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Abstract. State-of-the-art object detectors are treated as black boxes
due to their highly non-linear internal computations. Even with unprece-
dented advancements in detector performance, the inability to explain
how their outputs are generated limits their use in safety-critical applica-
tions. Previous work fails to produce explanations for both bounding box
and classification decisions, and generally make individual explanations
for various detectors. In this paper, we propose an open-source Detector
Explanation Toolkit (DExT) which implements the proposed approach
to generate a holistic explanation for all detector decisions using certain
gradient-based explanation methods. We suggests various multi-object
visualization methods to merge the explanations of multiple objects de-
tected in an image as well as the corresponding detections in a single image.
The quantitative evaluation show that the Single Shot MultiBox Detector
(SSD) is more faithfully explained compared to other detectors regardless
of the explanation methods. Both quantitative and human-centric evalu-
ations identify that SmoothGrad with Guided Backpropagation (GBP)
provides more trustworthy explanations among selected methods across
all detectors. We expect that DExT will motivate practitioners to evaluate
object detectors from the interpretability perspective by explaining both
bounding box and classification decisions.

Keywords: Object detectors · Explainability · Quantitative evaluation ·
Human-centric evaluation · Saliency methods

1 Introduction

Object detection is imperative in applications such as autonomous driving [15],
medical imaging [5], and text detection [18]. An object detector outputs bounding
boxes to localize objects and categories for objects of interest in an input image.
State-of-the-art detectors are deep convolutional neural networks [54] with high
accuracy and fast processing compared to traditional detectors. However, convo-
lutional detectors are considered black boxes [37] due to over-parameterization
and hierarchically non-linear internal computations. This non-intuitive decision-
making process restricts the capability to debug and improve detection systems.
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The user trust in model predictions has decreased and consequently using detec-
tors in safety-critical applications is limited. In addition, the process of verifying
the model and developing secure systems is challenging [12] [52]. Numerous
previous studies state interpreting detectors by explaining the model decision is
crucial to earning the user’s trust [48] [32] [40], estimating model accountability
[20], and developing secure object detector systems [12] [52].

Detections



Classification decision


Each bounding box coordinate decision


Explanation for detection 1: 0.92, elephant
Classification decision


Each bounding box coordinate decision


Saliency maps for each decisions of all detections


Explanation for detection 2: 0.88, elephant

Explanation for detection 1: 0.92, elephant

Explanation for detection 2: 0.88, elephant

Overall Explanation:
holistic, flexibile, multi-object visualization

DExT

Fig. 1. A depiction of the proposed approach to inter-
pret all object detector decisions. The corresponding
explanations are provided in the same colored boxes.
This breakdown of explanations offers more flexibility
to analyze decisions and serves as a holistic explana-
tion for all the detections.

With a range of users uti-
lizing detectors for safety criti-
cal applications, providing hu-
manly understandable expla-
nations for the category and
each bounding box coordinate
predictions together is essen-
tial. In addition, as object
detectors are prone to fail-
ures due to non-local effects
[30], the visualization tech-
niques for detector explana-
tions should integrate explana-
tions for multiple objects in a
single image at the same time.
Previous saliency map-based
methods explaining detectors
[26] [46] [17] focus on classifi-
cation or localization decisions
individually, not both at the
same time.

In this paper, we consider
three deficits in the literature:
methods to explain each cate-

gory and bounding box coordinate decision made by an object detector, visualizing
explanations of multiple bounding boxes into the same output explanation image,
and a software toolkit integrating the previously mentioned aspects.

This work concentrates on providing individual humanly understandable
explanations for the bounding box and classification decisions made by an object
detector for any particular detection, using gradient-based saliency maps. Figure
1 provides an illustration of the proposed solution by considering the complete
output information to generate explanations for the detector decision.

Explanations for all the decisions can be summarized by merging the saliency
maps to achieve a high-level analysis and increasing flexibility to analyze detector
decisions, improving improving model transparency and trustworthiness. We
suggest methods to combine and visualize explanations of different bounding
boxes in a single output explanation image as well as an approach to analyze the
detector errors using explanations.
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This work contributes DExT, software toolkit, to explain each decisions
(bounding box regression and object classification jointly), evaluate explanations,
and identify errors made by an object detector. A simple approach to extend
gradient-based explanation methods to explain bounding box and classification
decisions of an object detector. An approach to identify reasons for the detector
failure using explanation methods. Multi-object visualization methods to summa-
rize explanations for all output detections in a single output explanation. And
an evaluation of gradient-based saliency maps for object detector explanations,
including quantitative results and a human user study.

We believe our work reveals some major conclusions about object detector
explainability. Overall quantitative metrics do not indicate that a particular object
detector is more interpretable, but visual inspection of explanations indicates that
recent detectors like EfficientDet seem to be better explained using gradient-based
methods than older detectors (like SSD or Faster R-CNN, shown in Figure 2),
based on lack of artifacts on their heatmaps. Detector backbone has a large
impact on explanation quality (Figure 6).

The user study (Section 4.4) reveals that humans clearly prefer the convex
polygon representation, and Smooth Guided Backpropagation provides the best
detector explanations, which is consistent with quantitative metrics. We believe
these results are important for practitioners and researchers of object detection
interpretability. The overall message is to explain both object classification and
bounding box decisions and it is possible to combine all explanations into a
single image using the convex polygon representation of the heatmap pixels. The
appendix of this paper is available at https://arxiv.org/abs/2212.11409.

2 Related Work

Interpretability is relatively underexplored in detectors compared to classifiers.
There are post hoc [26] [46] [17] and intrinsic [21] [51] detector interpretability
approaches. Detector Randomized Input Sampling for Explanation (D-RISE)
[26] in a model-agnostic manner generates explanations for the complete detector
output. However, saliency map quality depends on the computation budget, the
method is time consuming, and individual explanations for bounding boxes are
not evaluated. Contrastive Relevance Propagation (CRP) [46] extends Layer-
wise Relevance Propagation (LRP) [7] to explain individually the bounding
box and classification decisions of Single Shot MultiBox Detector (SSD). This
procedure includes propagation rules specific to SSD. Explain to fix (E2X)
[17] contributes a framework to explain the SSD detections by approximating
SHAP [24] feature importance values using Integrated Gradients (IG), Local
Interpretable Model-agnostic Explanations (LIME), and Probability Difference
Analysis (PDA) explanation methods. E2X identifies the detection failure such as
false negative errors using the explanations generated. The individual explanations
for bounding box decisions and classification decisions are unavailable.

The intrinsic approaches majorly focus on developing detectors that are
inherently interpretable. Even though the explanations are provided for free,

https://arxiv.org/abs/2212.11409
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Fig. 2. Comparison of the classification and all bounding box coordinate explanations
corresponding to the cat detection (red-colored box) across different detectors using
SGBP is provided. The bounding box explanations from EfficientDet-D0 illustrate the
visual correspondence to the respective bounding box coordinates. The explanations
from Faster R-CNN illustrate a sharp checkerboard pattern.

currently, most of the methods are model-specific, do not provide any evaluations
on the explanations generated, and includes complex additional designs.

Certain attention-based models such as DEtector TRansformer (DETR) [10]
and detectors using non-local neural networks [49] offer attention maps improving
model transparency. A few previous works with attention reveal contradicting
notions of using attention for interpreting model decisions. [35] and [19] illustrate
attention maps are not a reliable indicator of important input region as well
as attention maps are not explanations, respectively. [8] have revealed saliency
methods provide better explanations over attention modules.

We select the post hoc gradient-based explanation methods because they
provide better model translucency, computational efficiency, do not affect model
performance, and utilize the gradients in DNNs. Finally, saliency methods are
widely studied in explaining DNN-based models [3]. A detailed evaluation of
various detectors reporting robustness, accuracy, speed, inference time as well as
energy consumption across multiple domains has been carried out by [4]. In this
work, the authors compare detectors from the perspective of explainability.

3 Proposed Approach

3.1 Explaining Object Detectors

This work explains various detectors using gradient-based explanation methods
as well as evaluate different explanations for bounding box and classification
decisions. The selected detectors are: SSD512 (SSD) [23], Faster R-CNN (FRN)
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[28], and EfficientDet-D0 (ED0) [43]. The short-form tags are provided in the
bracket. SSD512 and Faster R-CNN are widely used single-stage and two-stage
approaches, respectively. Explaining the traditional detectors will aid in extend-
ing the explanation procedure to numerous similar types of recent detectors.
EfficientDet is a relatively recent state-of-the-art single-stage detector with higher
accuracy and efficiency. It incorporates a multi-scale feature fusion layer called a
Bi-directional Feature Pyramid Network (BiFPN). EfficientDet-D0 is selected
to match the input size of SSD512. The variety of detectors selected aids in
evaluating the explanation methods across different feature extractors such as
VGG16 (SSD512), ResNet101 (Faster R-CNN), and EfficientNet (EfficientDet-
D0). The gradient-based explanation methods selected in this work to explain
detectors are: Guided Backpropagation (GBP) [41], Integrated Gradients (IG)
[42], SmoothGrad [39] + GBP (SGBP), and SmoothGrad + IG (SIG). GBP
produces relatively less noisy saliency maps by obstructing the backward negative
gradient flow through a ReLU. For instance, an uncertainty estimate of the most
important pixels influencing the model decisions is carried out using GBP and
certain uncertainty estimation methods [50]. This combines uncertainty estima-
tion and interpretability to better understand DNN model decisions. IG satisfies
the implementation and sensitivity invariance axioms that are failed by various
other state-of-the-art interpretation methods. SmoothGrad aids in sharpening
the saliency map generated by any interpretation method and improves the
explanation quality. These four explanation methods explain a particular detector
decision by computing the gradient of the predicted value at the output target
neuron with respect to the input image.

The object detector decisions for a particular detection are bounding box
coordinates (xmin, ymin, xmax, ymax), and class probabilities (c1, c2, ..., ck), where
k is the total number of classes predicted by the detector. Usually these are
output by heads at the last layer of the object detector. The classification head is
denoted as modelcls(x), while the bounding box regression head is modelbbox(x).
Considering that an explanation method computes a function expl(x, ŷ) of the
input x and scalar output prediction ŷ (which is one output layer neuron), then
a classification explanation ecls is:

ĉ = modelcls(x) k = argmax
i

ĉi ecls = expl
(
x, l̂k

)
(1)

A bounding box explanation consists of four different explanations, one for each
bounding box component exmin , eymin , exmax , eymax :

x̂min, ŷmin, x̂max, ŷmax = modelbbox(x) (2)

exmin
= expl (x, x̂min) eymin

= expl (x, ŷmin) (3)

exmax = expl (x, x̂max) eymax = expl (x, ŷmax) (4)

In case of explaining the bounding box coordinates, the box offsets predicted
by an object detectors are converted to normalized image coordinates before
computing the gradient. In case of classification decisions, the logits (l̂k, before
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Fig. 3. Overview of the Multi-object visualizations pipeline to jointly visualize all
detections.

softmax probability, ĉ = softmax(l̂)) are used to compute the gradient. Figure 2
illustrates the explanations generated for each decisions of the cat detection by
across detectors. Saliency explanations can be computed for each bounding box
of interest in the image.

3.2 Multi-object Visualization

In order to summarize the saliency maps of all detections, the individual saliency
maps corresponding to each detection are represented using a canonical form. This
representation illustrates the most important pixels for the decision explanation.
This paper proposes four different methods for combining detection explanations
into a single format: principal components, contours, density clustering, and
convex polygons. Each method uses a different representation, allowing for
detected bounding box, and category to be marked using same colors on the
input image. The general process is described in Figure 3. An example the
four multi-object visualizations are illustrated in Figure 4. Appendix F provides
additional details on the multi-object visualization approaches and how different
combination methods work. including explanation heatmap samples.

dog

frisbee

(a) Principal compo-
nent

dog

frisbee

(b) Contour

dog

frisbee

(c) Density cluster

dog

frisbee

(d) Convex polygon

Fig. 4. Multi-object visualizations generated to jointly visualize all detections from
EfficientDet-D0 and the corresponding classification explanations generated using SIG
in the same color. The combination approach is specified in sub-captions. Explanation
pixels are colored same as the corresponding bounding box that is being explained.
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4 Experiments

Section 4.1 visually analyzes the explanations generated for different detector
and explanation method combinations. Section 4.3 provides the quantitatively
evaluates different detector and explanation method combinations. Finally, Section
4.4 estimates an overall ranking for the explanation methods based on user
preferences of the explanations produced for each decision. In addition, the
multi-object visualization methods are ranked based on user understandability
of the detections. In Section G, the procedure to analyze the failures of detector
using the proposed approach is discussed.

Most of the experiments use ED0, SSD, and FRN detectors detecting common
objects from COCO [22]. The additional details about these detectors are provided
in Table 2. In cases requiring training a detector, different versions of SSD with
various pre-trained backbones detecting marine debris provided in Table 3 are
used. The marine debris detectors are trained using a train split of the Marine
Debris dataset [47] and explanations are generated for the test images. These
detectors are used only to study how are the explanations change across different
backbones and different performance levels (epochs) in Section 4.1.

4.1 Visual Analysis

Across target decision and across detectors. The saliency maps for the
classification and bounding box decisions generated using a particular explanation
method for a specific object change across different detectors as shown in Figure
2. All the bounding box explanations of EfficientDet-D0 in certain scenarios
provide visual correspondence to the bounding box coordinates.

Across different target objects. Figure 5 illustrate that the explanations
highlight different regions corresponding to the objects explained. This behavior is
consistent in most of the test set examples across the classification and bounding
box explanations for all detectors.

Figure 6 illustrates the classification explanations for the wall detection across
the 6 different backbones. Apart from the attribution intensity changes, the pixels
highlight different input image pixels, and the saliency map texture changes.
MobileNet and VGG16 illustrate thin horizontal lines and highlight other object
pixels, respectively. ResNet20 highlights the wall as a thick continuous segment.
Figure 18 illustrate the ymin and ymax bounding box coordinate explanations
for the chain detection across different backbones. The thin horizontal lines of
MobileNet are consistent with the previous example. In addition, VGG16 illus-
trates a visual correspondence with the ymin and ymax bounding box coordinate
by highlighting the upper half and lower half of the bounding box respectively.
However, this is not witnessed in other detectors. This behavior is consistent over
a set of 10 randomly sampled test set images from the Marine Debris dataset.

The explanations generated using SSD model instances with ResNet20 back-
bone at different epochs are provided in Figure 7. The model does not provide
any final detections at lower epochs. Therefore, the explanations are generated
using the target neurons of the output box corresponding to the interest decision
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Fig. 5. Comparison of classification and bounding box explanations for all detections
from EfficientDet-D0 using SIG is provided. Each row provides the detection (red-colored
box) followed by the corresponding classification and all bounding box explanation
heatmaps.
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Explaining Marine Debris Detections with Different SSD Backbones Using Guided Backpropagation

Fig. 6. Comparison of class "wall" classification explanations across different SSD
backbones. The detections from each SSD backbone are provided in the first row. The
explanations of the wall detection (white-colored box) vary across each backbone.

in the final detections from the trained model. Figure 7 illustrate variations in
the saliency maps starting from a randomly initialized model to a completely
trained model for the classification decision of the chain detection. The explana-
tions extracted using the random model are dispersed around the features. The
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explanations slowly concentrate along the chain object detected and capture the
object feature to a considerable amount. This behavior is qualitatively analyzed
by visualizing the explanation of 10 randomly sampled test set images from
the Marine Debris dataset. In the case of the small hook explained in Figure
19, the variations between the random model and the trained model are not as
considerable as the previous chain example. This illustrates the variations change
with respect to each class.

Chain

Ground Truth Chain Random Model Epoch 5 Epoch 11 Epoch 17 Epoch 26

SSD-ResNet20 Classification Decision Explanation Using Guided Backpropagation Over Epochs

Epoch 134

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Classification explanation for class "chain" across different epochs (along
columns) of SSD-ResNet20 using GBP is illustrated. The first column is the chain
ground truth annotation (white-colored box).

4.2 Error Analysis

The section analyzes detector errors by generating explanations using the proposed
detector explanation approach. The saliency map highlighting the important
regions can be used as evidence to understand the reason for the detector failure
rather than assuming the possible reasons for detector failure. The failure modes
of a detector are wrongly classifying an object, poorly localizing an object, or
missing a detection in the image [26]. As the error analysis study requires ground
truth annotations, the PASCAL VOC 2012 images are used. The PASCAL VOC
images with labels mapping semantically to COCO labels are only considered
as the detectors are trained using the COCO dataset. For instance, the official
VOC labels such as sofa and tvmonitor are semantically mapped to couch and
tv, respectively, by the model output trained on COCO.

The procedure to analyze a incorrectly classified detection is straightforward.
The output bounding box information corresponding to the wrongly classified
detection can be analyzed in two ways. The target neuron can be the correct
class or the wrongly classified class to generate the saliency maps (Figure 8).
More examples of error analysis are available in Section G in the appendix.

4.3 Quantitative Evaluation

Evaluating detector explanations quantitatively provides immense understanding
on selecting the explanation method suitable for a specific detector. This section
performs the quantitative evaluation of saliency explanations.
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Fig. 8. Example error analysis using gradient-based explanations. EfficientDet-D0
wrongly classifies the dog (red-colored box) in ground truth as cat (red-colored box).
We display two saliency explanations (GBP and SIG). In this figure, it is clear the
model is imagining a long tail for the dog (GBP) and wrongly classifies the dog as a
cat. The saliency map highlights certain features of the dog and the background stripes
pattern along the edges of the dog body (GBP and SIG). In order to illustrate the tail
clearly which is predominant in cats available in COCO dataset, the saliency map is
only shown without overlaying on the input image.

Evaluation Metrics The quantitative evaluation of the explanations of a detec-
tor incorporates causal metrics to evaluate the bounding box and classification
explanations. This works by causing a change to the input pixels and measuring
the effect of change in model decisions. The evaluation aids in estimating the
faithfulness or truthfulness of the explanation to represent the cause of the model
decision. The causal metrics discussed in this work are adapted from the previous
work [33] [26] [25]. The two variants of causal evaluation metrics based on the
cause induced to alter the prediction are deletion and insertion metric. The dele-
tion metric evaluates the saliency map explanation by removing the pixels from
the input image and tracking the change in model output. The pixels are removed
sequentially in the order of the most important pixels starting with a larger
attribution value and the output probability of the predicted class is measured.
The insertion metric works complementary to the deletion metric by sequentially
adding the most important pixel to the image and causing the model decision
to change. Using deletion metric, the explanation methods can be compared
by plotting the fraction of pixels removed along x-axis and the predicted class
probability along y-axis. The method with lower Area Under the Curve (AUC)
illustrates a sharp drop in probability for lesser pixel removal. This signifies
the explanation method can find the most important pixels that can cause a
significant change in model behavior. The explanation method with less AUC is
better. In the case of insertion metric, the predicted class probability increases
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as the most relevant pixels are inserted. Therefore, an explanation method with
a higher AUC is relatively better. [26] utilize constant gray replacing pixel values
and blurred image as the start image for deletion and insertion metric calculation
respectively.

Effects Tracked. The previous work evaluating the detector explanations
utilize insertion and deletion metric to track the change in the bounding box
Intersection over Union (IoU) and classification probability together. [26] formu-
late a vector representation involving the box coordinates, class, and probability.
The similarity score between the non-manipulated and manipulated vectors are
tracked. However, this work performs an extensive comparison of explanation
methods for each decision of a detector by tracking the change in maximum
probability of the predicted class, IoU, distance moved by the bounding box
(in pixels), change in box height (in pixels), change in box width (in pixels),
change in top-left x coordinate of the box (in pixels), and change in top-left y
coordinate of the box (in pixels). The box movement is the total movement in
left-top and right-bottom coordinates represented as euclidean distance in pixels.
The coordinates distances are computed using the interest box corresponding
to the current manipulated image and the interest box corresponding to the
non-manipulated image. This extensive evaluation illustrates a few explanation
methods are more suitable to explain a particular decision. As declared in the
previous sections, the image origin is at the top-left corner. Therefore, a total of
7 effects are tracked for each causal evaluation metric.

Evaluation Settings. The previous section establishes the causal deletion
and insertion metric along with the 7 different effects. In this section, two different
settings used to evaluate the detectors using the causal metrics are discussed.

Single-box Evaluation Setting. The detector output changes drastically when
manipulating the input image based on saliency values. We denote principal box
to the bounding box detecting the object in the original image. In this setting,
seven principal box effects are tracked across insertion and deletion of input
pixels. This aids in capturing how well the explanation captures true causes of
the principal box prediction. The effects measured for the single-box setting are
bounded because the principal box value is always measurable. This is called a
single-box setting because only the changes in the principal box are tracked.

Realistic Evaluation Setting. In this evaluation setting, all 7 effects are tracked
for the complete object detector output involving all bounding boxes after the
post-processing steps of a detector. In this setting, the current detection for
a particular manipulated input image is matched to the interest detection by
checking the same class and an IoU threshold greater than 0.9. For various
manipulated input images, there is no current detection matching the interest
detection. Therefore, depending on the effect tracked and to calculate AUC, a
suitable value is assigned to measure the effect. For instance, if the effect tracked
is the class probability for deletion metric and none of the current detection
matches with the interest detection, a zero class probability is assigned. Similarly,
if the effect tracked is box movement in pixels for deletion metric, the error in
pixels increases to a large value.
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Interpretation Through Curves. Given the causes induced to change
model output, effects tracked, and evaluation setting for the detector, this work
uses 28 causal evaluation metrics. These correspond to causes ↓ Deletion (D)
and ↑ Insertion (I), Effects tracked Class Maximum Probability (C), Box IoU
(B), Box Movement Distance (M), Box X-top (X), Box Y-top (Y), Box Width
(W), Box Height(H), and evaluation settings Single-box (S) and Realistic (R).

To interpret a causal evaluation metric, a graph is drawn tracking the change
of the effect tracked along the y-axis and the fraction of pixels manipulated
along the x-axis. For instance, consider the scenario of deleting image pixels
sequentially to track the maximum probability of the predicted class at single-box
evaluation setting. The x-axis is the fraction of pixels deleted. The y-axis is the
maximum probability of the predicted class at the output of the box tracked.
In this work, the curve drawn is named after the combination of the causal
evaluation metrics, effects tracked, end evaluation settings. The curves are the
DCS curve, DBS curve, ICS curve. For instance, the DCS curve is the change in
the maximum probability for the predicted class (C) at the single output box
(S) due to removing pixels (D). The curves are the evaluation metrics used in
this work and also called as DCS evaluation metric (deletion + class maximum
probability + single-box setting), DBS (deletion + box IoU + single-box setting)
evaluation metric, and so on.

In order to compare the performance of explanation methods to explain a
single detection, as stated before, the AUC of a particular evaluation metric curve
is estimated. The corresponding AUC is represented as AUC<evaluation_metric>.
In order to estimate a global metric to compare the explanation methods ex-
plaining a particular decision of a detector, the average AUC, represented as
AAUC<evaluation_metric>, is computed. As the explanations are provided for each
detection, the evaluation set is given by the total number of detections. The total
detections in the evaluation set are the sum of detections in each image of the
evaluation set. The average evaluation metric curve is computed by averaging
the evaluation metric curve at each fraction of pixels manipulated across all
detections. AAUC of a particular evaluation metric curve is the AUC of the
average evaluation metric curve.

Results Figure 9 illustrates the AAUC computed by evaluating the explanations
of each bounding box coordinate is similar across different evaluation metrics
curves. This similarity is consistent for all the detectors and explanation meth-
ods combinations evaluated. Therefore, the explanation methods quantitatively
explain each bounding box coordinate decisions with similar performance. In this
work, the AAUC for the bounding box decision is computed by averaging the
AUC of all the evaluation metric curves corresponding to all the box coordinate
explanations. This offers the means to evaluate the explanation methods across
all the bounding box coordinate decisions.

Figure 10 and Figure 11 illustrate quantitatively complementary trends in the
evaluation metric curves plotted by tracking box movement distance in pixels and
box IoU. The IoU decreases and box movement distance increases as the pixels
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Fig. 9. The figure illustrates the average AUC, AAUC, for the evaluation metric curves
obtained by tracking box IoU (a, c) and box movement distance (b, d) as the pixels
are deleted sequentially. Each bar corresponds to the AAUC estimated by evaluating
explanations generated for each bounding box coordinate decisions using the explanation
methods specified in the x-axis of all detection made by EfficientDet-D0 in the evaluation
set images. AAUC is computed by averaging the AUC of all the evaluation metric
curves generated using the combination specified in the sub-captions. Lower AAUC is
better in all the plots.

are deleted sequentially as shown in Figure 10. Similarly, Figure 11 illustrates
the increase in box IoU and decrease in box movement distance as pixels are
inserted to a blurred version of the image. There is a large difference in the
AAUC between the single-stage and two-stage detectors. This is primarily due
to the RPN in the two-stage detectors. The proposals from RPN are relatively
more sensitive to the box coordinate change than the predefined anchors of
the single-stage detectors. In addition, Figure 10d and Figure 11d indicates the
steady change of box coordinates in the final detections of the EfficientDet-D0.
However, SSD and Faster R-CNN saturate relatively sooner. In the remainder of
this work, the ability of the box IoU effect is used for quantitative evaluation.
This is only because the box IoU effect offers the same scale between 0 to 1
as the class maximum probability effect. In addition, both box IoU and class
maximum probability effect follow the trend lower AUC is better for the deletion
case. However, it is recommended to consider all the box IoU and box movement
distance effects at the level of each box coordinate for a more accurate evaluation.

Figure 12 and Figure 17 aids in understanding the explanation method
interpreting both the classification and bounding box decision of a particular
detector more faithful than other explanation methods. Figure 12a illustrate
SSD512 classification decisions are better explained by SGBP at single-box setting
for deletion metrics. However, the bounding box decisions are not explained as
well as the classification decisions. Figure 12b illustrate a similar scenario for
SGBP with EfficientDet-D0 and Faster R-CNN at the realistic setting for deletion
metrics. However, all selected explanation methods explain the bounding box and
classification decisions of SSD512 relatively better at the single-box setting for
insertion metrics. In general, none of the selected explanation methods explain
both the classification and bounding box regression decisions substantially well
compared to other methods for all detectors. This answers EQ13. Similarly,



14 DC. Padmanabhan et al.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Pixels Removed

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g

e
D

B
S

C
u

rv
e

E
ff

ec
t

tr
a

ck
ed

:
B

o
x

Io
U

Evaluation of All Bounding Box Coordinates Explanations Using GBP

ED0 GBP (AUC: 0.654)

SSD GBP (AUC: 0.733)

FRN GBP (AUC: 0.045)

(a) Deletion - Box
IoU - Single-box ↓

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Pixels Removed

0

200

400

600

800

A
ve

ra
g

e
D

M
S

C
u

rv
e

[i
n

p
ix

el
s]

E
ff

ec
t

tr
a

ck
ed

:
B

o
x

M
o

ve
m

en
t

D
is

ta
n

ce

Evaluation of All Bounding Box Coordinates Explanations Using GBP

ED0 GBP (AUC: 42.668 pixels)

SSD GBP (AUC: 42.437 pixels)

FRN GBP (AUC: 662.184 pixels)

(b) Deletion - Box
Movement - Single-
box ↓

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Pixels Removed

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
g

e
D

B
R

C
u

rv
e

E
ff

ec
t

tr
a

ck
ed

:
B

o
x

Io
U

Evaluation of All Bounding Box Coordinates Explanations Using GBP

ED0 GBP (AUC: 0.048)

SSD GBP (AUC: 0.021)

FRN GBP (AUC: 0.037)

(c) Deletion - Box
IoU - Realistic ↓

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Pixels Removed

0

250

500

750

1000

1250

1500

1750

A
ve

ra
g

e
D

M
R

C
u

rv
e

[i
n

p
ix

el
s]

E
ff

ec
t

tr
a

ck
ed

:
B

o
x

M
o

ve
m

en
t

D
is

ta
n

ce

Evaluation of All Bounding Box Coordinates Explanations Using GBP

ED0 GBP (AUC: 1526.453 pixels)

SSD GBP (AUC: 1615.365 pixels)

FRN GBP (AUC: 1653.39 pixels)
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Fig. 10. Comparison of average curves obtained by tracking box IoU (a, c) and box
movement distance (b, d) as the pixels are deleted sequentially. Each average curve
is the average of the evaluation curves plotted by evaluating the explanations of all
bounding box coordinate decisions across all the detections by the respective detector.
The explanations are generated using GBP. The evaluation metric curve is generated
using the combination specified in the sub-captions.
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Fig. 11. Comparison of average curves obtained by tracking box IoU (a, c) and box
movement distance (b, d) as the pixels are inserted sequentially. Each average curve
is the average of the evaluation curves plotted by evaluating the explanations of all
bounding box coordinate decisions across all the detections by the respective detector.
The explanations are generated using GBP. The evaluation metric curve is generated
using the combination specified in the sub-captions.

none of the detectors is explained more faithfully for both classification and
bounding box decisions among the selected detectors by a single method across
all evaluation metrics discussed. This is illustrated by no explanation methods
(by different colors) or no detectors (by different characters) being represent
in the lower left rectangle or upper right rectangle in Figure 12 and Figure 17
respectively.

Figure 14a and Figure 14c illustrate AAUC of the classification saliency maps
and the saliency maps combined using different merging methods are different
in certain scenarios while tracking the maximum probability. The AAUC of all
the box coordinate saliency maps is provided for a baseline comparison. This
denotes the effect on maximum probability by removing pixels in the order of
most important depending on the all box coordinates saliency maps. Similarly,
Figure 14b and Figure 14d illustrate the similarity in the AAUC of all box
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Fig. 12. Comparison between the Deletion AAUC of the evaluation metric curves for
the classification and all bounding box coordinate explanations generated across the
chosen explanation methods and detectors. Explanation methods (highlighted with
different colors) placed at a lower value in the x-axis and y-axis perform relatively better
at explaining the box coordinates and classification decisions respectively. Detectors
(marked with different characters) placed at a lower value in x-axis and y-axis are rela-
tively better explained for the box coordinates and classification decisions respectively.
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Fig. 13. Multi-metric comparison of quantitative results. According to these metrics,
all methods perform similarly when considering all object detectors. The user study
and visual inspection of explanation heatmaps reveal more information.

coordinate explanations and the merged saliency maps while tracking the box
IoU. In Figure 14a, the evaluation of the GBP classification saliency map is
less faithful than the merged saliency map. Therefore, the merged saliency
map represents the classification decision more faithfully than the standalone
classification explanation in the case of EfficientDet-D0. However, Figure 14a
and Figure 14c illustrate in the case of SGBP explaining EfficientDet-D0 and
certain cases of Faster R-CNN respectively separately classification saliency maps
are more faithful in depicting the classification decision. The larger AAUC for
all the box coordinate saliency maps generated using each method for Faster
R-CNN indicate the box saliency maps are not faithful to the bounding box
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Fig. 14. Comparison of average AUC, AAUC, for the evaluation metric curves obtained
by tracking maximum probability (a, c) and box IoU (b, d) as the most important
pixels based on the explanation generated using the explanation methods specified in
the x-axis are deleted sequentially. All the explanations are generated for detection
made by EfficientDet-D0 (left) and Faster R-CNN (right) in the evaluation set images.
Lower AAUC is better in both plots.

decisions of Faster R-CNN. This is coherent with the visual analysis. Therefore,
in certain scenarios merging is helpful to represent the reason for a particular
decision. However, each individual saliency map provides peculiar information
about the detection. For instance, the visual correspondence shown in Figure 2
to each bounding coordinate information is seen only at the level of individual
box coordinate explanations.

An overall comparison of all quantitative metrics is shown in Figure 13. For
the purpose of understanding, the ranking of explanation methods explaining
a particular detector is provided in Table 1. SGBP performs relatively better
across all selected detectors. In addition, IG is ranked least across all the selected
detectors. SSD detector is better explained by all the explanation methods. One
of the reasons can be SSD is a simpler architecture compared to EfficientDet-D0
and Faster R-CNN. EfficientDet-D0 and Faster R-CNN include a Bi-directional
Feature Pyramid Network (BiFPN) and Region Proposal Network (RPN) respec-
tively. However, further experiments should be conducted for validation.

4.4 Human-centric Evaluation

The human-centric evaluation ranks the explanation methods for each detector
and ranks the multi-object visualization methods with a user study. All important
details of the user study are presented in Appendix H.

Ranking Explanation Methods. Previous work assess the user trust in
the model explanations generated by a particular explanation method [26] [34]
[29]. As user trust is difficult to evaluate precisely, this work in contrast to
previous works estimate the user preferability of the explanation methods. The
user preferability for the methods GBP, SGBP, IG, and SIG are evaluated by
comparing two explanations corresponding to a particular predictions. In this
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Table 1. Ranking of all the explanation methods for a particular detector based on the
quantitative evaluation metrics. A lower value is a better rank. The explanation method
better explaining a particular detector is awarded a better rank. Each detector is ranked
with respect to each evaluation metric considering a particular explanation method.
The column names other than the last column and the first two columns represent the
average AUC for the respective evaluation metric. The overall rank is computed by
calculating the sum along the row and awarding the best rank to the lowest sum. OD -
Object detectors, IM - Interpretation method.

OD IM DCS ICS DBS IBS DCR ICR DBR IBR Overall Rank

ED0

GBP 4 3 1 2 4 3 3 1 3
SGBP 1 2 2 4 1 2 2 2 2

IG 3 4 4 3 3 4 4 4 4
SIG 2 1 3 1 2 1 1 3 1

SSD

GBP 2 3 2 3 1 3 2 3 3
SGBP 1 2 1 2 2 2 1 1 1

IG 4 4 4 4 4 4 7 4 4
SIG 3 1 3 1 3 1 3 2 2

FRN

GBP 4 3 1 2 2 1 1 1 1
SGBP 1 1 2 1 1 3 2 2 2

IG 3 4 4 4 4 4 4 4 4
SIG 2 2 3 3 3 2 3 3 3

study, the explanation methods are compared directly for a particular interest
detection and interest decision across SSD, EDO, and FRN detector separately.
The evaluation identifies the relatively more trusted explanation method by the
users for a particular detector. The explanation methods are ranked by relatively
rating the explanations generated using different explanation methods for a
particular detection made by a detector. The rating serves as a measure of user
preference.

A pair of explanations generated by different explanation methods using
the same interest decision and same interest detection for the same detector
is shown to a number of human users as shown in Figure 38. The detector,
interest decision, interest detection, and explanation method used to generate
explanations are randomly sampled for each question and each user. In addition,
the image chosen for a particular question is randomly sampled from an evaluation
set. The evaluation set is a randomly sampled set containing 50 images from the
COCO test 2017. This avoids incorporating any bias into the question generation
procedure. Each question is generated on the fly for each user performing the
task. The explanations are named Robot A explanation and Robot B explanation
to conceal the names of the explanation methods to the user. The robots are not
detectors. In this study, the robots are treated as explanation methods. Robot
A explanation and Robot B explanation for each question is randomly assigned
with a pair of explanation method output. This is done to reduce the bias due to
positioning and ordering bias of the explanations as shown to users. The task
provided for the user is to rate the quality of the Robot A explanation based on
the Robot B explanation. The scoring gives scores in the range [−2, 2] depending
if Robot A or B is better. The available options are provided in Table 5.
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Fig. 15. Ranking obtained for the explanation methods from the user trust study
for each detector selected in this work. An initial Elo rating of 1000 is used for all
explanation methods. The explanation method with a higher Elo rating has gained
relatively more user preferability in the random pair-wise comparisons of explanations
for each detector. The rank of a particular method is provided on the top of the bar
corresponding to the method.

A single question in the evaluation is treated as a game between two randomly
matched players. The explanation methods are the players. The game result
depends on the explanation quality produced by the competing explanation
methods for a particular detection decision. In case of a draw, both explanation
methods receive the same score. During non-draw situations, the points won by
a particular explanation method are the points lost by the other explanation
method. By treating all the questions answered by numerous users as individual
games, the global ranking is obtained using the Elo rating system [13]. Each
explanation method is awarded an initial Elo rating of 1000.

Ranking Multi-Object Visualization Methods. The rank for multi-
object visualization methods is obtained by voting for the method producing the
most understandable explanation among the four methods. Each user is asked
a set of questions showing the multi-object visualization generated by all four
methods. The user is provided with a None of the methods option to chose during
scenarios where all the multi-object visualizations generated are confusing and
incomprehensible to the user. The methods are ranked by counting the total
number of votes each method has obtained. The experiment is performed using
COCO 2017 test split and the VOC 2012.

Results Each user is requested to answer 10 questions, split as 7 and 3 between
Task 1 and Task 2, respectively. 52 participants have answered the user study for
both task 1 and task 2. The participants range across researchers, students, deep
learning engineers, office secretaries, and software engineers.

Figure 15 indicates SGBP provide relatively more reasonable explanations
with higher user preferability for both single-stage detectors. Similarly, SIG is
preferred for the two-stage detector. Figure 16a illustrates the top two ranks are
obtained by SmoothGrad versions of the SGBP and IG for all detectors. GBP
relatively performs in the middle rank in the majority of cases. SGBP achieves
the first rank in both the human-centric evaluation and functional evaluation.
Figure 16a illustrates the overall ranking taking into account all the bounding



DExT: Detector Explanation Toolkit 19

box and classification explanations together. The ranking is similar in analyzing
the bounding box and classification explanations separately.
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Fig. 16. Ranking obtained from the user study con-
sidering all user answers. The rank of a particular
method is provided on the top of the bar correspond-
ing to the method.

The ranking of multi-
object visualization methods
clearly illustrate that major-
ity of the users are able to
understand convex polygon-
based explanations. 18 an-
swers among the total 156 are
None of the methods because
none of the four other methods
provided a legible summary of
all the explanation methods
and detections. The users have
selected principal component-
based visualization in cases in-
volving less than 3 detections

in an image. In addition, None of the methods is chosen in most of the cases
involving more than 9 detections or more than 3 overlapping detections in an
image. Among the total participants, only 89 users (57%) agree with the convex
polygon-based visualization. Therefore, by considering the remaining 43% users,
there is a lot of need to improve the multi-object visualization methods discussed
in this work and achieve a better summary.

5 Conclusions and Future Work

Explaining convolutional object detectors is crucial given the ubiquity of detectors
in autonomous driving, healthcare, and robotics. We extend post-hoc gradient-
based explanation methods to explain both classification and bounding box
decisions of EfficientDet-D0, SSD512, and Faster R-CNN. In order to integrate
explanations and summarize saliency maps into a single output images, we propose
four multi-object visualization methods: PCA, Contours, Density clustering, and
Convex polygons, to merge explanations of a particular decision.

We evaluate these detectors and their explanations using a set of quantitative
metrics (insertion and deletion of pixels according to saliency map importance)
and with a user study to understand how useful these explanations are to
humans. Insertion and deletion metrics indicate that SGBP provides more faithful
explanations in the overall ranking. In general there is no detector that clearly
provides better explanations, as a best depends on the criteria being used,
but visual inspection indicates a weak relationship that newer detectors (like
EfficientDet) have better explanations without artifacts (Figure 2), and that
different backbones do have an influence on the saliency map quality (Figure 6).

The user study reveals a human preference for SGBP explanations for SSD
and EfficientDet (and SIG for Faster R-CNN), which is consistent with the
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quantitative evaluation, and for multi-object explanation visualizations, convex
polygons are clearly preferred by humans.

We analyze certain failure modes of a detector using the formulated explana-
tion approach and provide several examples. The overall message of our work
is to always explain both object classification and bounding box decisions, and
that it is possible to combine explanations into a single output image through
convex polygon representation of the saliency map.

Finally, we developed an open-source toolkit, DExT, to explain decisions made
by a detector using saliency maps, to generate multi-object visualizations, and to
analyze failure modes. We expect that DExT and our evaluation will contribute to
the development of holistic explanation methods for object detectors, considering
all their output bounding boxes, and both object classification and bounding box
decisions.

Limitations. Firstly, the pixel insertion/deletion metrics might be difficult
to interpret [16] and more advanced metrics could be used [45]. However, the
metric selected should consider the specifics of object detection and evaluate both
classification and bounding box regression. Moreover, as detectors are prone to
non-local effects, removing pixels from the image [30] can cause bounding boxes
to appear or disappear. Therefore, special tracking of a particular box is needed.
We extend the classic pixel insertion/deletion metrics [3] for object detection
considering these two aspects.

The second limitation is about the user study. Given the challenges in for-
mulating a bias-free question, we ask users to select which explanation method
is better. This is a subjective human judgment and does not necessarily have
to correspond with the true input feature attribution made by the explanation
method. Another part of the user study is comparing multi-object visualization
methods, where we believe there is a much clearer conclusion. The novelty of
our work is to combine quantitative, qualitative, and a user study, to empirically
evaluate saliency explanations for detectors considering object classification and
bounding box regression decisions.

In general, saliency methods are prone to heavy criticisms questioning the
reliability of the methods. This study extends a few gradient-based saliency meth-
ods for detectors and conducts extensive evaluation. However, we acknowledge
that there are other prominent saliency methods to study.

Our work evaluates and explains real-world object detectors without any
toy example. The literature has previously performed basic sanity checks on toy
usecases that does not include multiple localization and classification outputs.
In addition, object detectors are categorized on the basis of number of stages
(single-stage [23] [43] and two-stage [28]), availability of anchors (anchor-based
[23] [43] and anchor-free [27] [44]), and vision transformer based detectors [10]
[9]. We explain detectors specific to certain groups (SSD512, Faster R-CNN, and
EfficientDet) and leave anchor-free and transformer-based detectors for future.

Even though fully white-box interpretable models would be the best solution
[31], this is not yet available at the model scale required for high object detection
performance.
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A Broader Impact Statement

As concerns on AI safety is increasing, explainable machine learning is imperative
to gain human trust and satisfy the legal requirements. Any machine learning
model user for human applications should be able to explain its predictions,
in order to be audited, and to decide if the predictions are useful or further
human processing is needed. Similarly, such explanations are pivotal to earn user
trust, increase applicability, address safety concerns for complex object detection
models.

We expect that our work can improve the explainability of object detectors,
by first steering the community to explain all object detector decisions (bounding
box and object classification), considering to visualize all saliency explanations in
a single image per detector decision, and to evaluate the non-local effect of image
pixels into particular detections. We believe that saliency methods can be used
to partially debug object detection models. Consequently, saliency methods are
useful to explain detector and address the trustworthiness and safety concerns in
critical applications using detectors.

However, additional validation of explanations is needed. We also perform
sanity checks in object detectors [11] with similar conclusions and validation
of saliency map quality. Additional large scale user studies could be done to
evaluate how useful these explanations are for humans, instead of just asking
which explanation method is better.

Even though fully white-box interpretable models would be the best solution
[31], this is not yet available at the model scale required for high object detection
performance.

In addition, the detectors are evaluated in various combinations with two
settings: single-box and realistic. Both the former and the latter help to better
understand the effects of the most relevant pixels on the predictions for the
output box as well as the overall detector output respectively. From the overall
ranking based on the quantitative evaluation metrics, all the explanation methods
interpret SSD more faithfully in comparison to other detectors. SGBP provides
more faithful explanations in the overall ranking developed from the quantitative
evaluation metrics. This is coherent with the user study. Humans understand the
explanations from SGBP in comparison more than the explanations generated
by other shortlisted explanation methods.

Convex polygon-based multi-object visualizations are better understood and
preferred by humans. However, there is substantial scope to improve the generated
multi-object visualizations.

B Detectors Details

Detectors detecting common objects available in COCO dataset is provided in
Table 2:

Detectors trained on Marine Debris Dataset is provided in Table 3:



26 DC. Padmanabhan et al.

Table 2. Summary of object objector implementations used in this work. The detectors
are trained to detect common objects using COCO dataset. The mAP reported is at
0.5 IoU. val35k represents 35k COCO validation split images. minival is the remaining
images in the validation set after sampling val35k.

Detector Train split Test split mAP (%) Weights Code

FRN train+val35k 2014 minival2014 54.4 [1] [1]
SSD train+val35k 2014 test-dev 2015 46.5 [23] [6]
ED0 train 2017 test-dev 2017 53.0 [43] [6]

Table 3. Details about the marine debris objector used in this work. Reported mAP is
at 0.5 IoU.

SSD Backbones mAP (%) Input Image Size

VGG16 91.69 300 x 300
ResNet20 89.85 96 x 96
MobileNet 70.30 96 x 96
DenseNet121 73.80 96 x 96
SqueezeNet 68.37 96 x 96
MiniXception 71.62 96 x 96

C Explanation Methods

In this paper we use Guided Backpropagation (GBP), Integrated Gradients (IG),
and their variations using SmoothGrad (SGBP and SIG). We describe these
methods in detail below:

Guided Backpropagation. (GBP) [41] is a backpropagation-based attribu-
tion method. GBP provides information about the input image features utilized
by a DNN for the particular prediction. The method calculates the loss func-
tion gradient for a specific object category with respect to image pixels. In this
approach, the activations at a higher level unit under study are propagated back-
ward to reconstruct the input image. The reconstructed input image illustrates
the input image pixels strongly activating the higher-level unit. The feature map
f after passing though a ReLU activation relu at layer l, where i denotes each
feature is given in Equation 5:

f l+1
i = relu

(
f l
i

)
= max

(
f l
i , 0

)
(5)

GBP handles backpropagation through ReLU non-linearity by combining
vanilla backpropagation and DeconvNets as specified in Equation 6.

Rl
i =

(
f l
i > 0

)
·
(
Rl+1

i > 0
)
·Rl+1

i (6)

The reconstructed image R at any layer l is generated by the positive forward
pass activations f l

i and the positive error signal activations Rl+1
i . This aids
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in guiding the gradient by both positive input and positive error signals. The
negative gradient flow is prevented in GBP, thereby, providing more importance
to the neurons increasing the activation of the higher layer unit under study. In
addition, this suppresses the image aspects negatively affecting the activation.
Therefore, the regenerated images are relatively less noisy compared to the
Gradients and DeconvNet methods. The explanation is computed as the gradient
of a particular output neuron with respect to the input image, considering the
previously mentioned modified ReLU gradient:

explGBP(x, ŷ) =
∂ŷ

∂x
(7)

Integrated Gradients. (IG) [42] achieves the implementation invariance as well
as sensitivity axioms. The gradient-based attribution methods such as Gradients
[38], DeconvNet [53], GBP [41], LRP [7], and DeepLIFT [36] fail either of two
rules or both. The sensitivity rule states for a baseline and input image differing by
a single feature and resulting in different predictions, the differing feature must be
assigned a non-zero attribution. In addition, a zero attribution should be assigned
to constant variables in the trained function. The implementation invariance
rule signifies that the attribution method result should not be dependent on the
network implementation. The functionally equivalent models should have identical
attributions. Furthermore, IG satisfies the completeness axiom by balancing out
the difference in the model output for the input image and baseline to the sum
of all feature attribution. IG integrates along the local gradient for a particular
image pixel over a linear path from the baseline x′ to input image x pixels. IG
for feature i in the input image is calculated using Equation 8 [2].

IntegratedGradientsi(x, F ) = (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi
dα (8)

α is the interpolation constant for peturbing the features along the straight
path between baseline and input image. F (x) is the model function mapping
input image to output prediction. The solution is obtained using numerical
approximation because calculating definite integral for Equation 8 is difficult.
The full integrated gradients calculation is done over all input features and is:

explIG(x, ŷ) = [IntegratedGradientsi(x, ŷ)∀i ∈ 0...dim(x)] (9)

SmoothGrad. [39] is an approach to sharpen the saliency maps generated by
any gradient-based explanation method. The idea is to estimate a saliency map
by averaging all the saliency maps generated for different image samples by
adding a small random noise. Given explM(x, ŷ) is the unsmoothed saliency map
explaining the decision for predicting class c with any previous saliency method.
The final saliency map explSM(x, ŷ) for the input image x is given by Equation
10. N is the total number of image samples generated by adding Gaussian noise
N (0, σ2) with standard deviation σ.

explSM(x, ŷ) = N−1
n∑
1

explM(x+ ϵ, ŷ) (10)
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With ϵ ∼ N
(
0, σ2

)
being samples from a Gaussian distribution. The hyperparam-

eters are the sample size to average the saliency maps N and standard deviation
or noise level σ. [39] suggests a noise level between 10-20% balances the saliency
map sharpness and captures the object structure. This is followed by averaging
the saliency maps obtained for different noise levels to generate a final smoothed
saliency map.

We combine SmoothGrad with Guided Backpropagation to produced Smooth
Guided Backpropagatio (SGBP), and SmoothGrad with Integrated Gradients to
produce Smooth Integrated Gradients (SIG).

D Additional Comparison of Quantitative Metrics

Table 4. Ranking of all detectors for a particular explanation method based on the
quantitative evaluation metrics. A lower value is a better rank. The detector better
explained by a particular explanation method is awarded a better rank. Each detector
is ranked with respect to each evaluation metric considering a particular explanation
method. The column names other than the last column and the first two columns
represent the AAUC for the respective evaluation metric. The overall rank is computed
by calculating the sum along the row and awarding the best rank to the lowest sum.
OD - Object detectors, IM - Interpretation method.

IM OD DCS ICS DBS IBS DCR ICR DBR IBR Overall Rank

GBP
ED0 2 2 2 2 2 3 3 3 3
SSD 1 1 3 1 3 2 1 2 1
FRN 3 3 1 3 1 1 2 1 2

SGBP
ED0 2 2 2 2 1 3 2 2 2
SSD 1 1 3 1 3 2 1 1 1
FRN 3 3 1 3 2 1 3 3 3

IG
ED0 1 2 2 2 1 3 2 2 2
SSD 2 1 3 1 3 2 1 1 1
FRN 3 3 1 3 2 1 3 3 3

SIG
ED0 2 2 2 2 1 3 2 2 2
SSD 1 1 3 1 3 2 1 1 1
FRN 3 3 1 3 2 1 3 3 3
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Fig. 17. Comparison between the insertion AAUC of the evaluation metric curves
for the classification and all bounding box coordinate explanations generated using
different explanation methods across all detectors. This offers a means to understand
the explanation method generating more faithful explanations for both classification
explanations and all bounding box coordinates. As the curves to compute the respective
AUC are computed using insertion metric, higher values in both axis are better. The
explanation methods (highlighted with different colors) placed at a higher value in x-axis
and y-axis perform relatively better at explaining the box coordinates and classification
decisions respectively. The detectors (marked with different characters) placed at a
higher value in x-axis and y-axis are relatively better explained for the box coordinates
and classification decisions respectively.

E Visual Analysis

Figure 18 and Figure 19 illustrates the change in explanations across different
backbones and performance levels.

F Multi-object Visualization

In order to summarize the explanations for a particular decision across all objects
in an image, four multi-object visualization methods are proposed in Section 3.2.
This procedure is concisely presented in Figure 20, Figure 21, Figure 22, and
Figure 23. Figure 24 and Figure 25 illustrates the summarized visualizations for
all objects predicted using all the proposed methods. The principal component-
based method represents the maximum and minimum data spread of the saliency
map pixel intensities as ellipses centered at the center of mass. The contour-based
method draws the contour map with two levels as depicting a heatmap and
the output detection with the same color is difficult. The density cluster-based
method performs density clustering using DBSCAN [14]. The hyperparameters
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Fig. 18. An illustration of the chain ymin and ymax explanations across different SSD
backbones is provided. The detections from each SSD backbone are provided in the
first row. The chain detection explained is marked using a white-colored box. The
explanations vary across each backbone. SSD-VGG16 ymin and ymax explanations
highlight the upper half and lower half of the chain respectively, corresponding to the
bounding box coordinate locations.
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Fig. 19. The hook classification explanation across different epochs (along columns)
of SSD-ResNet20 using GBP is illustrated. The first column is the hook ground truth
annotation (white-colored box).

of DBSCAN are tuned using the method stated in [14]. Finally, the convex
polygon-based method draws a convex polygon over the density clustered saliency
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map pixels. This method provides a legible representation as the convex polygon
resemble an irregularly shaped bounding box.

Principal  
Component-based

Multi-object Visualization

Dog

Frisbee Frisbee

Dog

Input Image

Classification Saliency  
Map

Principal Component 
Representation

Fig. 20. The detector predicts a dog and a frisbee in the input image. The saliency
map for the corresponding classification decisions are converted into a canonical form
represented as elliptical principal components. The final multi-object visualization is
generated by combining the ellipses, bounding boxes, and class predictions into a single
image with a particular color for each object.
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Representation

Fig. 21. The detector predicts a dog and a frisbee in the input image. The saliency
map for the corresponding classification decisions are converted into a canonical form
represented as contours based on importance for the decision. The final multi-object
visualization is generated by combining the contours, bounding boxes, and class predic-
tions into a single image with a particular color for each object.

Density Cluster-based
Multi-object Visualization

Dog
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Dog
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Map
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Representation

Fig. 22. The detector predicts a dog and a frisbee in the input image. The saliency
map for the corresponding classification decisions are converted into a canonical form
represented as density clusters based on importance for the decision. The final multi-
object visualization is generated by combining the density clusters, bounding boxes,
and class predictions into a single image with a particular color for each object.
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Fig. 23. The detector predicts a dog and a frisbee in the input image. The saliency
map for the corresponding classification decisions are converted into a canonical form
represented as convex polygon. The final multi-object visualization is generated by
combining the polygons, bounding boxes, and class predictions into a single image with
a particular color for each object.
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Fig. 24. Multi-object visualizations generated to visualize together all the detections
from SSD512 and the corresponding classification explanations generated using SGBP
in the same color. The multi-object visualization approach is specified in the sub-
captions. The important pixels responsible for the decision explained in the case of the
principal component-based and convex polygon-based are the pixels inside the ellipses
and irregular polygons respectively, marked in the same color as the corresponding
detection. The important pixels responsible for the decision explained in the case of
contour-based and density-based are the pixels highlighted in the same color as the
corresponding detection.
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Fig. 25. Multi-object visualizations generated to visualize together all the detections
from Faster R-CNN and the corresponding classification explanations generated using
SGBP in the same color. The multi-object visualization approach is specified in the sub-
captions. The important pixels responsible for the decision explained in the case of the
principal component-based and convex polygon-based are the pixels inside the ellipses
and irregular polygons respectively, marked in the same color as the corresponding
detection. The important pixels responsible for the decision explained in the case of
contour-based and density-based are the pixels highlighted in the same color as the
corresponding detection.

G Additional Examples of Error Analysis

We provide six additional examples, two are about poor localization (Figures 26
and 28), and six about misclassification or confusion with background (Figures
29, 30, 27, and 31).

The saliency maps for each bounding box coordinates can provide visual
evidence for poor localization (Figure 26). Finally, by generating saliency maps
for the bounding box coordinate or classification decisions of the adjusted prior
box close to the missed ground truth detection, the reason for missing detections
can be studied (Figure 29).
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Bounding Box Coordinates Explanations Using SmoothGrad + Guided Backpropagation on EfficientDet-D0

Fig. 26. Example error analysis using gradient-based explanations. EfficientDet-D0
localizes the cat detection (red-colored box) poorly (IoU: 0.69) in the detection subplot.
It is evident from the saliency map of y_max bounding box that the detector is looking
at the end part of the tail. However, the detector misses the tail of the cat because of
other nearby features from the monitor display.
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Fig. 27. Example error analysis using gradient-based explanations. SSD512 misses the
person (red-colored box) in the ground truth subplot using the proposed approach.
The red-colored box in the detection subplot is the closest output box to the ground
truth. The saliency map highlights the the entire person and part of the boat, possibly
indicating that the person feature is not prominent in that region. The detector classifies
the box as background. However, the second dominant class of the box is person.
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Bounding Box Coordinates Explanations Using SmoothGrad + Guided Backpropagation on EfficientDet-D0

Fig. 28. Example error analysis using gradient-based explanations. EfficientDet-D0
localizes only a single chair in the back (red-colored box) It is evident from the
localization saliency maps that the detector is localizing all the nearby chairs together
as a single instance, and the saliency indicates this clearly. The bounding box saliency
should focus in a single chair instead of multiple ones.
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Fig. 29. Example error analysis using gradient-based explanations. EfficientDet-D0
misses the motorcycle (red-colored box) in the ground truth subplot. The red-colored box
in the detection subplot is the closest output box to the ground truth. The motorcycle
tank, right throttle, and certain other surfaces of the missed motorcycle are clearly
highlighted. However, the detector does not have sufficient evidence to accept the
classification result due to lower confidence for the motorcycle class (0.13) than the
confidence threshold (0.5) for acceptable detections.
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Fig. 30. Example error analysis using gradient-based explanations. SSD512 misses the
motorcyle (red-colored box) in the ground truth subplot using the proposed approach.
The red-colored box in the detection subplot is the closest output box to the ground
truth. The saliency map highlights the entire motorcycle, person, and edges of the lane
divider. The detector classifies the box as background. However, the second dominant
class of the box is motorcycle. This is probably due to the person occluding part of the
motorcycle.
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Fig. 31. Example error analysis using gradient-based explanations. EfficientDet-D0
misses the motorcycle (red-colored box) in the ground truth subplot. The red-colored
box in the detection subplot is the closest output box to the ground truth. The couch
surface and the context of a cat lying on the surface of couch are clearly highlighted.
However, the detector does not have sufficient evidence to accept the classification result
due to lower confidence for the couch class (0.31) than the confidence threshold (0.5)
for acceptable detections. This is likely due to the cat occluding part of the couch.
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H Details of User Study

This section provides the task description given to the users and screenshots
of the application developed to perform the user study and human-centered
analysis.

Table 5. User study options and scores awarded to respective explanations.

Options A Score B Score

Robot A explanation is much better 2 -2
Robot A explanation is slightly better 1 -1
Both explanations are same 0 0
Robot A explanation is slightly worse -1 1
Robot A explanation is much worse -2 2

H.1 Task Description

Firstly, thank you for your time. I assure you that I will use the answers solely for
research purposes without disclosing any user identity. The evaluation includes
two tasks. Task I: Questions 1-7. Task II: Questions 8-10.

Task I: Which Robot’s explanation is better?

– An artificial intelligence (AI) agent performing the task of localizing and
classifying all the objects in an image is called an object detector.

– The output from an object detector to detect a single object includes the
bounding box representing the maximum rectangular area occupied by the
object and the class name representing the category of the object inside
the bounding box. The output is called detection.

– (x_left_top, y_left_top) and (x_right_bottom, y_right_bottom) are the
two coordinate points to represent a bounding box. The class name of the
object is represented as a text label near the bounding box as shown in Figure
32.

– Therefore, each detection is made of two decisions (predictions), namely,
bounding box coordinates decision and classification decision.

– In this study, the reason for a particular decision, say bounding box coordi-
nates or class prediction, in a single detection, is shown.

– This reason behind the decision-making process is given by the explanation.
In this task, the explanation is generated by two different robots, Robot A
and Robot B. The explanation images are provided for classification and
bounding box decisions separately.
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Fig. 32. An illustration of a detection output from a detector.

– The explanation for a particular decision is provided by highlighting the
pixels important for the decision-making process. The color bar provided in
Figure 33 on the right of the explanation image indicates the pixel importance
value.

0

100

20

40

60

80

Least important 

pixels

Most important 

pixels

Fig. 33. A heatmap representing the importance of pixels for a particular decision.

– In task 1, the author requests you to rate Robot A’s explanation by com-
paring it against Robot B’s explanation in terms of understandability and
meaningfulness of the explanation.
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– A few classification decision explanations, Figure 34 and Figure 35, are
provided below:

Fig. 34. A bowl detection made by the detector (shown in the left). An explanation for
the bowl classification decision (right). The most of the important pixels highlight the
object detected. The pixel importance values of objects other than the detected object
are very less and negligible.

Fig. 35. A person detection made by the detector (left). An explanation for the person
classification decision (right). The most of the important pixels highlight the object
detected. However, the explanations highlight pixels other than the detected object and
is highly noisy.

– A few bounding box coordinate explanations, Figure 36 and Figure 37, are
provided below:

Task II: Which method is better to summarize all detections and
corresponding explanations?
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Fig. 36. A person detection made by the detector (left). An explanation for the person
y_left_top coordinate prediction (right). The most of the important pixels highlight
the object detected. In addition, the explanation is coherent with the bounding box
coordinate as the explanation highlights region near the y_left_top.

Fig. 37. A person detection made by the detector (left). An explanation for the person
x_right_bottom coordinate prediction (right). The important pixels highlight the
object detected. However, the explanation highlights numerous pixels outside the the
detected object and is highly noisy.
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– Each image shown in this task includes all the detection made by the detector.
Similar to the previous task, each detection is represented as shown in Figure
32.

– In addition to all detections, each image illustrates the explanation for a
particular decision, say bounding box coordinate or classification result, for
all objects detected by the detector.

– In order to map the detection and the respective explanation, the same colors
are used.

– The explanations are represented using 4 different methods. However, visually,
across the 4 methods, the important pixels responsible for a particular decision
are highlighted using either dots, ellipses, or irregular polygon.

– For ellipses and irregular polygon, the pixels inside the ellipse and irregular
polygon are the important pixels responsible for the decision-making process.

– One of the options is None of the methods. This option can be selected when
the detection and corresponding explanation of multiple objects illustrated in
all 4 images are confusing and illegible to coherently understand the detection
and the corresponding explanation.

H.2 Application Screenshots

This section provides the snapshots of the user study application. Figure 38 and
Figure 39 shows a sample Task 1 and Task 2 question. Figure 40 illustrates the
additional questions asked to understand the background of the user.
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Fig. 38. Sample Task 1 question asked to rank explanation methods based on the user
trust in the explanations for a particular detector decision. The figure is best viewed in
digital form.
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Fig. 39. Sample Task 2 question asked to rank the multi-object visualization methods
depending on the user understandability. The figure is best viewed in digital form.
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Fig. 40. Additional questions asked to understand the user background. The figure is
best viewed in digital form.

I Screenshots of DExT

This chapter provides the screenshots of the DExT interactive application which is
available online at: https://share.streamlit.io/deepanchakravarthipadmanabhan/
dext/app.py.

The code to launch the application locally along with the DExT python-based
package is available at https://github.com/DeepanChakravarthiPadmanabhan/
dext.

Figures 41, 42, 43, and 44 shows the sequential process involved in analyzing
an input image. Figure 45 illustrates the user interface provided to interactively
generate explanations and evaluate the explanations for different detections across
various explanation method and detector combinations.

https://share.streamlit.io/deepanchakravarthipadmanabhan/dext/app.py
https://share.streamlit.io/deepanchakravarthipadmanabhan/dext/app.py
https://github.com/DeepanChakravarthiPadmanabhan/dext
https://github.com/DeepanChakravarthiPadmanabhan/dext
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Fig. 41. Illustration of the input image user uploaded by the user (left) and detections
(right) made by the SSD512, the detector selected by the user, in the input image. The
detectors available for off the shelf analysis are EfficientDet-D[0-7, 7x], SSD512, and
Faster R-CNN.

Fig. 42. Illustration of the interest detection (left) selected by user to generate expla-
nation and saliency map (right) generated using GBP. The explanation interprets the
classification decision for the interest detection. The interpretation methods available
are GBP, SGBP, IG, and SIG. The interest detections are integer choices depending on
the total detections in the image. The interest decisions are classification decision for
the detected class and bounding box coordinates.
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Fig. 43. Illustration of the single-box (left) and realistic (right) evaluation setting
is provided as shown in DExT interactive application. Left: When the input image
is the manipulated image by removing 80% of the most important pixels, the prior
box detected as the output box for the original input image is shown. Right: The
output detections for the manipulated input image. There are no output detections
after removing 80% of the most important pixels.

Fig. 44. illustration of the manipulated image after removing 80% of the most important
pixels depending on the generated saliency map.
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Fig. 45. User interface of the DExT interactive application. The user can select any
detector, interpretation method, interest decision, and interest detection. In addition, a
slider to control the fraction of input image pixels deleted is provided.
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