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Objectives: This study aimed to validate a digital image analysis (DIA) workflow for automatic positive cell detection
and positive region delineation for immunohistochemical hypoxia markers with a nuclear (hypoxia-inducible factor
1α [HIF-1α]) and a cytoplasmic (pimonidazole [PIMO]) staining pattern.
Materials andmethods: 101 tissue fragments from 44 laryngeal tumor biopsieswere immunohistochemically stained for
HIF-1α and PIMO. QuPath was used to determine the percentage of positive cells and to delineate positive regions au-
tomatically. For HIF-1α, only cells with strong staining were considered positive. Three dedicated head and neck pa-
thologists scored the percentage of positive cells using three categories (0: <1%; 1: 1%–33%; 2: >33%;). The
pathologists also delineated the positive regions on 14 corresponding PIMO and HIF-1α-stained fragments. The con-
sensus between observers was used as the reference standard and was compared to the automatic delineation.
Results: Agreement between categorical positivity scores was 76.2% and 65.4% for PIMO and HIF-1α, respectively.
In all cases of disagreement in HIF-1α fragments, the DIA underestimated the percentage of positive cells. As for the
region detection, the DIA correctly detected most positive regions on PIMO fragments (false positive area=3.1%,
false negative area=0.7%). In HIF-1α, the DIAmissed some positive regions (false positive area=1.3%, false negative
area=9.7%).
Conclusions: Positive cell and region detection on biopsy material is feasible, but further optimization is needed before
unsupervised use. Validation at varying DAB staining intensities is hampered by lack of reliability of the gold standard
(i.e., visual human interpretation). Nevertheless, the DIA method has the potential to be used as a tool to assist pathol-
ogists in the analysis of IHC staining.
Introduction

Immunohistochemistry (IHC) iswidely used for diagnostic and prognos-
tic purposes to determine the expression of various proteins (biomarkers) in
tissue samples. Pathologists often evaluate IHC-stained tissue samples and
manually evaluate biomarker expression and staining patterns. Since this
process is laborious and time-consuming, it can limit the scale of research.1

Moreover, visual inspection is inherently semi-quantitative and can intro-
duce subjectivity. A need exists for standardized and preferably automated
quantification of IHC measurements to overcome these obstacles.
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Recent advancements in digital image analysis (DIA) offer the potential
to overcome some of these drawbacks.1 Qupath is an open-source bioimage
analysis software with the functionality to evaluate biomarkers in digitized
histopathological tissue sections.2 QuPath is designed to handle whole slide
images and it offers the ability to determine the presence of biomarkers and
assess their distribution across tumor tissue.

Recently, we developed a DIA workflow to compare the DAB staining
patterns of two hypoxia biomarkers, pimonidazole (PIMO), and hypoxia-
inducible factor 1-alpha (HIF-1α), which we validate in de present study.3

In this workflow, a cell-based analysis was used, determining the DAB
nds.
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Fig. 1. Image preprocessing workflow of PIMO (left) and HIF-1α (right) stained
laryngeal tumor biopsies. Isolated tissue fragments are automatically detected
(A) and exported into separate image files (B). Corresponding PIMO and HIF-1α
fragments are registered to each other (C) and an automatic tissue detection is
performed (magenta). Artifacts are manually removed from the annotation.
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positivity per cell instead of counting the number of positive pixels, as was
done in previous studies.4,5 This current approach has the advantage of
only taking into account staining in the relevant cell region, which makes
it easier to compare nuclear to cytoplasmic biomarkers. While the study
found only a weak correlation between the hypoxia markers, it showed
the feasibility of a DIAworkflow to detect positive DAB-stained cells and re-
gions. However, before implementation in the clinic, both the automated
quantification of DAB staining, as well as the positive region detection
need to be validated.

In this paper, we set out to validate Qupath’s performance for positive
cell detection and positive region detection for PIMO and HIF-1α IHC by
comparing the results of a DIA workflow to pathologists’ visual evaluation.

Methods

Material

Laryngeal tumor biopsies from 58 patients with advanced laryngeal
squamous cell carcinoma were used in this study. The patients participated
in a phase III randomized trial where they received accelerated radiother-
apy with or without carbogen gas and nicotinamide.6 79 patients partici-
pated in a multicenter translational side study and received PIMO
intravenously two hours before biopsy. In this present study, the tissue of
58 patients who were included in the RadboudUMC, Nijmegen, the
Netherlands (single-center) was used.

Consecutive sections were cut from each tissue block and immuno-
histochemically stained for two hypoxic markers, HIF-1α, and PIMO. The
staining procedure was done as previously described.3 For PIMO, we used
the primary antibody Mouse-antiPIMO (Lot# 9.7.11, HydroxyProbe, Mas-
sachusets, USA). For the HIF-1α IHC, the Novolink kit (Leica Biosystems,
Rijswijk, the Netherlands) was used with the primary antibody Mouse-
anti-HIF-1α (BD Biosciences, cat# 610959, lot 4 073 775).

Digital analysis

A Hamamatsu NanoZoomer XR scanner was used for digitizing all sec-
tions at 40x magnification. If sections contained multiple tissue fragments,
each fragment was exported as a separate image file, Fig. 1. The corre-
sponding PIMO and HIF-1α fragments were manually registered. Tissue
fragments that contained no tumor cells or were deemed to be of poor qual-
ity due to scanning or tissue artifacts were excluded. A total of 101
matching tissue fragments could be identified in 44 patients (1–9 fragments
per patient) and were included in the study. Tissue detection was used to
automatically annotate each tissue fragment. Artifacts like folded tissue or
dust were manually removed from the annotation. The overlapping area
of the annotations in the registered HIF-1α and PIMO tissue fragments
was used for analysis.

Positive cell detection was performed in QuPath version 0.3.0 using the
settings that can be found in Supplementary material S1. QuPath’s cell de-
tection is based on nucleus detection, which is isotropically expanded to de-
termine the cytoplasm. The two biomarkers showed distinct staining
patterns: HIF-1α staining was quite strong and diffuse throughout the tis-
sue, while positive PIMO staining was much weaker. The original study hy-
pothesized that areas of intense HIF-1α staining corresponded to areas of
any PIMO staining.3 In order to test this hypothesis, only cells with strong
HIF-1α intensity were considered positive. The threshold was determined
by creating a composite training image of 17 tissue fragments from differ-
ent patients. On this training image, the best threshold for strong HIF-1α
staining was manually identified by a researcher (J.E.S.) who was blinded
to the PIMO staining in corresponding tissue fragments.

Cells with strong HIF-1α staining were defined as cells with an optical
density (OD) of the DAB color ≥0.65 in the nucleus. Because the staining
intensity of PIMO was relatively weak, the threshold for PIMO positivity
was set at DAB OD ≥0.10 in the cytoplasm. After classification of all de-
tected cells, the area percentage of positive cells was calculated for each
fragment as the area of all positive cells divided by the area of all cells.
2

After positive cell detection, positive regions were automatically anno-
tated, Fig. 2. A publically available script was used7 to annotate regions with
a high density of positive cells using the settings in Supplementarymaterial S1.

Validation

This study validated two aspects of the DIA workflow: positive cell de-
tection and delineation of positive regions. This was done by comparing
the results of the DIA to the manual scoring of three experienced head
and neck pathologists (S.M.W., S.A.K., and G.E.B.). All observers were
blinded to the results of the DIA and to the results of other observers.

Positive cell detection
All observers were asked to score the area percentage of positive cells in

each tissue fragment. For PIMO, observers were instructed to only assess cy-
toplasmic staining. For HIF-1α, observers were instructed to only assess nu-
clear staining and to regard only cells with a strong nuclear DAB intensity as
positive. Strong intensity HIF-1α staining was determined beforehand in a
consensus meeting with all three observers where examples of strong stain-
ing were delineated and agreed upon. A semi-quantitative scoring method
was used with three categories (score 0: <1% tissue area was positive,
score 1: 1%–33% positivity, score 2: >33% positivity). Each observer
scored two-thirds of all fragments in such a way that each fragment was
scored by two observers. Disagreements between observers were solved
in a consensus meeting with all three observers. In this meeting, observers
were blinded to the original scores. The observers’ score through consensus
is considered the reference standard.

Positive region delineation
The three pathologists were also asked to delineate positively stained

regions on a subsection of fragments. For PIMO fragments (n = 14), this



Fig. 2. Positive cell and region detection for PIMO (top row) and HIF-1α (bottom row). Cell detection is performed on the original image (A,E) within the tissue annotation
(magenta). The optical density of the DAB-staining is measured in each cell’s cytoplasm for PIMO and nucleus for HIF-1α fragments. The black arrows in the measurement
maps (B,F) show the threshold for positivity that is used to separate positive (red) from negative cells (blue) (C,G). Areas with a high density of positive cells form positive
regions (yellow) (D,H).
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meant areas with any staining, while for HIF-1α fragments (n=14) only
strongly stained areas had to be delineated. If the DIA detected a positive
region that was not delineated by any observer, this region was seen as a
false positive. Inversely, if the DIA failed to detect a positive region that
was delineated by at least two observers, the region was seen as a false neg-
ative. The selection of fragments for this analysis included four PIMO and
three HIF1-α fragments in which the DIA did not identify any hotspots.

Statistical analysis

Positive cell detection
The interobserver agreement between pathologists before the consen-

sus meeting was calculated, as well as the linearly weighted Cohen’s
kappa for PIMO and HIF-1α fragments separately. The Cohen’s kappa ex-
presses the agreement corrected for agreement by chance. To validate the
DIA, the observers’ consensus score and the DIA categorical score were
compared by calculating the percentage of agreement and the weighted
kappa.

Positive region delineation
The accuracy of the DIA hotspot delineation was tested by determining

the percentage of false positive and false negative areas. Additionally, three
parameters were calculated to quantify the overlap between the DIA
hotspots and the true positive areas. The positive predictive value (PPV) de-
termines the probability of the DIA delineated area being truly positive
and is calculated as follows: TP/(TP+ FP). The sensitivity determines the
probability of the true positives being included in the DIA delineation:
TP/(TP + FN). The DICE score calculates the overlap between the two
areas: TP/(2 ∗ TP + FP+ FN).

Results

Interobserver agreement

Before the consensus meeting, observers agreed on the positivity score
in 65.4% of PIMO and 62.4% of HIF-1α fragments, achieving a weighted
kappa of 0.43 and 0.33 for PIMO and HIF-1α, respectively. All cases of dis-
agreement between observers were differences of one category and were
solved in a consensus meeting.
3

Positive cell detection

The results of the cell detection validation are shown in Fig. 3, where the
DIA percentage of positive cells was compared to the observers’ consensus.

For PIMO fragments, the DIA categorical positivity score was in agree-
ment with observers in 77 fragments (76.2%, weighted kappa=0.64). All
disagreements were a difference of one category. In 13 of 24 cases of dis-
agreement (54.2%), the DIA gave a higher score than the observers. Each
category’s median DIA percentage was within the range of that category.

In the HIF-1α fragments, the DIA agreed with observers in 66 fragments
(65.4%, weighted kappa=0.38). All disagreements were a difference of
one category. In all cases of disagreement, the DIA gave a lower score
than the observers, underestimating the positivity. To the 29 fragments
that the observers scored as 2 (>33% positive cells), the DIA gave a median
percentage of positivity of 21.0%, giving 23 fragments a score of 1.

Positive region delineation

Of the 14 PIMO fragments analyzed, there were nine fragments in which
both the observers and the DIA delineated positive regions. In these fragments,
the DIA resulted in an average PPV of 43.5%, sensitivity of 85.6%, and DICE
score of 57.1%when compared to the true positive regions (regions delineated
by at least two observers). Four PIMO fragments were correctly identified as
negative by the DIA as they contained no true positive regions. This leaves
one fragment where the DIA falsely delineated positive regions. The PPV and
DICE score of this fragmentwere 0, and the sensitivity couldnot be determined.

Of the 14 HIF-1α fragments, 11 contained positive regions according to
both the DIA and observers. In these fragments, the DIA had an average PPV
of 80.3%, sensitivity of 61.1%, and DICE score of 65.0%when compared to
the true positive regions. The three remaining HIF-1α fragments did not
contain positive regions according to the DIA, but true positive regions
were delineated by observers. Because the DIA identified these fragments
as negative, the sensitivity and the DICE score of these fragments were 0,
and the PPV could not be determined.

Patterns of classification

When looking at regions instead of fragments, most false positive and
false negative regions were due to small differences in the exact delineation



Fig. 3. Percentage of positive cells as calculated by the DIA (logarithmic scale) versus scored categorically by observers for PIMO (left) and HIF-1α fragments (right).
Observers used a semi-quantitative scoring method (0: <1%, 1: 1%–33%, 2: >33%) depicted as horizontal stripes in the graph. Green points represent a categorical
agreement between the DIA and observers, orange points a disagreement of one category. Back diamonds indicate the median DIA positivity for each category. Zero was
artificially added on the y-axis, as six PIMO fragments and one HIF-1α fragment contained no positive cells according to the DIA.
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of a region, Fig. 4. However, we identified distinct patterns in the classifica-
tion results that were unique for PIMO and HIF-1α fragments.

In PIMO fragments, the DIA falsely classified 2.4% of the tissue area
as positive and only 0.7% as false negative. While the DIA detected
most positive regions, it created slightly wider margins for those re-
gions than the observers did. An example of this pattern is shown in
the top row of Fig. 5.

In HIF-1α fragments, the DIA classified 1.3% of the tissue area as false
positives and 9.7% as false negatives. This high false negative rate was
not only due to differences in margin but also by true positive regions
missed by the DIA, Fig. 5.

Additionally, we identified two specific situations in which misclassifi-
cation occurred. The first is false positives due to red blood cells, Fig. 6A.
Because the PIMO threshold is relatively low, the small amount of brown
pigment in the red blood cells was picked up by the DIA workflow as
Fig. 4. Example of positive region detection result where misclassifications are due to
delineated by one observer (blue) and at least two observers (cyan), are compared t
regions (green) and misclassifications. False positives (red) are the regions delineat
delineated by at least two observers, but not by the DIA.

4

positive staining. The second type of misclassification are false negatives
due to low (detected) cell density. Positive regions are delineated based
on a high density of positive cells. If the detected cell density is too low, it
will not annotate the region, even if the detected cells are positive, Fig. 6B.

Discussion

In this paper, we set out to validate a method that automatically detects
positive IHC stained cells and regions in tissue biopsies. This was done by
comparing the results of the DIA and pathologists in determining the per-
centage of positive cells and the location of positive regions.

The DIA achieved a weighted kappa of 0.64 for PIMO and 0.38 for HIF-
1α fragments, corresponding to a substantial and fair agreement,
respectively.8 In HIF-1α fragments, the DIA tended to underestimate the
amount of positivity compared to the observers’ scores.
small differences in delineation. The observer delineations (A), divided into areas
o the DIA delineation (B) (yellow). The results (C) show the correctly identified
ed by the DIA, but not by any observer. False negatives (black) are the regions



Fig. 5. Patterns of classification results on PIMO (top row) and HIF-1α fragments (bottom row). The observer delineations (A,D), divided into areas delineated by one
observer (blue) and at least two observers (cyan), are compared to the DIA delineation (B,E) (yellow). The results (C,F) show the correctly identified regions (green), false
positives (red) and false negatives (black).
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The agreement between the DIA and observers is comparable to the inter-
observer agreement between pathologists before consensus was reached in
HIF-1α fragments (weighted kappa of 0.33). In PIMO fragments, the DIA’s re-
sults were better than the initial interobserver agreement (weighted kappa of
0.43). This suggests that the performance of the DIA in determining the per-
centage of positive cells is comparable to a pathologist’s visual estimation.

When validating the region detection, we found that the DIA tended to
slightly overestimate the PIMOpositive regions,whilemissing positive HIF-
1α regions. In PIMO fragments, the DIA falsely classified 2.4% of the tissue
Fig. 6. Examples of false positives (red) due to red blood cells (A), and false negatives (
delineated areas, on the right the positive (pink) and negative (blue) cell detections are

5

area as positive. These false positive regions were predominantly due to
wider margins created by the DIA around positive regions. Since this still
resulted in a correct detection of positive regions, we find this result
acceptable.

In HIF-1α however, the DIA falsely classified 9.7% of the tissue as neg-
ative, missing several regions that observers annotated as positive. For clin-
ical use, this result is unacceptable.

For HIF-1α fragments, a relative positivity threshold was used, so only
strong DAB intensity was considered positive. For such a threshold, a DIA
black) due to low cell density (B). On the left, the original tissue is shown with the
shown.
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workflow might outperform observers. Humans can easily recognize rela-
tive intensity differences within one image, but find it much harder to de-
termine absolute staining intensity when looking at fragments in
isolation.9 Observers might delineate areas with the highest staining inten-
sity within one fragment, even when the absolute staining intensity is rela-
tively low compared to other fragments. Doing so introduces the risk of
overestimating a fragment’s positivity, resulting in more false negatives.
The DIA workflow might thus be better equipped to consistently compare
the staining intensity across different images.

In our present study, it is unclear whether the high false negative rate in
HIF-1α fragments is due to poor performance of the DIA or overestimation
of positive region by observers. This makes it difficult to draw any conclu-
sions regarding the validity of the DIA method when it comes to detecting
strong DAB staining.

This brings us to the gold standard paradox9: how do we validate a
method when the reference standard is not an objective measure? In the
current study, we tried to minimize the effect of interobserver variability
by only taking into account the consensus of all observers. However, before
consensus, observers in this study only agreed on the positivity score in
63.9% of cases. This underlines the challenges of visual assessment, as pa-
thologists remain subjective to visual and cognitive biases when it comes
to assessing color, intensity, and contrast.9 On the other hand, trained pa-
thologists can better discern non-specific staining from clinically relevant
staining, an ability that algorithms lack. For example, the PIMO staining
in this study would often be located around the edges of the tissue. This
so-called “edge effect” occurs when tissue lifts from the slide, causing
both sides of the tissue to be exposed to the antibodies as well as making
it more difficult to wash off excessive antibodies.10 While a pathologist
would recognize this as non-specific staining due to the location and pat-
tern of the stain, the DIA workflow simply recognizes positive cells. Such
areas in the tissue should either be manually removed from the annotation
before analysis or more refined AI solutions need to applied that filters out
these false positives.

Digital image analysis workflow

This study shows that digital, cell-based analysis of IHC stains is feasible
on biopsy tissue. Previous studies have mainly focused on Tissue Micro-
Arrays (TMAs)material or specific regions of interest,11–14 but clinical prac-
tice asks for robust methods to process whole-slide tissue biopsies. Biopsy
tissue contains more artifacts and non-tumorous tissue than TMAs and
also deals with different sizes of tissue area and variation in IHC batches.
Methods that can accurately assess the positive fraction of biopsy material
can streamline the pathology workflow in clinical practice and propel the
scale of research. It also overcomes the common problem of interobserver
variability in assessing the positive fraction of IHC stains.15,16

A cell-based analysis has the advantage of only considering staining pos-
itivity in the relevant cell compartment, e.g., DAB staining of nuclear
markers is only measured in cell nuclei. This diminishes the influence of
non-specific staining. However, this method relies on a robust cell
detection. QuPath’s cell detection functionality, while performing well in
general, could be further improved, e.g., for separating connecting cell nu-
clei. To address issues like this, QuPath continually improves its functional-
ity and adds extensions for the application of different cell detection
methods like StarDist.17

When applying the method to other data or when using it for other IHC
markers, it is advised to work closely with experienced pathologists when
determining positivity thresholds. However, using an absolute intensity
threshold makes the method vulnerable to intensity inhomogeneity, arti-
facts, noise, and interbatch variability in DAB intensity. Therefore, color
normalization of the DAB staining should ideally be performed before anal-
ysis to overcome these issues.18

Another improvement of thismethodology could be to include an object
classifier that can separate tumor cells from stromal tissue, immune cells,
or artifacts. A similar study by Rizzardi et al. (2012) implemented a
6

tumor–stroma classifier to determine S100A1 positivity on TMA material
and found high correlations between DIA-estimated DAB positivity and
semi-quantitative scoring by pathologists.11

In the current workflow, all scanning and tissue artifacts are manually
removed from the analyzed annotations. Several methods have been devel-
oped to automatically detect artifacts like dust, tissue folds, and out-of-
focus scans.19,20 Implementation of such methods in the existing workflow
could save time and increase the throughput time of tissue.

As it stands right now, the workflow needs further improvement before
unsupervised positive cell detection is feasible. However, it can serve as a
tool to assist pathologists when assessing IHC sections. The availability of
computer-aided measurements decreases interobserver variability when
determining IHC positive fractions.21,22 Therefore, the main application
of the method would be to use its results as a reference point, which pathol-
ogists can adjust based on context or perceived misclassifications.
Decreased interobserver variability would be of great value in translational
biomarker research, where the method could be used to achieve a more
robust evaluation of the presence and location of biomarkers.

Limitations

As mentioned before, a major limitation of this study is the use of a rel-
ative threshold for HIF-1α positivity. The gold standard of visual assess-
ment by observers was not sufficiently reliable when it comes to assessing
staining intensity. This makes it difficult to determine whether discrepan-
cies between the two methods are due to poor performance of the DIA or
mistakes in the observers’ assessment. Therefore, we cannot draw any
conclusions regarding the DIA’s performance in detecting strong HIF-1α
positivity.

The Cohen’s kappa is designed to account for the agreement by chance.
However, the (weighted) kappa has a known limitation when there is a
skewed distribution of the data, which is the case in our dataset.23 This
will negatively affect the value of the kappa and makes it difficult to com-
pare the kappa’s between different datasets.

The display screens used by the different observers were not color cali-
brated. Color settings, as well as brightness and contrast of the display, can
influence the hue of stained cells, which might influence a pathologist’s
evaluation of the tissue. However, previous studies have concluded that
monitor settings and quality had little to no impact on pathologists’ assess-
ment of digital pathology slides.24

Conclusions

We have shown that positive cell and region detection on biopsy mate-
rial is feasible, but in need of further optimization before unsupervised use.
Validation of the DIA workflow for detection of strong DAB staining was
hampered, because the gold standard (visual assessment) is not sufficiently
reliable in assessing staining intensity. Nevertheless, the DIA method has
the potential to be used as a tool to assist pathologists in the analysis of
IHC and to decrease interobserver variability in translational biomarker
research.
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Supplementary data to this article can be found online at https://doi.
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