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Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure is a cause of chronic inflammation. The effect of PAHs on bioactive lipid 
mediators involved in the inflammatory process remains largely unknown. This study measured ten urinary monohydroxy-
PAHs (OH-PAHs), 54 plasma oxylipins, and inflammation-related markers. Children with high PAH exposure had higher 
levels of ten OH-PAHs, (±)18-HETE, 19(S)-HETE, 5,6-DiHETrE, 9,10-DiHOME, more monocytes, interleukin (IL)-10, 
tumor necrosis factor (TNF)-α and IL-6 than those with low PAH exposure (all p < 0.05). The ƩOH-PAHs were inversely cor-
related to the levels of anti-inflammatory oxylipins, including 5,6-EET (p for trend = 0.007), 11,12-EET (p for trend = 0.035), 
14,15-EET (p for trend = 0.022), and 16(17)-EpDPE (p for trend = 0.043), but positively associated with pro-inflammatory 
9,10-DiHOME (p for trend < 0.001). Mediation analyses indicated that cytochrome P450 (CYP)-derived 9,10-DiHOME 
mediated a separate 42.7%, 31.1%, 57.8%, and 38.5% of the associations between OH-PAHs and monocytes, IL-6, IL-10, 
TNF-α (p = 0.017, 0.014, 0.005 and 0.012, respectively). Our study suggests that CYP-derived oxylipins can be considered 
sensitive lipid mediators to signal the early inflammation response to PAH exposure.

Keywords Inflammation · Monocyte · Cytokine · PAHs · Metabolomic · PUFAs

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are relatively 
hydrophobic and stable in the environment due to their 
aromatic rings and semi-volatility (Gao et al. 2018). A 
significant PAH source is the incomplete combustion 
of organic material, such as wood, gas, coal, petroleum, 
tobacco, and garbage (Mastral et al. 2000; Abdel-Shafy 
et al. 2016; Alegbeleye et al. 2017). Incomplete combus-
tion of organic plastics during electronic-waste (e-waste) 
dismantling is considered a significant PAH source in 
e-waste recycling areas (Xu et al. 2015; Chen et al. 2019). 
PAHs entering the body can be metabolized by members 
of the cytochrome P450 (CYP) family into monohydroxy-
PAH  (OH-PAH) isomers, which have been related to 
the onset of metabolic syndrome, infertility, inflamma-
tion, cancer, cardiovascular disease, and type 2 diabetes 
(Brocato et al. 2014; Dai et al. 2019; Wang et al. 2012; 
Yang et al. 2017, 2019, 2020; Yu et al. 2021). Addition-
ally, PAHs perturb lipid metabolism and participate in the 
early activation of glycerophospholipids, the substrates 
of phospholipase A2 (PLA2), leading to a downstream 
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inflammatory response (Siegrist et al. 2019; Zhang et al. 
2017; Wang et al. 2015). Nevertheless, the effect of PAHs 
on bioactive lipid mediators involved in the inflammatory 
process remains largely unknown.

Oxylipins are bioactive lipid mediators biosynthesized 
by non-enzymatic and enzymatic oxidation of ω-6 polyun-
saturated fatty acids (PUFAs), including arachidonic acid 
(AA) and linoleic acid (LA), or ω-3 PUFAs, including 
α-linolenic acid (α-LA), docosahexaenoic acid (DHA), 
and eicosapentaenoic acid (EPA) (Dennis and Nor-
ris 2015; Gabbs et al. 2015; Quehenberger et al. 2010). 
When cells are in contact with external stimuli, PUFAs are 
released from membrane-bound phospholipids by activa-
tion of PLA2 and subsequent oxidation by three major 
enzymatic pathways, comprised of CYP epoxygenases/
hydroxylases, lipoxygenase (LOX), and cyclooxygenase 
(COX), to generate oxylipins such as epoxyeicosatrienoic 
acids (EETs), hydroxyeicosatetraenoic acids (HETEs), leu-
kotrienes (LT), and prostaglandins (PG) (Zivkovic et al. 
2011). AA-derived oxylipins are more involved in the 
pro-inflammatory process, while DHA and EPA-derived 
oxylipins play a dual role in anti-inflammatory and pro-
resolution activities (Serhan et al. 2008; Dennis and Nor-
ris, 2015; Divanovic et al. 2013). LA-derived dihydroxy-
12Z-octadecenoic acid (DiHOME) species are generally 
considered pro-inflammatory and cytotoxic, whereas 
EETs are anti-inflammatory (Gilroy et al. 2016; Zimmer 
et al. 2018). The complicated signal network of oxylipins 
regulates various homeostatic and inflammatory processes 
associated with multiple diseases, such as breast cancer, 
IgA nephropathy, chronic obstructive pulmonary disease, 
endometriosis, and cardiovascular disease (Zivkovic et al. 
2012; Lee et al. 2016; Nayeem et al. 2018; van der Does 
et al. 2019; Chocholouskova et al. 2019). Considering 
that CYP also metabolizes PAHs after entering the human 
body, it is plausible that oxylipins may participate in the 
inflammatory response caused by PAH exposure.

Some epidemiological studies found that air pollution 
is related to the disorder of oxylipins derived from CYP, 
LOX, and COX pathways and indicates that oxylipins play 
a vital role in the inflammatory response to environmental 
exposures in the respiratory system (Martens et al. 2017; 
Mu et al. 2019; Wang et al. 2021; Yan et al. 2019). However, 
the link between PAH exposure and oxylipins from different 
metabolic pathways in preschool children remains unknown. 
Our previous studies have clarified the impact of PAH expo-
sure on inflammation in preschool children from the per-
spectives of platelets, cytokines, and immune cells (Zheng 
et al. 2019; Dai et al. 2019; Cheng et al. 2020). To date, 
evidence of alterations of bioactive lipid mediators linked 
to inflammatory response after PAH exposure is lacking. 
Hence, the primary purposes of this study are: (1) to explore 
the difference in plasma oxylipin profiles between low and 

high PAH exposed children; (2) to estimate the association 
between urinary PAHs and oxylipin signaling pathways; (3) 
to assess the mediation effect of oxylipins on PAH exposure 
and inflammatory response.

Materials and Methods

Study Participants and Sample Collection

From November to December 2017, 217 healthy children 
aged 3- to 6-year-old who were not under medication were 
enrolled in the study, of which 107 were from Haojiang and 
110 were from Guiyu. Guiyu, an e-waste recycling town in 
southeast China, has a high risk of exposure to contaminants 
(Huo et al. 2007). Haojiang was regarded as the reference 
area due to its lack of e-waste pollution. Our studies over the 
years have found that children in Guiyu have a higher risk 
of PAH exposure and their urinary PAH levels are always 
higher than those in Haojiang (Zheng et al. 2019; Dai et al. 
2019; Cheng et al. 2020). We selected 100 children from 
all recruited participants, of which 50 children from Guiyu 
were regarded as high PAH exposure group, and the other 
half of children from Haojiang were considered a low PAH 
exposure group. The child's guardians filled out a survey 
questionnaire covering their basic information and their fam-
ily and written informed consent. The study was approved by 
the Ethics Committee of Shantou University Medical Col-
lege. All children participated in the physical examination 
and contributed two fasting blood samples in tubes contain-
ing EDTA-K2 and one-morning spot urine sample. Periph-
eral blood samples were analyzed for immune cell counting; 
urine samples were stored in a freezer at − 20 °C until PAH 
metabolite measurement; serum and plasma samples were 
stored at − 80 °C until cytokines and oxylipins measurement.

Urinary PAH Metabolite Analysis

Ten OH-PAHs measured in this study are 1-hydroxypyr-
ene (1-OHPyr), 1-hydroxyphenanthrene (1-OHPhe), 
1-hydroxynaphthalene (1-OHNap), 2-hydroxyphenanthrene 
(2-OHPhe), 2-hydroxynaphthalene (2-OHNap), 2-hydroxy-
fluorene (2-OHFlu), 4-hydroxyphenanthrene (4-OHPhe), 
3-hydroxyphenanthrene (3-OHPhe), 9-hydroxyfluorene 
(9-OHFlu), and 9-hydroxyphenanthrene (9-OHPhe). They 
were analyzed using a gas chromatograph-mass spectrom-
eter (7890A-5975C, Agilent Technologies Inc., USA) in the 
same method as previous studies (Huo et al. 2019; Cheng 
et al. 2020). The internal standards were 1-OHPyr-d9 and 
1-OHNap-d7. The relative standard deviation percentage of 
multiple tests of quality control samples was 3.2–16.8%, and 
each kind of OH-PAH recovery was 73–119%. The regres-
sion coefficient (R2) for each standard curve exceeded 0.995. 
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Urinary creatinine concentrations were measured using a 
Cayman Chemical Creatinine Assay (Cayman Chemical, 
UK). The levels of ten PAH metabolites were calculated 
using standard curves from the same batch. The urinary OH-
PAH concentrations were expressed as μg/mmol creatinine.

Plasma Oxylipin Profiling Analysis

Oxylipin extraction is described in detail in the Supporting 
Information. An ultra-high performance liquid chromatogra-
phy (UPLC) Shim-pack UFLC SHIMADZU CBM30A sys-
tem (Kyoto, Japan) coupled to tandem mass spectrometry 
(MS/MS) (Applied Biosystems SCIEX QTRAP 6500PLUS, 
Framingham, USA) was used for the analysis of plasma 
oxylipins. An ACQUITY UPLC HSS T3 column (1.8 μm 
2.1 × 100 mm) was maintained at 40 °C, and the injection 
volume was ten μL. Chromatographic separation was carried 
out at a constant flow rate of 0.4 mL/min. The mobile phase 
consisted of (A) acetonitrile/water/acetic acid (60/40/0.002, 
v/v/v) and (B) acetonitrile/isopropanol (50/50, v/v). The fol-
lowing gradient conditions were: 0–4.0 min, 0.1–55% B; 
4.0–5.0 min, 55–99% B; 5.0–6.8 min, 99% B; 6.8–7.0 min, 
99.0–0.1% B; 7.0–10.0 min, stop. Oxylipins were deter-
mined in negative electrospray ion mode. Nebulizer gas, 
curtain gas, and turbo-gas were set at 40 psi, 35 psi, and 40 
psi, respectively. Turbo ion spray source temperature was 
550 °C. All extracted samples were prepared as a composite 
sample regarded as the quality control sample. A quality 
control sample was run every ten stitches during the ana-
lytical process to ensure repeatability. Scheduled multiple 
reaction monitoring modes analyzed oxylipins to eliminate 
the interference of non-target ions. Figure S1 shows that the 
quantification and repeatability are excellent. According to 
peak type information and retention time, the peak identifi-
cation, manual integration, and signal-to-noise calculations 
were performed using MultiQuant™ software. All standard 
curves showed good linearity for all analytes, with R2 values 
above 0.99 (Table S1). Recovery rates of the internal stand-
ards were 58.1–112.3%. The limits of detection (LOD) are 
provided (Table S2). The peak area of oxylipin below the 
LOD was assigned to LOD/2 for subsequent statistical analy-
sis. Overlapping analysis of total ion chromatography of a 
quality control sample was used to ensure the repeatability 
of oxylipin extraction and detection (Fig. S2).

Monocyte and Cytokine Measurements

According to standard procedures, an automatic blood ana-
lyzer (XT-1800i, Sysmex Corporation, Japan) was used for 
monocyte counting within 8 h of sample collection. Serum 
interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α 
were determined with the ProcartaPlex Human Cytokine 
Panel (eBioscience, USA).

Statistical Analysis

The Kolmogorov–Smirnov normality test analyzed the 
distribution of the numerical data. Student's t test and 
Mann–Whitney U test were performed to examine statisti-
cal differences for normal and skew continuous variables. 
Results were expressed as mean ± SD and median, respec-
tively. A chi-square test was performed to determine the 
distribution difference of categorical variables.

The PAH metabolites and oxylipins concentrations were 
log10-transformed to approximate a normal distribution 
before multivariate analysis. First, unsupervised principal 
component analysis (PCA) was used to evaluate the quality 
control samples. Next, supervised orthogonal partial least 
square-discriminant analysis (OPLS-DA) separated the 
oxylipin profiles of the PAH high and low exposure groups. 
The contribution of each oxylipin to the overall separation 
of the two groups was quantified in the OPLS-DA model 
by the variable importance in the projection score (VIP). 
Then, the 999-time permutation test was used to examine 
the overfitting of the model (Triba et al. 2015). p values of 
oxylipin data were corrected for multiple testing by the false 
discovery rate (FDR) of Benjamini-Hochberg. Oxylipins 
with a VIP score > 1.0 and FDR < 0.05 were considered as 
significant differential metabolites.

We investigated the associations between PAH exposure 
and oxylipins using multivariate linear regressions. The 
concentration of urinary ΣOH-PAHs is trisected among all 
children (n = 100). The 1st tertile was regarded as the refer-
ence variable to weigh the 2nd and 3rd tertiles. Mediation 
analysis was used to assess the potential value of oxylipins 
in the relationship between PAH exposure and inflammatory 
response. We also performed a series of sensitivity analy-
ses for pathways with significant associations with PAH 
exposure: models that were not adjusted for family mem-
ber smoking; models that only adjusted for gender, age, and 
BMI; and models stratified by gender.

The results were analyzed using GraphPad Prism version 
7.0 (GraphPad, CA), SPSS version 24.0 (IBM Corporation, 
USA), R programming language version 4.0.3 (R Foun-
dation for Statistical Computing), and SIMC version 14.0 
(Umetrics AB, Sweden). p < 0.05 under the two-tailed test 
was considered a significant difference.

Results

Demographic Characteristics of the Participants

The baseline information of 100 children is summarized 
in Table 1. The children's gender, age, BMI, urinary cre-
atinine, and monthly household income were not differ-
ent between the low and high PAH exposed group (all 
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p > 0.05). Family member smoking and parental education 
levels differed between the two groups (all p < 0.05).

Concentrations of Urinary PAH Metabolites

The urinary concentrations of all OH-PAHs in 100 chil-
dren are shown in Table 2. Compared with the low PAH 
exposed group, the median levels of urinary OH-PAHs 
ranged from 1.92- (for 9-OHFlu) to 3.9-fold (for 1-OHPhe) 
higher in the high PAH exposed group (all p < 0.01). In 
both groups of children, the order of contributions of uri-
nary PAH metabolites was ƩOHPhe > ƩOHFlu > ƩOHNap.

Profiles of Plasma Oxylipins and Differential 
Metabolites

Out of 54 measured oxylipins, 17 metabolites had > 20% 
values below the LOD and were eliminated from further 
statistical analysis (Table S2). Thirty-seven kinds of oxylipin 
biosynthetic pathways as shown in Fig. S3. Table S3 shows 
the median concentrations (nM) of 37 kinds of plasma 
oxylipins for the low and high PAH exposed groups. The 
plasma oxylipin profiles of the low and high PAH exposed 
groups are presented in Fig. 1A. The scoring plot from unsu-
pervised PCA indicated the close clustering of quality con-
trol samples (Fig. 1B), indicating that the analysis process 

Table 1  Characteristics of the participants

SD standard deviation, BMI body mass index
a Normal continuous variables were compared using the Student's t test; non-normal continuous variables were compared using the Mann–Whit-
ney U test; categorical variables were compared using the chi-square test

Characteristics Low PAH exposed group
(n = 50)

High PAH exposed group
(n = 50)

Statistics pa

Gender [n (%)] χ2 = 0.000 1.000
 Male 25 (50.0) 25 (50.0)
 Female 25 (50.0) 25 (50.0)

Age (years, mean ± SD) 4.94 ± 0.81 4.95 ± 0.82 t = -0.063 0.950
BMI (kg/m2, mean ± SD) 15.20 ± 1.30 15.11 ± 1.22 t = 0.356 0.723
Urinary creatinine (mg/dL, median, P25, P75) 31.52 (15.89, 58.39) 31.64 (21.24, 56.96) Z =  − 1.013 0.311
Family member smoking [cigarettes, n (%)] χ2 = 15.936 0.003
 Non-smoking 26 (52.0) 12 (24.0)

 < 2 7 (14.0) 2 (4.0)
 2–10 4 (8.0) 12 (24.0)
 11–20 10 (20.0) 15 (30.0)

 > 20 3 (6.0) 9 (18.0)
Monthly household income [yuan, n (%)] χ2 = 7.951 0.093
 < 1500 1 (2.0) 3 (6.0)
 1500–3000 5 (10.0) 9 (18.0)
 3000–4500 6 (12.0) 12 (24.0)
 4500–6000 9 (18.0) 10 (20.0)

 > 6000 29 (58.0) 16 (32.0)
Paternal education levels [n (%)] χ2 = 44.481  < 0.001
 Primary school 0 (0.0) 7 (14.0)
 Middle school 10 (20.0) 35 (70.0)
 Vocational school 9 (18.0) 3 (6.0)
 High school 6 (12.0) 3 (6.0)
 College/University 25 (50.0) 2 (4.0)

Maternal education levels [n (%)] χ2 = 29.925  < 0.001
 Primary school 1 (2.0) 10 (20.0)
 Middle school 11 (22.0) 28 (56.0)
 Vocational school 6 (12.0) 3 (6.0)
 High school 7 (14.0) 4 (8.0)
 College/University 25(25.0) 5 (10.0)
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is highly repeatable. The scoring plot of the supervised 
OPLS-DA (Fig. 1C) displayed a clear separation of plasma 
oxylipins between the two groups. The Q2 was negative in 
the 999-time permutation test, suggesting that the OPLS-DA 
model was not overfitting (Fig. S4). Compared with the low 
PAH exposed group, we identified five oxylipins were ele-
vated in the high PAH exposed group among which (±)18-
HETE (median: 9.27 nM vs. 8.54 nM, p-adjust < 0.001, 
VIP = 2.39), 19(S)-HETE (median: 13.69 nM vs. 10.68 nM, 
p adjust < 0.001, VIP = 1.01), 5,6-dihydroxyeicosatrie-
noic acid (DiHETrE) (median: 2.27 nM vs. 1.45 nM, p 
adjust < 0.01, VIP = 1.32), and 9,10-DiHOME (median: 
204.80  nM vs. 70.9  nM, p adjust < 0.001, VIP = 3.27). 
However, 9-oxo-10(E),12(Z)-octadecadienoic acid (9-oxo-
ODE) (median: 37.70 nM vs. 52.23 nM, p adjust < 0.05, 
VIP = 1.25) was lower in the high PAH exposed children 
than in the low PAH exposed children (Fig. 1D).

Correlation Between Urinary PAH Metabolites 
and Plasma Oxylipins

We found that nine oxylipins were associated with the 
ƩOH-PAHs when they were categorized as tertiles (p val-
ues for trends were all < 0.05) (Fig. 2). In the unadjusted 
model, compared with the 1st tertile, the ƩOH-PAHs in 

the 3rd tertile was positively associated with CYP-derived 
(±)18-HETE, and negatively associated with 5-LOX 
derived (±)4-hydroxy-docosahexaenoic acid (HDHA) 
and (±)7-HDHA, and 12/15-LOX derived (±)12-hydrox-
yeicosapentaenoic acid (HEPE). In the adjusted model 
(corrected for BMI, gender, age, parental education lev-
els, monthly household income and family member smok-
ing), compared with the 1st tertile, the ƩOH-PAHs in the 
2nd and 3rd tertiles were negatively associated with CYP-
derived 5,6-EET [B with 95%CI − 0.189 (− 0.314, − 0.064) 
for 2nd tertile; − 0.229 (− 0.357, − 0.100) for 3rd ter-
tile], 11,12-EET [− 0.126 (− 0.246, − 0.007) for 2nd ter-
tile; − 0.136 (− 0.258, − 0.014) for 3rd tertile], and 14,15-
EET [− 0.166 (− 0.311, − 0.022) for 2nd tertile; − 0.178 
(− 0.326, − 0.030) for 3rd tertile]. The concentration of 
ƩOH-PAHs in the 3rd tertile was negatively associated 
with CYP-derived 16(17)-epoxydocosapentaenoic acid 
(EpDPE) [B with 95%CI − 0.186 (− 0.330, − 0.043)], but 
positively associated with CYP-derived 9,10-DiHOME [B 
with 95%CI 0.066 (0.013, 0.129)]. In the sensitivity analy-
ses, the relationships between the ƩOH-PAHs and CYP-
derived oxylipins were not materially changed in models 
that were not adjusted for family member smoking. Still, 
some differences in models were adjusted only for gen-
der, age, and BMI and in models stratified by child gen-
der (Table S4). Therefore, we consider adjusting monthly 

Table 2  Comparison of urinary 
PAH metabolite concentrations 
(μg/mmol creatinine) in 
participants

PAH, polycyclic aromatic hydrocarbon; 1-OHNap, 1-hydroxynaphthalene; 2-OHNap, 2-hydroxynaph-
thalene; 2-OHFlu, 2-hydroxyfluorene; 9-OHFlu, 9-hydroxyfluorene; 1-OHPhe, 1-hydroxyphenanthrene; 
2-OHPhe, 2-hydroxyphenanthrene; 3-OHPhe, 3-hydroxyphenanthrene; 4-OHPhe, 4-hydroxyphenan-
threne; 9-OHPhe, 9-hydroxyphenanthrene; 1-OHPyr, 1-hydroxypyrene; ƩOHNap, the sum of 1-OHNap 
and 2-OHNap; ƩOHFlu, the sum of 2-OHFlu and 9-OHFlu; ƩOHPhe, the sum of 1-OHPhe, 2-OHPhe, 
3-OHPhe, 4-OHPhe, and 9-OHPhe; ƩOH-PAHs, the sum of urinary monohydroxylated PAH metabolite 
concentrations
a Non-normal continuous variables were compared using the Mann–Whitney U test

Metabolites Low PAH exposed group (n = 50) High PAH exposed group (n = 50) pa

Percentile Contribution (%) Percentile Contribution (%)

25th 50th 75th 25th 50th 75th

1-OHNap 0.18 0.45 1.16 10.2 0.45 1.13 2.39 10.7 0.001
2-OHNap 0.18 0.45 1.00 10.9 0.51 1.15 2.56 9.2 0.001
2-OHFlu 0.19 0.45 0.98 11.7 0.55 1.41 2.61 11.0  < 0.001
9-OHFlu 0.13 0.52 1.34 12.7 0.67 1.00 2.13 9.9 0.001
1-OHPhe 0.12 0.36 0.79 9.2 0.36 1.41 2.69 11.5  < 0.001
2-OHPhe 0.09 0.21 0.77 6.5 0.17 0.59 1.92 7.2 0.001
3-OHPhe 0.21 0.43 0.98 12.6 0.53 1.51 2.67 10.6  < 0.001
4-OHPhe 0.10 0.39 1.07 9.9 0.66 1.18 2.46 11.0  < 0.001
9-OHPhe 0.13 0.22 0.66 7.6 0.50 1.23 2.41 10.5  < 0.001
1-OHPyr 0.28 0.53 0.79 8.8 0.46 1.04 2.41 8.4 0.001
ƩOHNap 0.39 1.14 2.04 21.1 1.10 2.61 5.11 19.9  < 0.001
ƩOHFlu 0.42 1.10 2.22 24.4 1.41 2.75 5.13 20.9  < 0.001
ƩOHPhe 0.87 1.90 3.99 45.7 3.19 6.59 12.35 50.8  < 0.001
ƩOH-PAHs 2.69 5.16 8.45 100.0 7.55 15.30 25.75 100.0  < 0.001
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household income and parental education levels in the 
regression model.

Inflammation‑Related Markers

Compared to the low PAH exposed children, the mean 
counts of monocytes (0.56 ± 0.2 ×  109/L, p < 0.001) and 
median concentrations of TNF-α (6.51 pg/mL, p < 0.001), 
IL-6 (6.96  pg/mL, p < 0.001), and IL-10 (1.51  pg/mL, 
p < 0.001) were significantly higher in the high PAH exposed 
children (Fig. 3).

Mediation Analysis

We built a statistical model to assess the mediation effect 
of changes in plasma 9,10-DiHOME on the inflamma-
tory response of PAH exposure (Fig. 4). We found that 
9,10-DiHOME mediated a separate 42.7%, 31.1%, 57.8%, 
and 38.5% of the association between ƩOH-PAHs and 
monocytes, IL-6, IL-10, and TNF-α (p = 0.017, 0.014, 0.005 
and 0.012, respectively).

Discussion

To our knowledge, we firstly reported the associations 
between PAH exposure and changes in a wide range of 
oxylipins in children. We compared 37 oxylipins from the 
CYP, COX, and LOX pathways between low and high PAH 
exposed groups. We observed that a higher urinary ΣOH-
PAH level was related to more pro-inflammatory oxylipins 
and associated with less anti-inflammatory oxylipins in 
children. Mediation analysis revealed that CYP-derived 
9,10-DiHOME had a significant mediating effect in the 
association of urinary ΣOH-PAH with the inflammatory 
response. These findings indicate that the alterations of 
oxylipins may predate the immune response, and CYP-
derived oxylipins can be regarded as sensitive lipid media-
tors to reveal the early inflammatory response to PAH 
exposure.

Oxylipins are a group of lipid metabolites gener-
ated via oxygenation of PUFA and participate in the 

balance of anti- and pro-inflammatory responses in the body 
(Dominguez-Perles et al. 2019; Serhan et al. 2008). Here, we 
found that high PAH exposed children have elevated levels 
of four oxylipins targeted by the CYP pathway, three from 
AA [(±)18-HETE, 19(S)-HETE, 5,6-DiHETrE], and one 
from LA (9,10-DiHOME), but have lower levels of 9-oxo-
ODE, which originates from LA and results from 5-LOX 
pathway metabolism. CYP-derived epoxyeicosatrienoic 
acids (EETs) reduced the recruitment of pro-inflammatory 
monocytes during peripheral zymosan-induced inflam-
mation, thereby reducing inflammatory pain (Gilroy et al. 
2016). However, EETs are highly unstable in vivo, as 5,6-
EET can be metabolized by soluble epoxide hydrolase (sEH) 
into 5,6-DiHETrE, which plays a pro-inflammatory function 
(Newman et al. 2005). In addition, CYP-derived 9,10-epox-
yoctadecamonoenoic acids (EpOME) also be metabolized 
into 9,10-DiHOME by sEH, both of which can activate 
NF-κB and mediate inflammation (Hildreth et al. 2020; Zim-
mer et al. 2018; Viswanathan et al. 2003). 5-LOX-derived 
9-oxoODE is a natural ligand for PPARγ signaling and 
participates in anti-inflammatory responses by suppressing 
NF-κB activation (Shiraki et al. 2005). CYP-derived (±)18-
HETE plays a role in insulin resistance, and its elevation 
is related to microvascular insulin resistance (Chadderdon 
et al. 2016). CYP-derived 19(S)-HETE has a cardioprotec-
tive role and contributes to maintaining body fluid and cir-
culatory homeostasis. Its increase has cardiovascular pro-
tection (Elkhatali et al. 2015; Kaide et al. 2003; Wang et al. 
2004). The higher CYP-derived pro-inflammatory oxylipins 
and lower 5-LOX-derived anti-inflammatory oxylipins in 
children with high PAH exposure indicate the imbalance 
of their immune response. Our previous data showed that 
children living in a high PAH exposed area are at higher risk 
of low-grade inflammation and cardiovascular endothelial 
inflammation (Dai et al. 2019; Zheng et al. 2019). Therefore, 
these oxylipins derived from different pathways might be 
considered potential biomarkers for assessing the inflam-
matory effects of internal exposure.

As we know, PAHs are converted into mutagenic OH-
PAH isomers by the CYP family, including CYP1A, 
CYP1B, CYP2C, and CYP2E (Gao et al. 2018). CYP epox-
ygenases oxidize AA to EET, DHA to EpDPE, and LA to 
EpOME (Anne et al. 2011). Thus, the CYP family controls 
the metabolic activation of PAHs and monitors the synthesis 
of EETs, EpDPE, and EpOME. Some enzymes, including 
CYP1A1, CYP1A2, and CYP1B1, contribute to 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD)-mediated increases 
in oxylipin levels (Hankinson et al. 2016). Siegrist et al. 
(2019) found that low molecular weight PAHs can induce 
the activation of glycerophospholipids and the increase of 
downstream expression of COX2 and eicosanoids in mouse 
lung epithelial cells. Our results show that elevated urinary 
ΣOH-PAHs are associated with CYP-derived oxylipins, as 

Fig. 1  Comparison of plasma oxylipin profile between low and high 
PAH exposed groups. A Heatmap of plasma oxylipins between low 
and high PAH exposed groups. LOX lipoxygenase, COX cyclooxy-
genase, CYP cytochrome P450. B Scoring plots of the unsupervised 
PCA model. PCA principal component analysis. C Scoring plots of 
the supervised OPLS-DA model. OPLS-DA orthogonal partial least 
squares discrimination analysis. D Scatter dot plots of the most signif-
icantly changed oxylipins in plasma of children. p adjusted indicates 
the multiple testing adjusted p values using the Benjamini–Hochberg 
procedure. The dotted and solid lines represent the median and P25 or 
P75, respectively

◂
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Fig. 2  Association of urinary 
ƩOH-PAHs with plasma 
oxylipins in children. All 
models were adjusted for age, 
gender, BMI, family member 
smoking, paternal and maternal 
education levels, and monthly 
household income. The 1st 
tertile was regarded as the refer-
ence variable to weigh the 2nd 
and 3rd tertiles. ƩOH-PAHs the 
sum of urinary monohydroxy-
lated PAH metabolite concen-
trations

Fig. 3  Comparison of monocyte 
inflammatory response between 
the low and high PAH exposed 
groups. A The monocyte count 
difference between the two 
groups presents data as means 
and standard deviation. B The 
difference in monocyte-derived 
cytokines between the two 
groups. Data are presented 
as median. IL interleukin, 
TNF tumor necrosis factor. 
***p < 0.001
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demonstrated by the increase in pro-inflammatory oxylipin 
(9,10-DiHOME) and decreased anti-inflammatory oxylipins 
(16,17-EpDPE, 11,12-EET, 14,15-EET, and 5,6-EET). 
These findings suggest CYP-derived oxylipins may be new 
biomarkers for evaluating the inflammatory effects of PAH 
exposure, which provides a unique perspective to elucidat-
ing the toxic impact of PAH on inflammation. Similar to 
our results, Aung et al. (2021) found that PAH metabolites 
significantly correlated to CYP450 products, including 
9(S)-HODE, 5,6-EET, and 14(15)-EET in pregnant women. 
Not all CYP-derived oxylipins [e.g., 5,6-DiHETrE, (±)18-
HETE, 19(S)-HETE] with differences between high and low 
PAH exposed groups were significantly correlated with uri-
nary ΣOH-PAHs, which may be because these differences 
are not directly caused by PAH exposure. At the same time, 
in pregnant women, Welch et al. (2021) observed that other 
chemical contaminants such as organophosphate ester and 
phthalate metabolites were associated with higher levels of 
CYP-derived pro-inflammatory DiHOMEs. There was no 
significant association between CYP-derived 5,6-DiHETrE 
and ΣOH-PAHs, but its upstream metabolite 5,6-EET was 
significantly associated with PAH exposure. Other popula-
tion studies observed that exposure to air pollution is linked 
to alterations of 5-LOX, 12/15-LOX, and COX-derived 
oxylipins in newborns and pregnant women (Mu et al. 2019; 
Yan et al. 2019). Wang et al. (2021) observed that exposure 
to the particulate matter might activate the formation of 
CYP-derived 5,6-DHET, characterized by airway inflam-
mation. Although we could not confirm their results, this 
may be because our study was focused mainly on the toxic-
ity of PAHs metabolized by the CYP family. In contrast, the 
toxicity components of air pollution and biodiesel exhaust 
are more complex. Thus, different pollutants have other toxic 

effects on the biosynthetic pathway of oxylipins, and the 
specific interactions between toxicants and oxylipins deserve 
further study.

Our previous study has shown that PAH exposure is 
associated with a cytokine storm characterized by altered 
concentrations of multiple anti- and pro-inflammatory 
cytokines in children with high PAH exposure (Cheng et al. 
2020). We also observed that children from the high PAH 
exposed group have higher counts of monocyte and con-
centrations of TNF-α, IL-10, and IL-6 than those from the 
low PAH exposed group. Monocytes are an essential part 
of innate and adaptive immunity and actively participate in 
and coordinate the inflammatory response with the cytokines 
mentioned above (Abdulkhaleq et al. 2018). Bioactive lipid 
mediators can be classified as pro- or anti-inflammatory 
oxylipins, which can induce the production of anti-or pro-
inflammatory cytokines (e.g., TNF-α, IL-10, IL-1β, and 
IL-6) (Ávila-Román et al. 2018; Bosviel et al. 2017; Pauls 
et al. 2018; Li et al. 2020). CYP-derived EETs can reduce 
the recruitment of pro-inflammatory monocytes and promote 
the pro-resolution phenotype in the monocyte lineage (Gil-
roy et al. 2016). CYP-derived 9,10-DiHOME has adverse 
effects on apoptosis, vasodilation, increased cellular oxida-
tive stress, mitochondrial dysfunction, and suppression of 
neutrophil respiratory burst activity (Thompson et al. 2007; 
Viswanathan et al. 2003).

Fur the r more ,  we  found  t ha t  CYP-der ived 
9,10-DiHOME was different between the two groups and 
significantly correlated with urinary ΣOH-PAHs. The 
mediation analysis could provide clues for further study 
of the potential function of CYP-derived 9,10-DiHOME 
between PAH exposure and monocyte and related 
cytokines. Results showed that plasma 9,10-DiHOME 

Fig. 4  Estimated proportion 
of the association between 
PAH exposure and monocyte 
inflammatory response medi-
ated by 9,10-DiHOME. The 
figure presents 9,10-DiHOME 
levels in plasma as a media-
tor, the estimate of the indirect 
effect (IE), the estimation of 
the direct effect (DE), and the 
proportion of mediation [(IE/
DE + IE) × 100]. Model adjusted 
for age, gender, BMI, family 
member smoking, paternal and 
maternal education levels, and 
monthly household income; 
5000 bootstrap samples
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plays a mediator between PAH exposure and monocyte, 
anti-inflammatory cytokine IL-10, and pro-inflammatory 
cytokines TNF-α and IL-6. Similar to our study, Shen 
et al. (2018) found that blood levels of 9,10-DiHOME and 
12,13-DiHOME were elevated after exposure to welding 
fumes in adults, which may be related to systemic inflam-
matory responses. In addition, So et al. (2021) found that 
plasma specialized lipid mediators metabolized by EPA 
and DHA have a significant effect on ex vivo monocyte 
inflammatory response by regulating different cytokine 
expressions, such as monocyte chemoattractant protein-1, 
TNF-α, IL-10, and IL-6, suggesting that these oxylipins 
have immunomodulatory activities. Additional studies are 
needed to elucidate better the potential mediating role of 
CYP-derived oxylipins in the immune response caused by 
PAH exposure.

Our study firstly examines the impact of PAH exposure 
on CYP, COX, and LOX-derived oxylipin profiles in chil-
dren and provides epidemiological evidence for the mediat-
ing role of CYP-derived 9,10-DiHOME in the effect of PAH 
exposure on monocytes and related pro-and anti-inflamma-
tory cytokines. Nevertheless, some limitations should be 
acknowledged that may limit our data interpretation. First, 
single spot urinary and blood samples were used to meas-
ure PAH metabolites and oxylipin profiles, which may be 
random and thus may lead to attenuation estimates. Further 
repeated analysis of urinary OH-PAHs is needed to improve 
the measurement accuracy. Second, the power of associa-
tion analysis may be limited by the small sample size of this 
study. We followed up with children aged 3–7 in the same 
area every year to ensure the relative stability of the study 
population and continue to advance based on previous find-
ings. Third, this cross-sectional study cannot explain causal-
ity, limiting the power of mediation analysis. However, our 
interpretation of the results is based on the biological mecha-
nism reported in previous experimental studies. Addition-
ally, we corrected to the greatest extent possible confound-
ing factors, including BMI, gender, age, monthly household 
income, maternal and parental education levels, and family 
member smoking. Still, we cannot avoid the possibility that 
other confounding factors were not included in our study.

Conclusions

We report for the first time the association between PAH 
exposure and oxylipins reflecting the CYP pathways in 
children, which is mainly manifested as an increase in pro-
inflammatory oxylipins and a decrease in anti-inflammatory 
oxylipins. We may provide a new perspective on PAHs and 
chronic inflammation. CYP-derived 9,10-DiHOME might 
significantly mediate the association between PAH exposure 

and inflammatory response. Thus, CYP-derived oxylipins 
are potent lipid mediators for assessing the inflammatory 
effects of PAH exposure.
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