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Brain expression quantitative trait locus 
and network analyses reveal downstream 
effects and putative drivers for brain-related 
diseases

Niek de Klein    1,2,10, Ellen A. Tsai    3,10, Martijn Vochteloo    1,4,5,10, Denis Baird3, 
Yunfeng Huang3, Chia-Yen Chen3, Sipko van Dam1,6, Roy Oelen1,5, 
Patrick Deelen    1,5, Olivier B. Bakker    1,2, Omar El Garwany    1,2, 
Zhengyu Ouyang7, Eric E. Marshall3, Maria I. Zavodszky3, 
Wouter van Rheenen    8, Mark K. Bakker    8, Jan Veldink    8, Tom R. Gaunt    9, 
Heiko Runz    3,11 , Lude Franke    1,5,11  & Harm-Jan Westra    1,5,11 

Identification of therapeutic targets from genome-wide association studies 
(GWAS) requires insights into downstream functional consequences. We 
harmonized 8,613 RNA-sequencing samples from 14 brain datasets to 
create the MetaBrain resource and performed cis- and trans-expression 
quantitative trait locus (eQTL) meta-analyses in multiple brain region- and 
ancestry-specific datasets (n ≤ 2,759). Many of the 16,169 cortex cis-eQTLs were 
tissue-dependent when compared with blood cis-eQTLs. We inferred brain cell 
types for 3,549 cis-eQTLs by interaction analysis. We prioritized 186 cis-eQTLs 
for 31 brain-related traits using Mendelian randomization and co-localization 
including 40 cis-eQTLs with an inferred cell type, such as a neuron-specific 
cis-eQTL (CYP24A1) for multiple sclerosis. We further describe 737 trans-eQTLs 
for 526 unique variants and 108 unique genes. We used brain-specific 
gene-co-regulation networks to link GWAS loci and prioritize additional genes 
for five central nervous system diseases. This study represents a valuable 
resource for post-GWAS research on central nervous system diseases.

Psychiatric and neurological diseases continue to be a massive global 
health burden: The World Health Organization estimated that in  
2019, globally 280 million individuals were affected by depression,  
39.5 million by bipolar disorder and 287.4 million by schizophrenia 

(SCZ)1 . Similarly, the number of people living with dementia is expected 
to rise from 50 million today to 152 million by 2050 (ref. 2), with  
similar trajectories for other neurodegenerative diseases. Although 
substantial progress has been made in uncovering the genetic basis 
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traits. Our analyses prioritize probable causal genes and reveal cell 
type-dependent eQTLs that may be associated with disease risk (Fig. 1).

To facilitate future studies, we have made all summary statistics 
and the co-expression network derived from our resource available 
at www.metabrain.nl.

Results
Harmonizing datasets for eQTL and co-regulation analysis
We combined 14 eQTL datasets into the ‘MetaBrain’ resource to maxi-
mize statistical power to detect eQTLs and create a brain-specific gene 
co-regulation network (Fig. 2, Supplementary Figs. 1–7 and Supple-
mentary Table 1). Previous to quality control (QC), MetaBrain includes 
7,604 RNA-seq samples and accompanying genotypes from the AMP-AD 
consortium (AMP-AD MAYO, ROSMAP and MSBB)6, Braineac7, the Psy-
chENCODE consortium8 (Bipseq4, BrainGVEX4, CMC9, CMC_HBCC and 
UCLA_ASD4), BrainSeq10, NABEC11, TargetALS12 and GTEx3. In addition, 
we carefully selected 1,759 brain RNA-seq samples from the ENA13, which 
we subsequently genotyped and imputed (Fig. 2a, Supplementary 
Note and Supplementary Figs. 1–3). After realignment, removal of 
duplicate samples and stringent QC, 8,613 RNA-seq samples remained 
(Methods and Supplementary Figs. 4,5). Using slightly different QC 
thresholds, we created a gene network using 8,544 samples (Supple-
mentary Note). For both datasets, we corrected the RNA-seq data for 
technical covariates and defined seven major tissue groups (amygdala, 
basal ganglia, cerebellum, cortex, hippocampus, hypothalamus and 
spinal cord): principal component analysis (PCA) on the RNA-seq data 
showed clear clustering by these major tissue groups, resembling brain 
physiology (Fig. 2b and Supplementary Fig. 6). The genotype data 
revealed individuals from different ancestries (Fig. 2c and Supple-
mentary Fig. 2), including 5,138, 805 and 208 samples from EUR, AFR  
and East Asian (EAS) ancestries, respectively. After QC and deduplica-
tion, we created six cis-eQTL discovery datasets: Basal ganglia-EUR 
(n = 208), Cerebellum-EUR (n = 492), Cortex-EUR (n = 2,683), 
Cortex-AFR (n = 319), Hippocampus-EUR (n = 168) and Spinal cord-EUR 
(n = 108; Supple mentary Table 1 and Fig. 2d). We used Cortex-EAS 

of these diseases through genome-wide association studies (GWAS), 
much of how the identified genetic variants impact brain function 
remains unknown.

To translate from genetic signals to mechanisms, associations 
with gene expression levels or expression quantitative trait loci (eQTL) 
have shown great potential. Cis-eQTLs (nearby) and trans-eQTLs  
(distal) can aid the interpretation of GWAS loci in several ways. 
Cis-eQTLs provide direct links between genes and phenotypes through 
causal inference approaches such as Mendelian randomization (MR) 
and genetic co-localization analyses, whereas trans-eQTLs expose sets 
of downstream genes and pathways on which the effects of disease 
variants converge.

Expression quantitative trait loci are dynamic features and vary 
with tissue, cell type and additional factors such as response to stimu-
lation. Therefore, eQTLs from disease-relevant tissues are desired for 
optimal interrogation of GWAS loci3. Previous brain eQTL meta-analyses 
by the PsychENCODE4 (n = 1,866) and AMP-AD5 (n = 1,433) consortia 
have been published to help interpret neurodegenerative and psychi-
atric disease GWAS loci. However, results from statistical approaches 
such as MR and co-localization are improved by robust effect-size 
estimates from even larger carefully curated eQTL datasets. In addi-
tion, large sample sizes are better suited to decompose eQTL effects 
to specific cell types.

To maximize the potential of eQTL-based analyses of the brain, 
we combined and rigorously harmonized brain RNA-sequencing 
(RNA-seq) and genotype data from 14 different cohorts, including 
8,613 RNA-seq samples from all major brain eQTL studies, and publicly 
available samples from the European Nucleotide Archive (ENA). We 
created a gene co-regulation network based on 8,544 RNA-seq samples 
covering different brain regions and performed cis- and trans-eQTL 
analyses of up to 2,683 individuals of European ancestry (EUR),  
with replication in up to 319 individuals of African ancestry (AFR). 
We made inferences on the brain cell types in which eQTLs operate 
and systematically conducted MR and co-localization analyses to 
find shared genetic effects between eQTLs and 31 brain-related GWAS 
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Fig. 1 | Overview of the study. We downloaded publicly available RNA-seq 
and genotype data from 14 different datasets consisting of 8,613 RNA-seq 
measurements from seven main brain regions and 6,518 genotype samples. 
We created six eQTL meta-analysis datasets and performed cis-, trans- and 

interaction-eQTL analyses, built a brain-specific gene co-regulation network and 
prioritized genes using MR, co-localization and the co-regulation network. Image 
of sagittal cut of brain created with BioRender.com. This figure summarizes 
values from Supplementary Tables 1, 3, 8, 12 and 25–30.
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(n = 208) as a repli cation dataset. Cis-eQTLs were not calculated for 
the amygdala and hypothalamus tissue groups due to the small sample 
size (n < 100).

54% of cortex cis-eQTLs have independent associations
Within each discovery dataset, we performed a sample size-weighted 
cis-eQTL meta-analysis on common variants (minor allele frequency 
(MAF) > 1%), within 1 megabase (Mb) of the transcription start site 
(TSS) of a protein-coding gene. We identified 1,880 Basal ganglia-EUR, 
10,577 Cerebellum-EUR, 4,797 Cortex-AFR, 16,169 Cortex-EUR, 
1,265 Hippocampus-EUR and 998 Spinal cord-EUR cis-eQTL genes 
(q-value < 0.05; Fig. 3a and Supplementary Table 2). The observed eQTLs 
were consistent between datasets (Supplementary Fig. 8) but showed 
some sensitivity to RNA-seq alignment strategies (Supplementary 
Note and Supplementary Figs. 9,10). We next performed conditional 
analysis to identify independent associations in each cis-eQTL locus. In 
Cortex-EUR, 8,815 genes had a significant secondary cis-eQTL (54% of 
cis-eQTL genes identified in this dataset), 4,489 genes had tertiary and 
2,065 had quaternary cis-eQTLs. We also identified secondary associa-
tions for the other discovery datasets, albeit to a lesser extent (Fig. 3a  
and Supplementary Tables 2,3). The properties of the Cortex-EUR 
cis-eQTLs conform to studies performed in blood14 and brain15: pri-
mary lead cis-eQTL single nucleotide polymorphisms (SNPs) were 
generally located close to the TSS (median distance, 33.6 kilobases (kb))  
and cis-eQTL genes had a lower probability for loss-of-function  
intolerance (pLI > 0.9; χ2 P = 2.48 × 10−83). Genes with a cis-eQTL gener-
ally had a higher median expression (Wilcoxon P = 5.5 × 10−174; Fig. 3b); 
the other properties of cis-eQTLs were very comparable with earlier 
reports (Supplementary Note, Supplementary Fig. 11 and Supplemen-
tary Table 4).

High eQTL agreement between ancestries and brain regions
We investigated ancestry, brain region, dataset and tissue-type dif-
ferences in cis-eQTLs. Agreement between ancestries was high: allelic 
concordance (AC) and correlation of effect-size (Rb) estimates were high 
when different ancestries were compared (Rb > 0.78, AC > 92.95%; Fig. 3c,  
Supplementary Fig. 12 and Supplementary Table 5). The proportion 
of estimated true-positives (π1) and correlation of allelic fold change 
(caFC) estimates between ancestries were lower, potentially due to dif-
ferences in sample size (for example, Cortex-EUR versus Cortex-EAS, 
caFC = 0.55 and π1 = 0.29; conversely, caFC = 0.85 and π1 = 0.95; Supple-
mentary Fig. 12). Similarly, different brain regions showed high overall 
agreement (Rb > 0.76, caFC > 0.65, and AC > 91%), with π1 estimates 
dependent on the sample size (0.39–0.95). Cerebellum was an excep-
tion and showed lower agreement with the cerebral brain regions  
(Fig. 3d,e and Supplementary Fig. 12). Despite the limited sample size, 
we identified 477 cis-eQTL genes that are significant in Cerebellum-EUR 
but not in Cortex-EUR (Supplementary Fig. 13), perhaps due to low 
expression in the cortex or because they are regulated by transcription 
factors that are more active in the cerebellum (Supplementary Note 
and Supplementary Table 6). Next, we repeated Cortex-EUR eQTL dis-
covery while excluding GTEx and compared the results with cis-eQTLs 
from different GTEx tissues (Fig. 3e, Supplementary Figs. 12,14 and  
Supplementary Table 5). There was high agreement between brain- 
related tissues (cerebral tissues, Rb > 0.8, caFC > 0.71 and AC > 96%; 
and cerebellar tissues, Rb > 0.76, caFC > 0.71, π1 > 0.55 and AC > 92%) 
compared with other tissue types. The lowest agreement was with 
tissues such as testis (Rb = 0.51, caFC = 0.48 and AC = 78%) and whole 
blood (Rb = 0.55, caFC = 0.53 and AC = 80%). The π1 scores were not 
higher for cerebral or cerebellar tissues compared with non-brain 
tissues. We also compared Cortex-EUR cis-eQTLs with eQTLGen14 
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c, Number of genotypes per cohort stratified according to ancestry. AMR, 

Admixed Americans; SAS, South Asian. d, Number of individuals per cohort, 
with each color representing an eQTL dataset. The number of individuals differ 
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of genotypes because not all samples with genotypes have RNA-seq samples 
and vice versa, and some individuals with genotypes have multiple RNA-seq 
measurements.
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(n = 31,684; blood-based, majority EUR ancestry), which supported 
the low agreement observed in GTEx blood. Of the overlapping eQTLs, 
25% had an opposite allelic effect (AC = 75%, Rb = 0.52 and π1 = 0.83; 
Supplementary Fig. 15 and Supplementary Table 7) (ref. 16), which repre-
sents an increase over GTEx and suggests that many of the eQTLs are 
tissue-dependent. Combined, these results suggest that additional 
tissue- or ancestry-specific eQTLs can be identified when sample sizes 
increase. For instance, opposite effects may happen if two causal vari-
ants reside on the same haplotype but are specific for different tis-
sues17, requiring large sample sizes for disentanglement. By revealing 
eQTLs with opposite allelic effects, our results highlight the relevance 
of tissue-dependent eQTL mapping to accurately assess the direction-
ality of eQTLs17.

14% of cortex cis-eQTLs are dependent on the cell-type 
proportion
We evaluated the extent to which eQTLs are dependent on cell-type 
proportions by determining cell-type interaction eQTLs (ieQTLs)3,18,19. 
In the Cortex-EUR subset, we predicted cell-type proportions using 
single-cell RNA-seq-derived signature profiles4 (Supplementary Note 

and Supplementary Fig. 16). The cell-type proportions and reconstruc-
tion accuracy of our predictions (87%) were comparable to a previous 
study that used this reference profile on a subset of the Cortex-EUR 
samples4. We observed low-to-moderate correlations between  
predicted cell types (0.01 < Pearson’s correlation coefficient (r) < 0.55; 
Fig. 4a) and high positive correlations with immunohistochemistry 
(IHC) counts from the ROSMAP cohort20 (overall Pearson’s r = 0.89 and 
per cell-type Pearson’s r > 0.1; Fig. 4b). However, we note that the exact 
proportion for each cell type remains uncertain21,22.

We used Decon-QTL19 to identify ieQTLs for the 25,497 inde-
pendent Cortex-EUR cis-eQTLs: 3,549 cis-eQTLs (13.9%) showed at  
least one significant ieQTL (4,095 ieQTLs; Benjamini–Hochberg false 
discovery rate (BH-FDR) < 0.05; Supplementary Table 8). The largest  
group of interactions were with excitatory, inhibitory and other  
neurons (1,627; 39.7%), probably because neurons are the most preva-
lent cell type. The majority of the ieQTLs (3,090; 75.5%) were uniquely 
mapped to one cell type (Fig. 4c), although we cannot exclude the  
possibility that these ieQTLs are also present in other cell types.

We replicated these findings in the Cortex-AFR dataset (n = 319) 
as well as in two independent single-nucleus RNA-seq (snRNA-seq) 
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datasets from ROSMAP23 (n = 39) and Bryois et al.24 (n = 196; Supplemen-
tary Figs. 17–19 and Supplementary Table 9). Across all replication data-
sets, we observed moderate-to-high rates of agreement, depending on 
the cell-type frequency and sample size (Bryois et al.24: 0.78 <Rb < 0.86, 
median Rb = 0.84, 0.43 < π1 < 0.83, median π1 = 0.69, 81% <AC < 90%, 
median AC = 0.9; Supplementary Note). Examples of replicating ieQTLs 
include the oligodendrocyte ieQTL genes FAM221A, NKAIN1 and STMN4, 
which were previously identified as oligodendrocyte-specific25, and 
AMPD3 and CD82, of which the SNPs were previously associated with 
white-matter microstructure26, suggesting a role for oligodendrocytes 
(Fig. 4d,e and Supplementary Fig. 20a–e). The high replication rates 
indicate that our approach can accurately identify the cell type for a 
large number of eQTLs. We note that summary statistics were available 
for only 54% of ieQTLs in a well-powered replication dataset (Bryois 
et al.24), suggesting that our approach had the power to detect ieQTLs 
that are not yet identified in snRNA-seq datasets.

These ieQTLs can also provide valuable information about the  
cell types of interest for disease-associated SNPs. For example, the 
A allele of variant rs4698412, which is associated with increased  
risk for Parkinson’s disease (PD), also increased the expression of 
CD38, for which we identified a replicating astrocyte ieQTL (Fig. 4f and  
Supplementary Fig. 20f). This gene is an immunomodulatory agent 
and is mainly expressed in neurons, astrocytes and microglia27,  

and increased levels of CD38 are observed with neuroinflammation 
(Supplementary Note).

Shared genetic effects between cis-eQTLs and central nervous 
system traits
We next linked Cortex-EUR cis-eQTLs to variants associated 
with brain-related traits and diseases. We determined the 
linkage-disequilibrium (LD) overlap between cis-eQTLs and GWAS 
SNPs, which indicated that primary eQTLs were 2.6-fold more likely to 
be in LD with a GWAS SNP compared with non-primary eQTLs (Fisher’s 
exact test, P = 7.4 × 10−125; Supplementary Note and Supplementary 
Table 10). To more formally test whether there was evidence for sharing 
the same genetic effect between cis-eQTLs and 31 neurological traits, 
we conducted MR using the Wald ratio method and co-localization 
analyses (Supplementary Table 11). Among the 359,763 Wald ratios 
tested across 11,270 genes, 1,531 Wald ratios for 1,088 genes passed a 
suggestive P-value threshold (P < 5 × 10−5

; Supplementary Table 12). Of 
the cis-eQTL instruments from these findings, 294 were also cell-type 
ieQTLs. There were 549 significant Wald ratios that passed Bonferroni’s 
correction (P < 1.43 × 10−7), from which 186 also co-localized between 
the eQTL and GWAS traits when using coloc28 (posterior probability for 
co-localization of significant signals PP4 > 0.7; Fig. 5a and Supplemen-
tary Fig. 21), confirming that the two traits shared the same causal SNP. 
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Fig. 4 | Cell-type ieQTLs. a, Pearson’s correlations between the seven predicted 
cell-count proportions within cortex samples. b, Predicted cell-type proportions 
compared with cell-type proportions measured using IHC for 42 ROSMAP 
samples. Pearson’s correlation coefficients are provided. The cell-count 
predictions for most cell types closely approximate actual IHC cell counts. 
Shaded areas around regression lines indicate 95% confidence interval. c, 
Number of cell-type ieQTLs for Cortex-EUR deconvoluted cell types. The first 
20 intersections with the highest overlap are shown. Oligodendrocytes have 
the most interactions, followed by astrocytes and other neurons. Notably, most 
interactions are unique for one cell type in 87.1% of the cases. d–f, Replication 
of cell-type ieQTLs for STMN4 (d), FAM221A (e) and CD38 (f), consisting of the 
scatterplot of the cell-type ieQTL in MetaBrain Cortex-EUR bulk RNA-seq (left) 
and a forest plot for the eQTL effect in the ROSMAP snRNA-seq data (right). 

Each dot in the scatterplots (left) represents a sample; colors indicate SNP 
genotype, with yellow being the minor allele; values under the genotypes are 
the Pearson’s correlation coefficients; interaction P values were determined 
using a one-sided F-test; eQTL P values were derived using the standard normal 
distribution from meta-analyzed z-scores. Forest plot (right): eQTL β values 
(dots) and standard error (error bars) with effect direction relative to the minor 
allele when replicating the eQTL effect in ROSMAP single-nucleus data (n = 38); 
each row denotes a cell type-specific dataset; cell types highlighted in bold 
reflect the equivalent to the cell type used in the ieQTL. Vertical dashed lines 
indicate an eQTL beta of 0. TMM, trimmed mean of M-values; AST, astrocytes; 
END, endothelial cells; EX, excitatory neurons; IN, inhibitory neurons; MIC, 
microglia; OPC, oligodendrocyte precursor cells; OLI, oligodendrocytes; NEU, 
other neuron; PER, pericytes.
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Of the prioritized findings, 282 (82 of which co-localized) were associ-
ated with the risk for 31 prioritized neurological and neuropsychiatric 
diseases (Table 1). We focus on multiple sclerosis (MS) and highlight 
two examples where MR and co-localization point to probable causal 
GWAS genes. For other traits, see Supplementary Note, Supplementary 
Fig. 22 and Supplementary Tables 11–16.

Tissue-specific genetic effects for MS
Using MR analysis for MS29, we identified 121 instruments (cis-eQTL 
SNPs) in 99 genes that passed the Bonferroni-adjusted P-value threshold 
of 1.43 × 10−7 (Supplementary Table 12); 25 of these instruments passed 
co-localization (Table 1 and Fig. 5b), of which 13 genes had a positive 
Wald ratio—indicating that increased gene expression increases disease 
risk—and the remainder a negative Wald ratio, indicating the opposite. 
A systematic comparison of the Wald ratio estimates on the 7,748 shared 
cis-eQTL genes between Cortex-EUR and eQTLGen14 (which instru-
mented the same genes but potentially with different SNPs) showed 
opposite effect directions for 3,173 (41.0%) genes (Supplementary 
Note, Supplementary Figs. 23,24 and Supplementary Table 14a). 
Although the agreement improved when the same SNP instrument was  
compared between studies, 2,671 (27.5%) of 9,728 MetaBrain Wald  
ratios still showed opposite directionality to eQTLGen (Supplementary 
Table 14b), underscoring the importance of tissue-specific differences 
when interpreting transcriptomics data.

Of the 172 genes with Wald ratio findings in Cortex-EUR, there 
were 47 without a significant eQTLGen instrument, including five 
(RGS1, SCO2, SLC12A5, CCDC155 and MYNN) that passed the MR and 
co-localization significance thresholds in MetaBrain (Supplementary 
Note and Supplementary Table 16). In comparisons of the blood and 
brain expression levels of these genes in GTEx30, SLC12A5 and CCDC155 
had almost no expression in blood, whereas expression was com-
parable between tissues for RGS1, SCO2 and MYNN (Supplementary 
Note and Supplementary Fig. 25). The discrepancy in MR findings 
observed between Cortex-EUR and eQTLGen suggest the existence of 
tissue-dependent genetic effects for MS.

Cell type-specific cis-eQTLs linked to MS
Two MS-associated genes, CYP24A1 and CLECL1, showed cell 
type-specific cis-eQTLs (Fig. 5c,d). Another gene that was previ-
ously suggested to be neuron-specific31, SLC12A5, did not show a  
significant ieQTL in our data. In our analysis, we found that  
higher CYP24A1 expression is associated with increased risk for  
MS (Wald ratio = 0.13, P = 7.8 × 10−11) and that the eQTL and GWAS  
signals are co-localized (PP4 = 1.00). Furthermore, ieQTL analyses 
showed increasing expression of CYP24A1 with increasing excitatory 
neuron proportions for the risk allele rs2248137-C (interaction β = 1.92, 
interaction P = 1.98 × 10−11; Fig. 5c), similar to other neurons (Supple-
mentary Table 12). CYP24A1 encodes for a protein that catalyzes the 
inactivation of 1,25-dihydroxyvitamin D3 (calcitriol), the active form 
of vitamin D32. Epidemiological studies have proposed vitamin D  
deficiency as a risk factor for MS33,34, which has recently been  
validated through MR35–37. Our findings are consistent with a  
previous report that indicates a shared signal for MS and CYP24A1 
cis-eQTL in the frontal cortex38.

Decreased expression of CLECL1 was significantly associ-
ated with increased MS risk (Wald ratio = −0.16, P = 1.58 × 10−9) and  
showed clear co-localization (PP4 > 0.87). The ieQTL analysis  
indicated that rs7306304-A increased expression of CLECL1  
with increased proportions of microglia (interaction β = −2.72,  
interaction P = 5.09 × 10−37; Fig. 5d), confirming a previous find-
ing of a microglia cell type-specific cis-eQTL for CLECL1 at this MS  
risk locus29. This eQTL also replicates in the microglia single-cell  
analysis by Bryois et al.24 (eQTL β = −0.62, P = 3.2 × 10−20) with the  
same direction of effect. The rs7306304 SNP is in strong LD with  
the MS lead SNP rs7977720 (r2 = 0.84)29. CLECL1 encodes a C-type 
lectin-like transmembrane protein expressed at high levels in  
dendritic and B cells, which has been proposed to modulate  
immune response39. It has 20-fold higher expression in a purified  
microglia dataset29 than in cortical tissue, suggesting that decreased 
CLECL1 increases MS susceptibility through microglia-mediated 
immune processes in the brain.
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MetaBrain allows for the identification of trans-eQTLs
Trans-eQTLs can identify the downstream consequences of 
disease-associated variants but their effects are usually small14. To maxi-
mize power, we combined the Cortex-EUR and -AFR datasets (n = 2,759, 

excluding the ENA). We reduced the multiple-testing burden by focusing 
on 228,819 unique genetic variants, including GWAS and cis-eQTL variants.

When correcting for an increasing number of principal compo-
nents (PCs), we observed a decrease in the number of trans-eQTLs  

Table 1 | Prioritized genes from the MR analysis on MetaBrain eQTLs for brain-related outcomes

Outcome Gene SNP WR (SE) P CT Outcome Gene SNP WR (SE) P CT

AD CR1 rs679515 0.15 (0.01) 1.40 x 10-23 OLI MS ZNF746 rs1046140 -0.57 (0.11) 8.29 x 10-08

AD SLC39A13 rs3740688 -0.22 (0.03) 1.13 x 10-10 MS MAST3 rs112188874 0.56 (0.10) 9.74 x 10-08

AD TSPAN14 rs1902660 0.12 (0.02) 4.73 x 10-09 MS MYNN rs9866116 -0.43 (0.08) 1.22 x 10-07

AD APH1B rs117618017 0.17 (0.03) 1.05 x 10-08 PD KANSL1 rs199451 -0.25 (0.03) 3.35 x 10-19 EX

AD PRSS36 rs78924645 -0.09 (0.02) 1.63 x 10-08 PD CD38 rs4698412 -0.24 (0.03) 6.99 x 10-14 AST

AD INPP5D rs7569598 0.32 (0.06) 1.74 x 10-08 PD HSD3B7 rs11150600 -0.46 (0.07) 1.90 x 10-10 MIC

AD ZNF668 rs2359612 0.26 (0.05) 1.00 x 10-07 PD SETD1A rs35733741 -0.67 (0.11) 2.43 x 10-09 EX

AD ACE rs4291 -0.10 (0.02) 1.39 x 10-07 PD RAB29 rs708723 0.21 (0.04) 1.03 x 10-08

ALS SCFD1 rs229243 0.17 (0.02) 5.56 x 10-15 PD SCARB2 rs7697073 0.29 (0.05) 6.54 x 10-08

ALS G2E3 rs229244 -0.24 (0.03) 4.23 x 10-13 SCZ PPP1R18 rs9265954 0.48 (0.05) 1.11 x 10-19

ALS MOBP rs6772037 0.29 (0.05) 1.10 x 10-08 SCZ HIST1H4K rs13217285 0.63 (0.07) 1.40 x 10-18

BD DCLK3 rs9834970 -0.32 (0.04) 4.79 x 10-14 SCZ MICB rs204999 -0.37 (0.05) 1.82 x 10-15

BD HAPLN4 rs17216041 0.21 (0.04) 4.44 x 10-09 SCZ FTCDNL1 rs2949006 -0.16 (0.02) 7.97 x 10-14 OLI

BD GNL3 rs7646741 0.19 (0.03) 1.07 x 10-08 SCZ GPANK1 rs7773668 0.24 (0.03) 2.56 x 10-13

BD LMAN2L rs58361269 -0.24 (0.04) 1.78 x 10-08 SCZ FURIN rs4702 -0.23 (0.03) 2.55 x 10-12

MDD NEGR1 rs7531118 0.03 (0.00) 4.07 x 10-12 SCZ SF3B1 rs788018 0.21 (0.03) 6.97 x 10-11

MDD SLC12A5 rs9074 0.02 (0.00) 8.03 x 10-08 SCZ MDK rs35324223 -0.29 (0.05) 2.23 x 10-10

FTD BTNL2 rs9268863 0.75 (0.12) 2.20 x 10-10 SCZ THOC7 rs832190 -0.14 (0.02) 6.19 x 10-10 NEU

JME HSD3B7 rs11150600 0.04 (0.01) 3.96 x 10-09 MIC SCZ CNTN4 rs17194427 0.26 (0.04) 9.19 x 10-10

MS TTC34 rs10797438 -0.43 (0.05) 2.06 x 10-15 SCZ TAOK2 rs4788200 0.44 (0.07) 1.05 x 10-09

MS SLC12A5 rs9074 0.44 (0.06) 5.15 x 10-13 SCZ PCCB rs696520 -0.12 (0.02) 1.12 x 10-09 OLI

MS MPV17L2 rs1044821 -0.51 (0.07) 7.57 x 10-12 SCZ ATG13 rs12574668 -0.29 (0.05) 1.23 x 10-09

MS TSPAN31 rs10877011 0.48 (0.07) 5.13 x 10-11 SCZ ASPHD1 rs12919683 -0.23 (0.04) 1.33 x 10-09 OLI

MS CYP24A1 rs2248137 0.13 (0.02) 7.81 x 10-11 EX + NEU SCZ TMEM219 rs9925102 0.30 (0.05) 1.87 x 10-09

MS EEF1AKMT3 rs10877013 -0.13 (0.02) 8.99 x 10-11 MIC SCZ DOC2A rs12921996 0.27 (0.05) 1.97 x 10-09

MS NPEPPS rs4239163 0.43 (0.07) 1.14 x 10-10 SCZ PLEKHO1 rs11577346 -0.35 (0.06) 1.97 x 10-09

MS AVIL rs10877018 0.34 (0.05) 1.57 x 10-10 SCZ INO80E rs3814880 0.11 (0.02) 2.47 x 10-09

MS TSFM rs11172335 0.16 (0.02) 1.57 x 10-10 NEU SCZ GNL3 rs7646741 0.15 (0.03) 3.46 x 10-09

MS PPM1F rs240064 -0.36 (0.06) 3.58 x 10-10 SCZ SNAP91 rs2022265 0.23 (0.04) 6.34 x 10-09

MS CCDC155 rs2288481 -0.58 (0.09) 9.33 x 10-10 SCZ TM6SF2 rs2905432 0.26 (0.05) 7.06 x 10-09

MS CLECL1 rs7306304 -0.16 (0.03) 1.58 x 10-09 MIC SCZ KCTD13 rs11150575 0.39 (0.07) 9.30 x 10-09

MS RNFT1 rs180534 -0.30 (0.05) 2.14 x 10-09 SCZ VPS45 rs2319280 -0.27 (0.05) 1.17 x 10-08

MS TRAF3 rs3803286 0.26 (0.04) 8.03 x 10-09 SCZ CACNA1I rs7288420 0.32 (0.06) 1.22 x 10-08

MS IL7 rs2717538 -0.15 (0.03) 1.46 x 10-08 EX SCZ GATAD2A rs12975119 -0.12 (0.02) 1.34 x 10-08

MS RGS1 rs3011685 -0.47 (0.08) 1.54 x 10-08 SCZ KMT2E rs35601145 0.29 (0.05) 1.64 x 10-08

MS IFITM1 rs6421983 0.49 (0.09) 1.78 x 10-08 MIC SCZ ZNF823 rs72986630 0.19 (0.03) 4.14 x 10-08

MS IFITM3 rs34481144 -0.30 (0.05) 2.34 x 10-08 SCZ PTPRU rs267700 -0.19 (0.03) 4.28 x 10-08 EX

MS TBX6 rs3809627 0.20 (0.04) 3.25 x 10-08 SCZ RERE rs301792 0.16 (0.03) 4.99 x 10-08

MS ABCB9 rs1790116 0.47 (0.09) 3.55 x 10-08 SCZ GLYCTK rs6445358 0.19 (0.04) 7.22 x 10-08

MS TYMP rs131795 -0.25 (0.05) 6.20 x 10-08 SCZ ATP13A1 rs7245672 0.30 (0.06) 1.08 x 10-07

MS SCO2 rs131794 0.33 (0.06) 6.20 x 10-08 SCZ CLCN3 rs72696657 0.24 (0.05) 1.14 x 10-07

Harmonized eQTL and GWAS SNP effects and single-SNP Wald ratio-effect (WR) estimates are reported for all genes with Wald ratio effects at P < 1.865 × 10−7. Brain-trait outcomes have been 
abbreviated as follows: BD, bipolar disorder; MDD, major depressive disorder (broad depression category); FTD, frontotemporal dementia; JME, juvenile myoclonic epilepsy. The cell types (CT) 
with which the eQTL significantly interacts (BH-FDR < 0.05) are abbreviated as follows: AST, astrocytes; EX, excitatory neurons; MIC, microglia; NEU, other neuron; and OLI, oligodendrocytes. 
This table is a subset of Supplementary Table 12.
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(Fig. 6a, Supplementary Note, Supplementary Fig. 7 and Supplemen-
tary Table 17) as well as in heterogeneity (Supplementary Fig. 26). The 
majority (85%) of the trans-eQTLs observed without PC correction were 
located in a 7p21.3 locus previously associated with frontotemporal 
lobar degeneration40, Alzheimer’s disease (AD)41 as well as changes 
in neuron proportions42 and gene expression levels43,44. We did not 
find evidence that these trans-eQTLs were dependent on AD status 
or neuron proportions and they were not significant when correcting 
for 100 PCs (Supplementary Note, Supplementary Figs. 26–29 and 
Supplementary Tables 17–24).

We therefore concentrated on 737 trans-eQTLs, detected after 
correcting for 100 PCs, which reflect 526 unique SNPs and 108 unique 
genes; 127 SNPs had trans-eQTL effects on multiple genes and 461 
(88%) of the trans-eQTL SNPs were associated with a significant 
cis-eQTL in Cortex-EUR. We observed that 150 (33%) of the 461 sig-
nificant trans-eQTL SNPs overlapping a cis-eQTL SNP were also the 
cis-eQTL index SNP, which represents an enrichment (Fisher’s exact 
test, P = 1.2 × 10−28; Supplementary Note); 29 were also cis-eQTL SNPs in 
tissues other than the cortex (Supplementary Table 17). This indicates 
that cis-eQTL index SNPs yield trans-eQTL effects more often in the 
brain in comparison to other cis-eQTL variants.

Significant interactions with predicted cell-type proportions 
(BH-FDR < 0.05; Supplementary Table 22)—oligodendrocytes (n = 27), 
other neurons (n = 7), astrocytes (n = 7) and microglia (n = 2)—were also 
observed for 41 trans-eQTLs (5.9%). Four eQTLs—all influencing DTX4 
and dependent on oligodendrocyte proportion—replicated signifi-
cantly in the ROSMAP snRNA-seq dataset with the same direction of 
effect (Supplementary Fig. 30 and Supplementary Table 23).

We observed trans-eQTLs from multiple independent genomic loci 
for seven genes, suggesting convergent trans-eQTL effects (ARRDC4, 
HBG2, POP1, COX7A1, RFPL2, ZNF311 and ZNF404; Supplementary 
Table 17). This includes a convergent trans-eQTL on hemoglobin  
subunit ɣ-2 (HBG2; 11p15.4) that was previously identified in blood. HBG2 
was affected in trans by two independent variants (rs1427407 on 2p16.1 
and rs4895441 on 6q23.3; Fig. 6b), which have previously been associ-
ated with fetal hemoglobin levels45–47. We also found converging effects 
that were not identified in blood. For example, the ZNF311 gene (6p22.1) 
was affected by the rs1150668 variant in cis and the rs8106871 variant 
in trans (19q13.2), both of which have been previously associated with 
smoking48 and risk tolerance49. For both associations, the risk allele also 
increased ZNF311 expression. Furthermore, the risk allele rs1150668-G 
increased the expression of S100A5 in trans, and rs8106871-T decreased 
the expression of POU2F2 and increased expression of DEDD2 in cis 
(Fig. 6b). ZNF311 has been suggested to be a tumor-suppressor gene50 
potentially involved in gliomas51, S100A5 is used as a biomarker for 
astrocytomas52 and POU2F2 has previously been associated with glio-
blastoma53. This example shows how multiple variants associated with 
smoking may alter multiple genes involved in cancer.

Brain co-regulation networks aid in GWAS interpretation
We generated brain region-specific co-regulation networks based on 
the RNA-seq data from 8,544 samples (Supplementary Note and Sup-
plementary Figs. 31–33) using a similar approach to our previously 
developed multi-tissue GeneNetwork (n = 31,499)54,55. We applied Down-
streamer56 to SCZ57, PD58, MS29, AD59 and amyotrophic lateral sclerosis 
(ALS) GWAS summary statistics60, using these networks to prioritize 
genes that are co-regulated with genes in their GWAS loci (Supplemen-
tary Note, Supplementary Fig. 34 and Supplementary Tables 25–30). 
For MS and AD, these were mostly immunity genes, whereas for PD, ALS 
and SCZ, these were genes that are specifically expressed in the brain 
(Supplementary Tables 25–30). For ALS and MS, we additionally created 
smaller networks for the cerebellum (n = 715) and cortex (n = 6,526) to 
identify brain region-specific effects.

For ALS, we applied Downstreamer to summary statistics from 
individuals with EUR ancestry (Supplementary Table 30) and a 

trans-ancestry meta-analysis including individuals with EUR and Asian 
ancestry60 (EUR + ASN; Supplementary Table 25). In contrast, whereas 
Downstreamer did not identify genes using GeneNetwork55 (n = 31,499), 
we identified a set of 27 unique co-regulated genes when applied to the 
smaller brain co-regulation networks (EUR + ASN summary statistics; 
Fig. 7a and Supplementary Table 25). Of the identified genes, HUWE1 
was shared between the results from all brain regions and separate 
results from cortex, whereas UBR4 was shared between the cortex and 
cerebellum results. UBR4 encodes a ubiquitin ligase protein expressed 
throughout the body, which interacts with calmodulin, a protein regu-
lating Ca2+—a process which has been linked to ALS disease-associated 
genes and motor-neuron vulnerability61. Furthermore, a previously 
discovered private mutation in UBR4 implicates its role in muscle 
coordination62. Many of the genes prioritized by Downstreamer are 
co-regulated with each other (Fig. 7b) and were enriched for genes 
implicated in causing gait disturbances (Fig. 7c). Our analysis identi-
fied genes that show strong co-regulation with positional candidate 
genes inside ALS-associated loci, suggesting that they must have a 
shared biological function.

For MS, the GeneNetwork55 identified 257 unique genes that 
showed significant co-regulation with genes inside MS-associated loci 
(Fig. 7d and Supplementary Table 29), many of which were immunity 
genes, which is also expected for this disease. However, when we used 
the brain co-regulation networks, we identified a much smaller set of 
genes that showed strong enrichment for the neurotrophin signal-
ing pathway (Fig. 7e,f). Neurotrophins are polypeptides secreted by 
immunological cell types and promote the survival and proliferation 
of neurons as well as synaptic transmission (Supplementary Note). 
The identified genes showed high expression in immunity-related 
tissues when using the GeneNetwork55 (Supplementary Fig. 31a) and 
high expression in the spinal cord but low expression in cortex samples 
(Supplementary Fig. 31b). This could implicate specific brain regions 
with MS development: for instance, the cerebellum is involved in mus-
cle coordination and ataxia occurs in approximately 80% of patients 
with symptoms of MS63. But this could also implicate the ‘outside-in 
hypothesis’ that suggests the immune system may be a potential trig-
ger for MS29,64.

Discussion
We describe an integrated analysis of the effects of genetic variation 
on gene expression levels in the brain with a sufficient sample size to 
identify robust cis-eQTLs and cell-type ieQTLs to compare cis-eQTLs 
between ancestries and identify brain trans-eQTLs that emanate from 
SNPs that have been previously linked to brain-related diseases. We 
have released harmonized results of the individual datasets to help 
others determine the robustness of eQTL effects.

We showed that eQTL-effect directions are generally shared 
between datasets, tissues and ancestries, but note that opposite allelic 
effects exist, which became apparent especially when we compared our 
results with a large blood eQTL dataset. We also identified non-primary 
cis-eQTLs, some of which reflect SNPs that are also the index variants 
for brain-related disorders, making them particularly interesting for 
subsequent follow-up.

We predicted cell-type proportions in the cortex and identified 
3,549 cell-type ieQTLs. We compared the ieQTLs with snRNA-seq eQTLs 
and observed that the π1 estimates were low due to the low sample size 
or other limitations in the snRNA-seq datasets24,65,66. As we observed 
good Rb and AC values, we expect that the overlap and replication rates 
will improve once the sample sizes of snRNA-seq studies increase, 
highlighting the potential of ieQTL analysis in bulk RNA-seq.

This is a well-powered MR and co-localization analysis using 
brain cis-eQTLs as instruments for bipolar disease, epilepsy, fronto-
temporal dementia, MS, cognitive function and years of schooling 
GWAS outcomes. Interestingly, for SCZ, three signals for CILP2, MAU2 
and TM6SF2 met our criteria that had not been reported in a recent 
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psychiatric genomics consortium study67, further emphasizing the 
value of our large eQTL dataset (Supplementary Note). Our results also 
identify increased CYP24A1 expression to be associated with MS risk 
and propose excitatory neurons as the cell type most susceptible to 
CYP24A1 expression changes and probably active vitamin D levels. The 
potentially novel role of CYP24A1 in the brain could play an important 
role in MS etiology, as may lowered expression of CLECL1 in microglia.

The analyses identified trans-eQTLs in the brain cortex for many 
variants, some of which are brain-specific. Similar to blood, the 
trans-eQTL-effect sizes in the brain were usually small, emphasizing 
the importance of increasing the sample size of brain eQTL studies.  
The identified trans-eQTLs allowed us to gain insights into the func-
tional effect of several disease-associated variants. We observed  
that trans-eQTL SNPs were enriched for cis-eQTL index SNPs, indicating 

HBG2

ALDH8A1

HBS1L

rs1427407-G 

rs4895441-G

2p16.1
Located in intron of BCL11A

Fetal hemoglobin levels

6q23.3
Mean corpuscular volume

11p15.4
Hemoglobin

subunit

b

Primary cis-eQTL

Trans-eQTL

Downregulated

Upregulated

ZNF311

DEDD2

POU2F2

S100A5

rs1150668-G

rs8106871-T

19q13.2
Smoking

6p22.1
Smoking

6p22.1
Zinc-finger
protein 311

1q21.3
S100 calcium-binding

protein A5

Cis

Trans

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

SNP position

G
en

e 
po

si
tio

n

737 significant trans-eQTL after correcting 100 PCs
a

Fig. 6 | Trans-eQTLs in the brain. a, Location of the identified trans-eQTLs (SNP 
and gene positions) in the genome. The size of the dots indicates the P value 
of the trans-eQTL (larger is more significant). b, Two examples of convergent 
effects, where multiple independent SNPs affect the same genes in trans.  

Trans-eQTLs of rs1427407 and rs4895441 on HBG2 (top). Trans-eQTL of rs1150668 
and rs106871 on ZNF31 and S100A5 (bottom). Both panels are derived from 
Supplementary Table 17.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs1427407
https://www.ncbi.nlm.nih.gov/snp/?term=rs4895441
https://www.ncbi.nlm.nih.gov/snp/?term=rs1150668
https://www.ncbi.nlm.nih.gov/snp/?term=rs106871


Nature Genetics | Volume 55 | March 2023 | 377–388 386

Article https://doi.org/10.1038/s41588-023-01300-6

consequences beyond the gene regulated in cis. Our trans-eQTL analysis  
focused on a single brain region and was limited to trait-associated  
and cis-eQTL SNPs. We expect that a genome-wide approach will  
identify many more trans-eQTLs. Furthermore, we note that true sepa-
ration of cis- and trans-eQTL effects would require investigation of  
the allelic function of the associated SNPs (Supplementary Note).

We used brain-specific co-regulation networks to study several 
brain-related GWAS studies and prioritized genes that show signifi-
cantly enriched co-regulation with genes inside GWAS loci. For ALS, 
this revealed a limited but significant set of genes located outside of 
currently known ALS loci, which might lead to a better understanding 
of the poorly understood pathways that cause ALS.

This study has several limitations. First, our eQTL analyses were 
limited to single tissues and excluded replicate RNA-seq measurements. 
A joint analysis with random-effects models68,69 could increase the 
effective sample size, which would be especially useful for trans-eQTL 
identification. Second, our GWAS overlap analysis may have failed to 
identify previously identified genes due to differences in sample size, 
effect size, variant density, LD structure and imputation quality. For 
example, our results did not include the MAPT gene for AD because 

the H1/H2 haplotype separating SNP rs8070723 had an eQTL P value 
of 1.8 × 10−5 due to our alignment strategy (Supplementary Note). 
This might have been an issue for other genes as well. Graph-based 
alignment tools or long-read sequencing methods are required to 
ultimately determine the true effects on such genes. Third, the GWAS 
overlap methods we used have known limitations (for example, Supple-
mentary Note). For the MR analysis, we opted to perform single-SNP 
MR instead of multi-SNP MR (such as inverse-variance weighted70), 
which requires multiple independent associations per gene. As this 
was the case for only a limited proportion of the tested cis-eQTLs and 
there were no genes with more than five independent eQTLs, we rea-
soned this would not provide for reliable inverse-variance-weighted 
estimation. Inverse-variance-weighted estimation could potentially 
be applied on a genome-wide trans-eQTL analysis, resulting in many 
more independent instruments per gene. However, such an approach 
would be more susceptible to confounding because of horizontal plei-
otropy71, where a gene is affected by multiple indirect effects. Finally, 
our co-localization approach was based on the single-causal-variant 
assumption, which is not applicable to cis-eQTL genes with multiple 
independent associations (for example, TREM2; Supplementary Note), 
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and therefore we may have failed to detect co-localizing signals in 
such loci. Recently published co-localization methods72 do not have 
this assumption, which may improve future co-localization results. 
Finally, it is possible that bulk RNA-seq eQTL studies generally capture 
eQTL effects for genes that are not dosage sensitive and do not cause 
disruptive downstream consequences73. Furthermore, many eQTLs 
can only be detected in certain contexts74 for which single-cell experi-
ments are best suited.

We expect that this resource will prove valuable for post-GWAS 
brain research. Our dataset can be utilized to disambiguate GWAS loci, 
point to causal pathways and prioritize targets for drug discovery. We 
expect that through future integration with single-cell eQTL studies 
that have higher resolution but still lower power, our results will help 
to pinpoint transcriptional effects in specific brain cell types for many 
disease-associated genetic variants.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Dataset collection and description
We collected published bulk brain RNA-seq samples from the AMP-AD 
consortium (AMP-AD MAYO, ROSMAP and MSBB)6, Braineac7 and the 
PsychENCODE consortium8 (Bipseq4, BrainGVEX4, CMC9, CMC_HBCC 
and UCLA_ASD4) from Synapse.org using the Python 2.7.5 package syn-
apseclient v1.9.2 (ref. 75). The NABEC and GTEx datasets were retrieved 
from NCBI dbGaP and the TargetALS data were provided directly by the 
investigators. In addition, we collected brain bulk RNA-seq samples from 
the ENA and performed rigorous QC, resulting in 1,759 samples (Supple-
mentary Note, Supplementary Fig. 1 and Supplementary Table 28). 
 Combined with the other datasets, this yielded a total of 9,363 samples 
(Supplementary Table 1).

RNA-seq alignment and QC
RNA-seq data were processed using a pipeline built with 
molgenis-compute76. FASTQ files were aligned against the GRCh38.
p13 primary assembly using the GENCODE77 v32 annotation with STAR78 
(v2.6.1c), while excluding patch sequences (Supplementary Note) 
with the following parameter settings: outFilterMultimapNmax = 1, 
twopassMode Basic and outFilterMismatchNmax = 8 for paired-end 
sequences; and outFilterMismatchNmax = 4 for single-end sequences. 
Gene quantification was performed using STAR, similar to gene quan-
tification using HTSeq79, with default settings. The gene counts were 
then TMM-normalized80 per cohort using edgeR81 (v3.20.9) with R82 
(v3.5.1). Quantification for the GeneNetwork was done using Kallisto83 
v0.43.1 (Supplementary Note).

To measure the FASTQ and alignment quality we used FastQC84 
(v0.11.3), STAR metrics and Picard Tools85 metrics (v2.18.26; Multipl-
eMetrics and RNAseqMetrics). Samples were filtered out if aligned 
reads had <10% coding bases (Supplementary Fig. 4a), <60% reads 
aligned (Supplementary Fig. 4b) or <60% unique mapping. Among the 
RNA-seq samples, 117 did not pass this filter, mostly from GTEx81. The 
other quality measurements were visually inspected but contained 
no outliers. To identify outliers that had not been captured by these 
statistics, we performed a PCA-based filtering approach, after which 
8,868 samples remained (Supplementary Note and Supplementary 
Fig. 5a–c). To adjust for between-dataset differences observed in the 
data (Supplementary Fig. 6a), we correlated the RNA-seq data with 77 
covariates from the different QC tools and regressed-out the top-20 
correlated covariates using ordinary least squares (OLS; Supplemen-
tary Note), after which clustering of datasets in PC1 and PC2 were no 
longer present (Supplementary Fig. 6b).

Our collection of RNA-seq samples consisted of 36 different  
tissue labels, many of which were represented by only a few samples. 
Therefore, we next defined major brain regions present in our data-
set, including samples from the amygdala, basal ganglia, cerebellum, 
cortex, hippocampus and spinal cord. We noted that some samples 
(especially from the ENA) were not annotated with a specific major 
brain region. To resolve this, we performed PCA over the sample cor-
relation matrix and then performed k-nearest neighbors on the first 
two PCs (k = 7) to classify samples to the major brain regions. Using 
this approach, we defined a set of 86 amygdala, 574 basal ganglia, 723 
cerebellum, 6,601 cortex, 206 hippocampus, 252 hypothalamus and 
285 spinal cord samples (Fig. 2a and Supplementary Table 1).

Genotype QC and definition of eQTL datasets
The genotype data for the included datasets were generated using 
different platforms, including genotypes called from whole-genome 
sequencing (AMP-AD, TargetALS12 and GTEx3), genotyping 
arrays (NABEC11 and Braineac7) and haplotype reference consor-
tium86-imputed genotypes (PsychENCODE datasets), or were called 
from RNA-seq directly (ENA dataset; Supplementary Note). A total 
of 22 different genotyping datasets were available, reflecting 6,658 
genotype samples (Supplementary Table 1). We performed QC on each 

dataset separately, using slightly different approaches per platform 
(Supplementary Note) and used a PCA-based approach to assign ances-
tries to each individual sample. Most of the included samples were 
of EUR ancestry: 5,138 samples had an EUR assignment, 805 samples 
had an AFR assignment and 573 samples were assigned to the other 
ancestries (Fig. 2b and Supplementary Table 1). We next assessed links 
between RNA-seq samples and genotyped individuals, and were able 
to identify 7,644 links (Supplementary Table 1). For eQTL discovery, 
we grouped these links based on brain region and ancestry, in which 
we required at least 30 samples spanning at least two cohorts. We 
next removed sample mix-ups and duplicate samples (Supplemen-
tary Note), resulting in the following final eQTL discovery datasets: 
Basal ganglia-EUR (n = 208), Cerebellum-EUR (n = 492), Cortex-EUR 
(n = 2,683), Cortex-AFR (n = 319), Hippocampus-EUR (n = 208) and 
Spinal cord-EUR (n = 108; Fig. 2c and Supplementary Table 1).

eQTL analysis
We performed cis-eQTL analysis in each of the eQTL discovery datasets 
by calculating Spearman correlations within each cohort, followed by 
a sample size-weighted z-score meta-analysis approach, as described 
previously14. We opted for this approach to minimize the influence of 
potential heterogeneity between cohorts and showed that it performs 
comparably to FastQTL/QTLTools87 (Supplementary Note and Supple-
mentary Fig. 35). To correct for multiple testing, we used an approach 
similar to FastQTL/QTLTools87, where we used 1,000 permutations 
of the sample labels to fit a β-distribution per gene and, after adjust-
ment using this distribution, calculated the q-values88 over the top 
association per gene to determine significance (Supplementary Note). 
Genes with q-value < 0.05 were deemed significant. We limited these 
analyses to 19,373 protein-coding genes and to SNPs located within 
1 Mb of the TSS, with MAF > 1% and Hardy–Weinberg P > 0.0001. The 
RNA-seq data were corrected for up to 20 technical covariates, dataset 
indicator variables and four multidimensional scaling components 
derived from the genotype data using OLS. In addition, we evaluated 
the impact of regressing out increasing numbers of PCs and defined 
the optimal numbers of PCs to remove for each eQTL discovery dataset 
(Supplementary Note and Supplementary Fig. 7). To identify second-
ary, tertiary, quaternary and other non-primary cis-eQTLs, we repeated 
the procedure in an iterative conditional approach, where in each sub-
sequent iteration, we regressed out the cis-eQTL effect of the previous 
iterations using OLS and identified cis-eQTLs using the residuals, fol-
lowed by an LD pruning step to circumvent SNP missingness between 
included cohorts (Supplementary Note).

To identify trans-eQTLs, we performed a limited analysis to reduce 
the multiple-testing burden by focusing on 228,819 variants with a 
known interpretation. This set constituted variants that were either 
previously associated with traits, having a GWAS P < 5 × 10−8 in the IEU 
OpenGWAS database89 or EBI GWAS catalog90 on 3 May 2020, and addi-
tional neurological traits (Supplementary Table 17) or that showed an 
association with q-value < 0.05 in any of our discovery cis-eQTL analyses 
(including non-primary associations identified in the iterative condi-
tional analysis). To maximize power, we combined the Cortex-EUR and 
Cortex-AFR datasets but excluded the ENA cohort due to the potential 
for genotypes of poorer quality (n = 2,759; Supplementary Note). For 
this dataset, we also repeated the cis-eQTL analysis (Supplementary 
Table 2) and normalization approach, including the selection of optimal 
number of 100 PCs to regress out (Supplementary Fig. 7). We assessed 
those combinations of SNPs and genes where the SNP–TSS distance 
was >5 Mb or where the gene and SNP were on different chromosomes 
as trans-eQTLs. To determine significance, we employed a previously 
used FDR estimation method91 using ten genome-wide permutations 
(Supplementary Note) and deemed trans-eQTLs with an FDR < 0.05 
significant. We finally used an alignment-based approach to detect 
potential crossmapping artifacts, after which the FDR estimates were 
recalculated (Supplementary Note).
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eQTL agreement
We used four different measurements of agreement of eQTL effects 
when comparing different brain regions or tissues: AC, π1, Rb and caFC92. 
Each of these measures evaluates different aspects of replication: AC is 
an indication of the proportion of effects that have a shared direction 
of effect within the set of eQTLs that is significant in both the discovery 
and replication datasets and is expected to be 50% for random eQTL 
effects, π1

93 estimates the proportion of eQTL effects that are true posi-
tive in the replication cohort but does not take into account the effect 
direction and can be dependent on the replication dataset sample 
size, Rb

94 effectively estimates the correlation between the eQTL-effect 
slopes (for example, β values from linear regression) while controlling 
for potential covariance in standard errors of those slopes and caFC 
measures the correlation between estimates of the fold change in 
expression values between alleles92. We note that whereas AC, π1 and 
Rb can be calculated from summary statistics, caFC requires access to 
genotype and expression data. We therefore limited the caFC analy-
sis to comparisons within the MetaBrain datasets and comparisons 
with the GTEx tissues. Details on how we calculated these measures of 
agreement are in the Supplementary Note. For AC, π1 and Rb compari-
sons with GTEx, we used the summary statistics for GTEx-v8 that were 
downloaded from the GTEx portal website. Calculations of the aFC 
per eQTL were performed with the original aFC script by Mohammadi 
and colleagues92 using the settings –log_xform 1 and –log_base 2, after 
which Pearson correlation was used to calculate caFC across shared 
eQTLs. For all comparisons with GTEx tissues, we performed discovery 
in Cortex-EUR while excluding the GTEx cohort.

Identification of cell type-dependent eQTL effects in bulk 
RNA-seq
We predicted cell-type proportions of the MetaBrain Cortex-EUR and 
-AFR datasets using the method and single-cell profiles previously 
published by the PsychENCODE consortium4 (Supplementary Note). 
We decided to discard the developmental cell types as we expected that 
these cell types are very rare or not present in adult human brain and 
because their signatures were obtained from fetal cells. The remaining 
cell types included all major cell types in the brain: neurons (excita-
tory, inhibitory and other), oligodendrocytes, astrocytes, microglia 
and endothelial cells. We then predicted the cell-type proportions as 
previously described4 (Supplementary Note). However, to enable the 
joint analysis of samples, we chose to correct the log2-transformed 
transcript-per-million gene counts for 20 RNA-seq quality metrics 
using OLS as we observed that this removed dataset biases in the pre-
dictions. To maintain the information captured by relative expression 
differences between genes required for deconvolution, we rescaled 
the residuals to the original log2-transformed mean and standard 
deviation, and replaced negative values with zero. For the deconvolu-
tion step, we used the non-negative least squares95 implementation 
in SciPy (v1.4.1)96. Given that the average proportions of cell subtypes 
were often very low (that is, <1%; Supplementary Fig. 16), we opted to 
sum all the subtypes of cells for excitatory neurons, inhibitory neurons 
and oligodendrocytes (oligodendrocyte precursor cells and oligo-
dendrocytes). We observed a high correlation between the predicted 
cell proportions and PCs, indicating that cell-proportion differences 
contribute to a substantial variance in bulk gene expression levels 
(Supplementary Fig. 36).

Using the predicted cell-type proportions, we aimed to identify cell 
type-dependent eQTLs. To increase the robustness of our results, we 
excluded 50 samples with a cell-proportion z-score > 4 on one or more 
cell type and limited the analysis to eQTLs with <95% missingness per 
dataset, a joint MAF > 5% and a joint Hardy–Weinberg P < 0.0001. With 
the remaining 25,497 eQTLs and 2,633 samples, we used Decon-QTL19, 
which employs a non-negative least-squares model to identify cell-type 
interaction effects. For this analysis, we used the steps as described 
in the Decon-QTL manuscript19. For the pre-processing of the TMM 

expression counts, we corrected for dataset indicator variables, 20 
RNA-seq alignment metrics and four genotype multidimensional 
scaling components using OLS. As an additional step, we forced the 
data to the normal distribution per gene to reduce outliers. Finally, 
we evaluated whether the multiple-testing correction applied by 
Decon-QTL properly reflects the null distribution by comparing a 
permutation-based method to the default BH-FDR multiple-testing 
correction. We found that the vast majority (87.76%) of FDR significant 
interactions were also significant using permutations (Supplementary 
Note and Supplementary Figs. 37,38).

To confirm cell type-specific eQTL effects identified in Cortex-EUR, 
we used three replication datasets: Cortex-AFR and the snRNA-seq data-
sets Bryois et al.24 and ROSMAP4. For the Cortex-AFR replication, we 
applied the same cell-type prediction and Decon-QTL interaction analy-
sis as for Cortex-EUR. Over the ieQTLs significant in Cortex-EUR, we 
calculated BH-FDR estimates and deemed ieQTLs with a BH-FDR < 0.05 
as significant. Given that Decon-QTL does not return any standard 
errors, we predicted β and standard errors using the sample size, MAF, 
interaction β and interaction P value97 to calculate the Rb metrics. 
For the ROSMAP dataset, encompassing 80,660 single-nucleus tran-
scriptomes from the prefrontal cortex of 48 individuals with varying 
degrees of AD pathology23, we re-processed the expression matrix to 
create a pseudo-bulk expression matrix for each broad cell type and 
subsequently mapped cis-eQTLs using the same procedure as the 
trans-eQTL analysis in bulk data (Supplementary Note and Supple-
mentary Figs. 39,40). To correct for multiple testing, we confined the 
analysis to only test for primary cis- or trans-eQTLs that had a signifi-
cant interaction with one or more cell types in MetaBrain Cortex-EUR 
(BH-FDR < 0.05), while also permuting the sample labels 100 times. 
Finally, we attempted replication of our findings using the snRNA-seq 
eQTL summary statistics of the recent preprint by Bryois and col-
leagues24. We overlapped their summary statistics with the Cortex-EUR 
cis-eQTLs and found (depending on the cell type) that between 9,402 
and 13,764 overlapped. We calculated a BH-FDR on the P values of the 
ieQTLs that were significant in Cortex-EUR in the respective cell type. 
Given that the summary statistics did not include standard errors or 
MAF values, we predicted β and standard errors using the MetaBrain 
Cortex-EUR MAF together with the eQTL sample size, β and P value97 
from Bryois et al. to calculate the Rb metrics.

Single-SNP MR analysis
We conducted MR between the Cortex-EUR eQTLs and 31 neurologi-
cal traits (21 neurological disease outcomes, two quantitative traits 
and eight brain-volume outcomes; Supplementary Table 11). For this 
purpose, we used the Wald ratio method, which computes the change 
in disease risk per s.d. change in gene expression, explained through 
the cis-eQTL instrument(s) for that gene. To obtain our instruments, 
Cortex-EUR eQTLs at a genome-wide significant P-value threshold 
(P < 5 × 10−8) were selected and then LD-clumped using the ld_clump() 
function in the ieugwasr package v0.1.4 (ref. 98) with the default settings 
(10,000 kb clumping window with r2 cut-off of 0.001 using the 1000 
Genomes EUR reference panel). SNP associations for each of the eQTL 
instruments were then looked up in the outcome GWAS. If the SNP 
could not be found in the outcome GWAS using the dbSNP rsid, then a 
proxy search was performed to extract the next closest SNP available in 
terms of pairwise LD, providing a minimum r2 threshold of 0.8 with the 
eQTL. These steps were performed using the associations() function 
in the ieugwasr package. To ensure correct orientation of effect alleles 
between the eQTL and outcome associations, the SNP effects were 
harmonized using the harmonise_data() function in TwoSampleMR70 
selecting Action 2, which assumes that the alleles are forward-stranded 
in the GWASs (so no filtering or re-orientation of alleles according to 
frequency was conducted on the palindromic SNPs). Single-SNP MR was 
then performed using the mr_singlesnp() function in TwoSampleMR. 
We reported all of the MR findings that passed a P-value threshold of 
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5 × 10−5 but note that the Bonferroni-corrected P = 0.05 threshold for 
multiple-testing correction is P = 1.43 × 10−7.

Co-localization
Following the MR analysis, co-localization analysis was performed on 
the MR findings that passed the suggestive threshold to determine 
whether the eQTL and trait shared the same underlying signal. We 
ran co-localization28 using both the default parameters (p1 = p2 = 10−4 
and p12 = 10−5) and parameters based on the number of SNPs in the 
region (p1 = p2 = 1/(number of SNPs in the region) and p12 = p1 / 10). 
We considered the traits to co-localize if either of the parameter runs 
yielded PP4 > 0.7. In addition, a systematic co-localization analysis was 
performed to compare findings between Cortex-EUR eQTLs and other 
existing cortex eQTL datasets (Supplementary Note).

Ethical compliance
All cohorts included in this study enrolled participants with informed 
consent and collected and analyzed data in accordance with ethical and 
institutional regulations. Information about individual institutional 
review board approvals is available in the original publications for each 
cohort. Where applicable, data access agreements were signed by the 
investigators previous to acquisition of the data, either to the UMCG 
(AMP-AD, CMC, GTEx, CMC_HBCC, BrainSeq, UCLA_ASD, BrainGVEX, 
BipSeq and NABEC) or Biogen (TargetALS and Braineac), which state the 
data usage terms. To protect the privacy of the participants, data access 
was restricted to the investigators of this study, as defined in those data 
access agreements. Per data use agreements, only summary level data 
is made publicly available and strictly mentioned in the disclaimer that 
they cannot be used to re-identify study participants.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Our study is comprised of previously published human brain eQTL data-
sets. The majority of these datasets are available on request or through 
online repositories after signing data access agreements. Summary 
statistics for the performed cis-eQTL analyses are available through 
the MetaBrain website (https://www.metabrain.nl), after registering 
name, institute and e-mail address. The mode of access for each of the 
included datasets was as follows. TargetALS12 data were pushed directly 
from the New York Genome center (https://www.targetals.org/) to our 
SFTP server. CMC99 (accession code: syn2759792), CMC_HBCC (acces-
sion code: syn10623034), AMP-AD5 (accession code: syn2580853; 
the snRNA-seq data were collected using the Synapse accession  
code syn18485175 and the IHC data were from https://github.com/
ellispatrick/CortexCellDeconv/tree/master/CellTypeDeconvAnalysis/
Data), BrainSeq (accession code: syn12299750), UCLA_ASD data (acces-
sion code: syn4587609), BrainGVEx (accession code: syn4590909) and 
BipSeq (accession code: syn5844980) data were downloaded from 
Synapse (https://www.synapse.org/) using synapseclient (https://
python-docs.synapse.org/build/html/index.html). GTEx69 was down-
loaded from the Sequence Read Archive (SRA) using fastq-dump of the 
SRA toolkit (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=sh
ow&f=software&m=software&s=software). Access was requested and 
granted through dbGaP (accession code: phs000424.v7.p2). Braineac7 
data were pushed to our SFTP server by Biogen. The identifiers of the 
76 included studies and 2,021 brain samples downloaded from the 
ENA13 are listed in Supplementary Table 31. NABEC data (accession 
code: phs001301.v1.p1) were downloaded from dbgap. The Bryois et al. 
eQTL summary statistics were downloaded from Zenodo in January 
2022 from https://doi.org/10.5281/zenodo.5543734. Other databases 
or datasets that we have used: SkyMap100. Source data are provided 
with this paper.

Code availability
Code is available at Zenodo (https://doi.org/10.5281/zenodo. 
7376855)101. The eQTL mapping software (cis) is available at https://
github.com/molgenis/systemsgenetics/tree/master/mbQTL. The 
eQTL mapping software (trans) is available at https://github.com/
molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline/. Other 
custom scripts used in this manuscript are available at https://github.
com/molgenis/metabrain. The allelic fold change code is available at  
https://github.com/secastel/aFC.
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