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a b s t r a c t 

Radiotherapy (RT) requires meticulous planning prior to treatment, where the RT plan is optimized with 

organ delineations on a pre-treatment Computed Tomography (CT) scan of the patient. The convention- 

ally fractionated treatment usually lasts several weeks. Random changes (e.g., rectal and bladder filling 

in prostate cancer patients) and systematic changes (e.g., weight loss) occur while the patient is being 

treated. Therefore, the delivered dose distribution may deviate from the planned. Modern technology, 

in particular image guidance, allows to minimize these deviations, but risks for the patient remain. We 

present PREVIS : a visual analytics tool for (i) the exploration and prediction of changes in patient anatomy 

during the upcoming treatment, and (ii) the assessment of treatment strategies, with respect to the an- 

ticipated changes. Records of during-treatment changes from a retrospective imaging cohort with com- 

plete data are employed in PREVIS , to infer expected anatomical changes of new incoming patients with 

incomplete data, using a generative model. Abstracted representations of the retrospective cohort parti- 

tioning provide insight into an underlying automated clustering, showing main modes of variation for 

past patients. Interactive similarity representations support an informed selection of matching between 

new incoming patients and past patients. A Principal Component Analysis (PCA)-based generative model 

describes the predicted spatial probability distributions of the incoming patient’s organs in the upcoming 

weeks of treatment, based on observations of past patients. The generative model is interactively linked 

to treatment plan evaluation, supporting the selection of the optimal treatment strategy. We present a 

usage scenario, demonstrating the applicability of PREVIS in a clinical research setting, and we evaluate 

our visual analytics tool with eight clinical researchers. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Radiation therapy (RT) is one of the most common cancer treat- 

ent methods. It requires careful pre-treatment planning and fol- 

ows a sophisticated pipeline, which includes the acquisition and 

egistration of anatomical images, delineation of target volumes 

nd organs at risk, and the optimization of the treatment plan [1] . 

ommonly used fractionation requires that the prescribed dose is 

elivered over several weeks [2] . During this time, multiple uncer- 

ainties may occur and accumulate. Uncertainties due to organ mo- 

ion lead to deviations in the planned trade-offs between tumor 
∗ Corresponding author at: Masaryk University, Czechia. 
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ontrol and healthy tissue complications. In recent years, image- 

uided RT has been used to monitor the anatomy of the patient 

rior to treatment administration, and to realign the patient. Still, 

imple realignment may not suffice, depending on the internal or- 

an changes in size and shape. Adaptive RT, where plan optimiza- 

ion accounts for changing anatomy, has been brought forward to 

nsure that tumor sites receive the desired dose, while organs at 

isk are spared [1] . Yet, this process remains resource-intensive. 

RT plans are optimized with tumor and organ delineations on 

 pre-treatment CT scan of the patient. To account for random and 

ystematic uncertainties in patient positioning, internal anatomy 

nd organ motion, safety margins are added to the delineations [1] . 

hese margins are based on population studies; therefore, they 

ay not be adequate for all patients. Some patients may present 

https://doi.org/10.1016/j.cag.2021.04.010
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arge anatomical changes during treatment, while others are more 

table. Accounting for patient-specific motion could be beneficial 

or all patients. Patients with stable anatomy would require smaller 

afety margins—resulting in less exposure of normal tissue. In pa- 

ients with more mobile organs, unnecessary irradiation of healthy 

issues can be avoided, if we can anticipate (and accommodate 

hrough adaptation) the changes into the dose delivery. Previous 

ork suggests that patterns in anatomical changes of the patients 

an be identified and anticipated, if few daily observations of the 

atient’s anatomy prior to treatment are available [3,4] . Identifying 

he type and magnitude of anatomical changes can also indicate 

hich type of treatment modality is the most suitable for a given 

atient. For example, proton-based RT can offer better localization 

f the radiation dose, but is more sensitive to anatomical changes 

han photon-based RT. 

We present PREVIS , a visual analytics system to support clinical 

esearchers in the exploration, prediction, and assessment of the 

mpact of anatomical changes, occurring during RT. The main con- 

ributions of our work are: (1) an intuitive representation of the 

istribution of past patients within a cohort , with respect to their 

natomy; (2) a predictive method for modeling anatomical changes 

f incoming individual patients prior to treatment, by matching 

hem to existing, retrospective cohort data; and (3) a predictive 

trategy for the pre-treatment assessment and comparison of RT 

lans , based on observed and/or modeled anatomical changes of an 

ncoming patient. To the best of our knowledge, a predictive visual 

nalysis of anatomical variability was not possible before PREVIS . 

This paper is structured as follows. In Section 2 , we describe the 

urrent clinical practice and research in prostate cancer RT. This 

s followed by a user—data—tasks analysis ( Section 3 ) and a dis- 

ussion of related work ( Section 4 ). In Section 5 , we describe in

etail our system and employed methods. We, then, demonstrate 

he usability of our system in an exploratory scenario ( Section 6 ), 

nd provide the results of our user evaluation with eight clin- 

cal experts ( Section 7 ). Finally, we provide an outlook on fu- 

ure challenges that have not been yet addressed in our approach 

 Section 8 ). 

. Clinical background 

Patients with prostate cancer are commonly treated with exter- 

al beam radiotherapy (EBRT), where radiation doses are delivered 

xternally using multiple beams or arcs, aimed at the tumor loca- 

ion [1] . When superimposed, these beams accumulate to a high 

ose for the targeted tumor area, and a lower dose for the sur- 

ounding organs. The planned dose is not administered at once, but 

s delivered in multiple fractions. This means that it is split over 

everal weeks, to allow the recovery of healthy tissue, while min- 

mizing tumor growth. Recent techniques effectively spare healthy 

issue, while delivering the desired high dose to the tumor volume. 

owever, parts of healthy organs of the pelvis are still unavoidably 

rradiated, leading to side-effects and affecting the patient’s quality 

f life. 

Recent studies suggest a link between pelvic organ mo- 

ion/deformation and increased toxicity risks [2] . Anatomical vari- 

tions may occur naturally across individuals, or may be caused by 

athological factors. For example, day-to-day anatomical changes 

ccur, because organs consist of flexible and deformable soft tis- 

ues; thus, they are affected by filling changes [5] . Pelvic organs 

e.g., the bladder and the rectum) are especially prone to filling 

hanges, and their positions and shape vary significantly [6] . As the 

nherent complexity of the RT workflow makes it challenging to 

dapt the treatment plan before every fraction, tumor coverage is 

rioritized. For this, target volume adjustment on a per-treatment 

asis has been suggested [7] . 
127 
Current clinical research aims at choosing the most effective 

adiotherapy strategy. Treatment plan evaluation and approval is 

ased on the visual examination of the dose distribution with re- 

ard to target volumes and organs at risk (on CT slices, or rendered 

n 3D) and additional plots [1] . First, anatomical views ( Fig. 1 (a))

llow experts to see the amount of dose administered to the target 

olume and surrounding organs for particular instance of patient’s 

natomy. Second, Dose Volume Histograms (DVHs, in Fig. 1 (b)) 

rovide a 2D representation of the dose distribution for organs, to 

how how much radiation is administered to the fractional volume 

f each organ. This supports quick evaluation of compliance with 

lanning objectives and identification of organs at risk of toxicity. 

hird, Tumor Control Probability (TCP) and Normal Tissue Compli- 

ation Probability (NTCP) models are statistical models ( Fig. 1 (c)). 

CP models quantify the probability that a tumor is effectively con- 

rolled (i.e., a tumor will not recur), given a specific radiation dose 

nd the sensitivity of the tumor cells to it. NTCP models quan- 

ify the probability of normal tissue complications, given a specific 

adiation dose distribution and its volume effect. In the present 

ork, only the NTCP modeling part will be addressed, as we study 

nly the effect of radiation on the healthy surrounding organs. The 

natomical views have scalability limitations in their current form, 

.e., they can show only one patient at a time, which is not suf- 

cient to judge the robustness of treatment strategies. The other 

lots (DVHs, TCP, and NTCP) scale well for the representation of 

any timesteps and/or patients at the same time, but they do not 

rovide any kind of anatomical information. To facilitate the eval- 

ation of different dose plan alternatives for new incoming pa- 

ients, our proposed solution integrates anatomical views, DVH- 

ased views and NTCP representations. 

Recently, adaptive visual analytics approaches have been inves- 

igated, with the purpose of demonstrating the influence of pelvic 

rgan shape and position variability on the dose administration, 

s well as potential RT-induced toxicity [3,8] . The current paper 

ims to advance these approaches towards a predictive direction. 

ur strategy utilizes the information of organ shape and position 

ariability from a retrospective cohort study with complete data, 

o support clinical researchers in predicting the effect of treatment 

n new incoming patients with incomplete data. 

. User—data—tasks analysis 

Users . The radiation therapy workflow involves many different 

linical experts [1] . This paper is primarily targeting medical physi- 

ists and clinical researchers. These experts participate on the de- 

ign and evaluation of treatment plans. Our system can aid this 

rocess by providing insight into the patient’s anatomy and its pos- 

ible changes, and by relating these to radiation dose. 

Data . We worked with two datasets of prostate cancer patients. 

or all patients, prostate, bladder, and rectum delineations were 

vailable. The first dataset contained eight patients. For each, we 

ad 7–9 timesteps, with anatomical contours based on repeated 

Ts, acquired twice a week over the treatment period, in addition 

o the planning CT. For these patients, we had two treatment plans 

ased on two different treatment modalities (one plan for proton 

nd one for photon treatment). The second dataset contained 25 

atients. For each, we had 12 timesteps from repeated Cone Beam 

Ts (CBCTs), in addition to the planning CT. The first five of the 

epeated CBCTs come from the first five daily sessions of the treat- 

ent, and are followed by CBCTs acquired on a weekly basis. For 

hese patients only photon plans were available. All patient data 

ame from clinical protocols, where relevant ethical and institu- 

ional review board approvals have been granted. 

Tasks . In the past, large anatomical changes have been ob- 

erved during treatment for certain patients, while other patients 

ad a more stable anatomy [3,9] . Also, patterns in the anatomical 
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Fig. 1. Dose assessment methods. (a) Assessment on an axial CT slice. (b) Dose Volume Histograms (DVHs). (c) Tumor Control Probability (TCP) and Normal Tissue Compli- 

cation Probability (NTCP). 
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hanges of patients could be identified in the first few fractions of 

he treatment [4] . Population-based safety margins are often added 

o the tumor volumes [1] , but the current workflow, as discussed 

n Section 2 , does not integrate anatomical variability to the treat- 

ent plan. To provide more robust treatment plans with smaller 

argins for stable patients, and to avoid unnecessary irradiation of 

ealthy tissues in more mobile organs, we determined the main 

asks for RT decision support through a predictive visual analytics 

olution. These tasks have been identified in a long iterative design 

rocess. They are based on discussions between the authors of this 

aper (visualization and clinical experts) and on a detailed analy- 

is of current practices in clinical research, regarding organ motion 

odeling and treatment evaluation. The tasks are the following: 

T1 Cohort Analysis: Analyze a “past” cohort, with respect to 

anatomical similarities and intra-treatment changes. 

T2 Patient Matching: Analyze the anatomical similarities of in- 

coming patients to “past” patients, with complete treatment. 

T3 Generative Anatomical Modeling: Predict and analyze the 

anatomical changes of incoming patients, prior to treatment. 

T4 Treatment Assessment: Based on the anticipated anatomical 

changes, quantify and assess the most suitable treatment. 

(a) How do anatomical changes affect the delivered dose ? 

(b) How do anatomical changes affect the NTCP ? 

(c) How can we compare multiple treatment plans? 

. Related work 

In shape space analysis , Hermann et al. [10,11] investigate 

natomic covariances in ensembles of data, providing also a state 

f the art report with prospects on the visual analysis of shapes. 

usking et al. [12] propose a 2D scatter plot to represent the dis- 

ribution of elements inside a cohort and to synthesize additional 

rbitrary objects in the shape space. For comparing objects, they 

ater deal with visualizing intersecting 3D surface meshes [13] . Re- 

ter et al. [14] explore and analyze the variability in multiple pelvic 

rgans, based on spherical harmonics, coupled to dimensionality 

eduction strategies, such as t-distributed Stochastic Neighborhood 

mbedding (t-SNE) and Principal Component Analysis (PCA). Gen- 

rally, former works support the efficient differentiation of shapes, 

ut lack the ability to synthesize and model shapes and motion 

hereof. 

Shape and motion modeling has been investigated in clinical 

tudies to evaluate margins for multiple targets in radiotherapy for 

igh-risk prostate cancer using statistical motion models [15–17] . 

ios et al. [18] developed a population-based model for prostate 

ancer radiotherapy that models the bladder motion and defor- 

ation based on dominant eigenmodes and mixed-effects models. 

imilar eigenmode-based approaches have been used for geomet- 

ic modeling also by other works [19,20] . Yet, none of these ap- 
128 
roaches goes beyond modeling and does not provide any interac- 

ive tools for the visual analysis and exploration of the underlying 

ohort, coupled to inter-fractional variability and its relation to the 

valuation of the treatment plan, which we include in our work. 

Previous work in the domain of uncertainty visualization for 

edicine [21] has, among other topics, investigated anatomical 

ariability. Our application might involve additional sources of un- 

ertainty [22] , such as from imaging [23,24] , but—in the context 

f this work—we address solely anatomical variability. Von Lan- 

esberger et al. proposed tools to support the global analysis of 

natomical variability in an examined population [25,26] . Smit 

t al. presented a novel, educational way of visualizing anatom- 

cal variation in complex branching structures, such as arteries 

r nerves [27] , while an older approach within the VOXEL-MAN 

roject investigated morphological organ variations. 

In cohort analysis , Klemm et al. [28] focus on the extraction 

f spine-canal variability and the exploration of clusters of simi- 

arly shaped spines. This work has been extended to incorporate 

dditional patient information [29] , demonstrating how to effec- 

ively reduce and visualize image cohort data and to facilitate their 

nderstanding. Steenwijk et al. [30] also go beyond shape analysis 

y proposing a framework for the interactive and structured visual 

nalysis of cohort data. Cohort analysis has also been tackled by 

reim et al. [31] , Bernard et al. [32] and Alemzadeh et al. [33] , for

arious purposes—also, within ensemble visualization [34] . 

Specifically for RT , Wentzel et al. [35] presented a visual com- 

uting approach for the estimation of RT plans in head and neck 

ancer patients, where anatomical similarity based on topology 

nd measures of image fidelity were considered. With this ap- 

roach, it is still not possible to derive any information about po- 

ential RT-induced toxicity. The Bladder Runner is a visual analyt- 

cs system that provides information about the amount of radi- 

tion delivered to the bladder across the treatment for a cohort 

f patients; therefore, also about toxicity risks [8] . The entire ap- 

roach is based on a 14-D shape descriptor vector for the blad- 

er cohort, which is fed into dimensionality reduction and clus- 

ering to detect cohort partitions with similar bladder shapes and 

volutions through the treatment period. Later, this was extended 

nto the Pelvis Runner to support multiple pelvic organs, by chang- 

ng the shape description method to support also non-spherical 

hapes (i.e., the rectum) through linearization [36] . However, the 

elvis Runner still did not support the correlation to dose admin- 

stration, the analysis of its variability and the investigation of po- 

ential RT-induced toxicity, which was added in VAPOR [3] . Meth- 

ds from VAPOR have also been used to estimate the magnitude of 

rgan variability for individual patients [4] . However, this approach 

oes not support modeling or prediction of anatomical changes. 

Regarding the treatment plan evaluation , Raidou et al. [37] pro- 

osed an approach for the exploration of TCP models, by incorpo- 
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Fig. 2. Overview of the analytical workflow in our system. We start by analyzing and preprocessing the existing cohort data. We continue with matching the new patient 

(with incomplete data) to existing cohort partitions (with complete data). Then, we employ generative modeling to predict upcoming anatomical changes in the new patient. 

Finally, we assess available treatment strategies, based on our generative model. 

r

p

b  

e

d

a

h

(

p

t

i

s

m

F

p

i

o

w

o

p

r

v

m

a

w

5

a

F

r

d

p

p

t

t

t

t

5

c

s

s

t

p

e

r

d

r

a

p

a

a

i

s

r

t

o

t

h

s

i

a

d

t

c

p

s

d

e

p

o

t

d

p

p

e

s

r

t

t

T

ating uncertainty and parameter sensitivity, while enabling inter- 

atient response variability analysis. This visual analysis tool has 

een later used in a clinical study [38] . For NTCP models, El Naqa

t al. [39] investigated methods for the visualization of the high- 

imensional space composed of the interaction between toxicities 

nd treatment, anatomical, and patient-related variables of NTCP in 

ead and neck patients, on the basis of a support vector machine 

SVM). Kupchak et al. [40] based, instead, their method for map- 

ing NTCPs onto dose-volumetric regions on a Monte Carlo simula- 

ion. There are no other visual analytics approaches to support the 

ntegration of the predictive (through the modeling of the organ 

hape and motion variability) and preventive (through the treat- 

ent assessment) aspects, which we integrate into our work. 

All previous work focuses solely on retrospective data analysis. 

or a prospective analysis of new incoming patients with incom- 

lete data, a new approach for inferring their anatomical changes 

s required. Additionally, previously employed shape analysis meth- 

ds do not support interactive incorporation of new patients. As 

e discuss in the upcoming sections, PREVIS uses different meth- 

ds for shape analysis and matching, to enable flexible data ex- 

loration and to support the addition of new patients. This also 

equires the appropriate use of visual representations that pro- 

ide good insight into patient partitioning, and new strategies for 

atching new patients to the existing ones. Finally, previous work 

lso lacks support for treatment plan comparison and evaluation, 

hich we now tackle. 

. Workflow and functionality of PREVIS 

We support the previously described tasks (T1–4) through an 

nalytical workflow consisting of several steps, as depicted in 

ig. 2 . Our workflow starts with the analysis and clustering of the 

etrospective cohort data. When a new patient (with incomplete 

ata) is loaded, he is analyzed and matched to existing cohort 

artitions (with complete data). Generative modeling is then em- 

loyed to predict anticipated anatomical changes in the new pa- 

ient. Finally, different treatment strategies (e.g., proton vs. photon 

reatment) can be assessed based on the predictive outcomes of 

he modeling. The steps of our workflow are discussed in detail in 

he upcoming sections. 

.1. Cohort analysis (T1) 

Our predictive approach relates new patients to existing patient 

ohorts, where observations of anatomical changes are done retro- 

pectively. Therefore, our workflow starts with cohort analysis and 

tratification of past patients, based on their anatomical similari- 

ies. Our approach is based on previous work for the analysis of 

elvic organ variability [3] . 
129 
Data Preprocessing . Our input data consists of contour delin- 

ations for each patient organ at each treatment timestep, and a 

espective volumetric representation of the administered radiation 

ose. The contours have been transformed into unified volumetric 

epresentations, where the organs are represented by binary cover- 

ge masks. The data are aligned based on the center of mass of the 

rostate. This is a common approach in prostate cancer treatment, 

s the radiation dose is also centered around the prostate [3] . For 

 more robust result and to preserve all positional variations, reg- 

stration based on, e.g., the femoral bones, would be required. 

Shape Description . We employ a probability density-based 3D 

hape descriptor, which estimates a probability density of geomet- 

ic features at selected target points. Our shape descriptor is an ex- 

ension of the one proposed by Akgül et al. [41,42] , to serve better 

ur reconstruction and visualization purposes. This shape descrip- 

or has been demonstrated to be robust for arbitrary shapes and 

ighly efficient, outperforming many other well-known shape de- 

criptors for classification [43] . For many other application scenar- 

os this descriptor might not be suitable, given its lack of rotation 

nd scale invariance. In our case, these are desirable properties, as 

istinguishing between organs of different sizes and relative posi- 

ions, is required. The original descriptor proposed by Akgül et al. 

onsists of three features, describing local features at individual 

oints p; each, consisting of a direction and a distance component: 

• Radial feature , consisting of a radial direction 

�
 d r = p − m, where 

m is the object’s center of mass, and a radial distance | � d r | . 
• Tangent feature , consisting of a normal direction 

�
 n at point p

and a distance of tangent plane at p from object’s center of 

mass m . 
• Cross-product feature , consisting of a cross-product direction 

�
 d c = 

�
 n × �

 d r and a radial distance | � d r | . 
While the tangent and cross-product features describe the local 

hape features of the object at a point p, the radial feature directly 

escribes the position of a point p. As such, it encodes the cov- 

rage probabilities of the organ volumes at the target points (see 

aragraph Coverage Probability Volume , below). 

In the original formulation of the descriptor, the target points 

f individual features are selected as Cartesian products of direc- 

ion samples (obtained by uniformly sampling a unit sphere), and 

istance samples (acquired by splitting the range of distance com- 

onents of a given feature into uniform intervals). With this ap- 

roach, the reconstruction and visualization of the probability cov- 

rage levels (details of which are described below) through radial 

ampling would be insufficient. Considering the placement of the 

esulting targets in the 3D space, the targets are very sparse at 

he upper bound of the radial distance range, and very dense at 

he lower bound (i.e., close to the center of mass of the object). 

herefore, we adjust the descriptor by placing the target points in 
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Fig. 3. Portion of an Overview Table encoding anatomical differences at individual 

treatment timesteps (1–13) from planning CT (p). 

T

a

T

s

m

n

t

d

t

t

l

5

c

h

m

a

t

o

p

d

t

i  

d

c

t

n

f

t

b

t

i

r

o

A

t

v

o

s

E

o

T

c

p

t

fi

t

h

1

c

T

 regular grid , spanning the bounding box of the evaluated organ 

hapes. A second adjustment is made for the radial feature, where 

e evaluate the probability values at the targets based on all vol- 

me voxels, while for tangent and cross-product features only sur- 

ace points are evaluated. We call this modified radial feature posi- 

ional feature . These adjustments allow us to use the positional fea- 

ure part of the descriptor to represent the volume coverage prob- 

bility, while the descriptor still fulfills the role of embedding the 

rgan shapes in a low dimensional space that allows for statistical 

ata analysis. 

Clustering . To create meaningful partitions of our cohort, based 

n the similarity of the organ shape evolution across patients, we 

mploy a hierarchical clustering with complete linkage [44] , simi- 

arly to the work of Furmanová et al. [3] . Our choice was moti- 

ated by the algorithm flexibility, which offers intuitive insight into 

luster composition. For this reason, it is also commonly used and 

ell-understood within the medical domain. Given the flexibility 

f hierarchical clustering, the number of clusters can be adjusted 

y the user—although an initial value is suggested by the elbow 

ethod [45] . The users can select which organs to include in the 

lustering. In some analytical scenarios, users may focus on a sin- 

le organ, while in others, the relative positions of the organs also 

lay a role. We chose a complete linkage proximity measure, to 

void the chaining effect of single and average linkage, and bias to- 

ards balanced clusters of Ward’s method, as shown in the work 

f Klemm et al. [28] , for similar tasks. This method is also less sus-

eptible to noise and outliers, which can be often anticipated in 

edical data. 

In previous related works [3,8] clustering was performed based 

n only one organ, and the patients were grouped based on the 

revailing organ clusters. This is not feasible, when multiple organs 

eed to be considered. Therefore, we employ the following aggre- 

ation scheme. We start with individual organ descriptors at indi- 

idual timesteps. For the three organs—bladder, prostate, rectum—

t timestep i we, thus, have three distinct descriptors b i , o i , and r i ,

espectively. The descriptor of timestep t i results from chaining the 

istinct organ descriptors into a single vector t i = { b i , o i , r i } . 
To identify patients with similar anatomical features throughout 

reatment, clustering needs to be performed on the patients (not 

n timesteps). Chaining the available multi-timestep descriptors 

ould lead to very large vectors of inconsistent size. This would 

e unsuitable input for clustering. It would also introduce artifi- 

ial time-correspondence among data points. Thus, to obtain a de- 

criptor for a given patient, we compute the mean μ and standard 

eviation σ for different organs across timesteps and chain them 

nto a patient descriptor s = { μb , μo , μr , σb , σo , σr } . In this way, we

apture for each organ, the average shape and variation. This de- 

criptor is used as input to the clustering. 

Coverage Probability Volume . For each cluster, we can recon- 

truct the coverage probability volume. This volume represents the 

er-voxel probability of encountering a given organ from a given 

luster in a 3D space. It inherently encodes uncertainties related 

o changes of organ shapes. We reconstruct these from the po- 

itional feature part of the cluster descriptor. A cluster descriptor 

 = { μb , μo , μr , σb , σo , σr } is computed in the same way as the pa-

ient descriptor, but the mean μ and standard deviation σ for dif- 

erent organs are computed from all timestep records belonging to 

 given cluster, i.e., across different patients. As we previously de- 

cribed, the positional feature is evaluated at a set of target points 

laced on a regular grid. This is a low-resolution representation of 

he probability volume, so we resample it using trilinear interpola- 

ion. 

Overview Table . To provide an initial overview of the cohort 

tructure (T1) , we adapt the tabular view from VAPOR [3] ( Fig. 3 ).

he rows of the table correspond to patients from the cohort and 

he columns represent timesteps with a recorded state of anatomy. 
130 
he cells of the table encode the difference of the anatomy at 

 given timestep, with respect to the planning CT (first column). 

hese are computed as the Euclidean distance between corre- 

ponding timestep descriptors and are normalized according to the 

aximum distance detected in the cohort (i.e., if a patient with 

ew maximum is added, the encoding is re-scaled). This supports 

he identification of patients that might benefit from re-planning, 

ue to large anatomical deviations. We place a small color bar at 

he beginning of each row to indicate cluster adherence of the pa- 

ients. The table also serves for navigation, as it is interactively 

inked to the other views. 

.2. Patient matching (T2) 

After obtaining an overview of the retrospective cohort, we pro- 

eed with relating the new patient to the existing complete co- 

ort data. Our system expects as input the volumetric coverage 

asks of the organs of the incoming patient, which have been 

cquired and delineated, so far. Ideally, the new patient informa- 

ion would include anatomical data from multiple days, as previ- 

us research suggests that this can capture a significant portion of 

atient-specific organ shape variability [4] . However, our system is 

esigned flexibly, to accommodate patient matching even with one 

imestep (i.e., only the planning CT). 

Matching calculation . The data of a new patient are processed 

n the same way as the cohort data ( Section 5.1 ), to create a low

imensional representation of the organ shape. This enables us to 

ompute the fit of a new patient to the previously identified clus- 

ers. The fit is computed as the mean Euclidean distance of the 

ew patient to the patients in the clusters identified during (T1) , 

ollowing the same concepts regarding the considered anatomy as 

he clustering algorithm (i.e., if the clustering is computed only 

ased on bladder shape, the fit calculation will also consider only 

he bladder). 

Matching visualization . To support a detailed view on the match- 

ng of a new incoming patient (T2) , we employ three linked rep- 

esentations. A RadViz plot [46] provides an abstracted overview 

f the patient distribution within the cohort clusters ( Fig. 4 , left). 

 hierarchy view [47] supports drilling down to different levels of 

he hierarchical clustering ( Fig. 4 , right). Finally, 2D/3D anatomical 

iews provide an anatomical view on the variability of individual 

rgans ( Fig. 5 ). 

In the RadViz plot , the clusters, as resulting from the previous 

tep, are placed equidistantly on the circumference of the circle. 

ach cohort patient is represented as a point within the circle, col- 

red according to the cluster it belongs to—further supporting (T1) . 

he new patient is highlighted with a larger empty circle, and an- 

hor strings connect it to individual clusters. The positions of the 

oints are assigned by a function of attraction to individual clus- 

ers (i.e., by how well the patients fit the individual clusters). The 

t is computed in the same manner as the fit of the new patient 

o the clusters, as described above. This enables the users to see 

ow well the clusters are separated. For example, in Fig. 4 , patient 

98 (see tooltip) belongs to cluster 2, but he is close to the cir- 

le’s center, indicating that the fit to this cluster is not very strong. 

he clusters at the circumference of the circle are accompanied by 
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Fig. 4. Left: A RadViz plot, showing the distribution of patients into clusters, and anatomical thumbnails of the clusters. Right: A hierarchy plot, showing the data hierarchy, 

as produced by the hierarchical clustering. The cells encode similarity of individual data points to the new patient. It can be seen that the bladder is the least similar organ 

in the majority of cases. 

Fig. 5. Anatomical views showing three probability coverage levels (25% dark gray, 

50% middle gray, and 75% light gray) on the anatomical 2D planes, and a 50% cov- 

erage probability level in the 3D view. For the 50% probability level, blue contours 

indicate standard deviations shown on mouse hover. 
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natomical thumbnails. These show the sagittal plane through the 

enter of the coverage probability volume, as computed from the 

luster descriptor. 

The hierarchy view complements the RadViz plot , by encoding 

he hierarchy of the clustering outcome in a foldable tree struc- 

ure. The sub-clusters (e.g., sub-clusters 6.0 and 6.1, forming clus- 

er 6 in Fig. 4 ) can also be explored. The hierarchy view is in-

eractively linked to the RadViz plot (i.e, hovering over a hierar- 

hy level, highlights the patients belonging to the respective (sub- 

cluster in the RadViz plot). In the hierarchy view, the rows cor- 

espond to clusters/patients and the columns to organs. The hi- 

rarchy view also encodes the similarity of the new patient to 

he clusters and patients across individual organs. The similarity is 

omputed as the Euclidean distance between the descriptors cor- 

esponding to the given organ. We differentiate between similar- 

ty in the mean shapes (obtained by comparing the mean organ 

escriptors) and similarity in organ variabilities (obtained by com- 

aring the standard deviations of the organ descriptors). The shape 

imilarity is color-coded in the cell of the hierarchy table, and the 

ariability similarity is encoded in the cell size, similarly to previ- 

us work [47,48] . Together, the RadViz plot and the hierarchy view 

upport patient matching (T2) . While there are numerous alterna- 

ives for the representation of hierarchical data (e.g., treemaps or 

unburst diagrams), they are not well-suited for encoding complex 

nformation about all levels of the hierarchy. The tree structure is a 
131 
ommon representation that is easy to understand—also for users 

utside of the visualization domain. 

Additional anatomical 2D/3D views complement the anatomi- 

al thumbnails of the RadViz plot. The thumbnails provide an 

verview of the anatomical features of each cluster, and the user 

an select clusters to explore them in greater detail in larger 

natomical views. These include the three anatomical 2D planes 

sagittal, axial, and coronal) to show crosscuts across the coverage 

robability volume and an accompanying 3D view. As discussed 

bove, the coverage probability volume is reconstructed from the 

ean shape descriptor. In the 2D anatomical views, we show the 

5%, 50%, and 75% coverage probability levels, similarly to the work 

f Raidou et al. [8] . These are color-coded with a luminance scale 

lighter equals to higher coverage probability). However, these iso- 

alues can be adjusted to show, e.g., 90%-confidence interval [3] . 

or the shape variations, we use contours, shown upon hovering 

he individual coverage levels to indicate the standard deviation 

f the respective coverage level range. This is shown with addi- 

ional contours, e.g., in blue in Fig. 5 , similar to topographic con- 

ours [49] . In the 3D view, an isosurface representation of the vol- 

me is shown at a selected iso-level (by default, this is set to the 

0% probability level). 

.3. Generative anatomical modeling (T3) 

The previously discussed techniques facilitate the analysis of co- 

ort clusters and the selection of patients that are most similar to 

he new patient. Given that for the new patient we have incom- 

lete data (from only one or few timesteps of treatment), this in- 

ormation can serve as an input to a statistical modeling that pre- 

icts organ changes for the new patient. Our system automatically 

ecommends as input patients from the most similar cluster. How- 

ver, users can adjust this selection based on their own assessment 

f similarity, depicted in hierarchy view (e.g., they can prioritize 

imilarities in one organ over differences in other). Patients can be 

dded in or removed using the RadViz plot, or using a checkbox in 

he hierarchy view. 

To model organ deformations, we use a PCA-based model simi- 

ar to Budiarto et al. [19] . For each of the included patients s from
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Fig. 6. Schematic depiction of our generative PCA-based approach for modeling the organ deformations of a new incoming patient with incomplete data. 

Fig. 7. Anatomical view showing the generated patient model. The model that was 

generated with deformation data from multiple patients is shown with gray proba- 

bility coverage levels (25%, 50%, and 75%) on the three anatomical 2D planes. Super- 

imposed magenta contours show the model generated from the new patient data 

(containing 5 timesteps). 
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Fig. 8. Anatomical view of the new patient, showing the radiation dose according 

to the treatment plan (viridis color map), and the generated patient model (ma- 

genta contours). 
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he existing cohort, we compute the mean shape descriptor s̄ and 

he corresponding timestep-specific deformations from this mean 

hape s i − s̄ . From these, a covariance matrix C is computed. The 

igenmodes of C give us the independent modes of variations. We 

odel the changes of the new patient by deforming the mean 

hape of the new patient by the weighted sum of L dominant 

igenmodes. In our case, the first 5 eigenmodes are selected by de- 

ault, as these tend to capture the majority of deformations [19,20] . 

till, the number of requested eigenmodes, and also the minimal 

nput size can be adjusted. We sample the weights for the l- th 

igenmode from the normal distribution N (0 , σ 2 ) , where the vari- 

nce is given by eigenvalue λ = σ 2 . Fig. 6 schematically depicts our 

odel. 

We repeat the sampling 10 0 0 times and proceed to show the 

esults in the same manner as for clusters (i.e., the mean cover- 

ge probability volume of the generated results along with stan- 

ard deviation on hover) in the anatomical view (T3) . This number 

f samples has been chosen experimentally by observing a conver- 

ence to a stable coverage probability map. Contour superimposi- 

ion can be used to highlight differences in the coverage probabil- 

ty of the new patient, as computed from the few available data 

nd as compared to similar patients ( Fig. 7 , magenta contours). 

.4. Treatment assessment (T4) 

The treatment plan assessment is supported through spatial 

epresentations and through the analysis of the DVHs and NTCP 

odels , similar to common clinical practice (T4) . 

Spatial representation . To support spatial treatment plan assess- 

ent, we use the anatomical views of Fig. 8 (T4 a) . For the 3D

iew, we color-code directly on the isosurface generated from the 

ontours the amount of radiation dose corresponding to the given 

osition, according to the treatment plan for the new patient. For 

he 2D planes, we use the background of the plane and color- 

ode it, according to the treatment plan. In RT, the rainbow color 
132 
ap is often employed to encode the scalar values of the dose [1] ,

hich we exchange for the viridis color map. This is familiar to 

edical experts, while overcoming several limitations of the rain- 

ow color map. For a comparison between two treatments (T4 c) , 

e calculate their difference and employ a diverging color scheme 

orange-to-mint) to visually emphasize the differences between 

he plans [50] . As for the color of the contours, we preserve the 

ame color per treatment plan through the system. The contour 

olors were chosen such that they can work well with light back- 

rounds (in the DVH and NTCP plots, as discussed below) and dark 

ackgrounds (in the anatomical views of the treatment plans). 

DVH analysis . DVHs are widely used in RT to evaluate treat- 

ent plans with respect to numerical guidelines for the accept- 

ble/required dose limits for healthy tissues/tumors, respectively. 

e, therefore, integrate DVH analysis in our approach, as it can 

upport also cluster or individual patients comparison (T4 a,c) . To 

ommunicate uncertainties stemming from anatomical variations 

n DVHs, we calculate the respective DVHs at the four levels of 

overage probability (i.e., the levels in Fig. 5 ). For each level, we 

xtract a separate volume and compute the DVH ( Fig. 9 , gray). 

he DVH graph is interactively connected to the anatomical views, 

o the iso-contours and corresponding DVH curves are highlighted 

pon hovering. We originally considered showing the results in a 

ontour box plot representation [51] . However, this led to confu- 

ion, as domain experts tended to interpret it as one particular 

bservation of anatomy with population-based uncertainty mar- 

ins [1] . It should also be noted that coverage probability levels 

ndicate likelihood of encountering an organ within the given vol- 
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Fig. 9. Dose Volume Histograms (DVHs) for the modeled coverage probability map 

(10%, 25%, 50%, 75%) and the contour from the planning CT for the bladder. 

Fig. 10. NTCP model enhanced with a mapping of parameter-induced uncertainties 

(horizontal bands along the curve) and anatomical uncertainties (vertical confidence 

intervals) for the modeled coverage probability map and the contour from the plan- 

ning CT. 
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me rather than real organ shapes. Thus, a direct comparison of 

VH values computed at coverage probability iso-contours should 

e further looked into. These should not be interpreted as best- 

r worst-case scenarios. The worst-case scenario would be an or- 

an in the sub-space of probability volume, falling entirely within 

 high-dose area. This can be seen in Fig. 9 . 

NTCP model analysis . TCP/NTCP modeling is another widely used 

re-treatment dose-response evaluation strategy, and TCP/NTCP 

odels are statistical models with parameters describing the dose- 

esponse in a population. As discussed before, in this work we are 

nterested only in the dose effect on normal tissues (NTCP mod- 

ls). In particular, we look into the Lyman Kutcher Burman (LKB) 

TCP model [52] , being the most popular. The LKB model has 

hree main parameters: the volume effect n (a range of values with 

 → 0 indicating that normal tissue toxicity is sensitive to hot spots, 

nd n → 1 indicating that toxicity is dependent on mean dose and 

ot spots can be tolerated), the dose to a whole or reference vol- 

me for 50% risk of endpoint d50 (the dose value at which there 

s a 50% probability of toxicity) and the curve steepness m (how 

uickly the risk increases as a function of dose). 

In this work, we include a strategy for uncertainty analysis of 

he predicted modeling outcome with regard to these three pa- 

ameters (i.e., parameter sensitivity analysis). For the representa- 

ion of this uncertainty, we enhance the traditional representation 

f Fig. 1 (c) with confidence intervals—both horizontal and verti- 

al ones, as depicted in Fig. 10 . The horizontal confidence intervals 

elate to the influence of d50 and m on the NTCP model curve. 

his is calculated by sampling the model curve with extreme val- 

es of these parameters and displaying the model range around 

he curve, as computed with the mean of the parameter intervals. 

he vertical confidence intervals are related to the value n of the 

olume effect, and the existence of multiple coverage probability 
133 
evels for a given organ. Each coverage level yields one DVH curve 

i.e., the dose depends on the coverage level volume). This dose is 

hen used as input to the NTCP, yielding a range instead of a value. 

s all uncertainties need to be combined, the confidence intervals 

re combined into a single range of extreme values from all in- 

ervals, and the plotted surface indicates the area of normal tissue 

omplications probability. The involved parameters can be interac- 

ively modified, and models with different parameter sets can also 

e compared. This is particularly useful, if treatment plans with 

ifferent treatment modalities are available (e.g., photon or pro- 

on), where the NTCP curve is influenced differently (T4 b,c) . 

. Exploration scenario 

In this section, we present an exploration scenario that demon- 

trates how our system supports tasks (T1–4) . The exploration sce- 

ario was initiated by one of the co-designing and co-authoring 

edical physicists, and it was afterwards employed in a user eval- 

ation, as we will discuss later in this paper. Our scenario can be 

plit into two parts: a retrospective and a predictive data analysis. 

Retrospective Analysis . Here, we focus on the analysis of ret- 

ospective patient data. For this, we employed both datasets, de- 

cribed in Section 3 . Fig. 11 shows the initial overview of the co- 

ort (T1) in the overview table (a) and in the RadViz plot (b). The 

atients are partitioned into six clusters, according to their bladder, 

ectum, and prostate similarity. From Fig. 11 (a) we see that clus- 

ers 1, 2, and 3 containing only one or two patients, i.e., they could 

e outliers. Looking at the anatomical thumbnails in the RadViz 

lot (b), we immediately see features that set these patients apart 

rom the rest of the cohort. Cluster 1 (turquoise) demonstrates a 

nique bladder orientation and size, cluster 2 has a unique sepa- 

ation of the bladder from the prostate, and cluster 3 (blue) sig- 

ificantly differs because of the rectum shape. In other clusters, 

he differences are more subtle. The overview table shows that pa- 

ients in cluster 5 (green) have the most stable anatomy, as the 

olor cells do not vary much, but otherwise they are quite simi- 

ar to cluster 4 (orange). To compare these clusters in greater de- 

ail, we select them and compare them in the anatomical views 

 Fig. 11 (c)). The sagittal plane (middle panel) indicates differences 

n positioning, where the bladders of cluster 4 (gray) are posi- 

ioned closer to the rectum than for cluster 5 (magenta contours). 

e also observe a different orientation of the rectum between the 

wo clusters. 

To further explore a single patient, we select patient 8 from 

luster 4. For this patient, both photon and proton treatment plans 

re available and a careful choice must be made, as proton treat- 

ent is more costly and not adequate for everyone. We first look 

t the individual photon and proton treatment plans, and their dif- 

erence ( Fig. 12 (a–c)) (T4 a,c) . Different colors of the contours 

re used to indicate the displayed treatment plans (magenta for 

hoton, orange for proton plan) and link them to the graph-based 

iews ( Fig. 13 ). The most apparent difference is the presence of the 

o-called low-dose bath in the photon plan, a low radiation dose 

hat is delivered to the wide area surrounding the radiation target 

 Fig. 12 (a,c)). This is expected and unavoidable in photon treat- 

ent. In the difference map (c), we also see the areas that receive 

igher dose in proton treatment. These correspond to the radiation 

argets (i.e., prostate and lymph nodes in mint color), but over- 

ap with high coverage probability areas of the bladder and rec- 

um. The overview table ( Fig. 11 (a)) indicates that patient 8 has a 

ess stable anatomy, which can also be followed through the treat- 

ent ( Fig. 12 (d-f)). Although in the planning CT, the high dose re- 

ion of proton plans avoids the bladder and rectum ( Fig. 12 (b)), in

he subsequent steps the bladder changes its position significantly, 

verlapping with high radiation dose. 
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Fig. 11. Overview of the initial cohort of 33 patients: (a) Overview table. (b) RadViz plot. (c) Anatomical views comparing cluster 4 (gray values for coverage levels) and 

cluster 5 (magenta contours). 

Fig. 12. Comparison of treatment plans for a single patient, shown on the sagittal 

view: (a) Photon plan. (b) Proton plan. (c) Difference between (a) and (b). (d–f) 

Anatomical changes occurring over treatment. Organ contours from CT acquired (d) 

prior to treatment, (e) in the first, and (f) in the second treatment week. 
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Fig. 13. DVH and NTCP model comparison for photon and proton treatment plans, 

based on the coverage probability levels. 

b

p

g

To compare the treatment plans in terms of complication prob- 

bility for healthy tissues (T4 b,c) , we start with the DVH anal- 

sis. Fig. 13 (top) shows the comparison of the bladder coverage 

robability volume DVH for photon (magenta) and proton (orange) 

reatment plan. The proton plan administers overall a lower dose 

han photon—only, 25% of the volume receives higher dose with 

roton plan. The difference map of the plans ( Fig. 12 (c)) shows 

hese regions. The NTCP models of these treatment plans ( Fig. 13 , 
134 
ottom) indicate a higher NTCP uncertainty range, if treated with 

rotons instead of photons (vertical orange band wider than ma- 

enta). Based on this analysis, there might not be any clear advan- 
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Fig. 14. Top: Matching a new patient to an existing cohort. The hierarchy view shows a best fit to cluster 2.0, while the glyph size and color indicate bladder differences 

with cluster 2.1. Bottom: Comparison of modeled coverage probability map (gray scale) with the contours from planning CT (magenta) over the dose plan (viridis colormap). 
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age for proton treatment for this patient. Given his large anatom- 

cal changes, proton treatment is more risky. 

Predictive analysis . Here, we employ only the cohort of 25 pa- 

ients with photon treatment plans ( Section 3 ). We follow a leave- 

ne-out approach, using 24 patients as a cohort with retrospective 

ata and one patient as the “new” patient with only 5 repeated 

BCTs. The 24 patients were grouped into three clusters by our 

ystem ( Fig. 14 , left) (T1) . The new patient was then added, and

tted best with cluster 2, as seen in the RadViz plot. The patients 

f cluster 2 were automatically selected for the predictive mod- 

ling, but upon closer inspection of the hierarchy view ( Fig. 14 , 

ight), we observed that a portion of cluster 2 exhibited signifi- 

ant differences in bladder shape (cluster 2.1). These patients were 

emoved from the generative model, leaving us with 10 similar pa- 

ients (cluster 2.0) (T2) . The coverage probability map predicted by 

he generative model ( Fig. 14 , bottom in magenta) for the new in-

oming patient is investigated with the planning CT (background) 

T3) . The most significant anatomical differences can be observed 

n low-dose areas. The healthy organs should, thus, not be affected 

y unexpected high radiation doses as a result of organ motion. 

he generated model can be also evaluated in the DVH and NTCP 

lots ( Figs. 9 and 10 ) (T4) . 

As we mentioned before, we use the leave-one-out method, so 

hat we can evaluate the precision and convergence of the predic- 

ive model. To this end, we compare its results against the cover- 

ge probability map computed from the available complete patient 

ata (ground truth), by combining and reconstructing the descrip- 

ors of all available timesteps. For each patient, we computed three 

enerative models using the same 10 closest patients, but including 

ncrementally more data: first, we include just the contours from 

he planning CT (i.e., first timestep), then we added the contours 

rom two repeated CBCTs (i.e., first three timesteps), and finally, 

e added two more CBCTs (i.e., first five timesteps). 
f
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To quantify the convergence of the model, we employ the Dice 

oefficient metric, defined as 
2 | A ⋂ 

B | 
| A | + | B | , where A and B are the prob- 

bility volumes of the generated model and the ground truth data 

complete patient data), respectively. We compute the Dice Coeffi- 

ient at the four levels of coverage probability. With five timesteps, 

e can approximate the real coverage probability with an accu- 

acy of 94 . 69 ± 3 . 33% for the bladder, 97 . 19 ± 3 . 54% for the rec-

um, and 98 . 44 ± 1 . 85% for the prostate, which is in line with find-

ngs from previous research [4] . Fig. 15 shows the convergence 

f our model, when adding more CBCTs. As expected, by adding 

ore timesteps, the differences between the generative model and 

he actual anatomical variability of the patient are significantly re- 

uced for all three organs. Fig. 16 shows in an anatomical view 

he convergence of the model for two patients—one with stable 

natomy (patient 137) and one with large anatomical deforma- 

ions (patient 531)—when adding more CBCTs. The numerical con- 

ergence for these two patients can be seen in Fig. 17 . 

. User evaluation 

The exploration scenario was then presented to eight medical 

hysicists and clinical researchers. Seven of the participants had 2–

 years of experience in medical physics and treatment planning, 

nd one participant had over 20 years of experience in this field. 

he evaluation was carried out in small groups of 1–3 participants, 

imilar to common clinical settings. Each evaluation session took 

pproximately 90 min. At the beginning of each session, we intro- 

uced the main concepts and components of PREVIS . This was then 

ollowed by a live demonstration of the exploration scenario. The 

ystem was operated by the first author of this paper, while the 

xperts observed the demonstration. Participants were encouraged 

o think aloud and comment openly regarding the demonstrated 

unctionality of PREVIS . This resulted in an active discussion about 
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Fig. 15. Evolution of the Dice Coefficient for the modeled coverage probability maps, as obtained from our leave-one-out predictive analysis in a cohort of 25 patients, when 

including incrementally more timepoints to the model. Top left: Average results and standard deviations for three organs. Remaining plots: Results of the model at different 

coverage probability levels for the three individual organs. 

Fig. 16. Comparison of the modeled coverage probability maps (magenta; com- 

puted when adding more timepoints) against the actual coverage probability (grey 

scale; computed from all available retrospective data). 
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Fig. 17. Evolution of the Dice Coefficient for the four modeled coverage probability 

levels of the two patients presented in Fig. 16 (patient 137: stable, patient 531: 

mobile), when adding more timepoints to the model. 
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he employed methods and visualizations, several observed find- 

ngs, as well as additional exploratory steps in the system, steered 

y the evaluation participants. Besides the verbal feedback pro- 

ided during the evaluation sessions, participants filled out also a 

uestionnaire, where the functionality that supports each of the 

our tasks (T1–4) has been rated for usability (i.e., effectiveness, ef- 

ciency and satisfaction). Additional questions regarding user ex- 

erience (i.e., strengths, limitations, and potential improvements) 

ere also included [53] . 
136 
All participants were positive about the overview table ( Fig. 3 ) 

nd the RadViz plot ( Fig. 4 ). One participant noted that the 

verview table indicating difference of repeated CBCT scans to 

lan is helpful, as physicists often wonder how good the plan- 

ing CT/contours are when designing the plan. Other participants 

laimed that the views are “very nice and intuitive” and that “great 

nsight can be gained from the [RadViz plot]”; for instance, what 

inds of groups can be found in a cohort. The views have “great 

otential for uncovering patterns we have not been aware of”. The se- 

ection of patients closely matching the new patient was also per- 

eived as intuitive, although one participant commented that “[it 

an be] a bit cumbersome to go into the tree of different patients to 

nd good fits to include”. 

The coverage probability representation of anatomical variabil- 

ty ( Figs. 5 and 7 ) was received more critically. While the partic-

pants had no problem interpreting it and one participant stated 

hat “they are very descriptive”, multiple participants noted that 

hey would need to get used to it. Another participant noted that 

 drawback of this representation was that “coverage probability 

oes not communicate the size and mobility of the organ”. On the 
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Fig. 18. Results of the system usability evaluation (1: low, 5: high). 

o

t

b

t

b

i

t

n

t

w

m

a

s

w

i

h

i

s

b

i

t

a

r

s

f

d

b

t

b

n

w

t

e

8

R

h

f

p

r

P

w

t

m

t

r

w

b

i  

a

t

t

i

e

o

a

o

f

m

i

r

(

a

P

s

p

p

F

(

o

d

f

i

t

p

c

v

c

s

d

p

D

c

i

C

w

D

C

r

t

V

i

D

c

R

R

R

s

V

t

A

A

m

c

(

ther hand, multiple participants commented that this representa- 

ion could be used in treatment planning software where “it could 

e useful for exploring the possibility of decreasing the margins, where 

he probability intervals could be used as margins”. Also, “It would 

e great (given clinically verified results) to include the modeling also 

n the treatment planning step, not only as ’post-planning’ evalua- 

ion to avoid re-planning if the results show the treatment plans are 

ot suitable”. With respect to the treatment plan evaluation fea- 

ures ( Figs. 8 and 12 ), the possibility to compare different plans 

as appreciated by several participants, stating that “[the system] 

ay be useful to see which of two treatment modalities, e.g., photon 

nd proton, is best suited for the given patient”. Several participants 

uggested that the DVH and NTCP representations ( Figs. 9 and 10 ) 

ould benefit from additional features that are typically present 

n treatment planning software, such as querying thresholds (e.g., 

ow much of the volume receives 20 Gy of radiation dose). Regard- 

ng the NTCP representation one participant noted that “interactive 

ettings of NTCP parameters with this representation could probably 

e used also for experimentation and evaluation of parameters. ”

Overall, the participants claimed that the system seems intu- 

tive and easy to use. They agreed that the system has great po- 

ential for future use and would be most useful, if integrated into 

 treatment planning software, as it “offers information that is cur- 

ently not available on e.g., the extent of anatomical changes”. They 

uggested multiple steps of the RT workflow that could benefit 

rom our approach, such as treatment plan design based on pre- 

icted coverage probability map, selection of treatment modality 

ased on plan comparison, and adaptive RT by pre-selecting pa- 

ients for re-planning. However, all participants noted that a ro- 

ust evaluation of the precision of the generative model would be 

eeded before clinical integration. Apart from the open questions, 

e asked the participants to rate how well the system supports 

he four outlined tasks (T1–4) in terms of perceived effectiveness, 

fficiency, and satisfaction on a five-point Likert scale ( Fig. 18 ). 

. Conclusion and future work 

PREVIS is a novel visual analytics approach for the evaluation of 

T treatment plans. It provides novel insights into retrospective co- 

ort analysis and enables the predictive analysis of organ motion 

or new incoming patients, for whom we do not have yet com- 

lete data. Also, it supports the assessment of treatment plans with 

espect to this anticipated organ motion. The predictive aspect of 

REVIS was previously not possible in any other framework. PREVIS 

as positively evaluated by clinical researchers with experience in 

reatment planning, who confirmed the applicability of PREVIS in 

ultiple steps of the RT workflow. 

While the methods have been evaluated positively and our ini- 

ial assessment indicates that our generative model converges to 

eal data, a more thorough and, preferably, long-term evaluation 

ith a larger number of cases is needed, before our methods can 

e integrated into clinical practice. Therefore, our immediate prior- 

ty for future work is the clinical testing of PREVIS . Also, an evalu-

tion of the clustering stability, when new patients are incremen- 

ally added to cohort, would be required. While we did not observe 

his to be an issue with our data, it should be investigated further 
137 
n the future. Another limitation of our approach is that the mod- 

ling and the treatment assessment in our system is based mostly 

n spatial data. However, the organ variability, as well as the risks 

nd potential outcomes for the patient, can be influenced by many 

ther factors, such as co-morbidity, medication, diet, or age. These 

actors should also be considered in a thorough treatment assess- 

ent. 

In the future, we also plan to address the limited comparabil- 

ty of coverage probability levels produced by our methods to the 

eal organ shapes in terms of representations familiar to clinicians 

DVH, TCP, NTCP). Another possible direction for future work is the 

daptation of our methods for different clinical users. Currently, 

REVIS is more targeted towards clinical researchers, but for users, 

uch as radiation oncologists, the methods would need to be sim- 

lified or automated, while new (abstracted) visual representations 

roviding quick insight into results would need to be designed. 

inally, many types of uncertainty are present in our application 

e.g., uncertainties in the imaging, uncertainties due to contouring 

r registration errors, uncertainties from our generative model, or 

ue to our human-in-the-loop approach) [22] . Investigating the ef- 

ect of different uncertainties on top of anatomical variability, and 

ntegrating them within the same framework would be another in- 

eresting and challenging future direction. 

All in all, PREVIS is the first visual analytics tool to support the 

rediction, exploration and assessment of anticipated anatomical 

hanges during RT treatment. Despite having been designed for 

ery specific goals and tasks in the context of RT, several of its 

omponents (such as the generative model, or the representations 

upporting the predictive exploration and analysis of the cohort 

ata) could be employed within other comparative, ensemble, or 

redictive visual analysis scenarios. 
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