

 University of Groningen

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping
heuristics
Ameryan, Mahya; Schomaker, Lambert

Published in:
Journal on Computing and Cultural Heritage

DOI:
10.1145/3587168

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ameryan, M., & Schomaker, L. (2023). How to limit label dissipation in neural-network validation: Exploring
label-free early-stopping heuristics. Journal on Computing and Cultural Heritage, 16(1), 1-20. Article 2.
https://doi.org/10.1145/3587168

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1145/3587168
https://research.rug.nl/en/publications/157753bc-e080-44af-9e1c-d2d12656a954
https://doi.org/10.1145/3587168

How to limit label dissipation in neural-network validation: Exploring

label-free early-stopping heuristics

MAHYA AMERYAN and LAMBERT SCHOMAKER, University of Groningen, The Netherlands

In recent years, deep learning (DL) has achieved impressive successes in many application domains, including Handwritten-

Text Recognition. However, DL methods demand a long training process and a huge amount of human-based labeled data. To

address these issues, we explore several label-free heuristics for detecting the early-stopping point in training convolutional-

neural networks: (1) Cumulative Distribution of the standard deviation of kernel weights (SKW); (2) the moving standard

deviation of SKW, and (3) the standard deviation of the sum of weights over a window in the epoch series. We applied the

proposed methods to the common RIMES and Bentham data sets as well as another highly challenging historical data set. In

comparison with the usual stopping criterion which uses labels for validation, the label-free heuristics are at least 10 times

faster per epoch when the same training set is used. The use of alternative stopping heuristics may require additional epochs,

however, never requiring the original computing time. The character error rate (%) on the test set of the label-free heuristics

is about a percentage point less in comparison to the usual stopping criterion. The label-free early-stopping methods have

two beneits: They do not require a computationally intensive evaluation of a validation set per epoch and all labels can be

used for training, speciically beneitting the underrepresented word or letter classes.

CCS Concepts: · Computing Methodologies; · Artiicial Intelligence; · Machine Learning;

Additional Key Words and Phrases: deep learning, early-stopping criterion, convolutional neural networks, historical hand-

written word recognition

1 INTRODUCTION

Today, various interesting applications, e.g., historical handwriting recognition, are performed using deep

learning (DL) techniques [3, 21] due to ever-increasing classiication accuracies. However, DL methods require a

time-consuming training process and an abundance of human-labeled data for supervised learning. An important

mechanism of modern neural-network training is early stopping of training of DL models, in order to prevent an

overit of models [6] on the given training set. This is achieved by bailing out of the training iterations at the

point where the performance of the model is considered adequate. There exists a wide range of stopping criteria

in the recent state of the art in deep learning [22], e.g., terminating the training process when the performance

on a separate validation set is considered satisfactory. In other words, by using k-fold cross-validation, 10% to

20% of the annotated data is used to determine the moment of early stopping. This amount of labeled training

data could have been employed for the primary task of training the required I/O transformation by the neural

network. This problem manifests itself more when the data set is limited in terms of size. Especially in the case

of historical manuscripts, there will be just a small amount of labels for a newly-discovered document in an

unknown writing style. This raises the following research question:

We would like to thank Lutz Prechelt and two other anonymous reviewers for their useful and constructive comments on a previous version

of this article.

Authors’ address: Mahya Ameryan, m.ameryan@rug.nl/mahya.ameryan@gmail.com; Lambert Schomaker, L.R.B.Schomaker@rug.nl, Univer-

sity of Groningen, Nijenborgh 9, Groningen, Groningen, The Netherlands, 9747 AG.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

XXXX-XXXX/2023/4-ART

https://doi.org/10.1145/3587168

ACM J. Comput. Cult. Herit.

HTTPS://ORCID.ORG/0000-0001-9327-2774
HTTPS://ORCID.ORG/0000-0003-2351-930X
https://orcid.org/0000-0001-9327-2774
https://orcid.org/0000-0003-2351-930X
https://doi.org/10.1145/3587168
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587168&domain=pdf&date_stamp=2023-04-27

2 • Mahya Ameryan and Lambert Schomaker

’How is it possible to obtain reliable results from a trained neural network, without spilling valuable labels

on the secondary process of validation?’. Rephrased, the question can also be read as: ’How to use all of the

available labels for the primary training process?’. The urgency of label use is most strongly felt in the case

of underrepresented classes. In textual data, the class imbalance is a given due to Zipf’s Law [39], with many

low-frequent words in what is called ’the long tail’. For characters, a similarly skewed distribution is present in

many languages [10, 36].

The remainder of this paper is organized as follows. In Section 2, we briely survey related studies on state-of-

the-art techniques for early stopping. In Section 3, we explore several diferent early stopping approaches. The

experimental evaluation and discussion are given in Sections 4 and 5, followed by a conclusion section.

2 RELATED WORK

Overitting is a basic problem in supervised machine learning since it prevents the generalization of the models

to unseen input patterns [13]. Overitting occurs as the consequence of a mismatch between the number of free

parameters (weights) and the limited size of the training set, given the complexity of a classiier, and the risk of

stopping the training process at an inopportune iteration due to the eagerness of obtaining high classiication

accuracies [37].

The history of early-stopping heuristics dates back to the 1970s when research into the Landweber iteration

was carried out [28]. In the 1990s, early stopping was used for neural networks [19] where the stochastic gradient

descent is used to predict the performance of the model.

A common but very basic approach for early stopping uses only the training-loss values (e.g., L1 or L2 loss)

where the training process stops after not observing a further decrease in the training-loss values after a predeined

number of iterations. However, the training loss has luctuated modiication and it is diicult to predict the

performance of a model on unseen data reliably. For this reason, independent validation data are used to decide

whether training can stop. A common indicator of overitting is an increase in validation loss while training loss

still appears to be diminishing. Stopping on the basis of the validation loss delivers a better prediction of the

performance on unseen data. However, a loss (or an accuracy) can only be computed if target values (i.e., labels)

are known for each input/output sample pair. In order to be reliable, the number of validation samples needs to

be large, which unfortunately is at the cost of available labeled data for the training process itself.

Table 1 shows character-error rates (CER) obtained in a 50-80 epoch range in a handwriting-recognition task,

using 60 or 80 percent of the labeled data for the training, proper. The data set contains 9,630 word images [1]. The

data set contain 52 diferent characters. The result is derived from a neural network containing 12 convolutional

layers [17] followed by a CTC layer [8] containing 18,764,416 trainable parameters. The number of outputs are

54 (52 characters + an special space for CTC [8] + a stressed-ending token [2, 3]). It can be seen that the CER

drops 0.4 to 2.9 percentage points if an extra 20% of labeled training data is used, which corresponds to an error

reduction (relative gain) of 3-18 percent. Given the current focus on fractional improvements in deep learning

performance, this diference is not negligible.

Given such a potential for error reduction provided by the availability of enough labeled samples, it becomes

interesting to consider methods that are able to decide for an early stop of the training without the label spilling

that is associated with the usual validation procedure. A challenging aspect concerns the measurement of

performance. In the application itself, loss values are only indirect performance indicators. In handwriting

recognition, classiication accuracy is the inal, relevant indicator of network performance. Such accuracy can

only be computed using the known labels, for samples in the validation set. If a new early-stopping criterion is

introduced, one would like to know the expected validation and test accuracies at the point of bailing out [12].

That such criteria may exist, can be seen in Fig. 7, as a preview.

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 3

Table 1. Character error rates (Avg ±sd) obtained in the training range of 50-80 epochs in a handwriting-recognition task,

using 60 vs 80 percent of the MkS data set [1] for the training. It can be seen that the availability of yet another portion of

20% of the training data, e.g., by preventing label dissipation in the validation, is atractive. (pp = percentage point)

Portion of labeled data set training set size Epoch

50 60 70 80

60% 5778 15.4 ±1.3 16.0 ±1.8 13.2 ±0.8 13.2 ±1.1
80% 7704 14.5 ±0.9 13.1 ±1.5 12.5 ±0.7 12.8 ±0.7

Gain (pp) - 0.9 2.9 0.7 0.4

Relative Gain (%) - 5.84 18.13 5.30 3.03

In [22], it is proposed that a careful selection of a stopping criterion requires a consideration of the following

questions: (a) Training time: How much each criterion afects the training time?; (b) Eiciency: How much

of the training time is superluous using each criterion?; (c) Efectiveness: How does each criterion determine

the inal performance?; (d) Robustness: How robust are mentioned qualities with respect to the random initial

condition or network architecture?; (e) Trade-ofs: Which criterion ofers the best time-performance trade-of?;

(f) Quantiication: How to measure the quantity of the trade-of?

In [22], it is commemorated that early work in neural networks focused primarily on training performance and

diferences between stopping heuristics were not considered important [31, 35]. In more recent years, however,

reliable performance prediction has become an important issue. In the NIPS performance prediction and model

selection challenges, the focus was rightly on an accurate prediction of model performance rather than on high

training performances per se. In these benchmarks, the winner is not the team with the highest, cherry-picked

performance, but the team which most accurately predicted the performance on completely unseen data [12].

In literature, diferent properties of a neural network are considered in order to prevent overit and/or to

optimize performance, e.g., by looking at the evolution of weight values [4, 22]. A graph-theoretical method,

based on algebraic topology using network weights and connectivity, is proposed in [25] for early stopping.

In [29], in order to optimize a Multi-Layer Perceptron (MLP), a method based on monitoring the entropy of all

weight values in the model is proposed, based on (expensive) particle-swarm optimization. In the current study,

we will also focus on the properties of the set of weights in a model, with the aim of inding a simple and efective

method that can be used for diferent network architectures. The idea is that starting at the irst epoch with

uniformly distributed weight values that break the symmetry, the distribution will change over time as (local)

solutions have been found. The goals of the current study are:

• To use as much labeled data for training, per se, and not dissipate it for the secondary task of validation

(i.e., to deal with label sparsity);

• To monitor the statistics of the weight values, inspired by [4, 22];

• To ind a stopping epoch that does not difer signiicantly fromwhat a regular validation-loss-based criterion

inds;

• To identify a stopping epoch that has a character error rate that does not difer much from what a traditional

validation-based method would ind;

• To use a measure that luctuates less drastically than the loss which is typically a ragged curve [30, 38].

3 METHOD

In this section, we explore three early-stopping heuristics for the training of convolutional neural networks

(CNNs [17]). Convolutional neural networks avoid unwieldy and computationally expensive processing of full

images by using a battery of compact, trainable image ilters which use only a fraction of the coeicients that

ACM J. Comput. Cult. Herit.

4 • Mahya Ameryan and Lambert Schomaker

would have been needed in the case of traditional neural networks, where hidden units in the irst layer need to

be connected to the whole image. The information contained in the values of the weights of all kernels is an

essential determinant of the success of a convolutional neural network. The training of such networks requires

a validation stage, where labeled data is needed, reducing the efective size of the training set, proper. In this

section we will introduce three heuristics for early stopping as an alternative approach to the usual validation.

The proposed heuristics are: 1 Cumulative Distribution of the Standard deviation of Kernel Weights (CD-SKW); 2

Moving Standard deviation of SKW (SSKW); 3 Moving Standard deviation of the Total sum of Kernel Weights

(STKW). By monitoring the changes in the value of a deined measure over the training process, we apply an

approach for the determination of a stopping point which is detailed in this section. The three approaches are

evaluated using several neural-network architectures, which will be explained later.

3.1 Introducing SKW: Using the standard deviation of kernel weights

Here, we deine a new criterion, the standard deviation of kernel weights (SKW) as it evolves during training. To

compute SKW, we compute the standard deviation of the CNN kernel weight values as obtained at the end of

each epoch � , yielding a series ���� representing the evolution of weight-value variation over the epochs. We

have found in pilot experiments that the ���� curve appears to be increasing and is relatively smooth. Therefore,

it was hypothesized that this measure may lend itself as an early stopping criterion, if a sensitive detection can

be made of a statistical change in its evolution. Whereas the continuous increase may appear as a non-stationary

process, the growth itself appears to be regular. Therefore, a non-stationarity test on growth can be used to

detect a change in the process of weight changes[18, 23, 24]. The function �������_��� in Algorithm 1 in the

Appendices shows the details. The list of symbols is as described in Table 10.

3.1.1 Heuristic 1: Early stopping with Cumulative distribution of SKW (CD-SKW).

As stated earlier, the two commonly used early-stopping methods in deep learning are based on the loss value

of the training set (���� (�����)1) or the character error rate of the model on the validation set (������). Both of

these traditional measures gradually converge to an asymptote at some interval of epochs during the training

process. However, the SKW value surprisingly continuously increases during the training process as we will

show further in Section 4.3. To deal with this issue, we need to detect a statistically unexpected growth value

for SKW to be deined as a stopping point. By looking at a running SKW over a window of � epochs, the local

statistics of SKW can be estimated and the probability of a new incoming SKW value � can be determined.

Various methods can be used for this goal. We have experimented with some methods [9, 16], however, with

limited results. Finally, a basic statistical test appeared to yield satisfying results. We consider a lower bound

on the probability (� (�)) of the SKW criterion occurring assuming a Gaussian distribution of the SKW from

the previous � epochs. The value � (�) is calculated from the Cumulative distribution function (���). When �

is smaller than a predeined threshold, the new SKW value is unlikely to be generated by the same statistical

process, and training is terminated. We call this the Cumulative distribution of the standard deviation of kernel

weights (CD-SKW) early-stopping heuristic. In the���� function of the Algorithm 1, the CD-SKW early-stopping

method is applied.

Assuming that SKW values have been collected over a time window of � epochs, we can estimate a Gaussian

model for the time series, returning � (�) for a new SKW value � :

N� (�, �� , ��) = 1/(��
√
2�)��� (((� − ��)/(2��))2) (1)

1In the sequel we will use the generic word ’loss’, referring to the actually used CTC loss for LSTMs in HTR

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 5

where �� and �� are the running average and running standard deviation. In order to obtain a probability

estimate suitable for thresholding, we need to integrate to obtain the cumulative distribution:

���� (�, �� , ��) =

∫ �

−∞
N� (�, �� , ��)�� (2)

Finally, �� , the moving average of SKW and �� , the moving standard deviation of SKW over the previous �

epochs are computed as:

�� = (
�︁

�=�−�
����)/� (3)

�� =

√

√

√ �︁

�=�−�
(���� − ��)2)/� (4)

3.1.2 Heuristic 2: Early stopping with moving standard deviation of ��� (����).

In heuristic 2, we use another approach for monitoring the evolution of ��� . As discussed before, the ���

values continuously increase over the training process and do not converge to an asymptote. However, our pilot

experiments show that the moving standard deviation of ��� decreases after the irst run-in stage of the neural

network. Therefore, we use the moving standard deviation of ��� over a window sized �1 for detecting the

stopping point. We call this approach the early-stopping method based on the moving standard deviation of

��� (����). After observing no decrease in ���� for �2 epochs, we terminate the training process.

3.2 Heuristic 3: Early stopping using the moving standard deviation of the total sum of the kernel

weights (STKW)

In this approach, we deine another criterion, the evolution of the total sum of the kernel weights (���) during

training. The ��� is a scalar value and is calculated by summing all the kernel weights of the CNN model

together at the end of each epoch � , leading to another series ���� . The function �������_��� in Algorithm 2

in Appendices shows the details. The list of symbols is shown in Table 10.

Our pilot experiments show that the ��� values are decreasing rather smoothly in the training process after

the irst run-in stage of the neural network.

However, like the other two heuristics, the curve does not converge to an asymptote during the training process

and continues to decrease. Therefore, we do not consider the growth of the���� itself, but calculate the running

standard deviation over a window of � epochs (�����). The evolution of ����� shows a great similarity with

the evolution of the character error rate of the model on the validation set (������), as will be shown later.

After preliminary experiments, it appeared that three diferent window sizes � need to be taken into account.

First, we do not want to stop in the irst few �1 epochs (run-in stage), because the network is settling from the

potentially far-away random initialization. Then, after �1 epochs, we start to calculate the running standard

deviation of ���� over �2 epochs at each step. Lastly, we check if the minimum of ����� does not decrease for

�3 epochs and stop at epoch � of this minimum. For our experiments we set all three window sizes to the same

value, that is � = �1 = �2 = �3. The moving standard deviation of ��� over the previous � epochs (��) are

calculated as:

��2 =

√

√

√ �︁

�=�−�2

(���� − ��2)2)/�2 (5)

where the ��2 is the moving average of �2 previous ��� values:

ACM J. Comput. Cult. Herit.

6 • Mahya Ameryan and Lambert Schomaker

��2 = (
�︁

�=�−�2

����)/�2 (6)

3.3 Convolutional neural networks

We apply the three early-stopping heuristics to several convolutional neural network architectures. First, an

input image is preprocessed as detailed in [1]. Then, it is processed by CNN layers. Each layer of a CNN has a

convolution operation, normalization method, the ReLU activation function [20], and a max-pooling procedure.

The initialization method (initializing distribution), learning rate, input image size, the hidden unit sizes, and the

number of trainable parameters are shown in Table 2. For Heuristic 1, the learning rate is scheduled and is 0.003

until epoch 25. At epoch 26 it drops to 0.002. From epoch 70, the learning rate is 0.001. For Heuristic 2 and 3, the

learning rate is constant.

For all the architectures, the kernel ilters have the size of 3×3. The Adam optimizer is used [15]. No dropout is

used in the models. The last layer of CNN is followed by a Connectionist Temporal Classiication (CTC [8]) and

the dictionary-free Best-Path method [7] is used for decoding.

3.4 Data set

In our experiments, we use three data sets: MkS [1] for evaluating Heuristic 1, and RIMES [11] and Bentham [5, 27]

for evaluating Heuristic 2 and 3. The MkS data set is collected from the extensive biological ield notes of the

Natuurkundige Commissie (NC) in the Indonesian Archipelago in the period 1820-1850 [32ś34]. The original

manuscript contains 17,000 pages and is preserved in the Naturalis Biodiversity Center in Leiden, the Netherlands.

Variant languages are used in the NC manuscript, including German, Dutch, Latin, Malay, French, and Greek.

Scatteredly, 950 pages of the NC corpus are annotated for this project (NNM001001033-7). We conducted the

5-fold cross-validation after random data splitting. The proportion of words in the test set not appearing in the

training set, out-of-vocabulary (OOV) words, is 29.5% in a case-insensitive manner and 31.9% in a case-sensitive

Table 2. Configuration of three convolutional neural network architectures (Arch.: �� , � = 1, ..., 19) used in the evaluations

the Heuristic 1, 2, and 3. Please refer to the text for further explanation.

Heuristic Arch. initializing distribution Learning rate Input image size #hidden units hidden units size #trainable parameters

�1 truncated normal Scheduled 128×32 12 128(2), 256(2), 512(8) 18,764,416

Heuristic 1 �2 truncated normal Scheduled 128×32 14 128(2), 256(3), 512(9) 21,715,072

�3 truncated normal Scheduled 128×32 16 128(2), 256(3), 512(11) 26,435,712

�4 truncated normal 0.001 128×32 15 128(1), 256(2), 512(12) 28,073,856

�5 normal 0.001 128×32 18 128(2), 256(4), 512(12) 29,402,240

�6 truncated normal 0.001 128×32 18 128(2), 256(4), 512(12) 29,402,240

�7 truncated normal 0.002 128×32 18 128(2), 256(4), 512(12) 29,402,240

Heuristic 2 �8 Uniform 0.001 128×32 18 128(2), 256(4), 512(12) 29,402,240

�9 truncated normal 0.001 1200×64 13 128(3), 256(7), 512(3) 10,083,712

�10 truncated normal 0.002 1200×64 13 128(3), 256(7), 512(3) 10,083,712

�11 truncated normal 0.003 1200×64 13 128(3), 256(7), 512(3) 10,083,712

�12 truncated normal 0.001 1200×64 15 128(3), 256(8), 512(4) 13,034,368

�13 truncated normal 0.001 1200×64 19 128(4), 256(7), 512(8) 22,033,024

�14 Uniform 0.001 128×32 15 128(1), 256(2), 512(12) 28,073,856

�15 Uniform 0.001 128×32 18 128(2), 256(4), 512(12) 29,402,240

Heuristic 3 �16 Uniform 0.001 128×32 17 128(5), 256(3), 512(9) 22,174,080

�17 Uniform 0.001 1200×64 14 128(3), 256(7), 512(4) 12,444,032

�18 Uniform 0.001 1200×64 15 128(3), 256(8), 512(4) 13,034,368

�19 Uniform 0.001 1200×64 18 128(4), 256(6), 512(8) 15,542,400

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 7

manner. Table 3 shows the summarization of the MkS data set along with its subsets in the terms of the number

of image samples, and the lexicon size in the case-(in)sensitive manner.

RIMES is a contemporary public benchmark data set for handwriting recognition. We use the isolated words of

ICDAR 2011. The historical Bentham data set is a publicly available benchmark and is derived from the Bentham

archive. Bentham is annotated on line level and partially on word level. This manuscript was written by two

authors, English philosopher and reformer Jeremy Bentham (1748-1832) and his secretarial staf. The text is

principally in the English language, and partly in Greek and French. We use the stressed-ending labeling-coding

scheme [2, 3] for the experiments on MkS and RIMES. In this method, an extra character, here the bar sign (|), is
added to the ground-truth labels.

4 RESULTS

In this section, we irst describe how our experiments are conducted. After that, the numerical results of the three

heuristics are presented.

When Heuristic 1, 2, and 3, and also the early-stopping methods based on ���� (�����) are used, the ������
and ������� are computed after the training process. The neural network architectures are implemented on the

TensorFlow framework.

Table 3. The MkS data set. Subscript cs and ci denote case sensitive and case insensitive for counting the lexicon size [1].

Set #Image samples #��������� #���������
Train 5,778 2,648 2,497

MkS Validation 1,926 1,188 1,142

Test 1,926 1,188 1,142

Total 9,630 3,730 3,494

Table 4. Result of the convolutional neural networks �� = �1, ..., �3 in Table2 on the MkS data set using the early-stopping

heuristic based on the character error rate (CER) of the validation set, the loss of model on the training set, and label-free

CD-SKW early-stopping (heuristic 1).

early-stopping method Arch. Stopping epoch Training loss ������ �������
�1 70.6 ±0.5 1.8±0.2 12.8 ±0.4 13.1 ±0.2

Loss �2 69.4 ±1.6 2.2 ±0.2 13.1 ±1.5 13.4 ±1.5
�3 69.4 ±3.3 2.2 ±0.5 13.9 ±1.8 13.7 ±1.9

Avg ±sd 69.8 ±2.2 2.1 ±0.4 13.3 ±1.4 13.4 ±1.4
�1 72.2 ±11.8 2.7 ±0.5 12.7 ±0.8 13.5 ±1.2

������ �2 72.0 ±11.4 2.8 ±0.6 12.7 ±0.7 13.1 ±0.6
�3 73.6 ±1.6 2.9 ±0.3 11.5 ±0.5 12.5 ±0.4

Avg ±sd 72.6 ±9.6 2.8 ±0.5 12.3 ±0.9 13.0 ±0.9
�1 69.4 ±1.6 2.4 ±0.2 13.1 ±1.5 13.5 ±1.5

CD-SKW �2 69.4 ±1.6 2.4 ±0.2 13.1 ±1.5 13.5 ±1.5
�3 69.4 ±1.6 2.4 ±0.2 13.1 ±1.5 13.5 ±1.5

Avg ±sd 69.4 ±1.6 2.4 ±0.2 13.1 ±1.5 13.5 ±1.5

ACM J. Comput. Cult. Herit.

8 • Mahya Ameryan and Lambert Schomaker

4.1 uantitative results of Heuristic 1, CD-SKW

Table 4 shows the comparison of two well-known early-stopping approaches based on character error recognition

(CER(%)) on the validation set and the training loss with the suggested label-free CD-SKW early stopping heuristic

in terms of average and standard deviation (��� ± ��) of the stopping epoch, ���� (�����), the CER of the model

on the validation (������), and test (�������) sets. The used data is the MkS data set. Each row of �� , � = 1, 2, 3

shows the average and standard deviation of ive trained networks (one architecture on ive rounds of 5-fold

cross-validation). The row at the bottom of�� , � = 1, 2, 3 shows the result of the 15 trained models (3 architecture ×
ive rounds). To detect the stopping point by applying the label-free CD-SKW early-stopping heuristic, no labeled

data is used. In the label-free CD-SKW early-stopping heuristic, we consider the interval size for investigating the

occurrence of an early stopping (� = 15) and the threshold of the probability deined in Algorithm 1 (� = 0.90) in

the Appendices. For the comparison with the two other stopping methods, i.e., one based on the CER on the

validation set and one on the training loss, we use the same window size as in the SKW approach, i.e., selecting

an epoch when the model did not improve over the last 15 epochs.

When the early-stopping method based on loss and also CD-SKW is used, the ������ and ������� sets are

computed after the training process. As reported in Table 4, when CD-SKW is used, on average ������=13.1 is

0.2 pp less than when the training loss is used (������=13.3). When the training loss is used, ������� is 0.1 pp

less than when CD-SKW is used. It reveals that the two methods yield highly similar results, although SKW is

not using label information. For practical use, the diferences between the results are small enough (< 0.5 pp on

�������) to develop some trust in the label-free CD-SKW heuristic.

Fig. 1a shows the evolution of the SKW value (the blue line with circles) in comparison with ���� (�����) (the
red line with squares) and ������ (the green line with crosses) in Fig. 1b during the training process. the values

are conducted using the architecture �1 in Table 2. In this example, the network was trained on one training

set, of one round of 5-fold cross-validation of the MkS data set [1, 34]. Results for other rounds were similar

(cf. the standard deviations in Table 4). In Fig. 1a and 1b, the pink dot on the SKW line indicates the epoch=71

where the label-free SKW early-stopping method recognizes the proper epoch for terminating the training. That

(a) SKW vs Loss (b) SKW vs CER

Fig. 1. Comparison of the evolution of the SKW curve with �����(����), and ������ curves: (a) The increasing blue line

with circles shows the SKW curve, where the pink circle indicates the stopping point determined by the CD-SKW method

detecting the discontinuity. The decreasing red line with square points illustrates the loss values of the model on the training

set, where the green triangle presents the stopping point determined by the training loss-based early-stopping approach. (b)

The figure shows the Comparison of the SKW curve with the decreasing green curve of the character error recognition of

the validation curve (������). The values are obtained from applying the architecture �1 in Table 2 on one round of 5-fold

cross-validation of the training set of MkS data set (60% of the MkS data set). No validation set is used.

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 9

is, the probability of the SKW given the previous 15 epochs (� = 15) is smaller than the predeined threshold

(� = 0.90). In this igure, the method based on the loss value found the same epoch. However, there will generally

be slight diferences in the point of stopping. As shown in Table 4, the stopping epoch of �1 based on the training

loss equals 70.6 ±0.5 and based on SKW equals 69.4 ±1.6. After the pink dot and the green triangle the training

process should be terminated. We continued training to show the behavior of the criteria. In Fig. 1b, the green

line with crosses illustrates ������ . The square point shows the stopping epoch. The SKW values, unlike the

���� (�����) and ������ , increase during the training process. Moreover, SKW has a clear increasing behavior

while the ���� (�����) and ������ change with luctuation.

Fig. 2 shows the efect of the learning rate on the character error rate (%) on the validation set, training loss, and

the suggested CD-SKW in the �2 architecture in Table 2 on ive rounds of 5-fold cross-validation (� � , � = 1, ..., 5).

The computing time of ������ and CD-SKW are shown in Table 5 for the neural networks (Arch.) in Table 2.

The numerical values are in seconds per epoch. The loading (I/O) time of the validation set (29 seconds) is not

considered in the computing of ������ . Please note a considerable time gain factor of 10 to 20.

(a) The character error recognition (b) The training (CTC) loss

(c) The standard deviation of the kernel weights

Fig. 2. The efect of the learning rate on the character error rate (%) on the validation set, training loss, and the suggested

SKW in the �2 architecture in Table 2 on five rounds of 5-fold cross-validation (� � , � = 1, ..., 5).

ACM J. Comput. Cult. Herit.

10 • Mahya Ameryan and Lambert Schomaker

Table 5. The comparison between the computing time of the character error rate of the validation set (������) and the

CD-SKW early-stopping method of the architectures in Table 2 for each epoch. The values are in seconds per epoch. The

loading (I/O) time of the validation set is 29 seconds. This time is not regarded in computing of ������ . We used NVIDIA

V100 and 2.52G RAM.

Arch. ������ CD-SKW

�1 7.9 0.4

�2 4.9 0.4

�3 10.0 0.6

Fig. 3. Evolution of the normalized SKW variable during training, for CNN models �4 to �8 in Table 2 on the RIMES data set.

Fig. 4. Evolution of the normalized SSKW variable during training, for CNN models �4 to �8 in Table 2 on the RIMES data

set.

4.2 uantitative results of Heuristic 2, SSKW

The heuristic 2, ���� , is used for the CNN architectures �� , � = 4, ..., 13 in Table 2 which have a constant

learning rate throughout the training. The architectures are applied to two publicly available benchmark data

sets, RIMES and Bentham. The ive architectures �� , � = 4, ..., 8 are applied to the RIMES data set and the ive

architectures�� , � = 9, ..., 13 are applied to the Bentham data set. By using a constant learning rate, the curve of the

evolution of the ��� values during the training process does not show an (artefactual) bending point. The ���

values increase without converging to an asymptotic line. Fig. 3 shows the evolution of ��� of architectures

�� , � = 4, ..., 8 on RIMES. For better visibility, the values of the igures are normalized. Fig. 4 shows the evaluation

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 11

of the normalized moving standard deviation of ��� (����) values during the training for CNN models �4 to

�8 in Table 2 on the RIMES data set. We observe that the ���� values decrease during the training process. The

window size for the moving standard deviation is 15 epochs.

Fig. 5 shows the evolution of the normalized SSKW and ������ values during training, for the architecture

�7 in Table 2 on the RIMES data set. The SSKW and ������ show similarities in their evolution manner. The

Pearson correlation is 0.90. The initial part of epochs < 15 is ignored to allow the CNN model to settle from the

initial randomization, also letting the windowed computations to ’run in’.

Table 6 shows the comparison of ���� with two traditional early-stopping approaches based on ������ and

���� (�����) in terms of average and standard deviation (��� ± ��) of stopping epoch, ���� (�����), ������ (%)

Fig. 5. Evolution of the normalized SSKW variable and the normalized ������ values during training, for CNN model �7

in Table 2 on the RIMES data set. The absolute values of ������ are shown in Table 6. The Pearson correlation is 0.90. The

initial part of epochs < 15 is ignored because of the ’run-in’ stage of the neural-network training.

Table 6. Comparision of Heuristic 2, ���� , with the early-stopping methods based on������ and ���� (�����). Please refer
to the text for further explanation.

Data set �2 �1 Early-stopping method epoch Loss ������ �������
���� (�����) >200 - - -

15 ������ 78.80 ±12.50 0.14 ±0.03 4.71 ±0.96 4.68 ±0.92
15 ���� 136.60 ±22.52 0.08 ±0.03 4.55 ±0.91 4.49 ±0.87
10 ���� 99.40 ±16.86 0.11 ±0.06 4.79 ±0.99 4.77 ±1.01

���� (�����) >200 - - -

RIMES 17 ������ 90.60 ±13.15 0.12 ±0.03 4.59 ±0.90 4.60 ±0.88
15 ���� 140.00 ±26.69 0.08 ±0.03 4.56 ±0.89 4.50 ±0.87
10 ���� 110.60 ±29.06 0.11 ±0.06 4.76 ±1.03 4.76 ±1.02

���� (�����) >200 - - -

15 ������ 86.20 ±9.62 8.10 ±0.57 4.56 ±0.20 4.62 ±0.28
15 SSKW 120.40 ±22.77 7.01 ±0.98 4.65 ±0.26 4.62 ±0.28
10 ���� 97.60 ±20.71 7.61 ±0.82 4.83 ±0.29 4.70 ±0.29

���� (�����) >200 - - -

Bentham 17 ������ 89.60 ±15.47 7.97 ±0.76 4.54 ±0.23 4.60 ±0.29
15 ���� 124.40 ±17.07 6.99 ±0.95 4.67 ±0.28 4.67 ±0.33
10 ���� 107.20 ±18.78 7.50 ±0.68 4.75 ±0.17 4.68 ±0.25

ACM J. Comput. Cult. Herit.

12 • Mahya Ameryan and Lambert Schomaker

Table 7. The comparison between the computing time of the early-stopping based on ������ and the SSKW early-stopping

method of the architectures �4 to �8 in Table 2 on RIMES for each epoch. The values are in seconds per epoch. The loading

(I/O) time of the validation set is 40 seconds. This time is not regarded in this table. We used NVIDIA V100.

Arch. ������ SSKW

�4 37.7 0.5

�5 39.1 0.6

�6 38.7 0.6

�7 38.3 0.6

�8 39.0 0.6

and ������� (%) of the ive architectures �� , � = 9, ..., 13 on the Bentham data set. The size of the window for

computing ���� is �1 = 15 �� 10. The training stops using the aimed criterion when it does not decrease

for �2 = 15 �� 17 epochs. The maximum number of training epochs equals 200. In our experiments, when the

���� (�����) early-stopping method is considered, at least one network needs more than 200 epochs. Therefore,

training is terminated without using an early stopping method. We indicate this with ′−′ in Table 6.

Table 6 shows that when ���� is used for RIMES and �1 = 15, ������� (%) is less than when������ is used as

criterion (�2 = 15: 4,49 vs 4,68, �2 = 17: 4,50 vs 4,60). When �1 = 10, ������� (%) obtained by SSKW is more than

when ������ is used as criterion (�2 = 15: 4,77 vs 4,68, �2 = 17: 4,76 vs 4,60). ���� needs 20 to 58 epochs more

compared to the early-stoping method based on ������ . Moreover, ���� demands shorter training compared to

the early-stoping method based on ���� (�����).
Table 6 shows that when ���� is used for Bentham and �1 = 15,������� (%) equals to when������ is used as

criterion or less than 1 pp higher (�2 = 15: 4.6 vs 4.6, �2 = 17: 4.67 vs 4.6). When �1 = 10 and ���� is considered

as the criterion, ������� (%) is 0.08 pp more than when ������ is used as criterion (�2 = 15: 4.70 vs 4.62, �2 = 17:

4.68 vs 4.60). ���� needs 11 to 35 epochs more compared to the early-stoping method based on ������ . Also,

���� takes shorter training in comparison with the early-stoping method based on ���� (�����).
The computing time of the early-stopping method based on ������ and the ���� early-stopping method are

shown in Table 7 for the architectures (Arch.) �4 to �8 in Table 2. The numerical values are in seconds per epoch.

The loading (I/O) time of the validation set (40 seconds) is not considered in computing of ������ . Please note a

considerable time gain factor of 60 to 75.

4.3 uantitative results of Heuristic 3, STKW

The evolution of the normalized TKW during training of the CNN models �14 to �19 in Table 2 on RIMES and

Bentham is shown Fig. 6. Like, the ��� values, the ��� values grow without converging to an asymptotic

line. Fig. 6 shows that the curve does not have a bending point. However, the evolution of ���� and ������ are

highly similar (Pearson correlation: r=0.89). Fig. 7 shows the evolution of the normalized values of ���� and

������ of �14 applied to the RIMES data set. The initial part of the training process (epochs < 30) is disregarded

to let the model settle from the random initialization.

To evaluate the heuristic 3, ���� , we applied the architectures �� , � = 14, 15, 16 in Table 2 on the RIMES data

set, and the architectures �� , � = 17, 18, 19 on Bentham. The comparison of the ���� with two early-stopping

approaches based on ������ and ���� (�����) in terms of average and standard deviation (��� ± ��) of stopping
epoch, ���� (�����),������ (%) and������� (%) of the models is reported in Table 8. For the early-stopping method

based on ���� (�����), ������ , and ���� , � in Table 8 shows the number of epochs that the model does not

show improvement as well as the other two windows of ���� , i.e., the window which shows the run-in stage

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 13

Fig. 6. Evolution of the normalized TKW variable during training, for CNN models �4 to �9 in Table 2 and for two data sets.

Fig. 7. The normalized ������ (orange with rectangles) vs the normalized STKW values (blue with circles) of the �14 CNN

model in Table 2 which also shows the absolute CER values. The Pearson correlation is 0.89. The initial part of epochs < 30 is

ignored to allow the network to setle from the initial randomization, also leting the windowed computations to ’run in’.

and the window for the standard deviation of ���� . In the evaluations, we consider the maximum number of

the training epoch equal to 200.

For RIMES, when ���� (�����) is the stopping criterion, the stopping point is not detected during the 200

training epochs. We show this observation with ′−′. For RIMES, for both � = 15 and � = 17, the average of

������� is equal when the STKW method is used. The size of � does not show an efect on ������� on average.

For RIMES, in comparison with the early stopping method based on ������ , the ���� detects the stopping

point 5 to 7 epochs later with 0.25 to 0.34 pp higher ������� . For ���� , the higher � size shows less stability.

For Bentham, the ���� method detects the stopping epoch 10 to 29 epochs before������ and about 55 epochs

before the early-stopping method based on ���� (�����). The ������� obtained by ���� on Bentham is 0.6 to

0.9 pp more than the ������� obtained by the early-stopping method based on ������ . The ������ and �������
derived by the early-stopping method based on ���� (�����) are up to 0.8 pp less than������ and������� derived

by the early-stopping method based on STKW.

ACM J. Comput. Cult. Herit.

14 • Mahya Ameryan and Lambert Schomaker

Table 8. Comparision of Heuristic 3, ���� , with the early-stoping methods based on ������ and ���� (�����). Please refer
to the text for further explanation.

Data set � Early-stopping method epoch Loss ������ �������
���� (�����) >200 - - -

RIMES 15 ������ 90.33 ±20.8 21.38 ±1.7 6.15 ±0.1 6.16 ±0.2
STKW 97.00 ±15.5 19.39 ±2.2 6.40 ±0.4 6.41 ±0.4

���� (�����) >200 - - -

17 ������ 99.00 ±22.1 20.09 ±0.4 6.02 ±0.2 6.07 ±0.3
STKW 104.33 ±6.1 19.83 ±1.2 6.43 ±0.5 6.41 ±0.6

Loss(train) 127.33 ±5.4 9.46 ±0.59 6.85 ±0.18 6.91 ±0.11
15 ������ 83.00 ±15.90 153.44 ±11.80 6.80 ±0.13 6.86 ±0.15

STKW 72.67 ±5.19 153.98 ±11.09 7.54 ±0.14 7.49 ±0.08
Loss(train) 129.00 ±6.0 9.16 ±0.5 6.93 ±0.2 6.94 ±0.1

Bentham 17 ������ 104.00 ±37.8 143.77 ±25.1 6.66 ±0.2 6.80 ±0.2
STKW 74.67 ±4.8 140.50 ±16.9 7.77 ±0.4 7.73 ±0.3

Table 9. The comparison between the computing time of the early-stopping based on ������ and the STKW early-stopping

method of the architectures (Arch.) �15, �14, and �16 in Table 2 on RIMES. The values are in seconds per epoch. The loading

(I/O) time of the validation set is 40 seconds. This time is not regarded in computing of ������ . We used NVIDIA V100.

Arch. ������ STKW

�14 37.8 0.4

�15 38.4 0.6

�16 34.0 0.5

The computing time of the early-stopping method based on ������ and the ���� early-stopping method are

shown in Table 9 for the architectures (Arch.) �15, �14, and �16 in Table 2. The numerical values are in seconds

per epoch. The loading (I/O) time of the validation set (40 seconds) is not considered in computing of ������ . In

comparison with the early-stopping method based on ������ , the label-free STKW heuristic is at 60 to 90 times

faster per epoch.

5 DISCUSSION

In this study, we explored three label-free early-stopping heuristics for convolutional neural networks. The

results were compared to two well-known standard methods in the deep learning domain, i.e., based on the

character-error rate on the validation-set ������ , or, alternatively, on the ��� training loss. Both traditional

methods require labels, for each of the instances in the validation data set.

Our exploration of alternative heuristics for early stopping started with SKW, the standard deviation of

kernel-weight values. The irst heuristic is the Cumulative Distribution of SKW (CD-SKW). This heuristic has

the advantage of capturing the diversity of the distribution of weight values, which appears to increase over

the epochs as a consequence of the increasingly reined weight updates during gradient descent. The results

of CD-SKW were very promising, indicating that convenient stopping points could be found near the points

that would have been obtained by the early-stopping method based on ������ for the tested CNN models on

the highly multilingual historical MkS data set, Fig. 1b. However, there appeared to exist a clear inluence of the

training schedule used, in this case, ADAM [15] where the learning rate changes in intervals of training epochs.

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 15

We have observed that a step-wise decrease in the learning rate determined by the applied learning-rate schedule

causes a clear drop in the growth rate of the SKW value. This efect is not surprising because the evolution of the

state of the neural network, including the kernel weights, slows down when the learning rate has a lower value.

As a result, also ������ as well as ���� (�����) show a reduction in changes around this point.

It is worth mentioning that the reported result for heuristic 1, CD-SKW, is on a realistic historical data set

with various word-segmentation problems compared to the clean well-known standard benchmarks. Moreover, a

signiicant boost in the accuracy of > 20% points is possible by applying a dictionary-based decoder such as a

dual-state word-beam search (DSWBS [26],[1]). In this study we avoided the use of a dictionary in order to keep

a strict focus on the shape classiication and the associated CTC loss.

When there is no dynamic training schedule used, there is no clear ’knee’ or bending point for SKW which

we explore in heuristic 2. The results on two benchmark data sets indicated that the SKW values increase but

the variation decreases during training. We measure the variation with the running standard deviation of SKW

(SSKW). The evolution of SSKW showed similarity with ������ . In heuristic 2, the training stops when SSKW

values do not decrease in an interval of epochs. The results showed that the slight change in the size of this

interval (15 vs 17 epochs) does not have a clear efect on������� . The larger window size of the running standard

deviation (15 vs 10) gives a slightly better ������� (%). The training process stops later when using heuristic 2, as

compared to the use of ������ .

The third heuristic is the moving standard deviation of total sum of SKW over epochs (STKW). This measure

represents the evolution of the variability in the total sum of weight values over the epochs. Assuming that the

Table 10. The symbols used in the Algorithms

Type Entry discretion

���� The training data set

Set ����� All of the layers of the model

�� One-dimensional array with the kernel weight values of the model at the end of an epoch

����� model

Model ������ The trained model at the iteration �

������_����ℎ�� Kernel weights

� The iteration counter

�� The number of the layers of the model

�� The counter for the layers, �� = 1, ..., ��

Scalar � The window size to investigate

the occurrence of an early stopping point in heuristic 1

�1 The run-in stage window size

�2 The window size of the running stdev. of the ��� values

�3 The window size to investigate

the occurrence of an early stopping point in heuristic 3

� The probability calculated by the Cumulative distribution function (���)

� A predeined threshold for probability �

���� The value of the stdev. of KW for the model at the epoch �

����� The stopping epoch

��� The value of the sum of ��

���� The value of moving stdev. of ��� of the �2 training iterations

����� The ���� at the time �

� The counter of the repetitive iteration with no decrease in the value of ����

� The index of ����

������� The minimum ����

���_������ Extracting the layers of a model

� ������ The function collapsed the input array into one-dimensional array

Function ⌢ The concatenate function

�� Standard deviation

���������� The function for initialization of the model

���� The Cumulative distribution function for the last � epochs (equation 2)

ACM J. Comput. Cult. Herit.

16 • Mahya Ameryan and Lambert Schomaker

training process approaches stability towards the end, it can be assumed that the running standard deviation

of the total sum of weight values will decrease and stabilize. This property makes the heuristic interesting for

use, requiring only a minor adjustment to the early-stopping rule. Computing the STKW heuristic is 60 to 90

times faster than the early stopping based on ������ for each epoch. It demands additional training epochs,

and ������� is slightly higher. However, total duration will always be considerably shorter than in case of the

standard approach.

The early stopping based on ������ demands evaluating the model at each epoch on a holdout validation set.

Although the single inference step can be quick, the computational cost of the evaluation of a network based on

the��� is highly dependent on the size of the validation set. In the case of a large data set and a large number of

epochs, this type of evaluation is time-consuming and a non-negligible part of the training process. One might

say that early-stopping, based on the training loss presents similar beneits as three label-free early stopping

methods regarding SKW or TKW. However, this method demands much more training epochs compared to the

early stopping based on ������ and also the label-free heuristics in which the learning rate is a constant value.

Not using the plain training loss for early stopping has the advantage that a possible overit can be avoided

because our label-free heuristics do not entail task-speciic constraints in the way each target label would have

its efect via the measured loss.

The three label-free early-stopping heuristics have two major advantages: (1) The evaluation of a CNN model

is not computationally intensive over a validation set per epoch; (2) All labeled data including the less frequent

classes can be used as a training set.

Local minima are a pervasive problem in neural-network training. Overitting is concerned with a model

sticking to such a local minimum, at the expense of the patterns that are not well covered by this particular

solution. Several remedies have been proposed in recent years. In [14], it is proposed to search for robust lat

minima in the loss landscape, which is highly interesting but complicated. The detection of the presence of

overly speciic model solutions is currently mostly done by means of k-fold cross-evaluation and evaluating

several architecture variants. A high variance of the performance criterion will be indicative of model sampling

from diverse local minima. We assume that the smooth curve of SKW, in comparison to the -���� (�����) and
������ - curves, helps to prevent overtrained solutions or local minima in the loss landscape by realizing a stable,

well-timed early-stopping event.

6 CONCLUSIONS

In this study, we do not aim to surpass the character error rates that are reported in the state-of-the-art literature.

Instead, we propose to develop label-free early-stopping methods for convolutional neural networks (CNNs).

The suggested methods monitor the evolution of the standard deviation or total sum of the kernel weight values

(SKW and TKW) during the training.

We compare the performance of the label-free early-stopping heuristics with two prevalent methods based

on training loss and character error rate on the validation and test sets using ’diicult’ historical word images

of the MKS data set and two common benchmark data sets. Avoiding label spillage is essential for handwriting

recognition in historical document collection because there is always a lack of suicient labeled data, especially

in the case of newly discovered script styles. This problem is exacerbated by the strongly skewed Zipf [39]-like

distributions for the occurrence of character classes in texts.

The contributions of this study are:

(a) Introducing novel properties (SKW and TKW) for CNNs and characterizing its modiication during the

training process.

(b) Applying an adequate method based on SKW and TKW behaviors for terminating the training process;

ACM J. Comput. Cult. Herit.

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 17

(c) Comparing the occurrence of early-stopping points for methods based on the loss values on the model

training set, the character error recognition on the validation set, and the proposed three early-stopping

methods;

(d) Studying the role of the learning rate on four stopping criteria: the suggested SKW and TKW, character

error recognition on the validation set, and the loss value of the model on the training set and showing the

analogous efect of learning rate on the three criteria;

(e) Comparing the computational speed of three label-free suggested heuristics with the usual early-stopping

method based on character error recognition on the validation set.

For future work, we plan to investigate other properties of the kernel weights during training, for diferent neural

networks, especially Long short-term memory (LSTM [14]).

Algorithm 1: Heuristic 1: The CD-SKW early-stopping criterion

Input: ����,�����, �,� ;

Result:�����
compute_SKW(�����)

����� ← ���_������ (�����) ;
�� ← �����ℎ (�����) ;
�� ← [];
for �� ← 1 �� �� do

if ����� [��] �� ������_����ℎ�� then
� ← � ������ (����� [��]) ;
�� ← �� ⌢ � ;

end

end

��� = �� (��) ;
return ���

main(����,�����,�, �)
� ← 0;

������ ← ���������� (�����) ;
� ← 0;

while � > � do
� ← � + 1;
������ ← ����� (������−1, ����) ;
���� ← �������_��� (������) ;
if � > � then

� ← ���� (����−�,�) ;
end

end

����� ← � ;

return����� ;

����� ← ���� (����,�����,�, ���) ;

7 ACKNOWLEDGMENTS

This work is part of the research program Making Sense of Illustrated Handwritten Archives with Project Number

652-001-001 inanced by the Netherlands Organisation for Scientiic Research (NWO). We would like to thank

Dr. Andreas Weber for organizing a group of volunteers to annotate the manuscript of this project and for his

tight cooperation with the University of Groningen. We thank the Center for Information Technology of the

University of Groningen for providing access to the Peregrine high-performance computing cluster.

REFERENCES

[1] Mahya Ameryan and Lambert Schomaker. 2020. A High-Performance Word Recognition System for the Biological Fieldnotes of the

Natuurkundige Commissie. In Proceedings of the International Conference Collect and Connect: Archives and Collections in a Digital Age,

ACM J. Comput. Cult. Herit.

18 • Mahya Ameryan and Lambert Schomaker

Algorithm 2: Heuristic 3: The STKW early-stopping criterion

Input: ����,�����,�1, �2, �3 ;

Result:�����
compute_TKW(�����)

����� ← ���_������ (�����) ;
�� ← �����ℎ (�����) ;
�� ← [];
for �� ← 1 �� �� do

if ����� [��] �� ������_����ℎ�� then
� ← � ������ (����� [��]) ;
�� ← �� ⌢ � ;

end

end

��� = ��� (��) ;
return���

main(����,�����,�1, �2, �3)

� ← 0;

� ← 0;

� ← 0;

������ ← ���������� (�����) ;
������� ← ∞;
while � < �3 do

� ← � + 1;
������ ← ����� (������−1, ����) ;
if � > �1 then

���� ← �������_��� (������) ;
� ← � + 1;
if � ≥ �2 then

����� ← �� ([����−�2 , ...,����]);
if ����� < ������� then

������� ← ����� ;

� ← 0;

else
� ← � + 1;

end

end

end

end

����� ← � ;

return����� ;

����� ← ���� (����,�����,�1, �2, �3) ;

Leiden, the Netherlands, November 23-24, 2020 (CEUR Workshop Proceedings, Vol. 2810), Andreas Weber, Maarten Heerlien, Eulàlia Gassó

Miracle, and Katherine Wolstencroft (Eds.). CEUR-WS.org, Leiden, Netherlands, 92ś103. http://ceur-ws.org/Vol-2810/paper8.pdf

[2] Mahya Ameryan and Lambert Schomaker. 2020. Improving the robustness of LSTMs for word classiication using stressed word endings

in dual-state word-beam search. In 17th Int. Conf. Frontiers in Handwriting Recognition. IEEE, Dortmund, Germany, 13ś18.

[3] Mahya Ameryan and Lambert Schomaker. 2021. A limited-size ensemble of homogeneous CNN/LSTMs for high-performance word

classiication. Neural Computing and Applications 33 (2021), 8615ś8634.

[4] David Duvenaud, Dougal Maclaurin, and Ryan Adams. 2016. Early Stopping as Nonparametric Variational Inference. In Proceedings

of the 19th International Conference on Artiicial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 51), Arthur

Gretton and Christian C. Robert (Eds.). PMLR, Cadiz, Spain, 1070ś1077. https://proceedings.mlr.press/v51/duvenaud16.html

[5] Basilis Gatos, Georgios Louloudis, Tim Causer, Kris Grint, Verónica Romero, Joan Andreu Sánchez, Alejandro H. Toselli, and Enrique

Vidal. 2014. Ground-Truth Production in the Transcriptorium Project. In 2014 11th IAPR International Workshop on Document Analysis

Systems. 237ś241. https://doi.org/10.1109/DAS.2014.23

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press, London, England. http://www.deeplearningbook.

org.

[7] Alex Graves. 2012. Supervised Sequence Labelling with Recurrent Neural Networks. Springer, Berlin. https://doi.org/10.1007/978-3-642-

24797-2

ACM J. Comput. Cult. Herit.

http://ceur-ws.org/Vol-2810/paper8.pdf
https://proceedings.mlr.press/v51/duvenaud16.html
https://doi.org/10.1109/DAS.2014.23
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.1007/978-3-642-24797-2

How to limit label dissipation in neural-network validation: Exploring label-free early-stopping heuristics • 19

[8] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 2006. Connectionist Temporal Classiication: Labelling

Unsegmented Sequence Data with Recurrent Neural Networks. In Proceedings of the 23rd International Conference on Machine Learning

(Pittsburgh, Pennsylvania, USA) (ICML ’06). ACM, New York, NY, USA, 369ś376. https://doi.org/10.1145/1143844.1143891

[9] William H. Greene. 1997. Econometric Analysis (3rd ed.). Macmillan Publishing Company, New York, USA.

[10] Gintautas Grigas and Anita Juskeviciene. 2018. Letter Frequency Analysis of Languages Using Latin Alphabet. International Linguistics

Research 1, 1 (2018), 18ś31.

[11] Emmanuèle Grosicki, Matthieu Carré, Edouard Geofrois, Emmanuel Augustin, and Francoise Preteux. 2006. La campagne d’évaluation

RIMES pour la reconnaissance de courriers manuscrits. In Actes Colloque International Francophone sur l’Ecrit et le Document (CIFED’06).

Fribourg, Switzerland, 61ś66.

[12] Isabelle Guyon, Amir Reza Safari Azar Alamdari, Gideon Dror, and Joachim M. Buhmann. 2006. Performance prediction challenge. In In

Proceedings of the International Joint Conference on Neural Networks (IJCNN 2006. IEEE, Vancouver, BC, Canada, 2958ś2965.

[13] David Haussler. 1990. Probably Approximately Correct Learning. In Proceedings of the Eighth National Conference on Artiicial Intelligence.

AAAI Press, University of California, USA, 1101ś1108.

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computing 9, 8 (1997), 1735ś1780.

[15] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG]

[16] Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin. 1992. Testing the null hypothesis of stationarity against the

alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics 54, 1 (1992), 159ś178.

https://doi.org/10.1016/0304-4076(92)90104-Y

[17] Yann LeCun and Yoshua Bengio. 1998. Convolutional Networks for Images, Speech, and Time Series. In The Handbook of Brain Theory

and Neural Networks, Michael A. Arbib (Ed.). MIT Press, Cambridge, MA, USA, 255ś258.

[18] Radu Manuca and Robert Savit. 1996. Stationarity and nonstationarity in time series analysis. Physica D: Nonlinear Phenomena 99, 2

(1996), 134ś161. https://doi.org/10.1016/S0167-2789(96)00139-X

[19] Nelson Morgan and Herve Bourlard. 1990. Generalization and Parameter Estimation in Feedforward Nets: Some Experiments. Vol. 2.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 630ś637.

[20] Vinod Nair and Geofrey E. Hinton. 2010. Rectiied Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th

International Conference on International Conference on Machine Learning (Haifa, Israel) (ICML’10). Omnipress, USA, 807ś814.

[21] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya, Randall Wald, and Edin Muharemagic. 2015. Deep

learning applications and challenges in big data analytics. Journal of Big Data 2 (2015), 1ś21.

[22] Lutz Prechelt. 2012. Early Stopping-But When? Springer Berlin Heidelberg, Berlin, Heidelberg, 53ś67. https://doi.org/10.1007/978-3-

642-35289-8_5

[23] M. B. Priestley and T. Subba Rao. 1969. A Test for Non-Stationarity of Time-Series. Journal of the Royal Statistical Society: Series B

(Methodological) 31, 1 (1969), 140ś149.

[24] Manel Rhif, Ali Ben Abbes, Imed Riadh Farah, Beatriz Martínez, and Yanfang Sang. 2019. Wavelet Transform Application for/in

Non-Stationary Time-Series Analysis: A Review. Applied Sciences 9, 7 (2019), 1ś22. https://doi.org/10.3390/app9071345

[25] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max Horn, Thomas Gumbsch, and Karsten Borgwardt. 2019. Neural

Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology. In International Conference on Learning

Representations. ICLR2019, New Orleans, Louisiana, United State, 1ś25. https://openreview.net/forum?id=ByxkijC5FQ

[26] Harald Scheidl, Stefan Fiel, and Robert Sablatnig. 2018. Word Beam Search: A Connectionist Temporal Classiication Decoding Algorithm.

In The International Conference on Frontiers of Handwriting Recognition (ICFHR). IEEE Computer Society, Niagara Falls, New York, USA,

253ś258.

[27] Joan Andreu Sánchez, Verónica Romero, Alejandro H. Toselli, and Enrique Vidal. 2014. ICFHR2014 Competition on Handwritten Text

Recognition on Transcriptorium Datasets (HTRtS). In 2014 14th International Conference on Frontiers in Handwriting Recognition. 785ś790.

https://doi.org/10.1109/ICFHR.2014.137

[28] Otto Neall Strand. 1974. Theory and methods related to the singular value expansion and Landweber’s iteration for integral equations

of the irst kind. SIAM J. Numer. Anal. 11 (1974), 798ś825.

[29] Seba Susan, Rohit Ranjan, Udyant Taluja, Udyant Shivang Rai, and Pranav Agarwal. 2019. Neural Net Optimization by Weight-Entropy

Monitoring. In Computational Intelligence: Theories, Applications and Future Directions - Volume II, Nishchal K Verma and A. K. Ghosh

(Eds.). Springer Singapore, Singapore, 201ś213.

[30] Tom Viering and Marco Loog. 2021. The Shape of Learning Curves: a Review. ArXiv abs/2103.10948 (2021), 1ś46.

[31] Walter Pitts Warren S. McCulloch. 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical

biophysics 5 (1943), 99ś115.

[32] Andreas Weber. 2019. Collecting Colonial Nature- European Naturalists and the Netherlands Indies in the Early Nineteenth Century.

Low Countries Historical Review 134-3 (2019), 72ś95.

[33] Andreas Weber. 2021. The Routledge Handbook of Science and Empire. Routledge, London and New York, Chapter Natural history

collections and empire, 80ś86.

ACM J. Comput. Cult. Herit.

https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/S0167-2789(96)00139-X
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.3390/app9071345
https://openreview.net/forum?id=ByxkijC5FQ
https://doi.org/10.1109/ICFHR.2014.137

20 • Mahya Ameryan and Lambert Schomaker

[34] Andreas Weber, Mahya Ameryan, Katherine Wolstencroft, Lise Stork, Maarten Heerlien, and Lambert Schomaker. 2017. Towards a

Digital Infrastructure for Illustrated Handwritten Archives. In Final Conference of the Marie Skłodowska-Curie Initial Training Network

for Digital Cultural Heritage, ITN-DCH 2017, M. Ioannides (Ed.), Vol. 10605. Springer, Olimje, Slovenia, 155ś166.

[35] P. Werbos. 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph. D. Dissertation. Harvard

University.

[36] Wikipedia. 2022. Letter frequency. https://en.wikipedia.org/wiki/Letter_frequency

[37] Xue Ying. 2019. An Overview of Overitting and its Solutions. Journal of Physics: Conference Series 1168 (feb 2019), 022022. https:

//doi.org/10.1088/1742-6596/1168/2/022022

[38] Changyong Yu, Xin Qi, Haitao Ma, Xin He, Cuirong Wang, and Yuhai Zhao. 2020. LLR: Learning learning rates by LSTM for training

neural networks. Neurocomputing 394 (2020), 41ś50. https://doi.org/10.1016/j.neucom.2020.01.106

[39] GK Zipf. 1935. The psycho-biology of language : an introduction to dynamic philology. Houghton, Mulin, Oxford.

8 APPENDICES

ACM J. Comput. Cult. Herit.

https://en.wikipedia.org/wiki/Letter_frequency
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1016/j.neucom.2020.01.106

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Introducing SKW: Using the standard deviation of kernel weights
	3.2 Heuristic 3: Early stopping using the moving standard deviation of the total sum of the kernel weights (STKW)
	3.3 Convolutional neural networks
	3.4 Data set

	4 Results
	4.1 Quantitative results of Heuristic 1, CD-SKW
	4.2 Quantitative results of Heuristic 2, SSKW
	4.3 Quantitative results of Heuristic 3, STKW

	5 Discussion
	6 Conclusions
	7 Acknowledgments
	References
	8 Appendices

