
 

 

 University of Groningen

The temporality of technical debt introduction on new code and confounding factors
Digkas, George; Ampatzoglou, Apostolos; Chatzigeorgiou, Alexander; Avgeriou, Paris

Published in:
Software quality journal

DOI:
10.1007/s11219-021-09569-8

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2022). The temporality of technical debt
introduction on new code and confounding factors. Software quality journal, 30(2), 283-305.
https://doi.org/10.1007/s11219-021-09569-8

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-11-2023

https://doi.org/10.1007/s11219-021-09569-8
https://research.rug.nl/en/publications/4ed670c5-1601-470c-a6bc-fca4b3f280fc
https://doi.org/10.1007/s11219-021-09569-8


Vol.:(0123456789)

https://doi.org/10.1007/s11219-021-09569-8

1 3

The temporality of technical debt introduction on new code 
and confounding factors

George Digkas1 · Apostolos Ampatzoglou2 · Alexander Chatzigeorgiou2 · 
Paris Avgeriou1

Accepted: 20 July 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Code Technical Debt (TD) is intentionally or unintentionally created when developers 
introduce inefficiencies in the codebase. This can be attributed to various reasons such as 
heavy workload, tight delivery schedule, or developers’ lack of experience. Since a soft-
ware system grows mostly through the addition of new code, it is interesting to study how 
TD fluctuates along this process. Specifically, in this paper, we investigate: (a) the tempo-
rality of code TD introduction in new code, i.e., whether the introduction of TD is stable 
across the lifespan of the project, or if its evolution presents spikes; and (b) the relation of 
TD introduction to the development team’s workload in a given period, as well as to the 
experience of the development team. To answer these questions, we have performed a case 
study on 47 open-source projects from two well-known ecosystems (Apache and Eclipse) 
as well as additional isolated projects from GitHub (not selected from a specific ecosystem) 
and inspected the number of TD issues introduced in 6-month sliding temporal windows. 
The results of the study suggested that: (a) overall, the number of TD issues introduced 
through new code is a stable measure, although it presents spikes; and (b) the number of 
commits performed, as well as developers’ experience are not strongly correlated to the 
number of introduced TD issues.

Keywords  TD temporality · Case study · New code debt · Metrics fluctuation

Work reported in this paper has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 801015 (project EXA2PRO) regarding the 
contribution of A. Chatzigeorgiou and A. Ampatzoglou, as well as from ITEA3 and RVO under grant 
agreement No. 17038 (VISDOM), regarding the contribution of P. Avgeriou.

 *	 Apostolos Ampatzoglou 
	 a.ampatzoglou@uom.edu.gr

	 George Digkas 
	 g.digkas@rug.nl; g.digkas@uom.edu.gr

	 Alexander Chatzigeorgiou 
	 achat@uom.edu.gr

	 Paris Avgeriou 
	 paris@cs.rug.nl

1	 Institute of Mathematics and Computer Science, University of Groningen, Groningen, Netherlands
2	 Department of Applied Informatics, University of Macedonia, Macedonia, Greece

Published online: 22 November 2021

Software Quality Journal (2022) 30:283–305

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09569-8&domain=pdf


1 3

1  Introduction

Technical Debt (TD) at the code level refers to inefficiencies introduced in the source code 
of an application during the implementation or the maintenance phase (Li et  al.,  2015). 
These inefficiencies manifest themselves as violations of coding standards, complex 
and hard to understand code, code duplicates, etc. (Letouzey, 2012). According to Alves 
et al. (2010) code technical debt is the most studied type of technical debt, and based on 
Ampatzoglou et al. (2016), it is one of the most important in industry.

One of the certainties in software development is continuous change (Lehman, 1996), 
and code technical debt is no exception to this. In fact, there has been significant work 
on how code technical debt evolves and how it accumulates over time. However, existing 
studies have looked at technical debt evolution as a whole, without distinguishing between 
technical debt that is added as new code, and technical debt incurred through the modifica-
tion of existing code. In this paper, we focus only on the introduction of new code technical 
debt, i.e., TD inserted in the system in the form of new Technical Debt issues. More spe-
cifically we study new methods (our scope is object-oriented systems) that contain techni-
cal debt and we look at the introduction of new technical debt as a temporal phenomenon. 
This can shed light on whether technical debt is introduced in an almost flat rate, whether 
large volumes of technical debt are introduced in infrequent timestamps, or whether large 
volumes of TD are frequently introduced along evolution; examples of these three cases are 
presented in Fig. 1. Consequently, in the second and third case, we need to revise our tech-
nical debt management techniques to focus on those times where large TD is introduced to 
prevent or limit the phenomenon. Broadly speaking, the introduction of TD items in new 
code can either depend on the capabilities of the development team or be associated with 
external factors such as feature requests in short time, lack of sufficient time for testing, etc. 
The former would be reflected in a uniform introduction of TD along evolution, whereas 
the latter would be recognized by fluctuations in the introduction of TD. Knowing the par-
ticular circumstances can help towards self-improvement of the development process so as 
to address the root causes of TD accumulation.

Focusing on technical debt that is introduced by new code, as opposed to technical debt 
that is introduced by modifying existing code, can provide a unique insight. Specifically, 
the new Technical Debt issues introduced by new methods at each commit (either new 
methods in existing classes or new methods in entirely new classes) reflect more accurately 

Fig. 1   TD Introduction Temporality

284 Software Quality Journal (2022) 30:283–305



1 3

the type of problems and the timepoint at which they are introduced. In other words, new 
methods are more representative of the developers’ practices and knowledge level, com-
pared to method modifications whose type and timeliness is often dictated by the need to 
fix a bug or to extend an already existing functionality. Thus, we study the temporality of 
technical debt through a clearer source. Furthermore, in our previous work, we established 
that through the systematic introduction of ‘clean’ new code, a software system can gradu-
ally be freed of its technical debt (Digkas et al., 2020).

In this paper, we answer two high-level questions: (Q1) if the number of introduced 
Technical Debt issues is uniformly spread across evolution, or whether there are time win-
dows in which more Technical Debt issues are inserted; and (Q2) if the number of Techni-
cal Debt issues that is introduced along evolution is related either to the activity (intensity 
of commits) of developers in different time windows, or to the experience of the devel-
opers. Projects could exhibit either a stability in the introduction of code Technical Debt 
issues across evolution or experience fluctuations with isolated or repeating spikes of intro-
duced code Technical Debt issues. In the former case one could assume that accumulation 
of technical debt is most probably due to factors that are constantly present in the entire 
lifetime of the project, such as used processes, tools, management practices, etc. In the 
latter case, one could postulate that the insertion of new code Technical Debt issues is a 
highly temporal phenomenon depending on volatile factors such as feature requests, chang-
ing schedules, pressure to fix bugs, or human factors (such as team composition, develop-
ers’ involvement and experience).

To achieve this goal, we explore the evolution of 47 open source projects from two 
well-known ecosystems, namely: Apache Software Foundation (ASF) and Eclipse Foun-
dation (EF). However, since ecosystems exhibit particular habits and regulations, we have 
included additional OSS projects from GitHub to increase the generalizability of the find-
ings. In particular, we track the number of new Technical Debt issues inserted in each com-
mit. Next, we create a 6-month sliding window (the duration of the time window has been 
set to 6 months as in the study by Hassan on predicting faults using the complexity of code 
changes Hassan (2009)), and we calculate the cumulative number of inserted Technical 
Debt issues for each window, as well as the number of commits in the same window and 
the weighted (by the contribution of each developer) average experience of the develop-
ment team. To answer the first question (Q1), we use a metric property (termed SMF—see 
Sect. 3) that is able to assess metrics’ fluctuation along time and characterize them as either 
stable or sensitive. To answer the second question (Q2) we correlate the number of inserted 
Technical Debt issues with a) the number of commits for each window and b) the weighted 
experience of the development team. The reporting and interpretation of the results is per-
formed at the project level.

This study is an extended and revised version of our previous work (Digkas et al., 2020) 
in which we also explored the temporality of Technical Debt issues introduction. The main 
differences of this work compared to the previous one, are as follows:

–	 Sample size. It explores a significantly larger dataset of 47 instead of 27 projects, 
resulting into the exploration of (approx.) 2.5K instead of (approx.) 2K time windows.

–	 Generalizability. It strengthens the generalizability of our results, since it performs the 
analysis on two software ecosystems (Apache and Eclipse projects), compared to only 
one. In addition, we now explore isolated projects, i.e., not related to a specific ecosystem.

–	 Accuracy of data analysis. The analysis of spikes along evolution (i.e., the timestamps 
with large introductions of technical debt amounts) is performed through statistical 
analysis (extreme values detection), instead of visual observation.

285Software Quality Journal (2022) 30:283–305



1 3

–	 Exploration of additional evolution parameters. We explore also the relation 
between developers’ experience and Technical Debt issues introduction through an 
additional research question. In the original paper, we had only looked into the relation 
between Technical Debt issues introduction and development effort intensity.

The rest of the paper is organized as follows: In Sect. 2, we present related work, and in 
Sect. 3, background information important for understanding the study. In Sect. 4, we pre-
sent the design of the case study, while Sect. 5 elaborates on the results. Section 6 inter-
prets the results and provides implications for researchers and practitioners. Finally, in 
Sect. 7 we present threats to validity and in Sect. 8, we conclude the paper.

2 � Related work

Since this paper focuses on the introduction of technical debt over time, we organize this 
subsection into causes of technical debt introduction (see Sect. 2.1) and technical debt evo-
lution (see Sect. 2.2).

2.1 � Causes of technical debt introduction

Quite recently the research consortium of the InsighTD project1 has explored the causes 
and effects of technical debt accumulation in various countries along the globe (e.g., Bra-
zil, Chile, Colombia, Serbia, USA, etc.) through a family of surveys (Pérez et  al., 2019; 
Ramač et al., 2020; Rios et al., 2018). Through these research efforts they have identified 
in total 78 causes and 66 effects. Among the identified causes of technical debt, close dead-
line, inappropriate planning, and lack of knowledge/experience have proven to be the most 
prolific ones. Additionally, Tufano et al. (2017) studied the evolution of code smells with 
the goal of understanding when and why code smells are introduced and observed the life 
cycle of five code smells. The results indicate that: (a) in the majority of the cases code 
smells are introduced with the creation of the corresponding classes or files; (b) while pro-
jects evolve, “smelly” code artifacts tend to become more problematic; (c) new code smells 
are introduced when software engineers implement new features or when they extend the 
functionality of the existing ones; (d) the developers who introduce new code smells, are 
the ones who work under pressure and not necessarily the newcomers; and (e) the majority 
of the smells are not removed during the project’s evolution and few of them are removed 
as a direct consequence of refactoring operations.

According to Kazman et al. (2015) who conducted a case study on the roots of archi-
tecture debt (ATD), is extremely common and probably the most important type of techni-
cal debt because it consumes the largest percentage of maintenance effort. Their findings 
suggest that architectural debt is extremely easy to introduce: programmers typically want 
to introduce new features or fix bugs; however, by changing the code they often under-
mine the architectural structure leading to the accumulation of ATD. Finally, Martini 
et al. (2015) conducted a case study on five software companies to understand the causes 
that introduce ATD. Large software companies try to deliver as fast as possible in order to 
satisfy their customers’ needs, usually taking shortcuts, thereby introducing ATD. If the 

1  http://​www.​td-​survey.​com/

286 Software Quality Journal (2022) 30:283–305

http://www.td-survey.com/


1 3

debt is not paid-off, it starts to accumulate and this makes feature development more dif-
ficult. However, we clarify that the current study does not deal with ATD but rather focuses 
on code-level TD.

2.2 � Evolution of technical debt

Although technical debt is a multifaceted concept, one of the key constituents of code tech-
nical debt is the presence of code smells. One of the first studies that investigate the evolu-
tion of code smells was conducted by Olbrich et al. (2009). They investigated the evolution 
of two code smells, God Class and Shotgun Surgery, on two OSS projects. The results 
show that along software development, there are phases where the number of code smells 
can either increase or decrease and those phases are not affected by the size of the systems. 
Chatzigeorgiou and Manakos (2014) have investigated the evolution of the Long Method, 
Feature Envy, State Checking, and God Class smells in two open-source software pro-
jects. The results suggested that as projects evolve the number of smells tends to increase. 
Another interesting finding is that a significant percentage of smells was not due to soft-
ware ageing, since some smells were present right from the first version of the code in 
which they reside. Peters and Zaidman (2012) studied the lifespan of the God Class, Fea-
ture Envy, Data Class, Message Chain Class, and Long Parameter List smells. The analysis 
of eight open-source software projects, confirmed that the number of smells increases, as 
projects evolve.

Digkas et al. (2017) tracked the evolution of technical debt in sixty-six open-source Java 
projects by the Apache Software Foundation, over a period of 5 years. In order to detect 
issues that incur technical debt, they relied on SonarQube. The results show that on the one 
hand, there is a significant increasing trend on the size, complexity, number of Technical 
Debt issues, and the total technical debt over time, which seems to confirm the software 
aging phenomenon. But on the other hand, when technical debt is normalized over the non-
commented lines of code, an evident decreasing trend over time is present for many of 
the projects. This could possibly be attributed to: (a) developers that perform refactoring 
activities and fix some of the open Technical Debt issues; or (b) developers that introduce 
better quality code in each commit (compared to the project’s existing code base). We sum-
marize the key findings of the related work in Table 1.

3 � Background information

Prior to the presentation of the case study design and results, we discuss background mate-
rial related to the identification of technical debt in new code and the fluctuation of soft-
ware metrics. While more details can be found on the references we provide, here we pre-
sent an overview that is necessary to understand our data collection and analysis and keep 
this publication self-contained.

Identifying Technical Debt issues on new code. SonarQube is one of the most widely 
used tools for assessing the level of code technical debt present in a software system 
(Amanatidis et al., 2020; Digkas et al., 2020). According to a recent overview of TD tools 
(Avgeriou et al., 2020) SonarQube is by far the most popular tool based on its trace in the 
scientific literature and online media channels. We have relied on version 7.9.2 to identify 
and quantify technical debt in individual commits throughout the history of the examined 

287Software Quality Journal (2022) 30:283–305



1 3

projects. SonarQube estimates technical debt principal using a set of predefined rules2 
such as Methods should not be too complex, Inheritance tree of classes should not be too 
deep, or Classes should not be coupled to too many other classes. Each identified issue 
is assigned a remediation cost corresponding to the time required to fix the correspond-
ing rule violation. The sum of the remediation costs for all issues yields the reported TD 
principal.

As new code we consider the new methods which are introduced in each commit. Such 
methods can be added either in existing classes or in entirely new classes. We do not con-
sider new code in the form of new instructions in existing methods (i.e., modifying meth-
ods). The reason is that, beyond the complexity of tracking changes at the instruction level, 
an entirely new method conveys better the programming habits of a developer as it refers 
to a complete, self-standing piece of functionality. To distinguish the newly inserted meth-
ods for each commit from the deleted, modified, renamed, and unchanged methods, we 
rely on the Gumtree Spoon AST Diff tool (Falleri et al., 2014). Our approach identifies all 
changes per commit at the file-level, i.e., we detect files which have been added, modified, 
renamed, and deleted. For the added files or classes, we consider all of their methods as 
new. For the modified and renamed files we compare their representation in the form of an 
Abstract Syntax Tree with the one of the previous revision; subsequently we identify the 
newly inserted methods in existing classes.

We then proceed with identifying all Technical Debt issues in newly added methods, 
by running a technical debt analysis with SonarQube. The identified issues are obtained 
through SonarQube’s API from which we retain only Technical Debt issues found within 
the line range of new methods.

Assessing the fluctuation of Technical Debt issues. Observing the evolution of a met-
ric value throughout the history of a software project can be considered as the analysis of a 
time series. The time series can exhibit volatility depending on the metric itself and on the 
nature of changes throughout the history. In previous work, we have defined Software Met-
rics Fluctuation (SMF) as “the degree to which a metric score changes from one version of 

Table 1   Causes and Evolutionary Patterns of TD/smells

Causes Study

Close deadlines, inappropriate planning, lack of 
knowledge/experience

Pérez et al. (2019), Ramač et al. (2020), Rios et al. 
(2018)

Pressure Tufano et al. (2017)
Architecture flaws Kazman et al. (2015)
Pressure to deliver Martini et al. (2015)
Evolutionary Patterns Study
Smells tend to increase and decrease in different 

phases
Olbrich et al. (2009)

Smells increase monotonically Chatzigeorgiou and Manakos (2014)
Smells increase monotonically Peters & Zaidman (2012)
TD increases monotonically (Normalized TD 

decreases for some projects)
Digkas et al. (2017)

2  https://​rules.​sonar​source.​com/

288 Software Quality Journal (2022) 30:283–305

https://rules.sonarsource.com/


1 3

the system to the other” (Arvanitou et al., 2016). According to the SMF property a metrics 
can be characterized as sensitive (changes induce high variation on the metric score) or 
stable (changes induce low variation).

As this study focuses on the evolution of the quality of new code, in terms of its TD, 
we make use of the SMF property. In particular we employ the mf measure (Arvanitou 
et al., 2016) which is defined as: “the average deviation from zero of the difference ratios 
between every pair of successive versions”. We adapt the mf measure for the case of Tech-
nical Debt issues, resulting in formula Eq. (1). TDissues(i) refers to the number of Techni-
cal Debt issues identified at version i of the history, while n is the total number of analyzed 
time snapshots (e.g., versions). A zero deviation of the number of Technical Debt issues 
from that of the previous version implies no fluctuation. The squared root of the second 
power of the ratio of the difference between any two successive versions yields a measure 
similar to the standard deviation.The closer to zero mf gets, the more stable the number of 
Technical Debt issues is.

4 � Case study design

Case study is an observational method that is used for studying a phenomenon in its real-
life context. In our study, the phenomenon is the temporality of TD in new code, while the 
context refers to the evolution of open-source software projects. In this section, we present 
the design of the case study, organized based on the linear-analytic structure as described 
by Runeson et al. (2012).

4.1 � Research questions

The high-level goal of this study is the identification of temporal patterns in the intro-
duction of code technical debt, along software evolution. To explore this goal, we need 
to investigate two sub-goals. First, we look at the fluctuation of the number of Technical 
Debt issues introduced by new code along the evolution of software projects. Second, we 
explore the relation between the number of Technical Debt issues introduced by new code 
and two factors: (i) the number of commits that occurred in the same period; and (ii) the 
developers’ experience. These sub-goals lead to the following two research questions.

RQ1: Does the number of Technical Debt Issues introduced by new code fluctuate along 
evolution?

The answer to this research question will unveil if in different time periods, different 
amounts of technical debt are introduced. The answer reflects the main goal of this study, 
i.e., to investigate the temporality of the technical debt phenomenon. Specifically, this 
answer will enable us to characterize Technical Debt issues introduction as either stable, 
or sensitive to temporal influence. In addition, we will study any possible spikes in the 
evolution of new code technical debt, which might be indicators of “extra-ordinary” events 
along evolution. The frequency and the timing (early, middle, or late in the project) of such 
spikes will also be explored and reported.

(1)
mf =

�

�

�

�

�

∑n

i=2

�

TDissuesi−TDissuesi−1

TDissuesi−1

�2

n − 1

289Software Quality Journal (2022) 30:283–305



1 3

RQ2: Does the amount of Technical Debt introduced by new code correlate to the activ-
ity or the experience of the developers?

To increase the confidence in the results of the previous research question, we study two 
potentially important confounding factors for this empirical setup: i.e., developers’ activity 
(RQ2.1) and developers’ experience (RQ2.2). Considering that we are not analyzing at the 
individual commit level, but over periods of time, there is a non-negligible chance that in 
these periods the developers’ activity (number of commits) is not stable; therefore, spikes 
in new code Technical Debt issues could be due to more intense programming activity 
in the corresponding periods. Additionally, we explore if the experience of a team as an 
aggregation of the experience of the team members plays a role in the introduction of TD; 
in other words, we explore if the technical debt introduction in projects correlates with the 
experience of its team members.

4.2 � Cases and units of analysis

This study is characterized as a multiple, embedded case study (Runeson et al., 2012), in 
which the cases are open-source software (OSS) projects, while the units of analysis are the 
source code commits (per project) over different time periods. Specifically, for each pro-
ject, we analyse the number of code Technical Debt issues added over 6-month time peri-
ods across the project history (see Sect. 4.3 for more details). The reason for selecting to 
perform this study on open-source software systems is the vast amount of data that is avail-
able in terms of revisions and classes. The long history that is available for each project 
enables researchers to observe overall trends in the evolution of their quality. To retrieve 
data from high-quality projects that evolve over a period of time, we looked into ASF and 
EF projects (Dueñas et al., 2007) as well as additional OSS projects and investigated the 
projects presented in Table 2. The demographics of Table 2 include the number of classes, 
number of non-commented lines of code, the number of analyzed revisions, the date of 
the first commit, number of issues in the corresponding GitHub issue tracker as well as 
the number of developers per project. The two ecosystems have been selected since they 
are well-known in the software engineering community for their quality, and structured 
development processes. On the one hand, Eclipse is an industry-driven initiative involv-
ing around 100 companies, universities, and contributors who deliver OSS based on the 
Eclipse environment. On the other hand, Apache Software Foundation is a highly success-
ful initiative, made up of individuals, that provides popular, high quality, OSS–providing 
support for over half of the world’s websites. Both communities follow a mature approach 
in developing software, having established processes to face the problems inherent to soft-
ware development. However, to reduce generalizability threats from the study of projects 
belonging to well known and systematically maintained ecosystems, we considered twelve 
additional OSS projects.

The selection of projects was based on the following criteria:

–	 The software is actively maintained. To ensure this, we sorted projects based on the 
date of their last commit.

–	 The software is written in Java and uses Maven as a build tool. This ensures that the 
project can be built and allows the retrieval of the project’s language version from the 
corresponding pom.xml file.

–	 The software contains more than 90 classes to ensure the inclusion of systems with a 
substantial size, functionality and complexity.

290 Software Quality Journal (2022) 30:283–305



1 3

Table 2   Selected Projects’ Demographics

Project Classes NCLOC Revs 1st Commit Issues Devs

Apache Software Foundation Atlas 932 87637 1454 11/20/2014 134 104
Beam 3757 176663 2780 12/13/2014 14733 763
Calci​te 2606 186633 1448 04/20/2012 2408 253
Cayen​ne 2615 164170 2116 01/21/2007 449 34
Commo​ns IO 132 10500 1059 01/25/2002 224 71
CXF 4111 353085 5079 04/23/2008 787 160
Delta​Spike 951 46182 513 12/22/2011 114 57
Drill 4655 316552 1316 09/03/2012 2216 163
Dubbo 943 61865 728 10/20/2011 4230 386
Flink 5632 341149 5329 12/15/2010 15837 870
Flume 790 51897 789 08/02/2011 333 54
Giraph 1414 72972 668 10/29/2010 149 26
Jackr​abbit 2883 273574 4260 09/13/2004 73 23
jclou​ds 5687 227459 4323 04/11/2009 94 237
Knox 1083 51429 1033 10/24/2012 435 57
Kylin 1658 128531 3205 05/13/2014 1637 187
Metron 1433 72579 548 12/08/2015 1582 62
MyFac​es 1843 174158 1211 01/17/2006 200 30
NiFi 4256 371031 1490 12/08/2014 5046 356
oozie 1082 97597 587 08/19/2011 57 16
OpenW​ebBea​ns 561 44299 1583 11/22/2008 32 18
PDFBox 1279 136916 3758 02/10/2008 3326 6
Pulsar 1837 147182 1503 09/07/2016 109 393
SIS 1948 181588 828 03/20/2010 20 7
Storm 3958 243574 738 09/16/2011 3396 341
Tinke​rPop 1698 95652 5178 09/02/2013 1413 142
Zeppe​lin 1209 89193 1562 06/19/2013 4109 344

Eclipse Foundation Hono 554 43697 1977 02/08/2016 1076 38
JGit 1314 100973 1747 09/29/2009 114 140
JNoSQL 521 21285 1384 07/14/2016 111 15
Kapua 2275 98005 1912 10/14/2016 1610 32
Leshan 389 27378 808 02/07/2015 494 38
Milo 1618 114581 261 05/06/2016 446 18
Tycho 872 56552 290 09/19/2011 66 56
Vorto 599 29011 1051 03/02/2015 1334 42

Other OSS apollo 604 31642 2487 03/04/2016 2438 75
gson 91 8085 1485 09/01/2008 1378 106
hutool 1052 80819 1937 08/14/2019 1210 101
jedis 157 28215 1801 06/11/2010 1384 175
litem​all 583 59588 1121 03/22/2018 324 50
mybat​is-3 414 21864 3726 05/17/2010 1075 176
seata 1646 126362 1230 01/09/2019 2058 208
spring-​boot-​admin 239 8964 40 06/04/2014 1338 117
spring-​cloud-​aliba​ba 479 20855 1748 12/01/2017 1384 103
webma​gic 199 7970 1118 04/23/2013 843 40
xxl-​job 119 8666 1676 11/28/2015 2115 52
zheng 484 30220 1241 10/04/2016 95 8

291Software Quality Journal (2022) 30:283–305

https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng


1 3

–	 The software has more than 1000 commits. This criterion is used for similar reasons 
to the previous one, and to be able to observe trends in the evolution of their quality. 
Moreover, this number of revisions provides an adequate set of repeated measures as 
input to the statistical analysis.

4.3 � Data collection

To build the dataset for our analysis, we relied on the process described in Sect. 3. In 
particular, for each project, we have been able to build a dataset containing: (a) the 
commit SHA; (b) the committer; (c) the experience of the committer at the current 
timestamp; and (d) the number of introduced Technical Debt issues by the new code 
of this commit. Next, starting from the first commit timestamp, we created a 6-month 
time-window that slides monthly, along the evolution of the project. Based on these 
time-windows, we have created our units of analysis, as shown in Fig. 2. For example, 
by considering a project that spans across 22 months (M1-M22), we are able to create 
16 units of analysis.

For each period captured by the time-window, we summed the number of Techni-
cal Debt issues that were introduced in all commits included in the time-frame. There-
fore, the final data-set consists of four variables: [V

1
 ] time-window (in months/year); 

[V
2
 ] number of Technical Debt issues introduced by new code in the time-window; [V

3
 ] 

number of commits in the time-window; and [V
4
 ] the development team experience in 

the time-window.
With regards to the developers experience it should be highlighted that experience is 

not a directly observable construct (Siegmund et al., 2013). As a result, experience can be 
operationalized through multiple variables and be measured in different ways. For exam-
ple, experience has been measured in terms of years of programming (Dieste et al., 2017), 
volume of commits (Krutz et al., 2017; AlOmar et al., 2020), years of experience expressed 
in Likert-scale codes (Siegmund et al., 2013), etc.

Fig. 2   Demarcating Units of Analysis (sliding temporal windows)

292 Software Quality Journal (2022) 30:283–305



1 3

In this study we need to capture the collective experience of an entire team combining 
both years of experience and volume of commits. The development team experience is a 
weighted average of developers’ experience, over the contributions of a committer in the 
specific period, as explained in Eqs. (2)−(4). In particular, first we calculate for each devel-
oper his/her experience in days at the beginning of each sliding window. This is obtained 
by measuring the time from their git registration according to Eq. 2. Next, for each time 
window, we calculate the contribution rate of each developer as the number of commits 
that a developer has contributed to the project over the total commits in that time window 
as shown in Eq. 3. The weighted development experience for each developer is obtained 
by multiplying the contribution rate with the experience in days. Finally, the entire team’s 
experience is the sum of each developer’s experience (Eq. 4). To enable the easy replica-
tion of this study, a repli​catio​n packa​ge is available online3.

4.4 � Data analysis

Data analysis was performed on the aforementioned raw dataset. To answer RQ
1
 , for each 

project, we first assess fluctuation by calculating SMF and basic descriptive statistics of the 
dependent variable [V

2
 ]. Next, to visualize extreme projects (the most stable and most sen-

sitive), we use a line chart representing the evolution of Technical Debt issues introduced 
by new code. To identify spikes, along evolution, we have used a standard method for iden-
tifying extreme outliers in SPSS, as defined in Eqs. (5) or (6). As a final step, we explore, if 
these spikes are concentrated in the beginning, middle, or end of the project.

To answer RQ
2
 , we performed Spearman correlation analyses between variables 

[V
2
 ] and [V

3
 ], and between [V

2
 ] and [V

4
 ]. The choice of a non-parametric test, was 

based on the fact that for some projects, the pre-conditions of parametric tests were 
not met. For extreme sensitive cases we visualize the relation through scatter-plots, 
and present the co-evolution of the number of commits and the number of Technical 
Debt issues in a single line chart. For extreme stable cases, we visualize the relation 
between the average development team experience and the number of Technical Debt 
issues in a single line chart.

(2)Experience(days)devi =CommitTimestamp − GitRegistrationdevi

(3)ContributionRatedevi =
numberOfCommitsdevi

totalCommits

(4)TeamExperience =

developers
∑

i=1

ContributionRatedevi ∗ Experiencedevi

(5)value > Quartile3 + 3 ∗ InterquartileRange

(6)value < Quartile1 − 3 ∗ InterquartileRange

3  https://​www.​zenodo.​org/​record/​50820​41

293Software Quality Journal (2022) 30:283–305

https://zenodo.org/record/5082041
https://www.zenodo.org/record/5082041


1 3

5 � Results

5.1 � Fluctuation of TD introduction along evolution (RQ1)

In Table 3, we present the fluctuation analysis for the number of TD issues introduced by 
new code. Based on this, for 28 out of 47 projects the number of TD issues introduced by 
new code can be considered as stable (dark cells), whereas for the rest 19 as sensitive (light 
grey cells). For ASF, the percentage of stable projects is 55%, for EF 38%, and for iso-
lated projects 83%; whereas the mean values do not differ in a statistically significant man-
ner (ANOVA F: 1.811 and sig: 0.17). By comparing the SMF of the two ecosystems, we 
observe that the percentage of stable and sensitive projects is similar, whereas the one for 
isolated projects is substantially larger. A tentative explanation of this is the existence of 
specific development guidelines in large OSS ecosystems (like Apache or Eclipse), which 
limit the “Bazaar” effect of collaborative development in “random” open-source projects.

To provide a visual insight on the discussed fluctuations, in Fig. 3, we present the evolu-
tion of one stable project, namely Metron, and a sensitive one, namely SIS. We note that 
even for the most “stable” projects, some spikes still exist; however, the spikes are small in 
height. To study the spikes in more depth, we first calculate their frequency – see Fig. 4a. 
Based on the bar chart, for 51% of the projects the spikes appear in less than 5% of the 
commits; whereas 23% of the projects produce fluctuations in more than 10% of their com-
mits. We note that the classification of the projects in the three groups (i.e., [0% - 5%],(5% 
- 10%], and more than 10%) was data-driven. The spikes percentage for the analyzed pro-
jects was less than 15% for 46 out 47 projects in our dataset. Based on this, we split equally 
the margin of values to three equal ranges [0% - 5%], (5% - 10%], and (10% - 15%]. Since 
the number of projects with spikes more than 15% was quite low, we have merged those to 
the last class.

Additionally, in Fig. 4b, we observe that fluctuations of TD are distributed across the 
entire project lifetime (as early, we consider the first third of the studied time windows, as 
middle the second third, and as late the most recent third). Fluctuations are reduced along 
evolution, and this decrease is statistically significant, based on the results of performing 
Friedmans’ ANOVA (F: 4.91 and sig: 0.008). The aforementioned observations are first 
indications that these spikes might be relevant to the time period that they appeared, con-
firming the relation between Technical Debt issues introduction and project maturity. Nev-
ertheless, this finding needs further investigation.

5.2 � Correlation of fluctuation vs. activity (RQ2.1) and experience (RQ2.2)

Developers’ Activity: One of the first tentative interpretations on the existence of high 
spikes as those presented in Fig. 3, would be that in the corresponding time windows, lots 
of code has been committed. To explore the existence of this confounding factor, in Table 4 
we highlight with light-gray cell shading (in column Corr. Coef.) the cases in which the 
correlation is strong (>0.7  Field (2013)) and at the same time statistically significant 
(p<0.05).The findings suggest that only in 33% of the projects this correlation is strong 
for ASF, 42% for EF, and 66% for isolated projects. Based on the above, overall, only in 
42% of the projects, the commit activity could explain the fluctuations in the number of 
TD issues that is added by new code. To visualize this result, we present the scatter plot 
and the evolution of both variables in a single line chart, in Fig. 5a, b for Dubbo (i.e., a 
project with a high correlation), and in Fig. 6a, b for PDFBox (i.e., a project with a low 

294 Software Quality Journal (2022) 30:283–305



1 3

Table 3   SMF of TD issues on New Code

Project Mean Min Max Std. Dev. SMF

Apache Software Foundation Atlas 475.5510204 91 1548 407.786661 0.5383417283
Beam 786.0810811 174 1499 300.5190305 0.509273871
Calci​te 470.7368421 7 2736 692.8665743 11.90204218
Cayen​ne 94.93103448 9 353 89.28876503 1.018834256
Commo​ns IO 7.417266187 0 51 11.63758235 1.344176027
CXF 270.3821138 0 1008 250.7602709 0.7620334606
Delta​Spike 23.93617021 0 60 16.19501299 1.396466015
Drill 499.4878049 219 779 158.1410955 0.3349184617
Dubbo 98.04651163 0 447 139.9823039 1.899565894
Flink 973.8571429 0 3444 725.9421399 4.080323405
Flume 140.952381 7 827 208.945367 0.3403664143
Giraph 100.3333333 0 473 124.3622281 1.174278295
Jackr​abbit 351.9172414 0 2723 611.4918404 1.639366086
jclou​ds 205.8 6 1265 301.56156 0.4670131154
Knox 123.0428571 25 375 79.35307921 0.300675608
Kylin 917.7021277 164 1822 413.2809296 0.3425335612
Metron 254.000 71 538 124.613333 0.1618540943
MyFac​es 153.2481203 0 695 183.2447612 2.992094949
NiFi 806.3611111 0 2985 887.5719094 0.2856866332
oozie 171.0731707 0 1551 380.7149149 0.4510842322
OpenW​ebBea​ns 71.13333333 0 760 166.5168593 0.4923104692
PDFBox 119.7477477 0 640 142.1098467 3.504939214
Pulsar 612.5 223 1339 380.8917454 0.4564183951
SIS 366.99 0 1340 349.1428319 9.55780754
Storm 598.0188679 155 1449 323.889374 0.3888504523
Tinke​rPop 606.025 167 1320 347.056523 0.1562348209
Zeppe​lin 351.9333333 0 850 161.0696098 0.3204638763

Eclipse Foundation Hono 129.6086957 47 241 44.7061906 0.2970192119
JGit 156.9041096 0 683 160.8168527 0.5442974466
JNoSQL 103.1333333 0 377 122.9666621 1.867322309
Kapua 322.0465116 24 1013 296.0274242 1.972147136
Leshan 48.15873016 3 157 37.43303972 0.5539026525
Milo 529.9473684 1 1479 617.1124941 44.31338189
Tycho 20.61038961 0 133 35.42009385 2.440785095
Vorto 172.9827586 14 428 117.2345814 1.837036534

Other OSS apollo 106.3928571 0 508 145.2912659 0.6996424058
gson 5.18 0 26 7.311411266 0.5374163669
hutool 861.5714286 250 1695 540.6262344 0.01996920706
jedis 54.864 0 302 77.5387878 0.7951006718
litem​all 237.3870968 0 879 246.2613351 0.6462099889
mybat​is-3 23.07142857 0 97 27.85165807 0.696070773
seata 568.4090909 111 1265 437.5456068 2.272957444
spring-​boot-​admin 25.84415584 1 117 25.16736867 5.143589664
spring-​cloud-​aliba​ba 1211.272727 274 2031 626.8275825 0.3776653857
webma​gic 34.18888889 0 216 61.22419556 0.01987496025
xxl-​job 80.22807018 0 275 54.59526979 0.5062796418
zheng 309.7368421 0 979 458.321314 0.3527159223

295Software Quality Journal (2022) 30:283–305

https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng


1 3

correlation). In the scatter plots, each dot represents a 6-month period, mapping the values 
of the two variables for which we seek correlation. For strong correlations, dots would be 
near to the central diagonal suggesting that a high number of TD issues is observed when 
the number of commits in a period is also high.

Developers’ Experience: Next, we replicate the same correlation process, focusing this 
time on developers’ experience. Similarly to Table 4, in Table 5, we present the correlation 
coefficient, along with the significance of the correlation between developers’ experience 
and the amount of TD issues introduced in new code. The results suggest that this rela-
tion is strong in 14% of the cases for ASF and 0% of the cases for EF, and 16% for isolated 
projects. This result implies that developers’ experience can be ‘blamed’ only for a limited 
number of cases of heavy TD introduction. Fig. 7 visualizes cases of strong positive and 
negative correlations. Finally, we note the sign of the correlation is negative in 66% of the 
cases, suggesting that experienced teams are producing less TD issues. However, 50% of 
strong correlations are positive, implying that the cases in which experienced teams are 
introducing heavy technical debt are not negligible.

6 � Discussion

6.1 � Interpretation of results

The high-level goal of this study was to investigate if the introduction of Technical 
Debt issues (by adding new code) is a temporal phenomenon, that diverges over time. 
Based on the findings, some temporality can be claimed only for a number of projects. 
In particular, based on the fluctuation of Technical Debt issues due to the introduction 
of new code (see Sect. 5.1), we can classify the projects in three categories through vis-
ual inspection of the evolution graphs: (a) stable projects without any temporality—i.e., 
negligible fluctuations (spikes in less than 5% of commits); (b) stable projects that are 
not sensitive, but some “extra-ordinary” spikes occur (spikes in 5% - 10% of commits); 
and (c) sensitive projects (spikes in more than 10% of commits).

Based on the findings of RQ1, we can claim that the introduction of Technical Debt 
issues due to the insertion of new code is independent of time, for more than half of the 
projects (36 out of 47). This can be interpreted as an indication of project maturity, in 
the sense that consistent quality is achieved throughout evolution. However, even for 
these stable projects, the absence of fluctuations does not necessarily imply the absence 

Fig. 3   Indicative project evolution

296 Software Quality Journal (2022) 30:283–305



1 3

Table 4   Correlation of Commit Activity and TD Introduction

Project No. of Commits Corr. Coef. Sig. Level

Apache Software Foundation Atlas 1454 0.621361 0.000002
Beam 2780 0.436396 0.006929
Calci​te 1448 0.529215 0.0000
Cayen​ne 2116 0.452111 0.000011
Commo​ns IO 1059 0.504093 0.0000
CXF 5078 0.558048 0.000000
Delta​Spike 513 0.704999 0.000
Drill 1316 0.647412 0.000005
Dubbo 728 0.910919 0.000
Flink 5329 0.442757 0.000011
Flume 789 0.703601 0.0000
Giraph 668 0.728898 0.000000
Jackr​abbit 4143 0.823038 0.00000
jclou​ds 4323 0.885516 0.000
Knox 1033 0.423383 0.000260
Kylin 3205 0.566538 0.000033
Metron 502 0.694553 0.000021
MyFac​es 1210 0.612712 0.000000
NiFi 1490 0.636676 0.000030
oozie 587 0.822991 0.000000
OpenW​ebBea​ns 1583 0.785315 0.000
PDFBox 3758 0.228906 0.015668
Pulsar 1503 0.716522 0.000082
SIS 828 0.670889 0.000
Storm 738 0.025004 0.858946
Tinke​rPop 5178 0.847788 0.000
Zeppe​lin 1562 0.133791 0.308141

Eclipse Foundation Hono 1977 0.787975 0.0000
JGit 1747 0.474752 0.000022
JNoSQL 1384 0.885003 0.0000
Kapua 1912 0.312323 0.041449
Leshan 808 0.523767 0.000011
Milo 261 0.797350 0.000043
Tycho 290 0.417804 0.000156
Vorto 1051 0.331015 0.011147

Other OSS apollo 2487 0.745447 0.000000
gson 1485 0.573239 0.000014
hutool 1937 0.925275 0.000002
jedis 1801 0.733246 0.0000
litem​all 1121 0.834999 0.0000
mybat​is-3 3726 0.578442 0.0000
seata 1230 0.471751 0.026654
spring-​boot-​admin 1540 0.388882 0.000474
spring-​cloud-​aliba​ba 1748 0.954545 0.000005
webma​gic 1676 0.931621 0.0000
xxl-​job 1676 0.198064 0.139704
zheng 1241 0.932735 0.000000

297Software Quality Journal (2022) 30:283–305

https://github.com/apache/atlas
https://github.com/apache/beam
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng


1 3

of any trend. For example, in Fig. 3 we can see that the evolution of project Metron 
does not exhibit any spikes; however, its trend is clearly a decreasing one.

On the other hand, for a subset of the analyzed projects (12 out of 47), the introduc-
tion of new code Technical Debt issues is a temporal phenomenon, since many spikes 
exist in their evolution. For these projects, the number of introduced Technical Debt 
issues in each period is not stable, and it is reasonable to assume that it is influenced 
by some external parameters. This can be interpreted as a consequence of the dynamic 
nature of software development environments, where many factors change along time. 
This finding is contradicting previous research on the evolution of smells (summarized 
in Table  1) implying that smells tend to increase monotonically over time. Conse-
quently, it is important to study potential confounding factors that drive the accumula-
tion of Technical Debt issues along the evolution of a software project. A starting point 
for such factors can be the causes of TD outlined in the studies of Table 1). To some 
extent, this has been addressed in RQ2.

The second research question lead to rather unexpected findings: i.e., the number of 
commits made in a time period as well as the experience of developers, are not corre-
lated to the number of introduced Technical Debt issues into the system (for the major-
ity of the cases). Intuitively, one would expect that these variables would be related, in 
the sense that: (a) the more code is added, the more Technical Debt issues are expected 

Fig. 4   Project Fluctuations

Fig. 5   Activity vs. TD Introduction – Dubbo project

298 Software Quality Journal (2022) 30:283–305



1 3

to be introduced; and (b) inexperienced developers would introduce more TD. However, 
these two factors do not appear to play a key role in the introduction of technical debt. 
Instead, other confounding factors may be more relevant, such as: (a) the maturity of the 
project; (b) the developers’ habits; or (c) the specific type of tasks performed in each 
time period. These observations are more evident for the projects that come from the 
ASF or EF ecosystems, rather than isolated projects. We discuss these directions for 
further investigation in Sect. 6.2.

6.2 � Implications to researchers and practitioners

Based on the results we are able to provide some first implications to both researchers and 
practitioners. Regarding researchers, we can claim that the accumulation of new code 
Technical Debt issues reflects (at least to some extent) the characteristics of the develop-
ment process: by being stable in most cases, the introduction of new code technical debt is 
probably less related to external factors, and primarily dependent on the capabilities of the 
team. However, for a non-negligible number of projects, timing seems to be an important 
factor for studying the accumulation of technical debt: Technical Debt issues do not seem 
to be uniformly introduced along evolution, but rather behave as a temporal phenomenon, 
with multiple and (in some cases) large fluctuations. Therefore, we propose:

–	 For stable projects, researchers can further investigate the relation between the stable 
rate of introduction of new code Technical Debt issues with the practices followed by 
the developers. It would also be valuable to compare stable projects, but with different 
trends (increasing vs. decreasing), with respect to their key properties.

–	 For sensitive projects, researchers can perform explanatory studies to unveil the reasons 
for which spikes occur in the evolution of the introduced technical debt. Such studies 
could identify possible reasons (e.g., changes in used libraries or frameworks, impact of 
business goals) that lead teams/projects with a rather stable accumulation of technical 
debt, to perform worse under certain circumstances. Furthermore, TD fluctuation can 
be studied in relation to the number of bugs and issues of an evolving software project, 
investigating whether spikes in TD introduction cause an excessive number of defects. 
Based on the findings of our study, such questions would be more easily answered in 
ASF or EF projects, since for their case the correlation of fluctuation and commit den-
sity is lower, leaving more space for exploring other parameters.

Fig. 6   Activity vs. TD Introduction – PDFBox project

299Software Quality Journal (2022) 30:283–305



1 3

Table 5   Correlation of Developers’ Experience and TD Introduction

Project AVG Dev. Experience Correl. Coeff. Sig. Level

Apache Software Foundation Atlas 825.3646939 -0.198837 0.170797
Calci​te 1428.345132 0.162874 0.159792
Cayen​ne 1504.984943 0.151651 0.160865
Commo​ns IO 1391.291176 0.005513 0.949209
CXF 1280.043984 -0.448193 0.0000
Delta​Spike 2112.655532 -0.581652 0.000018
Drill 1134.510488 0.057929 0.719027
Dubbo 663.8471429 0.735648 0.000008
Flink 1040.605934 0.373460 0.000266
Flume 1351.804881 -0.686840 0.00000
Giraph 1230.384556 -0.572825 0.000000
Jackr​abbit 1288.874 -0.522685 0.000000
jclou​ds 1569.226737 -0.828679 0.00000
Knox 1158.225 -0.333567 0.004774
Kylin 1102.612553 -0.633210 0.000002
Metron 2195.247667 -0.917872 0.00000
MyFac​es 1105.781532 -0.159404 0.076995
NiFi 1875.564444 0.482985 0.002848
oozie 845.0682927 0.685549 0.0000
OpenW​ebBea​ns 1455.60975 -0.280546 0.001912
PDFBox 765.440991 -0.196677 0.038554
Pulsar 2605.61125 0.685217 0.000220
SIS 1194.913596 -0.132368 0.216254
Storm 1331.289245 -0.223530 0.107627
Tinke​rPop 1833.52875 -0.928705 0.0000
Zeppe​lin 1441.314667 0.085728 0.514868

Eclipse Foundation Hono 1542.894783 0.524861 0.000181
JGit 1194.924348 -0.574832 0.000000
JNoSQL 2573.293333 -0.314582 0.090434
Kapua 1528.834884 0.658334 0.000002
Leshan 2246.961587 -0.451703 0.000202
Milo 2395.933158 -0.540169 0.016964
Tycho 2349.209848 -0.381897 0.001556
Vorto 799.7113793 0.375179 0.003709

Other OSS apollo 2483.865273 -0.768173 0.00000
gson 2298.0984 -0.026997 0.852365
hutool 2889.891429 0.969231 0.00000
jedis 1185.24904 -0.453585 0.000000
litem​all 2308.539355 -0.497175 0.004435
mybat​is-3 1526.34876 -0.427268 0.000001
seata 719.7195455 0.198252 0.376465
spring-​boot-​admin 1093.754545 -0.005938 0.959125
spring-​cloud-​aliba​ba 1915.306364 -0.072727 0.831716
webma​gic 1630.106 -0.239340 0.045987
xxl-​job 1160.154386 -0.265404 0.046009
zheng 1371.936842 -0.402848 0.087247

300 Software Quality Journal (2022) 30:283–305

https://github.com/apache/atlas
https://github.com/apache/calcite
https://github.com/apache/cayenne
https://github.com/apache/commons-io
https://github.com/apache/cxf
https://github.com/apache/deltaspike
https://github.com/apache/drill
https://github.com/apache/incubator-dubbo
https://github.com/apache/flink
https://github.com/apache/flume
https://github.com/apache/giraph
https://github.com/apache/jackrabbit
https://github.com/apache/jclouds
https://github.com/apache/knox
https://github.com/apache/kylin
https://github.com/apache/metron
https://github.com/apache/myfaces
https://github.com/apache/nifi
https://github.com/apache/oozie
https://github.com/apache/openwebbeans
https://github.com/apache/pdfbox
https://github.com/apache/pulsar
https://github.com/apache/sis
https://github.com/apache/storm
https://github.com/apache/tinkerpop
https://github.com/apache/zeppelin
https://github.com/eclipse/hono
https://github.com/eclipse/jgit
https://github.com/eclipse/jnosql
https://github.com/eclipse/kapua
https://github.com/eclipse/leshan
https://github.com/eclipse/milo
https://github.com/eclipse/tycho
https://github.com/eclipse/vorto
https://github.com/ctripcorp/apollo
https://github.com/google/gson
https://github.com/dromara/hutool
https://github.com/redis/jedis
https://github.com/linlinjava/litemall
https://github.com/mybatis/mybatis-3
https://github.com/seata/seata
https://github.com/codecentric/spring-boot-admin
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/code4craft/webmagic
https://github.com/xuxueli/xxl-job
https://github.com/shuzheng/zheng


1 3

–	 Based on the output of the above, researchers can work on more accurate technical debt 
prevention methodologies that will attack the heart of the problem, based on the par-
ticular conditions of each project. For example, a project that is expected to undergo 
staff turnover, or will face tight deadlines, should calibrate its quality gates to ensure 
technical debt does not grow beyond thresholds.

Regarding practitioners, we encourage them to perform fluctuation analysis and investi-
gate the reasons for the existence of high or frequent peaks in the evolution of introduced 
Technical Debt issues. Understanding the consequences of their way of working in certain 
periods (which might lead to excessive accumulation of technical debt) can prove benefi-
cial for process improvement purposes and quality control.

7 � Threats to validity

In this section, we discuss threats to the validity of the study, including threats to construct, 
external validity and reliability. The study does not aim at establishing cause-and-effect 
relations; thus it is not concerned with internal validity.

Construct Validity reflects how far the examined phenomenon is connected to the 
intended objectives. The main threat is related to the accuracy by which technical debt can 
be captured by static analysis tools such as SonarQube. Rule violations reported as Techni-
cal Debt issues are only one manifestation of actual code and design inefficiencies. Fur-
thermore, it is known that such tools are not capable of identifying architectural problems 
or other types of technical debt such as requirements, test or build debt. In addition, we 
consider only technical debt that can be mapped to methods, thus ignoring changes which 
might occur at the level of files. However, while SonarQube is by far not perfect in iden-
tifying technical debt, other static analysis tools suffer from similar limitations. Another 
construct validity threat is related to the use of the number of commits as a surrogate of 
the workload that has been carried out by the project participants. Since in open-source 
projects, voluntary contribution is interleaved with the rest of the developers’ activities, 
we acknowledge that a ‘busy’ or ‘relaxed’ period in terms of commits, does not necessar-
ily reflect the actual work conditions of the developers. Moreover, commits differ in the 
amount of work that they carry: some commits might be accompanied by many changes in 
several files while other are related to only a few changes. A final threat to construct valid-
ity stems from the current calculation of development experience. In practice, in this work 
we consider as the starting date of someone’s programming career, his/hers registration to 
GitHub. Although this might be accurate in some cases, we downgrade the experience of 

Fig. 7   Experience vs. TD Introduction–Left: Dubbo, Right: TinkerPop 

301Software Quality Journal (2022) 30:283–305



1 3

developers who have started developing before contributing to GitHub–i.e., started devel-
oping in commercial products, or contributed to other OSS repositories. In addition, this 
calculation is threatened by the fact that the time between registration and commit is not 
experience equivalent, in the sense that a developer might be idle for a while within the 
period of interest. Therefore, further research is required to derive the actual workload of 
developers committing to an open-source software project; as well as their development 
experience in the start of the sliding window.

Reliability reflects whether the study has been conducted and reported in a way that oth-
ers can replicate it and reach the same results. To mitigate this threat, the study protocol is 
explicitly described listing all data collection and analysis steps. The only subjective data 
interpretation concerns the identification of spikes (which however is of secondary impor-
tance); therefore, to a large extent, researcher bias has been avoided. A repli​catio​n packa​ge3 
is available with all available data to allow for an independent replication of the investigation.

External Validity examines the applicability of the findings in other settings, e.g., other 
software projects, other programming languages and possibly other technical debt tools. 
We have focused only on Java Apache and Eclipse projects that use Maven as a build tool. 
This limits the ability to generalize the findings to other projects. The fact that the study 
focuses on 47 projects of the Apache Software Foundation and Eclipse Foundation, which 
are highly active and popular among software developers partially mitigates threats to gen-
eralization. Nevertheless, replication studies on the effect of new code on the evolution of 
technical debt are needed to strengthen the validity of the derived conclusions.

8 � Conclusions and future work

Studying the phenomenon of introducing code Technical Debt issues is a research direction 
that is important for building tools aimed at preventing the accumulation of technical debt. 
In this study, we focus on code technical debt, and in particular, we explore the temporality 
of the technical debt introduction phenomenon. To this end, we explore if the introduction 
of Technical Debt issues changes in different time periods, and if these changes can be 
attributed to the developers’ activity or experience in the corresponding period. To explore 
these two questions, we have performed a case study on the complete evolution of forty-
seven projects from the Apache Software Foundation and Eclipse Foundation.

The results of the study suggested that for the majority of the projects the evolution on tech-
nical debt introduction is stable, i.e., there are not many (at maximum 2) high fluctuations in 
Technical Debt issues introduction, due to new code. However, a non-negligible part of projects 
(approx. 40%) present high and frequent fluctuations. These results suggest that technical debt 
introduction is only partially a temporal phenomenon, with more technical debt being intro-
duced in some time periods. The additional exploration of the phenomenon led to the conclu-
sion that the spikes in the evolution of technical debt introduction are not correlated with spikes 
in the development activity, nor with the average developers’ experience. The findings suggest 
that the number of commits in a particular period and the maturity of the developers are not the 
main factors affecting the introduction of ‘excessive’ technical debt.

The current study focused only on the impact of new code on the accumulation of TD. 
However, TD can be introduced or removed along method modification as well. Modified 
methods are much more challenging to analyze as they entail multiple types of changes 
such as code addition, removal, modification and refactoring. Nevertheless, it would be of 
great interest to study the impact of new vs. modified code on the system technical debt 
along software evolution. Furthermore, the study of the relation between introduced TD 

302 Software Quality Journal (2022) 30:283–305

https://zenodo.org/record/5082041


1 3

issues and developer experience and workload can be performed at a finer-grain level (i.e., 
introduction of TD at commit level). Analyzing TD at commit level along with the study of 
the corresponding commit messages could also shed light into the reasons that lie beneath 
the excessive introduction of TD issues, with the potential of revealing some of the root 
causes of TD accumulation. In addition to this, the analysis of TD at commit level will 
unveil how the values of experience and workload vary across sliding-time windows; this 
could provide further insights and explain the reasons for detecting no correlation between 
these factors and TD introduction.

References

AlOmar,  E.  A.,  Peruma, A., Newman,  C.  D.,  Mkaouer, M.  W., & Ouni, A. (2020). On the relationship 
between developer experience and refactoring. In Proceedings of the IEEE/ACM 42nd International 
Conference on Software Engineering Workshops.

Alves, V., Niu, N., Alves, C., & Valença, G. (2010). Requirements engineering for software product 
lines: A systematic literature review. Information and Software Technology, 52(8), 806–820.

Amanatidis, T., Mittas, N., Moschou, A., Chatzigeorgiou, A., Ampatzoglou, A., & Angelis, L. (2020). 
Evaluating the agreement among technical debt measurement tools: building an empirical benchmark 
of technical debt liabilities. Empirical Software Engineering, 25(5), 4161–4204.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., Abrahamsson, P.,  Martini, A., Zdun, U., & 
Systa, K. (2016).  The perception of technical debt in the embedded systems domain: an industrial case 
study. In 2016 IEEE 8th International Workshop on Managing Technical Debt (MTD), 9–16.

Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2016). Software metrics fluc-
tuation: a property for assisting the metric selection process. Information and Software Technology, 
72, 110–124.

Avgeriou, P. C., Taibi, D., Ampatzoglou, A., Arcelli Fontana, F., Besker, T., Chatzigeorgiou, A., Lenarduzzi,  
V., Martini, A., Moschou, N., Pigazzini, I., Saarimaki, N., Sas, D. D., de Toledo, S. S., & Tsintzira, A. A. 
(2020). An overview and comparison of technical debt measurement tools. IEEE Software, 0.

Chatzigeorgiou, A., & Manakos, A. (2014). Investigating the evolution of code smells in object-oriented 
systems. Innovations in Systems and Software Engineering, 10(1), 3–18.

Dieste, O., Aranda, A. M., Uyaguari, F., Turhan, B., Tosun, A., Fucci, D., et al. (2017). Empirical evaluation of 
the effects of experience on code quality and programmer productivity: an exploratory study. Empirical 
Software Engineering, 22(5), 2457–2542.

Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2020). On the temporality of introducing 
code technical debt. In International Conference on the Quality of Information and Communications 
Technology, 68–82. Springer.

Digkas,  G.,  Chatzigeorgiou,  A.  N.,  Ampatzoglou,  A.,  & Avgeriou, P.  C. (2020). Can clean new code 
reduce technical debt density. IEEE Transactions on Software Engineering, 1.

Digkas, G., Lungu, M., Chatzigeorgiou, A., & Avgeriou, P. (2017). The evolution of technical debt in the 
apache ecosystem. In European Conference on Software Architecture, 51–66. Springer.

Dueñas, J. C., Cuadrado, F., Santillán, M., Ruiz, J. L., et  al. (2007). Apache and eclipse: Comparing 
open source project incubators. IEEE Software, 24(6), 90–98.

Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., & Monperrus, M. (2014). Fine-grained and accurate 
source code differencing. In Proceedings of the 29th ACM/IEEE International Conference on Automated 
Software Engineering, 313–324.

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics. Sage Publications Ltd.
Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In 2009 IEEE 31st Inter-

national Conference on Software Engineering, 78–88.
Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S., Fedak, V., & Shapochka, A. (2015). A case 

study in locating the architectural roots of technical debt. In 2015 IEEE/ACM 37th IEEE International 
Conference on Software Engineering, 2, 179–188.

Krutz, D. E., Munaiah, N., Peruma, A., & Mkaouer, M. W. (2017). Who added that permission to my app? 
an analysis of developer permission changes in open source android apps. In 2017 IEEE/ACM 4th 
International Conference on Mobile Software Engineering and Systems (MOBILESoft), 165–169.

Lehman, M. M. (1996). Laws of software evolution revisited. In European Workshop on Software Process 
Technology, 108–124.

303Software Quality Journal (2022) 30:283–305



1 3

Letouzey, J.-L. (2012). The sqale method for evaluating technical debt. In 2012 Third International 
Workshop on Managing Technical Debt (MTD),  31–36.

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt and its management. 
Journal of Systems and Software, 101, 193–220.

Martini, A., Bosch, J., & Chaudron, M. (2015). Investigating architectural technical debt accumulation and 
refactoring over time: A multiple-case study. Information and Software Technology, 67, 237–253.

Olbrich, S., Cruzes, D. S., Basili, V., & Zazworka, N. (2009). The evolution and impact of code smells: A 
case study of two open source systems. In 2009 3rd International Symposium on Empirical Software 
Engineering and Measurement, 390–400.

Pérez, B., Brito, J. P., Astudillo, H., Correal, D., Rios, N., Spínola, R. O., Mendonça, M., & Seaman, C. 
(2019). Familiarity, causes and reactions of software practitioners to the presence of technical debt: 
a replicated study in the chilean software industry. In 2019 38th International Conference of the 
Chilean Computer Science Society (SCCC), 1–7.

Peters, R., & Zaidman, A. (2012). Evaluating the lifespan of code smells using software repository mining. 
In 2012 16th European Conference on Software Maintenance and Reengineering, 411–416.

Ramač,  R.,  Mandić,  V.,  Taušan,  N.,  Rios,  N.,  de  Mendonca  Neto, M.  G., Seaman, C., & Spínola, R.  O. 
(2020). Common causes and effects of technical debt in serbian it: Insightd survey replication. In 2020 
46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 354–361.

Rios, N., Spínola, R. O., Mendonça, M., & Seaman, C. (2018). The most common causes and effects of 
technical debt: first results from a global family of industrial surveys. In Proceedings of the 12th ACM/
IEEE International Symposium on Empirical Software Engineering and Measurement, 1–10.

Runeson, P., Host,  M.,  Rainer,  A.,  & Regnell, B. (2012). Case study research in software engineering: 
Guidelines and examples. John Wiley & Sons.

Siegmund, J., Kästner, C., Liebig, J., Apel, S., & Hanenberg, S. (2013). Measuring and modeling programming 
experience. Empirical Software Engineering, 19(5), 1299–1334.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., & Poshyvanyk, D. (2017). 
When and why your code starts to smell bad (and whether the smells go away). IEEE Transactions on 
Software Engineering, 43(11), 1063–1088.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

George Digkas  is a double degree PhD student at the University 
of Groningen, the Netherlands and the University of Macedonia, 
Greece. He received a BSc and MSc in Applied Informatics from the 
University of Macedonia, Greece in 2014 and 2016, respectively. His 
research interests include technical debt, software quality and mining 
of software repositories.

304 Software Quality Journal (2022) 30:283–305



1 3

Apostolos Ampatzoglou  is an Assistant Professor in the Depart-
ment of Applied Informatics in University of Macedonia (Greece), 
where he carries out research and teaching in the area of software 
engineering. Before joining University of Macedonia he was an Assis-
tant Professor in the University of Groningen (Netherlands). He holds 
a BSc on Information Systems (2003), an MSc on Computer Systems 
(2005) and a PhD in Software Engineering by the Aristotle Univer-
sity of Thessaloniki (2012). He has published more than 100 articles 
in international journals and conferences, and is/was involved in over 
15 R\&D ICT projects, with funding from national and international 
organizations. His current research interests are focused on technical 
debt management, software maintainability, reverse engineering soft-
ware quality management, open source software, and software design.

Alexander Chatzigeorgiou  is a Professor of Software Engineer-
ing in the Department of Applied Informatics and Dean of the 
School of Information Sciences at the University of Macedonia, 
Thessaloniki, Greece. He received the Diploma in Electrical Engi-
neering and the PhD degree in Computer Science from the Aristotle 
University of Thessaloniki, Greece, in 1996 and 2000, respectively. 
From 1997 to 1999 he was with Intracom S.A., Greece, as a soft-
ware designer. His research interests include object-oriented design, 
software maintenance, technical debt and evolution analysis. He 
has published more than 150 articles in international journals and 
conferences and participated in a number of European and national 
research programs. He is a Senior Associate Editor of the Journal of 
Systems and Software.

Paris Avgeriou  is Professor of Software Engineering in the Johann 
Bernoulli Institute for Mathematics and Computer Science, University 
of Groningen, the Netherlands where he has led the Software Engi-
neering research group since September 2006. Before joining Gron-
ingen, he was a post-doctoral Fellow of the ERCIM. He has partici-
pated in a number of national and European research projects related 
to the European industry of Software-intensive systems. He has co- 
organized several international conferences and workshops (mainly 
at the International Conference on Software Engineering - ICSE). 
He sits on the editorial board of Springer Transactions on Pattern 
Languages of Programming (TPLOP). He has edited special issues 
in IEEE Software, Journal of Systems and Software and Springer 
TPLOP. He has published more than 130 peer-reviewed articles 
in international journals, conference proceedings and books. His 

research interests lie in the area of software architecture, with strong emphasis on architecture modeling, 
knowledge, evolution, patterns and link to requirements.

305Software Quality Journal (2022) 30:283–305


	The temporality of technical debt introduction on new code and confounding factors
	Abstract
	1 Introduction
	2 Related work
	2.1 Causes of technical debt introduction
	2.2 Evolution of technical debt

	3 Background information
	4 Case study design
	4.1 Research questions
	4.2 Cases and units of analysis
	4.3 Data collection
	4.4 Data analysis

	5 Results
	5.1 Fluctuation of TD introduction along evolution (RQ1)
	5.2 Correlation of fluctuation vs. activity (RQ2.1) and experience (RQ2.2)

	6 Discussion
	6.1 Interpretation of results
	6.2 Implications to researchers and practitioners

	7 Threats to validity
	8 Conclusions and future work
	References




