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a b s t r a c t 

Homeodynamic system (HS) in the biological studies (from the Greek homoios (similar) and Dynamis 

(energy)) designates the accommodating instruments of stabilizing and repairing of the fundamental re- 

liability and functional efficiency of living schemes. In this effort, we employ the concept of conformable 

calculus (CC) to generalize the homeodynamic system. The generalization requires a controller in the sys- 

tem to preserve the variables robustly regulated, oscillated, and synchronized variables at a certain set 

point. Here, we show how the selectivity of the CC makes differences in the behavior of an oscillation 

and the other properties of HS. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Control theory ascends from the conceptualization and simplifi-

ation of scheme approaches intended at refining the permanence,

obustness, and stability of practical systems. There are two types

f architecture in biological cells; In the first one, the controller is

resent the controller together with the process, which are both

unctioning in the cell ( Fig. 1 ); and in the second type, the whole

rocess is the cell itself while the controller is performed on a

omputer ( Fig. 2 ). In traditional set-up systems, the controller acts

n the process output ψ with a wanted value μ, and, depend-

ng on the error between these two, calculates the contribution

o be employed to the process to eventually reduce the incon-

istency between ψ and μ. Furthermore, when the presentation,

onsistency, and robustness of definite hardware mechanisms can-

ot be upgraded additionally by recovering categorization or hard-

are scheme, negative feedback control is particularly beneficial.

hese techniques are used widely in artificial biology systems [1–

] . These systems work together in the living cells to perform var-

ous functions ranging from energy production, to drug transport

nd metabolism and so on. The ability to modify living creatures

as many beneficial outcomes. For an instance, researchers have

een able to utilize microorganisms to produce bio-fuels using
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ene editing tools. On the other hand, water, soil, and industrial

ervices can also influence artificial biology e.g emergence of cer-

ain bacterial species that can damage herbicides [5,6] . The effect

f integral control in oscillatory and chaotic reaction kinetic net-

orks has been studied in Thorsen et al. [7] . 

Homeodynamics [8] (the concept of life as self-cloning) de-

cribes the requirements that any model of a complex system must

ulfill. This concept is being presented to study the limitation of

egulatory behavior, rate of stability (not far from the equilibrium),

nd rate-oscillation (or noise information). This study aims to uti-

ize a controller that responds to kinetic energy systems and fo-

uses on the regulation of the bio-systems [7] . This concept was

rst expressed by John von Neumann [9] . He considered a sys-

ematic rule set to varying a singular spatial configuration tasks

ith reproducing itself. Information obtained from the investiga-

ion showed that self-reproduction gives a self-description. The

elf-reproduction training shows that the quantities of communi-

ating materials are adequate to initiate a new cell cycle after a

efinite phase of alteration to new conditions. This concept is suit-

ble to study or modify artificial biological systems. 

Artificial biology system (ABS) combines traditional engineering

ethods with competing models like homogenous sections, func-

ional systems, and computer schemes. In artificial biology, mod-

ling functions as an instrument to calculate how a network will

erform after it improved in normal techniques. Easy simulations

re commonly employed to analyze and recognize parameters. In

ddition, they are selected over complex simulations as long as the

apability to repeat the detected performance of the system is not

https://doi.org/10.1016/j.chaos.2020.110132
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110132&domain=pdf
mailto:rabhaibrahim@tdtu.edu.vn
mailto:d.altulea@student.rug.nl
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Fig. 1. The process and the controller are both functioning in the cell. 

Fig. 2. The process is the cell itself while the controller is a tool in a computer. 
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altered. Therefore, many systems utilize different assumptions for

simplicity. For example, the main assumption in some networks is

that the molecular classes are consistently distributed in the in-

terior of the cell. This hypothesis removes the diffusion amount

from the model, because there are no attentiveness gradients (dif-

fusion differential equation) and replace it with a controller to do

the ideal job of the system. Information tells us that this assump-

tion may become unacceptable in certain states. When simulations

fail to repeat detected behaviors, some of the assumptions must be

re-examined [10] . Recently, fractional dynamic systems have been

studied because of their efficiency in applications (see [11–16] ). 

The controller must lead a trajectory across a state space, and

it gives no data about the construction or dynamical characteristics

of the state space other than the present position of the trajectory

showed and the distance to the goal region. In this effort, we de-

velop ABS with a controller by using the concept of conformable

calculus. This branch of calculus is defined by combining the idea

of a control system and the conformable calculus. Thus, such a

concept does not only study the past information, but seeks the

future expectation for the detected behaviors of ABS. 

2. Related researches 

Conformable calculus in biological systems is a relatively new

and rich area in the current field of biological systems. This con-

cept is utilized to refine, generate, control, and modify many bio-

logical systems. The authors in Seadawy et al. [17] created the trav-
ling and solitary wave solutions of the fractional-order biological

opulation system, including the time fractional Burgers equation,

he Drinfel’d-Sokolov-Wilson equation, and three of shallow water

ave equations. A conformable logistic differential equation count-

ng together discrete and continuous time is attracting attention in

artal and Gurcan [18] . By utilizing a theory of approximation type

iecewise constant, a pre-processing technique which renovates a

ractional-order differential equation into a difference operator is

resented. Necessary and sufficient expressions for the local and

lobal stability are indicated. The behaviors of conformable Lotka-

olterra predator-prey scheme is studied in Gürcan et al. [19] . They

mployed the piecewise constant approximation method to obtain

he discrete version of the system, then, they considered stability,

xistence, and direction of Neimark-Sacker bifurcation of the posi-

ive equilibrium point of the discrete scheme. It was detected that

he discrete system exposed much richer dynamic behaviors than

ts fractional-order form such as Neimark-Sacker bifurcation and

haos. The non-linear fractional KdV-Burgers equation in expres-

ions of conformable derivative is reconstructed in its place of the

aputo fractional derivative and the series result of this case is also

resented by using the residual power series technique in El-Ajou

t al. [20] . The authors in Nazir et al. [21] employed a conformable

odel in malnutrition community. An improved type of the math-

matical model for malnutrition community was developed. Sta-

ility of the established system was tested and an exploration of

tilizing fixed-point theory on the existence and uniqueness of the

ystem’s results has been made [22–24] . 

. Formulated system 

In this section, we formulate the conformable artificial biologi-

al system (C-ABS). 

.1. Conformable calculus (CC) 

efinition 1. (Conformable differential operator) 

A differential operator D 

β, β ∈ [0 , 1] is conformable if and only

f D 

0 is the identity operator and D 

1 is the ordinary differential

perator. Particularly, the operator is conformable if and only if a

ifferential function χ ( t ) satisfies 

 

0 χ(t) = χ(t) and D 

1 χ(t) = 

d 

dt 
χ(t) = χ ′ (t) . 

In the theory of control systems, a proportional-differential con-

roller for controlling resultant υ at time t with two tuning criteria

as the setting 

(t) = νp �(t) + νd 

d 

dt 
�(t) , (1)

here νp is the proportional gain, νd is the derivative gain, and �

s the error between the formal variable and the actual variable.

ased on (1) , Anderson and Ulness [25] presented the common

dea of CC. Note that, this CC is extended in Ibrahim and Jahangiri

26] . 

efinition 2. (A special class of conformable calculus) 

For two continuous functions ν0 , ν1 : [0 , 1] × R → (0 , ∞ ) we at-

ain 

 

βχ(t) = ν1 (β, t ) χ(t ) + ν0 (β, t ) χ ′ (t ) (2)

here 

lim 

→ 0 
ν1 (β, t) = 1 , lim 

β→ 1 
ν1 (β, t) = 0 , ν1 (β, t) � = 0 , ∀ t, 

∈ (0 , 1) , 

nd 
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lim 

→ 0 
ν0 (β, t) = 0 , lim 

β→ 1 
ν0 (β, t) = 1 , ν0 (β, t) � = 0 , ∀ t, 

∈ (0 , 1) . 

efinition 3. The integral operator corresponding to D 

β is given

y the following equation: 
 

D 

βχ(t) d βt = χ(t) + ke 0 (t, t 0 ) , (3)

here k ∈ R , d βt = 

dt 
ν0 (t) 

, ν � = 0 and 

 0 (t, κ) = exp 

(
−

∫ t 

κ

ν1 (β, ς ) 

ν0 (β, ς )) 
dς 

)
. (4)

oreover, the definite integral of the derivative of χ over the in-

erval [ a, b ] is formulated as follows: 
 t 

a 

[ D 

βχ(ς )] e 0 (t, ς ) d βς = χ(t) − χ(a ) e 0 (t, a ) . 

In our investigation, we request one of the following formulas

f ν1 and ν0 : 

1 (β, t) = (1 − β) t β, ν0 (β, t) = βt 1 −β, t ∈ (0 , ∞ ) , (5) 

1 (β, t) = (1 − β) | t| β, ν0 (β, t) = β| t| 1 −β, (6) 

1 (β, t) = cos ( 
βπ

2 

) t β, ν0 (β, t) = sin ( 
βπ

2 

) t 1 −β, t ∈ (0 , ∞ ) 

(7) 

1 (β, t) = cos ( 
βπ

2 

) | t | β, ν0 (β, t ) = sin ( 
βπ

2 

) | t| 1 −β t ∈ R \{ 0 } 
(8) 

r for ρ0 , ρ1 ∈ (0, ∞ ) 

0 (β, t) = βρ1 −β
0 

, ν1 (β, t) = (1 − β) ρβ
1 
. (9)

inally, the conformable inner product between two continuous

unctions χ and ϕ is given in the following formula: 

 χ, ϕ > = 

∫ b 

a 

χ(t) ϕ(t) e 0 (b, t) d βt. 

.2. Artificial biological system 

An important technique of modeling ABS is that to designate

t as a dynamical system consisting of molecular classes and re-

ponses. Every response is considered by the class that created it

nd a re-activity ratio, which is a function of the class applications.

henever the re-activity ratios are defined, then the activities of

he chemical re-activity system are detected through deterministic

r stochastic simulations [10] . Presence of solution of ABS as a col-

ection of differential equations allows analysis of existing numeri-

al approaches from the well-known studies of nonlinear activities.

umerical methods are utilized to create time series paths of the

lass concentrations. It is often interesting to observe the fluctu-

tions in a variable based on how the steady state principles are

ffected. In this case, a steady state analysis is utilized. 

ABS modeling has been studied expansively, and many ap-

roaches were generated. Most of these deal with deterministic

nd stochastic approaches for periodic analysis. Few of these sys-

ems have a controller term. Connections among path mechanisms

an often suitably designate ordinary differential equations. A sim-

le model [27] as follows: 

dχ(t) = νφ(χ ) , (10) 

dt 
here χ ( t ) indicates the concentrations of each molecule type dur-

ng time t, ν (fixed constant for all states) represents the stoi-

hiometry value of reaction networks and φ refers to the rate of

hange of the concentration of each type. When cellular noise sig-

ificantly moves a path function, it has to reformulate in view of

he mathematical analysis. This can be represented by Langevin

hemical equations or chemical master equations. In this case,

q. (10) must include a noise term [28] 

dχ(t) 

dt 
= νφ(χ ) + 

√ 

νφ(χ ) η(t) , (11)

here η represents to the white noise. 

Both models are studied by utilizing two current categories of

athematical analysis: parametric analysis and bifurcation analy-

is. Parametric analysis supports the measurable modifications of

ath dynamics in response to perturbations of path parameters.

his analysis is mostly used for recognizing critical path mecha-

isms. Therefore, there are different techniques to seek the behav-

or of the system, such as critical point theory, and fixed-point the-

ry. Focusing on the second option, we employed the recent fixed-

oint theorem of self-mapping. This theorem covers the idea of

omeodynamic concept. 

Bifurcation analysis is utilized to control how qualitative pos-

essions of a path depend on its parameters. Specifically, it aims

o find the steady-state results of a scheme and their stability. Bi-

urcation is supposed to happen when there is a modification in

ither the number of steady state results or the stability of one

r multiple solutions. Moreover, bifurcation analysis is employed

o analyze the oscillator segment in the system, by calculating the

ffects of path parameters on the oscillation amplitude and occur-

ence. 

A nonlinear ABS studied in Chen et al. [29] taking the formula

dχ(t) 

dt 
= �(t, χ) , (12) 

here � is the nonlinear interaction function among classes

ithin ABS satisfying Fig. 3 . 

By putting (12) in (2) , we have the following conformable ABS

CABS) 

 

βχ(t) = ν1 (β, t) χ(t) + ν0 (β, t) χ ′ (t) 

= ν1 (β, t) χ(t) + ν0 (β, t)�(t, χ) , (13) 

here t ∈ J = [0 , T ] , ν0 and ν1 defined in Definition 2 and χ , �:

 × [0, ∞ ) → [0, ∞ ) considered to be a continuous non-decreasing

unction such that χ ( t ) > 0 for all t ∈ (0, ∞ ) and �(0) = χ(0) = 0 .

ur aim is to study the existence and the uniqueness solution of

q. (13) . To make this request, we shall use self-mapping fixed

oint theorem [30] . 

emma 3.1. Let ( X , 	 ) be a complete metric space and Q : X → X a

elf-mapping satisfying the inequality 

 (� (Q (x ) , Q (y ))) ≤ � (� (x, y )) −℘(� (x, y )) (14) 

or all x, y ∈ X, where � , ℘: [0, ∞ ) → [0, ∞ ) are both continuous and

on-decreasing functions with � (0) = ℘(0) = 0 . Then Q indicates a

nique fixed point. 

Denote X = R and in view of (3) and (13) , we define an operator

 : X → X as follows: 

(Qχ)(t) = 

∫ 
( ν1 (β, t) χ(t) + ν0 (β, t)�(t, χ(t)) ) d βt + ce 0 (t, t 0 ) .

(15) 

ince χ ∈ X then Q is a self-mapping. In addition, define a function

 : X 3 → R 

+ by 

 (χ1 , χ2 , χ3 ) = max {| χı − χj | : ı, j = 1 , 2 , 3 , ı � = j} . 
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Fig. 3. ABS of three classes within a biological cell. 

(16) 

etric indicates the maximum measurement among the three classes of 

clude other classes in the system’s cell. 

e fixed point in X. 

 by the assumption on � , we have 

 , 3 , ı � = j} 

 � = j} 
 , 3 , ı � = j} 
 , 3 , ı � = j} 
 

 1 . Hence, Q is bounded in the unit ball B r of radius 0 < r < 1. We pro- 

 , T ) such that t > τ then χ ( t ) > χ ( τ ) (increasing function). A computa- 
Obviously, S (χ1 , χ2 , χ3 ) = 0 for χ1 = χ2 = χ3 ; also, we have 

S (χ1 , χ1 , χi ) + S (χ2 , χ2 , χ j ) + S (χ3 , χ3 , χk ) 

= max 
i =2 , 3 

{| χ1 − χi |} + max 
j=1 , 3 

{| χ2 − χ j |} + max 
k =1 , 2 

{| χ3 − χk |} 
= max {| χ1 − χ2 | , | χ1 − χ3 } + max {| χ2 − χ1 | , | χ2 − χ3 } 

+ max {| χ3 − χ1 | , | χ3 − χ2 |} 
= 2 max {| χ1 − χ2 | , | χ2 − χ3 | , | χ3 − χ1 |} 
> max {| χ1 − χ2 | , | χ2 − χ3 | , | χ3 − χ1 |} 
= max {| χı − χj | : ı, j = 1 , 2 , 3 , ı � = j} 
= S (χ1 , χ2 , χ3 ) . 

Hence, the function S (χ1 , χ2 , χ3 ) is a metric on the set X . This m

ABS within a biological cell. Note that this metric can extend to in

Theorem 3.2. Consider the conformable Eq. (13) . If 

| �(t, χ(t)) − �(t, η(t)) | < � | χ(t) − η(t) | 

for some positive constant � < 

1 −(1 −β) T β

βT 1 −β , T < ∞ . Then Q has a uniqu

Proof. Let the functions ν0 and ν1 be given by 

ν1 (β, t) = (1 − β) t β, ν0 (β, t) = βt 1 −β, t ∈ (0 , T ) , T < ∞ . 

Note that, similar proof can be presented for other formulas. Then,

S (Qχ1 (t) , Qχ2 (t) , Qχ3 (t)) = max {| Qχı (t) − Qχj (t) | : ı, j = 1 , 2

≤ max {| ν1 (β, t) χı (t) + ν0 (β, t)�(χı (χı (t)) 

−
(
ν1 (β, t) χj (t) + ν0 (β, t)�(χj (χj (t)) 

)| T 

β

β2 
: ı, j = 1 , 2 , 3 , ı

≤ max { 
(
ν1 (β, t) | χı − χj | + ν0 (β, t) � | χı − χj | 

)
T 

β

β2 
: ı, j = 1 , 2

≤ max { 
(
(1 − β) T 

β | χı − χj | + βT 

1 −β� | χı − χj | 
)
T 

β

β2 
: ı, j = 1 , 2

= max { [(1 − β) T 

β + βT 

1 −β� ] 
T 

β

β2 
| χı − χj | : ı, j = 1 , 2 , 3 , ı � = j}

:= rS (χ1 , χ2 , χ3 ) . 

Since [(1 − β) T 

β + βT 

1 −β� ] T 
β

β2 < 1 ⇒ [(1 − β) T 

β + βT 

1 −β� ] < 

β2 

T β
<

ceed to discover more properties about the operator Q . Let t, τ ∈ (0
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t

S

T = ξl (t) , l = 1 , 2 , 3 , we attain that 

S

 j} 
j} 
 3 , ı � = j} 
� = j} 

T as a fixed point Qχ = χ . 

e two continuous and non-decreasing functions � , ℘: [0, ∞ ) → [0, ∞ ) 

a ow, by putting � (ρ) = ρ/r and ℘(ρ) = 

ρ(1 −r) 
r , then by the boundedness 

o

�

χ3 , χk ) 

1 , χ1 , Qχ2 ) } . 
H  , we conclude that Q has a unique fixed point lying in B r , r < 1. �

E  = 0 . 5 w, and the conformable iterative equation 

D
(17) 

C em 3.2 ) in the unit ball B r , where r = [(1 − β) T 

β + βT 

1 −β� ] = 0 . 75 . By 

u tions to improve the solutions. In view of homeodynamic concept, the 

s

4

 � adjusts a set of points which is consequent from the steady state 

a yet when the controllers are oscillating. In other words, to develop the 

a  formula of periodicity as follows: 

χ

T cillatory systems (steady state situation), but the IC changes in χ over 

a∫

A tions (in view of homeodynamic concept); therefore, the above integral 

s∫

w  average of the controller, which is given as follows: 

<

ion yields that 

 

(
Q χ1 (t) , Q χ2 (t) , Q χ3 (t) − (Q χ1 (τ ) , Q χ2 (τ ) , Q χ3 (τ ) 

)
= S 

(
Q 

(
χ1 (t) − χ1 (τ ) 

)
, Q 

(
χ2 (t) − χ2 (τ ) 

)
, Q 

(
χ3 (t) − χ3 (τ ) 

))
= S 

(
Q χ1 (t − τ ) , Q χ2 (t − τ ) , Q χ3 (t − τ ) 

)
≤ S 

(
Q χ1 (t) , Q χ2 (t) , Q χ3 (t) 

)
≤ rS (χ1 , χ2 , χ3 ) . 

hus, Q is equicontinuous on B r . Moreover, by letting χl (t) − ηl (t) 

 

(
Q 

(
χ1 (t) − η1 (t) 

)
, Q 

(
χ2 (t) − η2 (t) 

)
, Q 

(
χ3 (t) − η3 (t) 

))
= S 

(
Q 

(
ξ1 (t) 

)
, Q 

(
ξ2 (t) 

)
, Q 

(
ξ3 (t) 

))
≤ max {| ν1 (β, t) ξı (t) + ν0 (β, t)�(ξı (χı (t)) 

−
(
ν1 (β, t) ξj (t) + ν0 (β, t)�(ξj (ξj (t)) 

)| T 

β

β2 
: ı, j = 1 , 2 , 3 , ı � =

≤ max { ν1 (β, t) | ξı − ξj | T 

β

β2 
+ ν0 � | ξı − ξj | T 

β

β2 
: ı, j = 1 , 2 , 3 , ı � = 

≤ max { (1 − β) T 

β | ξı − ξj | T 

β

β2 
+ βT 

1 −β� | ξı − ξj | T 

β

β2 
: ı, j = 1 , 2 ,

= max { [(1 − β) T 

β + βT 

1 −β (β, t) � ] 
T 

β

β2 
| ξı − ξj | : ı, j = 1 , 2 , 3 , ı 

= rS (ξ1 , ξ2 , ξ3 ) ≤ rS (χ1 , χ2 , χ3 ) . 

herefore, the operator Q is continuous in B r . This implies that Q h

Next we aim to satisfy inequality (14) . Suppose that there ar

chieving the properties: � ( t ), ℘( t ) > 0 for t > 0 and � (0) = ℘(0) = 0 . N

f Q and (16) , we conclude that 

 (S Q(χ1 , χ1 , χi )) = 

S Q(χ1 , χ1 , χi ) 

r 
≤ S (χ1 , χ2 , χ3 ) 

≤ S (χ1 , χ1 , χi ) + S (χ2 , χ2 , χ j ) + S (χ3 , χ3 , χk ) 

= � (S (χ1 , χ1 , χi )) −℘(S (χ1 , χ1 , χi )) + S (χ2 , χ2 , χ j ) + S (χ3 , 

≤ � (S (χ1 , χ1 , χi )) −℘(S (χ1 , χ1 , χi )) 

+ min { S (χ2 , χ2 , Qχ2 ) , S (χ2 , χ2 , Qχ1 ) , S (χ1 , χ1 , Qχ1 ) , S (χ

ence, we achieve the inequality (14) . Then, in view of Lemma 3.1

xample 3.3. Consider the following data: t ∈ (0 , 1] , β = 0 . 5 , �(w )

 

0 . 5 χ(t) = ν1 (β, t) χ(t) + ν0 (β, t) χ ′ (t) 

= ν1 (0 . 5 , t) χ(t) + 0 . 5 ν0 (0 . 5 , t)(χ(χ(t)) , 

learly, � = 0 . 5 . Then the Eq. (3.3) has a unique solution (see Theor

sing this method, one can generalize all types of differential equa

olution lies in the interval χ ∈ (0, 0.75]. 

. Integral control 

The integral control (IC) is based on the idea that a controller

ssumption, D 

βχ(t) = 0 . The steady-state condition is not utilized 

ssets of IC throughout periodic oscillations, one can start with the

For every cycle, χ is back at precisely the similar amount 

(t + T ) = χ(t) , ∀ t ∈ J. 

he transformation in χ cannot be expected to be nil, as in non-os

 period tends zero [31] 
 t+ T 

t 

χ ′ (ς ) dς = χ(t + T ) − χ(t) = 0 . 

nalytically, the IC can be recognized as chaotic and periodic situa

atisfies 
 t+ T 

t 

χ ′ (ς ) dς = χ(t + T ) − χ(t) = ε, ε ≥ 0 , 

here ε is limited value whenever T → ∞ . This will appear in the

 χ > T 

:= 

1 

T 

∫ t+ T 

χ ′ (ς ) dς = 

ε

T 

, ε ≥ 0 , T → ∞ . 

t 
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Fig. 4. Oscillatory controller of Eq. (18) for different value of β . From upper left, β ≈ 1 , β = 0 . 2 , lower left β = 0 . 5 and β = 0 . 75 . 

 T ν1 (β, ς ) 

ν0 (β, ς )) 
dς 

)

 , (18) 

never, T → ∞ (in preparation, T does not require to attend to ∞ ; it is 

chaotic attractive (after transients) will forever move on the attractive, 

 range of the attractive along the χ-axis in phase space. This shows that 

erforms chaotically. The above technique for calculating the average of a 

and chaotic performance without much requirement for prior evidence 

the attractive in phase space. For example, suppose that χ ∈ (0, 1], in 

( Fig 4 ). The above construction of IC implies that unstable fixed points 

oint, which is stable locally. 

a linear formula of �(χ(t)) = χ(t) , Eq. (13) becomes 

(19) 
By using the conformable derivative, we have ∫ t+ T 

t 

D 

β [ χ(ς )] e 0 (ς , ς + T ) d βς = χ(t + T ) − χ(t) e 0 (t, t + T ) 

= χ(t + T ) − χ(t) exp 

(
−

∫ t+

t 

:= ε (β) , ε (β) ≥ 0 , β ∈ (0 , 1)

with the conformable average 

< χ > 

β
T 

= 

1 

T 

∫ t+ T 

t 

D 

β [ χ(ς )] e 0 (ς, ς + T ) d βς = 

ε(β) 

T 

, 

where, for a system with a chaotic attractive, ε( β) is bounded whe

sufficient to be large enough). We conclude that a trajectory on a 

and thus χ(t + T ) cannot transfer advance away from χ ( t ) than the

integral control delivers robust instruction even when the system p

variable is appropriate as it functions well for periodic, stationary, 

about how the situation acts or the form, shape, and location of 

terms of sin or cos , we have a periodic solution (in view of (18) ) 

of (13) can become locally stable. But Eq. (13) has a unique fixed p

4.1. Optimal controller 

We construct the modest control system based on Eq. (13) . For 

D 

βχ(t) := ϒ(t) 

= ν1 (β, t) χ(t) + ν0 (β, t)�(χ(t)) 

= ν1 (β, t) χ(t) + ν0 (β, t) χ(t) 

= [(1 − β) t β + βt 1 −β ] χ(t) 

= 

t −β

1 + t −β

(
(1 − β) t 2 β (1 + t −β ) + (βt)(1 + t −β

)
χ(t) 

:= 

(
t −β

1 + t −β

)
χ

β
(t) , 
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Fig. 5. Minimize points of ‖ H ‖ ∞ for different types of χ ( t ) ∈ (0, 1]. From the upper left χ(t) = 1 , cos (t ) , sin (t ) , cos (t ) + sin (t) . The minimization converges to the origin of 

the unit circle in time ( t -axis) t = 0 . 0015 , t = 0 . 003 , t = 0 . 003 , t = 0 . 02 respectively to obtain χ ( t ). 

w e controller of order β . When β → 1, we have a controller modeled in 

W  to minimize it. To complete the minimization, we define the following 

n

‖
w roblem of the H controller is to select χβ that makes the close-loop 

s elp of Mathematica 11.2, we have minimized the norm for χβ ∈ (0, 1] 

(

4

s potential and kinetic energies without damage of entire energy. Yates 

[  

μ (20) 

w ant between stress and strain. Later, he suggested a damped oscillation 

e

μ (21) 

w  necessary to insert a pulse of energy. The first and second rules are 

f tches its individual shot of energy, as follows: 

μ (22) 

w cillation. 

neralized of (22) becomes 

μ (23) 

w nected auxiliary equation of taking the formula 

μ (24) 
here ϒ is the output of the system and χβ ( t ) is the conformabl

ilson et al. [32] . This control models a simple cell, which we aim

orm 

 H(ϒ) ‖ ∞ 

= sup 

t 
σ̄ (ϒ(t)) , 

here σ̄ represents to the maximum singular value of ϒ . The p

ystem internally stable, i.e. minimize the value ‖ H ‖ ∞ 

. With the h

 Fig. 5 ). 

.2. Harmonic and damped oscillation 

A harmonic oscillator states the main law of thermodynamics a

33] described this concept by a second order differential equation

d 2 χ

dt 2 
+ κχ(t) = 0 , 

here μ is the mass, χ is the position (distance) and κ is a const

quation taking the formula 

d 2 χ

dt 2 
+ δ

dχ

dt 
+ κχ(t) = 0 , 

here δ is the damped coefficient. To create a real situation, it is

ulfilled, and the periodic wave continues, as long as every cycle ca

d 2 χ

dt 2 
+ δ

dχ

dt 
+ κχ(t) = ξ (θ ) , 

here ξ ( θ ) is a pulse of energy with a particular phase θ of the os

By using the definition of conformable operator (2) , then the ge

D 

2 βχ(t) + δD 

βχ(t) + κχ(t) = ξ (θ ) , t ∈ J, 

here D 

2 β = D 

β (D 

β ) . The homogenious type of Eq. (23) has a con

�2 + δ� + κ = 0 , 
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s (Theorem 3.1 [25] ) 

 βς 

)
, � = λ1 ± iλ2 

(25) 

(26) 

 each cycle brings its possess injection of energy and marks a cycle 

ystem of the cell). Thus, the roots of �2 + 1 = 0 are purely imagery 

� = ± i, (27) 

(28) 

 7 show the oscillation behavior of the system (26) . 

(29) 

 �1 = �2 = −1 . Hence, the general solution becomes (see Fig. 8 ) 

(30) 

at �1 = −1 − 1 / 
√ 

2 , �2 = 1 / 
√ 

2 − 1 . Consequently, we have the general 
and the general solution is elicited by one of the following formula

χ(t) = � 1 e �1 
(t, t 0 ) + � 2 e �2 

(t, t 0 ) , �1 � = �2 

χ(t) = � 1 e �1 
(t, t 0 ) + � 2 e �2 

(t, t 0 ) 

∫ t 

t 0 

d βς , �1 = �2 = 

−δ

2 μ

χ(t) = � 1 e λ1 
(t, t 0 ) cos 

(∫ t 

t 0 

λ2 d βς 

)
+ � 2 e λ1 

(t, t 0 ) sin 

(∫ t 

t 0 

λ2 d

where d βς = 

dς 
ν0 (ς ) 

and e x (t, t 0 ) = exp 

(∫ t 
t 0 

x −ν1 (β,ς ) 
ν0 (β,ς )) 

dς 

)
. 

4.3. Linear systems 

Example 4.1. Consider the following data: 

D 

2 βχ(t) + χ(t) = 0 , t ∈ J, 

where μ = κ = 1 and D 

βχ(t) � ξ (θ ) (this case indicates that

average, which is very importunate case in the homeodynamic s

�1 , 2 = ± i. The general solution of (26) is taking the formula 

χ(t) = � 1 e 0 (t, t 0 ) cos 

(∫ t 

t 0 

d βς 

)
+ � 2 e 0 (t, t 0 ) sin 

(∫ t 

t 0 

d βς 

)
, 

where e 0 ( t, t 0 ) is given in (4) . Now by letting 

ν1 (β, t) = (1 − β) ρβ
1 
, ν0 (β, t) = βρ1 −β

0 
, ρ0 , 1 ∈ (0 , ∞ ) , 

we have the following details 

e 0 (t, 0) = exp 

(−(1 − β) ρβ
1 

βρ1 −β
0 

t 

)

d βς = 

dς 

β ρ1 −β
0 ∫ t 

0 

d βς = 

t 

β ρ1 −β
0 

Hence, the exact solution is taking the formula as follows: 

χ(t) = � 1 exp 

(
(1 − β−1 ) ρβ−1 

0 
ρβt 

1 

)
cos 

(
t 

β ρ1 −β
0 

)

+ � 2 exp 

(
(1 − β−1 ) ρβ−1 

0 
ρβt 

1 

)
sin 

(
t 

β ρ1 −β
0 

)
. 

Obviously, when β → 1, we have the ordinary case [33] . Figs. 6 and

Example 4.2. We have the following system: 

D 

2 βχ(t) + 2 D 

βχ(t) + χ(t) = 0 , t ∈ J, 

where μ = 1 , δ = 2 , κ = 1 and D 

βχ(t) � ξ (θ ) . We indicate that

χ(t) = � 1 e −1 (t, 0) + � 2 e −1 (t, 0) 
t 

β ρ1 −β
0 

, 

where e −1 (t, 0) = exp 

(∫ t 
0 

−1 −ν1 (β,ς ) 
ν0 (β,ς )) 

dς 

)
= exp 

(
1 −(1 −β) ρ

β
1 

βρ
1 −β
0 

t 

)

Example 4.3. Suppose the following system: 

D 

2 βχ(t) + 2 D 

βχ(t) + 

1 

2 

χ(t) = 0 , t ∈ J, 

where μ = 1 , δ = 2 , κ = 1 / 2 and D 

βχ(t) � ξ (θ ) . We indicate th

solution (see Fig. 9 ) 
χ(t) = � 1 e �1 
(t, 0) + � 2 e �2 

(t, 0) . 
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Fig. 6. Solutions of (26) , when β = 0 . 989 → 1 (left column) and for β = 0 . 5 , ρ0 = ρ1 = 1 (right column). 

Fig. 7. Solutions of (26) , when β = 0 . 25 (left column) and for β = 0 . 75 , ρ0 = ρ1 = 1 (right column). 

Fig. 8. Solutions of (29) , when β = 0 . 25 , β = 0 . 75 , β = 0 . 99 , ρ0 = ρ1 = 1 respectively. 
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Fig. 9. Solutions of (30) , when β = 0 . 25 , β = 0 . 75 , β = 0 . 99 , ρ0 = ρ1 = 1 respectively. 

Fig. 10. Solutions of (31) , when β = 0 . 25 , β = 0 . 75 , β = 0 . 99 , ρ0 = ρ1 = 1 respectively. 

Fig. 11. Solutions of (32) , when β = 0 . 25 , β = 0 . 75 , β = 0 . 99 , ρ0 = ρ1 = 1 respectively. 

(31) 

 . 96 sin (t) + (−8 . 88 × 10 

−16 + 2 . 22 × 10 

−16 i ) t cos (t) + 1 . 28 cos (t) 

10 

−16 t cos (t) − 1 . 28 cos (t) 

+ 0 . 02 sin (t) − 1 . 02 cos (t) . 

(32) 
4.4. Non-linear systems 

Consider the following nonlinear system 

D 

2 βχ(t) = cos (t) , t ∈ J. 

The solutions can be found in Fig. 10 and formulated by 

β = 0 . 25 ⇒ χ(t) = c 1 e 
(−3 t) + c 2 e 

(−3 t) t − 2 . 22 × 10 

−16 t sin (t) + 0

β = 0 . 75 ⇒ χ(t) = c 1 e 
(−0 . 33 t) + c 2 e 

(−0 . 33 t) t + 0 . 96 sin (t) − 1 . 11 ×
β = 0 . 99 ⇒ χ(t) = c 1 e 

(−0 . 01 t) + c 2 e 
(−0 . 01 t) t + 2 . 22 × 10 

−16 t sin (t) 

Assume the following nonlinear system 

D 

2 βχ(t) = exp (it) , t ∈ J. 
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T

β

β

β  t. 

 

4

the purposes of the study (see [34–37] ). Recently, Baleanu et al. [34] in- 

t  definition of the well known Caputo fractional derivative and integral 

a

C
 

−βdτ

(33) 

w

β

N uation of the form (13) 

C τ ) −βdτ

(34) 

w

C

w ntegrals operator. Moreover, by Proposition 2 in Baleanu et al. [34] , the 

c

C (35) 

N r O : X → X by the following construction 

χ) ) dτ. 

W

T

|
f as a unique fixed point in X. 

P  

ν

S  3 , ı � = j} 
≤

 , 2 , 3 , ı � = j} 
≤ = 1 , 2 , 3 , ı � = j} 
≤ j = 1 , 2 , 3 , ı � = j} 

=  2 , 3 , ı � = j} 
:

S
2 

T 
≤ 1 . Hence, O is bounded in the unit ball B r of radius 0 < r < 1. In the 

s as a unique fixed point according to Lemma 3.1 . �
he solutions can be seen in Fig. 11 and recognized by 

= 0 . 25 ⇒ χ(t) = (1 . 28 − 0 . 96 i ) e t + c 1 e 
(−3 t) + c 2 e 

(−3 t) t 

= 0 . 75 ⇒ χ(t) = −(1 . 28 + 0 . 96 i ) e t + c 1 e 
(−0 . 33 t) + c 2 e 

(−0 . 33 t) t 

= 0 . 99 ⇒ χ(t) = −(1 . 02 + 0 . 02 i ) e t + c 1 e 
( − 0 . 01 t) + c 2 e 

(−0 . 01 t)

Note that all the computations are brought by Mathematica 11.2

.5. Comparison 

There are different forms of conformable calculus depending on 

roduced a hybrid integral and differential operators based on the

s follows: 

 D 

βχ(t) = 

1 

�(1 − β) 

∫ t 

0 

(
ν1 (β, τ ) χ(τ ) + ν0 (β, τ ) χ ′ (τ ) 

)
(t − τ )

= 

(
t −β

�(1 − β) 

)
∗
(
ν1 (β, t) χ(t) + ν0 (β, t) χ ′ (t) 

)
, 

here 

lim 

→ 0 

C D 

βχ(t) = 

∫ t 

0 

χ(τ ) dτ, lim 

β→ 1 

C D 

βχ(t) = χ ′ (t) . 

ow by using (33) , we have the generalized hybrid conformable eq

 D 

βχ(t) = 

1 

�(1 − β) 

∫ t 

0 
( ν1 (β, τ ) χ(τ ) + ν0 (β, τ )�(τ, χ) ) (t −

= 

(
1 

t β�(1 − β) 

)
∗ ( ν1 (β, t) χ(t) + ν0 (β, t)�(t, χ) ) , 

hich is corresponding to the hybrid conformable integral 

 I βχ(t) = 

∫ t 

0 

e 0 (t, τ ) 
RL D 

1 −βχ(τ ) 

ν0 (β, τ ) 
dτ, 

here the operator RL D 

1 −β indicated the Riemann-Liouville differ-i

orresponding integral satisfies the relation 

 I β C D 

βχ(t) = χ(t) − e 0 (t, τ ) χ(0) . 

ote that the initial solution of (34) is χ(0) = 0 . Define an operato

(Oχ)(t) := 

∫ t 

0 

(
1 

τβ�(1 − β) 

)
∗ ( ν1 (β, τ ) χ(τ ) + ν0 (β, τ )�(τ, 

e have the following existence result: 

heorem 4.4. Consider the hybrid conformable Eq. (34) . If 

 �(t, χ(t)) − �(t, η(t)) | < � | χ(t) − η(t) | 
or some positive constant � < 

�(1 −β) −(1 −β) T β

βT 1 −β , T ∈ (0 , ∞ ) . Then O h

roof. As in Theorem 3.2 , we consider ν0 and ν1 to be as follows:

1 (β, t) = (1 − β) t β, ν0 (β, t) = βt 1 −β, t ∈ (0 , T ) , T < ∞ . 

 (Oχ1 (t) , Oχ2 (t) , Oχ3 (t)) = max {| Oχı (t) − Oχj (t) | : ı, j = 1 , 2 ,

max {| ν1 (β, t) χı (t) + ν0 (β, t)�(χı (χı (t)) 

−
(
ν1 (β, t) χj (t) + ν0 (β, t)�(χj (χj (t)) 

)| T 

β2 �(1 − β) 
: ı, j = 1

max { 
(
ν1 (β, t) | χı − χj | + ν0 (β, t) � | χı − χj | 

)
T 

β2 �(1 − β) 
: ı, j

max { 
(
(1 − β) T 

β | χı − χj | + βT 

1 −β� | χı − χj | 
)

T 

β2 �(1 − β) 
: ı, 

 max { [(1 − β) T 

β + βT 

1 −β� ] 

(
T 

β2 �(1 − β) 

)
| χı − χj | : ı, j = 1 ,

= rS (χ1 , χ2 , χ3 ) . 

ince [(1 − β) T 

β + βT 

1 −β� ] 

(
T 

β2 �(1 −β) 

)
< 1 ⇒ 

[(1 −β) T β+ βT 1 −β� ] 
�(1 −β) 

< 

β

imilar manner of Theorem 3.2 , we conclude that the operator O h
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Fig. 12. The upper bound of the inequalities � < 

1 −(1 −β) T β

βT 1 −β and � < 

�(1 −β) −(1 −β) T β

βT 1 −β for the conformable and the hybrid conformable calculus respectively. 
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Remark 4.4.1. As a comparison, the assumptions of

Theorems 3.2 and 4.4 are different in terms of the upper bound

of � . Fig. 12 shows the relation between β and T for each in-

equality. We conclude that the solution exists when T ∈ [1 , ∞ ) for

Eq. (13) and T ∈ [1 . 5 , ∞ ) for (34) . 

Remark 4.4.2. 

• Dynamic Systems and Control are the main technical area

within the biological studies. The Dynamic Systems and Con-

trols area efforts on approaches for scheming and controlling

natural systems such as ABS. Basically application parts con-

tain novel schemes, bio-cell in the cellular dynamics and con-

trol of power. By including, integral control delivers a different

(controllable) equilibrium point; the stability and reach-ability

of this point are investigated by the uniqueness of the fixed

point. Our consequences demonstrated that that integral con-

trol in the suggested ABS saves the normal state of the con-

trolled variable for both linear and nonlinear systems. 

• The paths are not diverging, but they are bound through perfor-

mance (for the ABS, the attractiveness of the solution is indicat-

ing an asymptotically stable equilibrium point). The conditions

we have used in Section 4 can be realized as an addition, aux-

iliary, of the steady state situation. The process in Section 4 can

be utilized in systems that display periodic oscillations 

5. Conclusion 

Artificial biological system (ABS) is formulated as a conformable

dynamical system using two recent types of conformable calcu-

lus. A comparison is illustrated between the two suggested dy-

namic systems. The important study in this investigation is to pro-

vide a stable solution. We introduced the sufficient conditions for

the unique solution and under the optimal integral controller, we

proved its stability. The main tool in this investigation is the itera-

tive fixed point theorem of self-mapping (this because, the ABS is

self training). Moreover, the harmony and oscillatory behaviors are

presented based on conformable second order differential equation

which is the generalized Yates equation. Through the results, we

confirm that the new generalizations of ABS indicated more flexi-

bility and convergence and accuracy. For the future works, one can

apply different types of fractional calculus, conformable calculus

and deformed calculus to generalize ABS. 
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