 6) both converge to zero.
Figure 7 shows the behaviour of the regressand, where the
estimated damping parameters of every pH agent converge
to a constant. Due to the presence of kinematic constraints,
the damping parameters on the z-axis of pH1, pH2, and pH3
systems remain constant for all time.

VI. CONCLUSIONS

We present the design of distance-based distributed for-
mation control in a port-Hamiltonian framework with mixed
dimensional space. Particularly, in the presence of kinematic
constraints, it leads to a pHDAE systems. When uncertain
nonlinear damping terms are present in the systems, we
propose the adaptive version of the distributed controller. The
local exponential stability analyses are provided along with
numerical simulation results using nonlinear heterogeneous
pHDAE systems. For future works, we will consider the
incorporation of obstacles and collision avoidance [27], [28],
and the safety analysis of the closed-loop systems [29].
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