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Article

It is increasingly recognized that human psychology is 
highly changeable and dynamic (i.e., constantly in motion): 
Affect, behavior, environmental factors, and severity of 
psychopathological symptoms do not remain static through-
out the life of an individual, but rather they change over 
time (Diener & Emmons, 1984; Guastello et al., 2008; 
Mischel & Shoda, 1995; Reis et al., 1980). Intensive longi-
tudinal data is needed to properly investigate these changes 
and shed light on the rules governing these changes (Hayes 
et al., 2007; Molenaar, 2004; Molenaar & Campbell, 2009; 
Nelson et al., 2017). Ecological Momentary Assessment 
(EMA) is a popular method to collect such data. This 
method involves sampling the affect, behavior, and or envi-
ronmental factors of an individual, typically several times a 
day for multiple days (Larson & Csikszentmihalyi, 1983; 
Myin-Germeys et al., 2018, 2009; Shiffman et al., 2008; 
Stone & Shiffman, 1994). Since the rise of the smartphone, 
collection of such data has become far more feasible in psy-
chological research, sparking a large increase in both the 
interest in, as well as the availability of such data. Studies 
collecting EMA data for 1 or 2 weeks can be used to inves-
tigate how dynamics differ between persons or how experi-
ences and behaviors covary within persons (e.g., higher 

levels of negative affect in stressful situations). However, in 
recent years it has been shown that it is also feasible to col-
lect EMA data over a longer period of time (Schreuder 
et al., 2020; Smit et al., 2019; Smit, Snippe, et al., n.d.; 
Wichers et al., 2016, 2020). Such an extended research 
period increases the likelihood of substantial within-person 
changes in affect, behavior, and/or severity of psychopatho-
logical symptoms occurring during the research period, and 
allows researchers to investigate these intra-individual 
changes (Mehl & Conner, 2012; Nelson et al., 2017; Smit, 
Snippe, et al., n.d.; Wright & Woods, 2020).
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Abstract
Affect, behavior, and severity of psychopathological symptoms do not remain static throughout the life of an individual, 
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Unfortunately, many of the methods currently used to 
analyze EMA data are unfit for investigating within-person 
changes over time. For example, commonly used (partial) 
correlation analysis, and (vector) autoregressive (VAR) 
models require the data to be stationary (Lütkepohl, 2005). 
In an intuitive sense, stationarity means that the statistical 
properties of the process generating the time series (e.g., 
means, variances, and serial correlations) remain the same 
throughout the research period. The assumption of station-
arity directly contradicts the goal of studying change over 
time, and therefore any model assuming stationarity cannot 
be used to investigate such changes. Of course, methods do 
exist that do not assume stationarity, and can be used for 
studying change over time in intensive longitudinal data. 
However, most methods that do not assume stationarity, 
such as time-varying (V)AR models (Bringmann et al., 
2018), and change-point detection methods (Cabrieto et al., 
2018, 2019), can only be applied after the data collection 
has been completed. This is unfortunate, as it could be use-
ful to be able to detect within-person changes in intensive 
longitudinal data prospectively, in real-time.

First, being able to detect changes in real-time provides 
new research opportunities. In most studies, EMA question-
naires are kept short to keep participant burden manageable. 
When within-person changes in psychological functioning 
can be detected in real-time, additional questionnaires or 
qualitative interviews could be added at these highly rele-
vant times. Since this additional information can be gath-
ered when recall bias is still limited, such additional data 
could provide otherwise unobtainable insights in how and 
why changes occur. Second, detecting changes in real-time 
could be highly relevant for clinical applications. 
Interventions could be started or adapted as soon as a 
change is detected. In some cases, it may even be possible 
to detect changes when they are still relatively small and 
harmless, and start interventions before these small changes 
grow into more problematic ones (e.g., a depressive epi-
sode). Real-time change detection could be a big step 
toward providing the right intervention, to the right patient, 
at the right time.

Recently it was shown that it may be possible to detect 
intra-individual changes in intensive longitudinal psycho-
logical data in real-time using statistical process control 
(SPC) methods (Schat et al., 2021; Smit et al., 2019; Smit & 
Snippe, n.d.). SPC methods were originally developed to 
monitor an industrial production process over time and 
indicate when changes in the process occurred. Several uni-
variate SPC methods exist, including the Shewhart proce-
dure (Shewhart, 1931), cumulative sum procedure (Page, 
1954), and the exponentially weighted moving average 
(EWMA) procedure (Roberts, 1959). In this paper, we will 
focus on the latter procedure. The EWMA procedure, which 
is applied to monitor the average level of a variable in real-
time seems particularly useful, since it is relatively easy to 

implement and interpret. Moreover, all statistical process 
control procedures are based on some (potentially unrealis-
tic) assumptions (e.g., normal distribution, independence of 
observations), but EWMA tends to be quite robust against 
violations of these assumptions. Finally, as the EWMA pro-
cedure has been applied in many fields and investigated for 
the better part of a century, its behavior and statistical prop-
erties are well understood. Though its behavior on simu-
lated EMA data has been investigated recently (Schat et al., 
2021) showing promising results, tutorial applications on 
different types of empirical intensive longitudinal data are 
needed to gain insight in the practical possibilities and limi-
tations of this method in psychology research. The current 
paper aims to do this, by analyzing three different data sets. 
In addition, we provide a tutorial, R-code and practical rec-
ommendations, paving the way for future applications of 
the EWMA procedure in psychological research.

Statistical Process Control

General Idea. In this section we will introduce SPC using 
two examples. A first example stays close to the origins of 
SPC and stems from industry, in that we monitor the indus-
trial process of filling water bottles. The output of the filling 
machine is tracked, where the scores we observe are the 
amount of ml in each bottle. Second, we consider an exam-
ple from psychology, where we monitor the affective fluc-
tuations of an individual as measured through EMA.

SPC procedures are based on the idea that even if a pro-
cess remains the same, observations of that process will 
exhibit natural variability (in the statistical sense). For 
instance, there might be a small variation in the amount of 
ml in the water bottles, but overall the machine still func-
tions well. Similarly, a person’s affect is expected to fluctu-
ate over time, for instance due to contextual changes 
(Kuppens & Verduyn, 2017). If this natural variability of 
the observations is known, control limits can be set so that 
the vast majority of new observations of the machine or per-
son fall between these control limits, as long as the process 
does not change (i.e., remains in-control). However, when 
the process characteristics do alter, features of the observa-
tions also change, which should result in more observations 
exceeding the control limits. For example, the filling 
machine can break down causing the produced water bot-
tles to be empty. The monitored scores (i.e., amount of ml) 
will then no longer fall within in the in-control distribution/
range, and the process should be flagged as out-of-control. 
For our second example, the monitored person may fall into 
a depression. Among others, this change will be reflected in 
an increase of negative affect (Clark & Watson, 1991; 
Watson et al., 1988). To summarize, exceeding the control 
limits indicates that it is likely that the data generating pro-
cess has changed. The process is then considered to be out-
of-control, and an intervention may be necessary. A 
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mechanic may have to repair our bottle filling machine, 
whereas a therapist may have to check on our monitored 
person. On the contrary, if no out-of-control scores occur, 
there is no evidence that the process has changed, implying 
that intervening is not needed.

SPC procedures thus require two distinct research 
phases. In Phase I, the natural variability of the in-control 
data is captured and used to establish the in-control distribu-
tion. The estimated mean µ̂1 and standard deviation σ�1  of 
the Phase I data, are used to determine the upper control 
limit (UCL) and lower control limit (LCL). In Phase II, the 
actual monitoring starts and incoming data are compared 
with the in-control distribution, to determine whether and 
when the process goes out-of-control. The monitoring is 
commonly visualized in a control chart, where process 
scores are plotted against time.

EWMA Procedure. The EWMA procedure (Roberts, 1959) 
was proposed to detect mean changes across time. It moni-
tors a real-time running estimate of the average in a control 
chart rather than the original observations. Specifically, the 
procedure combines past information with current informa-
tion and tracks a weighted sum of the original observations, 

where more recent observations receive higher weights. At 
each measurement occasion i  ( i  = 1, . . ., t ), the exponen-
tially weighted moving average zi  is calculated as:

z x zi i i= + −( ) −λ λ1 1.

xi  denotes the observation at measurement occasion i  and 
the starting value z0  is equal to the Phase I average µ̂1. The 
parameter 0 < ≤λ  1 is the weight given to the current 
observation and thus also determines the rate at which the 
weights of the past observations decrease. In SPC litera-
ture, values between .05 and .25 are recommended, where 
lower values for λ  are used to detect smaller mean changes 
(Montgomery, 2009). Figure 1 shows EWMA charts with 
λ  = .05 (second column) and λ  = .25 (third column), for 
different sizes (i.e., no, .25 σ  and 1 σ  change), and types 
(i.e., abrupt, gradual) of mean change. The first column 
displays the original observations. Phase I consists of 25 
observations and Phase II consists of the remaining 75 
observations. In Figure 1 we see that smaller λ  values yield 
more smooth EWMA scores, as more weight is given to the 
previous observations. Despite the usual SPC recommen-
dations, the appropriate value for λ  may vary depending on 

Figure 1. EWMA Control Charts for Different Sizes and Types of Mean Change.
Note. The in-control Phase I data is indicated by the gray background shading; unshaded areas show Phase II data. The first column shows the simulated 
trends, indicated by the gray line. The raw data (indicated by black dots) was formed by adding identical noise (sampled independently from a normal 
distribution with µ1 = 0 and σ1  = 1) to each of these trends. As the raw data is identical except for the differences in trend, all control chart 
differences between 1a, b, c, and d are caused by the differences in the trends. The second and third columns show the EWMA control charts with 
different parameters. The dashed horizontal lines indicate the UCL and LCL. The solid horizontal line denotes the center line. The white dots indicate 
the out-of-control scores that fall beyond the control limits. (A) Data with no mean change. (B) Data with an abrupt change of .25 σ . (C) Data with 
an abrupt change of 1 σ . (D) Data with a gradual change (up to 1 σ ).
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the application, and new guidelines may be more appropri-
ate for applications on EMA data. First simulation results 
suggest that λ  values between .05 and .10 work well when 
using day averages (Schat et al., 2021).

Given λ , the Phase I average µ̂1 and standard deviation 
σ�1 , the upper and lower control limits are computed as:

UCL L
i= +

−( )
− −( )





µ σ
λ
λ

λ� �
1 1

2

2
1 1

and

LCL L
i= −

−( )
− −( )





µ σ
λ
λ

λ� �
1 1

2

2
1 1 .

As i  increases, the term [ ]1 1
2− −( )λ i

 approaches one, 
resulting in steady-state control limits. The parameter L  
determines the width of the control limits. In the next sec-
tion, we will explain how to choose this L  parameter in 
relation to a desired SPC performance.

Figure 1A shows a situation in which no mean change 
was introduced in Phase II, and the EWMA scores correctly 
remain within the control limits. An abrupt change of .25 σ  
and 1 σ  are shown in Figure 1B and C, respectively. As 
expected, the first out-of-control score, indicated by the 
white dots, occurs earlier for the larger mean change. 
Although the SPC literature usually assumes abrupt 
changes, in psychology some changes may be gradual 
rather than sudden. In gradual changes, it is usually not pos-
sible to detect the beginning of the change, as the new pro-
cess is still very similar to the in-control process. However, 
if a gradual change is large enough and/or continues for 
long enough, it can still be detected (see Figure 1D). The R 
code for generating the data and EWMA charts can be 
found at [https://osf.io/nf7zk/].

The EWMA procedure is often compared to other meth-
ods, such as the Shewhart and CUSUM procedures, as well 
as the simple moving average (SMA). Simulation studies 
by Schat et al. (2021) showed that the EWMA procedure 
performed considerably better than the Shewhart proce-
dure. The CUSUM procedure, on the other hand, did not 
consistently perform worse than the EWMA procedure, but 
it is harder to implement as there is no simple formula to 
calculate the control limits. The SMA is often considered to 
be less complex than EWMA. Here, a time window of size 
k  is slid along the time series, and in each window, the 
unweighted mean of k  observations is computed. However, 
EWMA has several advantages over the SMA. First, 
EWMA is generally better at detecting small changes 
(Carson & Yeh, 2008; Montgomery, 2009; Roberts, 1959). 
Second, in some cases EWMA requires less observations 
than SMA to be effective (Roberts, 1959). Finally, the SMA 
cannot be obtained for the first few and last few observa-
tions (Carson & Yeh, 2008).

ARL. The expected behavior of SPC procedures is usually 
expressed in term of the run length, which indicates at 
which Phase II observation the process goes out-of-control 
for the first time. In case the process remains in-control, an 
out-of-control EWMA would be a false positive (i.e., type 1 
error). The expected run length until the first false positive 
is encountered is called the ARL0 , and should preferably be 
as high as possible. On the contrary, in case the process does 
experience a change, the expected run length between the 
moment of the change until the first true positive is encoun-
tered is called the ARL1 , and should ideally be as short as 
possible indicating high power. For more details on the run 
length distribution, we refer the reader to Schat et al. (2021). 
In the EWMA procedure, the L  value in the computation of 
the control limits is related to the ARL0  and ARL1  values. 

Figure 2. EWMA Control Charts Demonstrating the Impact of the Choice of ARL0 .
Note. The in-control Phase I data (indicated by the gray background shading) were independently sampled from a normal distribution with µ1 = 0 and 
σ1 = 1; λ  = .10 in both graphs. (A) EWMA chart for a process that remains in-control. (B) EWMA chart for a process that goes out-of-control with 
a mean change of 1 σ . The long-dashed (inner) lines are the UCL and LCL corresponding to ARL0  = 100 and the dot-dashed (outer) lines are the 
UCL and LCL corresponding to ARL0  = 1,000. The white dots indicate out-of-control scores only for ARL0  = 100. The gray dots indicate the out-
of-control scores for both ARL0  values.

https://osf.io/nf7zk/
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Specifically, for a fixed λ  a higher L  leads to both a higher 
expected ARL0  and a higher expected ARL1 .

In practice, we suggest researchers to decide on a suit-
able ARL0  value, which can easily be used to determine the 
correct L  parameter and therefore the width of the control 
limits (see R code for details; [https://osf.io/nf7zk/]). 
Choosing higher ARL0  values will lead to more conserva-
tive charts, whereas choosing lower ARL0  values will lead 
to more sensitive charts. The influence of the ARL0  is illus-
trated in Figure 2, where the control limits are based on an 
ARL0  of 100 or an ARL0  of 1,000. Figure 2A shows a situ-
ation in which the process is in-control in Phase II. In this 
case, the process remains within the control limits for ARL0  
= 1,000, whereas there are several out-of-control scores for 
ARL0  = 100 (indicated by the white dots). Thus, the lower 
ARL0  leads to the detection of false positives, while this 
was not the case for the higher ARL0 . Figure 2B shows a 
situation in which the process goes out-of-control at the 
beginning of Phase II, due to a mean change of 1 σ . The 
white dots indicate the out-of-control scores with an ARL0  
of 100, and the gray dots indicate the out-of-control scores 
for both ARL0  values. In this example, the first out-of-con-
trol score occurs at observation 38 and 41 for an ARL0  of 
100 and 1,000, respectively. Thus, with a lower ARL0 , the 
change is detected slightly earlier. For purpose of illustra-
tion, the difference in the values was taken much larger than 
usual, as otherwise the differences were too subtle to visual-
ize. This does, however, indicate that small differences in 
ARL0  often do not lead to big differences in performance.

The ARL0  value needs to be chosen prior to monitoring. 
A historically common value for the ARL0 is 370 
(Montgomery, 2009), which in the current context would 
mean that one would expect roughly one false positive each 
year. However, higher or lower ARL0  values may be 
improve the usefulness of the chart in some cases. 
Researchers should consider the cost of the intervention 
associated with an out-of-control score. For example, it 
may not be very invasive for a mechanic to check a machine, 
whereas it may be more costly for a therapist to check up on 
a potential patient. If the cost of intervention is low, having 
more false positives is not problematic, and a lower ARL0  
can be chosen to facilitate the timely detection of changes. 
However, if the cost of intervention is high, a higher ARL0  
can be chosen to limit the number of false positives and 
unnecessary interventions. In this case, it also becomes 
more difficult to detect changes however, such that it takes 
longer to detect an actual change. To summarize: A lower 
ARL0  means more power; a higher ARL0  means fewer false 
positives.

Notice that lower values of λ  will result in more narrow 
control limits when applying the formulae provided in order 
to preserve the chosen ARL0. This is why in Figure 1 the 
plots with a lower λ  (middle) have more narrow control 
limits than the plots with a higher λ  (right), even though 

this does not have a massive impact on when the EWMA 
first goes out-of-control. To summarize: Changing λ  will 
affect the smoothness of the chart and the width of the con-
trol limits, but the chosen ARL0  remains unchanged.

Assumptions of SPC Procedures. SPC procedures are based 
on the assumption that observations are independent and 
normally distributed. This assumption is often violated in 
psychological research: observations are serially dependent 
(i.e., autocorrelated) and skewed distributed. Advantage of 
the EWMA procedure is that it is quite robust against viola-
tions of the assumption of normality (Montgomery, 2009). 
To deal with autocorrelation, Schat et al. (2021) recommend 
to monitor day averages rather than individual observa-
tions, which reduces or even removes the autocorrelation. 
Modeling and removing autocorrelation before running the 
EWMA is also an option (Montgomery, 2009; Smit et al., 
2019). Although this procedure is more complicated espe-
cially in case of potential missingness in the data, it does 
allow the user to evaluate the EWMA at every individual 
observation rather than just once per day. An additional 
consequence of using day averages, is an increase in effect 
size as more fluctuations are averaged out, increasing the 
power of SPC procedures in detecting small changes. 
Therefore, we will monitor day averages in the remainder 
of this paper.

Next to distributional characteristics of the variable 
under investigation, potential users should be aware that 
sufficient Phase I data is needed to obtain accurate estimates 
of in-control behavior. Due to insufficient Phase I data, the 
in-control distribution may be either too wide or too narrow 
(i.e., too large or too small σ�1 ), resulting in suboptimal con-
trol limits. This in turn influences the performance of the 
EWMA procedure: with too wide control limits it becomes 
more difficult to detect changes and with too narrow control 
limits the ARL0  value becomes too low. In general, the 
more in-control Phase I days and observations, the more 
accurate the EWMA results. Exactly how many Phase I 
days and observations are needed to obtain reliable esti-
mates and thus sufficiently good EWMA performance, 
depends on multiple aspects, such as the size of the change, 
the variance of the observed scores within the days and the 
distribution of the observations, as shown by the simula-
tions by Schat et al. (2021). However, even with relatively 
little Phase I data (i.e., 28 days with 5 observations per day) 
and thus perhaps with slightly suboptimal control limits, the 
EWMA procedure was shown to have good results by Smit 
and Snippe (n.d.) when applying it to empirical data.

Demonstrating the EWMA Procedure 
in Three Different Applications

In this section we present three applications that illustrate 
different purposes for using the EWMA procedure. In each 

https://osf.io/nf7zk/
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application, we also vary one EWMA setting (i.e., Phase I 
length, λ , and expected ARL0  value) to examine potential 
influences on the EWMA results. Application 1 focuses on 
the most common aim of EWMA applications, namely to 
detect detrimental changes in a process as soon as possible 
after they happen in real-time. We consider an example 
using EMA data obtained during a period in which the par-
ticipant experienced two adverse life events that may trig-
ger changes in the EMA data. Both life events are used to 
demarcate the start of Phase II, to examine the influence of 
the Phase I length on the EWMA procedure.

In Application 2, we again consider an example using 
EMA data in which changes in psychopathology occur, 
however this time without any sudden external triggers. In 
this application, there may a period before the onset of core 
symptoms in which an increase of prodromal symptoms can 
already be detected using the EWMA procedure. This has 
huge potential, as in such cases it would be possible to start 
an intervention when symptoms are still relatively harmless 
and manageable, which in turn may prevent a full-blown 
episode. Moreover, we investigate potential influences of 
the λ  parameter on the EWMA procedure.

In Application 3, we investigate whether changes can be 
detected in passively collected data using the EWMA pro-
cedure. As it is typically difficult to predict during what 
period a change is likely to occur, relatively long research 
periods are needed to capture the change of interest. While 
recent studies have shown that EMA questionnaire data 
(such as in Applications 1 and 2) can be collected during a 
continuous period of several months (Helmich et al., 2020; 
Schreuder et al., 2020; Smit et al., 2019; Smit, Snippe, 
et al., n.d.), such a design may not be feasible or ideal in all 
study populations or for all research questions. In some 
cases it may be more suitable to use measurements with a 
lower participant burden than high frequency question-
naires, such as passive measurements of physiology or 
actigraphy (Kunkels et al., 2021). It is therefore useful to 
also investigate if such, more passive, measurements also 
show meaningful changes that can be detected using the 
EWMA procedure. In Application 3, we also examine 
potential influences of the expected ARL0  value on the 
EWMA procedure.

Application 1: Detecting Change After it 
Occurred

Purpose. Application 1 focuses on detecting detrimental 
changes in a process as soon as possible after they happen 
in real-time. The timely real-time detection of elevations in 
psychopathological symptom levels could help start inter-
ventions as soon as possible. In Application 1, we test 
whether increases in feeling down and in experiencing 
craving to use drugs can be detected after adverse life events 
that are expected to potentially trigger these symptoms.

Data. We demonstrate the EWMA procedure on the data of 
a participant who was monitored using a maximum of 4 
semi-random EMA observations daily, for a period of 114 
days (yielding a total of ~400 EMA observations). This par-
ticipant was diagnosed with major depressive disorder 
(MDD), remitted substance abuse (amphetamines), panic 
disorder with agoraphobia, and borderline personality dis-
order. During the research period two large external life 
events happened: The participant’s grandmother passed 
away on day 45 of the study, and the COVID-19 lockdown 
started on day 74 of the study. We expect that characteristics 
of the EMA observations may change as a result of these 
life events. We investigate changes in the items “to what 
extent do you feel down at this moment,” and “did you feel 
like using amphetamines since the previous beep” in par-
ticular, as these were the items with the strongest concep-
tual links to MDD and substance abuse, respectively. For a 
more complete description of this study, see Dejonckheere 
et al. (2021).

Results. Figure 3A and B shows EWMA control charts of 
the day averages of “down” and “craving,” respectively. 
The following settings were used: ARL0  = 370, λ  = .10, 
and a Phase I length of 44 days (i.e., all days before the 
participant’s grandmother passed away). The EWMA pro-
cedure detected a clear increase in “down,” shortly after the 
participant’s grandmother passed away. Although an 
increase in “down” can be viewed as a healthy reaction to 
the death of a close one, the EWMA procedure also shows 
that “down” does not return to its Phase I level and remains 
elevated for the remainder of the research period. The pass-
ing of the participant’s grandmother did not seem to increase 
“craving,” but shortly after the COVID-19 lockdown 
started, a clear increase in “craving” was found. This infor-
mation could have been used in real-time to start an inter-
vention and hopefully prevent the transition from elevated 
craving to the recurrence of substance abuse.

This example shows that different events may trigger 
changes in different symptoms. The passing of the partici-
pant’s grandmother may have led to a persistent change in 
“down,” which may be most relevant in the context of the 
major depressive disorder; the COVID-19 lockdown seems 
to have led to an increase in “craving,” which could be rel-
evant in the context of the remitted substance abuse.

Impact of Chart Settings. This application provides an 
opportunity to gain insight in the relevance of the choice of 
the length of Phase I. As, to date, no EMA datasets have 
been gathered with the specific goal to analyze them using 
the EWMA procedure, the data used in Phase I has not spe-
cifically been collected with the aim of using it as in-control 
data. Therefore, the Phase I period needed to be defined 
post hoc in this case, with the possibility that a relevant 
change already occurred during Phase I.
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Figure 3C and D shows EWMA control charts of “down” 
and “craving,” using the same EWMA settings, but setting the 
Phase I period to 74 days rather than 44 (i.e., all days before 
the COVID-19 lockdown). For “craving,” no change occurred 
during Phase I, and the different choice of Phase I period had 
minimal impact on the results. The change in “down” due to 
the passing of the participant’s grandmother now falls within 
the Phase I period. This had two effects on the chart: (1) the 
participant experienced a higher average level of “down” dur-
ing Phase I, shifting the control limits upward and (2) the 
EMA observations of “down” had a higher variance during 
Phase I, widening the control limits. This meant that a larger 
upward change in “down” is needed in Phase II before the 
EWMA procedure marks it as significantly different from 
Phase I. Although in this specific case, an increase in “down” 
after both life events could still be detected, the EWMA goes 
back in-control between the two life events. This creates the 
impression that “down” returned to its normal level, even 
though it remains significantly higher than in the period before 
the participant’s grandmother passed away. When applied in a 
clinical setting, this may mean that with a 44-day Phase I an 
intervention would be started from the moment the partici-
pant’s grandmother passed away, while using a 74-day Phase 
I this intervention may have been stopped when the scores 
went in-control again.

Application 2: Detecting Change Before it 
Occurs

Purpose. Even before the onset of core symptoms there may 
be a period in which early changes can already be detected. 
For the purpose of such early stage detection, focusing on 

items that are expected to increase during the prodromal 
phase of a disorder might be useful, rather than items that 
are the closest proxies for core symptoms. Based on this 
idea, it has been hypothesized that an increase in the item “I 
feel restless” may be found before the onset of core depres-
sive symptoms (Smit et al., 2019; Smit & Snippe, n.d.), as 
symptoms of anxiety often precede depressive episodes 
(Hetrick et al., 2008; Pede et al., 2017). Notice that items 
such as “I feel down” may not yet show a clear mean change 
during the prodromal phase, but rather only increase once 
the core depressive symptoms start to increase.

In Application 2, EMA data was collected before (Phase 
I), during, and after (both Phase II) gradual discontinuation 
of antidepressant medication. We test whether an increase 
in restlessness can be detected before the start of core 
depressive symptoms, using the EWMA procedure. The R 
code to construct the EWMA control charts for Application 
2 can be found at [https://osf.io/nf7zk/].

Data. The EWMA procedure was performed on the day 
averages of the publicly available data described in Wichers 
et al. (2016). One participant filled out a maximum of 10 
EMA questionnaires daily before, during, and after gradual 
antidepressant discontinuation (tapering), yielding a total of 
1,474 EMA observations over a continuous period of 239 
days. From days 42 to day 98, double blind tapering of the 
participant’s antidepressant medication started. It was 
hypothesized that this change in context may lead to an 
increase in depressive symptoms, and around day 127 of the 
experiment, a sudden increase in depressive symptoms 
indeed occurred.1 For a more complete description of this 
study, see Wichers et al. (2016).

Figure 3. EWMA Control Charts With Varying Phase I Lengths.
Note. Phase I lengths are indicated by the gray background shading. (A) EWMA chart of “down” with a “Phase I” period of 44 days. (B) EWMA chart 
of “craving” with a “Phase I” period of 44 days. (C) EWMA chart of “down” with a “Phase I” period of 74 days. (D) EWMA chart of “craving” with a 
Phase I period of 74 days.

https://osf.io/nf7zk/
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Results. Figure 4A and B shows EWMA control charts of 
“down” and “restlessness,” respectively. The following set-
tings were used: ARL0  = 370, λ  = .10, and a Phase I 
period of 41 days (i.e., all days before tapering started). 
Although “down” exceeds the control limits briefly around 
day 92 and 126 of the study, it remains predominantly out-
of-control after day 139 of the study (i.e., 12 days after the 
increase in depressive symptoms). “Restlessness” exceeds 
the upper control limit almost 3 months sooner, on day 51 of 
the study. Due to the real-time nature of the EWMA proce-
dure, it may have been possible to put tapering on hold, 
return to a higher dosage of antidepressant medication, or 
start psychological treatment, long before the start of core 
depressive symptoms.

Note that the chart itself does not provide information on 
why “restlessness” starts changing at this early stage. The 
change may indicate a rise in prodromal symptoms as 
hypothesized, but could also reflect direct effects from anti-
depressant tapering on the EMA data. However, it can 
clearly be seen how relevant the choice of variable can be in 
the timely detection of changes using the EWMA 
procedure.

Impact of Chart Settings. This application provides an 
opportunity to gain insight in the relevance of the choice of 
the ARL0 . The item “down” exceeded the upper control 
limits briefly around day 92, which can be seen as a signifi-
cant change in “down” compared to Phase I. This may have 
allowed us to intervene before the increase in depressive 

symptoms (though still not as early as based on “restless-
ness”). However, based on visual inspection it does not 
seem that a clear change in “down” had already occurred 
before the depressive relapse around day 127 of the study. 
Combined with the fact that “down” also exceeded the 
lower control limit around day 126, we may expect that 
both brief out-of-control periods were actually false alarms. 
By increasing the ARL0 , the type I error of the procedure 
can be decreased, at the cost of less power to detect changes.

Figure 4C and D shows the difference between the con-
trol chart using the commonly used ARL0  = 370, and a 
much larger ARL0 = 1,000 to provide sufficient contrast. It 
can be seen that the choice of ARL0  determines how wide 
the control limits are, while the rest of the chart is not 
affected. Despite the large difference in the settings for the 
ARL0, the chart performance is quite robust against this 
change.

Application 3: Passively Collected Data

Purpose. If changes in psychopathology can be detected 
using passively collected data, this could be an important 
step toward reducing the participant burden in research 
using the EWMA procedure. Theoretically, any time series 
that is hypothesized to change in a meaningful way com-
pared with the Phase I period can be used to construct a 
control chart. For example, we may hypothesize that physi-
cal activity measured using actigraphy reduces when 
depressive symptoms increase, as physical activity tends to 

Figure 4. EWMA Control Charts Based on Varying ARL0  Values.
Note. The Phase I period of 41 days is indicated by the gray background shading, lasting until the start of tapering denoted by the first vertical line. 
The second vertical line denotes the depressive relapse around day 127. (A) EWMA chart of “down” with control limits based on an ARL0  of 370. (B) 
EWMA chart of “restlessness” based on an ARL0  of 370. (C) EWMA chart of “down” with control limits based on an ARL0  of 1,000. (D) EWMA chart 
of “restlessness” based on an ARL0  of 1,000.
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be lower in depressed patients (Burton et al., 2013). 
Although this link may not be as direct as the link between 
an individual’s mood and depression, intensive longitudinal 
data on physical activity has the advantage that it can be 
collected using accelerometers that require no active atten-
tion from participants. In Application 3 we apply the 
EWMA procedure to actigraphy data, and test if a reduction 
in physical activity can be detected in real-time before or 
shortly after an increase in depressive symptoms.

Data. For the actigraphy measurements, participants wore 
the MotionWatch 8 accelerometer by CamNtech (CamN-
tech, 2020; Kunkels et al., 2020) on their wrist for a con-
tinuous period of 4 months during and shortly after (gradual) 
antidepressant discontinuation. A pilot case with 177,120 
1-minute bins of actigraphy data covering 123 days will be 
used for the current study. The participant experienced an 
increase in depressive symptoms around day 68 of the study 
period. For a more complete description of this study, see 
Smit et al. (n.d., 2020).

Results. Figure 5A shows EWMA control chart of day aver-
ages of actigraphy data. The following settings were used: 
ARL0  = 370, λ  = .10, and a Phase I period of 28 days (i.e., 
the same length of Phase I that was used in Smit & Snippe, 
n.d.). Before the increase in depressive symptoms, the 
EWMA of actigraphy data remains between the control lim-
its, indicating the participant’s physical activity during this 
period was similar to the Phase I period. After the increase 
in depressive symptoms, a clear drop in physical activity 
can be seen, with the first out-of-control score on day 111, 
43 days after the increase in depressive symptoms. This 
demonstrates that real-time changes in actigraphy data 
could be detected for this participant with the EWMA pro-
cedure, and may be indicative of the change in depressive 
symptoms the participant experienced.

Figure 5. EWMA Control Charts of the Actigraphy Data With Varying λ  Values.
Note. The Phase I period of 28 days is indicated by the gray background shading. Increase in depressive symptoms is indicated by the vertical line on 
day 68. (A) EWMA chart with λ  = .10. (B) EWMA chart with λ  = .05.

Impact of Chart Settings. This application provides an 
opportunity to gain insight in the relevance of the choice of 
the λ  parameter. Figure 5B shows the EWMA control chart 
of the actigraphy data using λ  = .05 rather than λ  = .10. 
As can be seen, the lower λ  results in a somewhat smoother 
control chart, that changes more slowly over time. In gen-
eral, lower values of λ  are needed when the goal is to detect 
small changes, but using a lower λ , changes in the raw data 
do not affect the EWMA score as quickly, and may delay 
the detection of changes. In Figure 5B it can be seen that, 
though the chart looks different visually, the decrease in 
physical activity is still detected around the same time when 
λ  = .05 (first out-of-control score on day 106). This shows 
that the performance of the procedure was not very sensi-
tive to changes in the choice of λ .

Summary of the EWMA Settings

Table 1 provides an overview of the EWMA settings dis-
cussed in the three applications (i.e., Phase I length, ARL0 , 
λ ). It summarizes the effects on detecting mean changes as 
well as their impact on our application results.

Discussion

The three applications in the current paper demonstrate the 
potential usefulness of the EWMA procedure in psycho-
logical research, and demonstrate that it is feasible to apply 
it on a range of relevant time series data. Furthermore, this 
study shows that it is possible to construct person specific 
control charts with individualized control limits, that allow 
us to monitor single individuals without the need to obtain 
a sample of similar participants. This means the EWMA 
procedure allows the user to personalize variables and 
parameters for each person individually in a relatively sim-
ple way. In addition, the EWMA procedure can be used to 
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analyze streaming data in real-time. This combination 
makes this method ideal for N = 1 research, and has high 
potential for clinical applications.

The results were in line with the idea that (a) different 
environmental factors can impact observed variables in dif-
ferent ways and (b) different variables may start to change 
at different stages in the development of psychopathology. 
In Application 1, feelings of sadness seemed to be triggered 
by the passing away of the participant’s grandmother and 
the COVID-19 lockdown, while “craving” only seemed to 
be strongly affected by the latter. In Application 2, the par-
ticipant showed a large increase in “restlessness” during the 
prodromal stage of depression, while a large increase in 
“down” was found after the participant had already experi-
enced a depressive relapse. This underlines the importance 
of variable selection in the EWMA procedure. As the 
EWMA procedure only requires the data of a single partici-
pant, the user has the freedom to select the variables that are 
expected to be most relevant for the individual under inves-
tigation. In Application 3, actigraphy data was used for the 
EWMA procedure, demonstrating the potential range of 
data types in which this method could be applied. This pro-
vides a lot of potential for personalizing the EWMA proce-
dure, though this personalization needs further 
investigation.

In each of the three applications in this paper, we varied 
one EWMA setting (i.e., Phase I period, ARL0, and λ ) to 
illustrate their influence on the obtained results. In 
Application 1, two different Phase I periods were 

considered: The passing of the participant’s grandmother 
and the COVID-19 lockdown. We observed that the choice 
of the Phase I period is important, since the natural variabil-
ity of a process may change during Phase I due to an, in this 
case known, event (the death of the grandmother). This may 
obviously impact the control limits, as we observed for 
“down.” Screening the Phase I period for such changes and 
evaluating their potential effect on the control limits, could 
help improve the performance of the EWMA procedure. In 
Application 2, the ARL0  value was varied. The EWMA con-
trol charts with an ARL0 of 370 and 1,000 differed only 
slightly, indicating that this chart setting had a minimal 
impact on the results, within this ARL0  range. However, the 
ARL0  remains the most direct way of controlling the bal-
ance between limiting type I error and maximizing power. 
Finally, in Application 3, we considered EWMA control 
charts with a λ  of .05 and .10. Setting λ  to .05 resulted in 
a smoother, more slowly fluctuating chart. In general, a 
lower λ  allows for the detection of smaller changes, as it 
averages over more data, increasing the power. A higher λ  
means that the EWMA scores are more affected by recent 
observations, which theoretically could allow for quicker 
detection of substantial changes after they happen (though 
in the current sample this was not found as the first out-of-
control score was actually found a few days later when 
using the higher λ ). Overall EWMA seems relatively robust 
to the considered variations of the ARL0  and of λ . More 
research, however, is needed to establish a range of chart 
settings that leads to adequate results in psychological 

Table 1. Overview of the EWMA Settings.

EWMA setting Description Effects on detecting mean changes

Phase I length Amount of available in-control data, 
which is used to obtain estimates of 
the process’ in-control behavior (i.e., 
µ̂1  and σ�1 ). These estimates are used 
to calculate the control limits of the 
EWMA procedure.

Insufficient Phase I data may lead to an in-control distribution which 
is either too wide or too narrow (i.e., too large or too small σ�1).  
This can lead to suboptimal control limits, which influence the 
performance of the EWMA procedure. If the control limits are 
too wide, it becomes difficult to detect changes, whereas if the 
control limits are too narrow, the ARL0  value becomes too low.

In Application 1, the choice of the Phase I period had an impact on 
the EWMA results. By lengthening the Phase I period, the natural 
variability of the process changed due to a known event (death of 
the grandmother), which impacted the width of the control limits.

ARL0 Expected run length until the first false 
positive (i.e., out-of-control score) is 
encountered.

A lower ARL0  means more power due to more narrow control 
limits; a higher ARL0  means fewer false positives due to wider 
control limits.

In Application 2, the EWMA appeared to be quite robust against the 
change in ARL0  value (i.e., 370 to 1,000).

λ Weight parameter given to the current 
observation, where 0 < ≤λ  1. The 
remaining weight (1 - λ ) determines 
the rate at which the weights of the 
past observations decrease in the 
EWMA scores.

Lower values for λ  are useful for detecting smaller mean changes.
In Application 3, the performance of EWMA was not very sensitive 

to changes in the choice of λ  (i.e., .05 and .10).

Note. EWMA = exponentially weighted moving average.



1364 Assessment 30(5)

research, as some rules of thumb from the SPC literature 
may not generalize to psychology applications. Moreover, 
as a good practice, researchers can check whether the results 
converge across different chart settings. If similar results 
are found for a range of different settings, one can be more 
confident about the detected out-of-control scores.

Next to the chart settings, the statistical properties of the 
selected variables can also influence the performance of the 
EWMA procedure in terms of type I error and power to 
detect changes. Specifically, data are assumed to be inde-
pendent over time and normally distributed. With autocor-
related data, the control limits are suboptimal, influencing 
both the type I error and power (e.g., Alwan & Roberts, 
1988; Harris & Ross, 1991). However, a practical way to 
deal with autocorrelation in the context of EMA research is 
to monitor day averages rather than individual observa-
tions, as this reduces or even removes the autocorrelation 
(Schat et al., 2021). The EWMA procedure is known to be 
quite robust against violations of the normality assumption, 
meaning that the EWMA procedure can be applied to moni-
tor variables that are skewed distributed (Schat et al., 2021; 
also see “craving” in Application 1). When items refer to 
more extreme behaviors (e.g., self-harm) or experiences 
(e.g., suspiciousness), observations may not vary at all dur-
ing Phase I (i.e., floor effect items). For such items, control 
charts cannot be obtained using standard software. However, 
the principle of the control chart still holds and can be used 
in practice by manually setting the control limits at for 
instance 0, implying that any indication of self-harm will be 
flagged as an out-of-control score.

For other data characteristics, more research is needed to 
establish their impact on the EWMA procedure. First, it is 
unclear how missing data patterns (e.g., missing not at ran-
dom) impact performance. For example, compliance has 
been shown to depend on the time of day (Rintala et al., 
2019). Second, as holds for other time series methods 
(Vogelsmeier et al., 2019, 2021), SPC procedures implicitly 
assume measurement invariance across time, implying that 
participants always interpret the momentary questions in 
the same way as well as consistently use the answering 
scales. Given that SPC requires assessing participants 
across long stretches of time, finding ways of reducing or 
compensating for missing measurement invariance may 
improve the performance of the EWMA procedure. Third, 
ESM data may contain trends, such as diurnal patterns or 
specific context effects. Such trends violate the underlying 
EWMA assumption that all Phase I data are sampled from 
one and the same distribution. One way to deal with this is 
to detrend the data before applying EWMA, for instance by 
means of a smoothing procedure (Adolf et al., 2022; 
Cleveland et al., 1993) or by fitting a tailored time series 
model (for an overview, see Ariens et al., 2020). An alterna-
tive is to use the moving centerline EWMA (Mastrangelo & 
Brown, 2000). Fourth, though the EWMA procedure is 

aimed at detecting changes in the mean level, other changes 
(e.g., variance) can also affect the probability with which 
the control limits are exceeded. For instance, in Application 
2, an alternative explanation for the two out-of-control peri-
ods around days 92 and 126 could be that antidepressant 
discontinuation lead to an increase in the variance of 
“down.” This is in line with the hypothesis that instability 
increases prior to transitions in depressive symptoms (Smit, 
Helmich, et al., n.d.; Wichers et al., 2016, 2020). If during 
Phase II the variance increases compared to Phase I, the 
process would tend to show more out-of-control periods.

SPC methods such as the EWMA procedure can be 
applied in real-time in the sense that the analysis can incor-
porate each new observation as soon as it becomes avail-
able. However, successful real-time implementation of the 
EWMA procedure comes with additional requirements. 
First, the collected data needs to be available for analysis 
shortly after it is obtained, and the data needs to be analyzed 
directly after becoming available. Although this is not nec-
essarily very challenging as (a) several apps (e.g., PETRA 
and m-Path; Bos et al., 2022; Mestdagh et al., 2022) already 
upload data in real-time, and (b) there are many examples of 
analyzing regularly incoming data using the EWMA proce-
dure (see Montgomery, 2009 for an overview of historical 
applications), researchers still need to keep this in mind 
when aiming to base an intervention on the EWMA proce-
dure. Finally, changes can only be detected after they have 
occurred, and no form of analysis can change this. Whether 
this is soon enough to be useful strongly depends on the 
application. While in some cases it may be valuable to react 
as soon as possible after a patient has relapsed into sub-
stance abuse or depression, this would no longer allow us to 
prevent these highly detrimental changes. Preventive action 
is only possible if a variable can be found that already 
changes before the detrimental change occurs. For example, 
a patient may show increased craving for drugs before actu-
ally remitting into substance abuse (see Application 1), or 
start showing signs of restlessness before relapsing to 
depression (see Application 2).

It is important to note that in none of the applications 
above, the data was gathered specifically to be analyzed 
using the EWMA procedure. This means that the Phase I 
periods were defined post hoc, while real-time applications 
would require the user to define the Phase I period by col-
lecting data on a predefined number of days before entering 
Phase II. Ideally, the Phase I data should be representative 
of how Phase II data is expected to behave when no change 
occurs in the participant, and should contain enough obser-
vations to reliably estimate control limits (see Schat et al., 
2021 for guidelines for choosing an appropriate number of 
days). If Phase I contains data that is abnormal for the par-
ticipant, this would impact the calculation of the control 
limits and therefore the performance of the chart. For exam-
ple, as demonstrated in Application 1, if a change already 
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occurs during Phase I, this can have a substantial effect on 
the width of the control limits. Also, life events may lead to 
abnormal variation in Phase I, which may not be expected 
to repeat in Phase II. It is important to note that most abnor-
malities in Phase I will represent additional variance on top 
of the natural variance we aim to capture, causing the con-
trol limits to be too wide and the EWMA procedure being 
on the conservative side. Thus, the main risk of a subopti-
mal Phase I period will be missing changes in Phase II, and 
improving the Phase I data will mainly help increase the 
power for detecting small changes in Phase II. As 
Application 1 and Schat et al. (2021) both demonstrate the 
importance of the Phase I period, future studies aiming to 
use the EWMA procedure should plan on collecting Phase I 
data. In addition, researchers may consider evaluating 
Phase I data to uncover and potentially control for abnormal 
sources of variance before beginning Phase II monitoring. 
Though the few existing empirical studies applying the 
EWMA procedure on EMA data seem to suggest that 
important changes are often large enough to be detected, 
even without having a strongly controlled Phase I period at 
hand (Smit et al., 2019; Smit & Snippe, n.d.). Information 
on how to collect Phase I data and evaluate its quality is 
provided elsewhere (Montgomery, 2009), but future studies 
are still needed to refine these procedures for application in 
psychology and test their usefulness.

Important property of the EWMA procedure is that it is a 
general purpose method, making it applicable in many 
research fields. This is an advantage from a statistical per-
spective, in that the framework is thoroughly tested and 
validated, as well as relatively straightforward to imple-
ment in a wide range of datasets. Whereas we focused on 
psychopathology, statistical process control can also be 
generalized to other fields in psychology, to study for 
instance personality development, cognitive development 
(gains or losses), or sudden gains in therapy. As evidenced 
by applications to daily COVID-19 data (Perla et al., 2021) 
or by applications to weekly or monthly hospital data (Thor 
et al., 2007), the frequency of the observations (e.g., weekly, 
monthly) does not play an important role in such general-
izations, as long as the total number of in-control observa-
tions is high enough to obtain reliable control limits. 
However, this general purpose character is a disadvantage 
when looking for mechanistic insight in the onset and fur-
ther development of psychopathology. Indeed, in contrast to 
network methods (Borsboom & Cramer, 2013) or computa-
tional models of affective dynamics (Loossens et al., 2020), 
SPC does not provide a causal theory about the etiology of 
psychopathology, such as vicious direct relations between 
symptoms. Also, though the EWMA procedure can be used 
to detect both sudden and gradual changes (see Figure 1), it 
does not provide information on whether the detected 
change occurred suddenly or gradually, and only provides 
an upper bound for the timing of the change. However, the 

simple interpretation of control charts may open new ave-
nues of research regarding how and why changes occur. 
Specifically, both quantitative and qualitative measures 
could be intensified in out-of-control periods, to increase 
the information on how and why changes occurred.

Although the current paper showed the EWMA proce-
dure in a range of N = 1 studies, applying this method in a 
sample of multiple participants that are all followed for an 
extended period using intensive longitudinal data could also 
be useful. This kind of research can be used to gain insight 
in how to personalize variables and parameters effectively, 
and investigate how the EWMA procedure will function 
when structurally applied in a specific population. Recently, 
Smit and Snippe (n.d.) performed such a study, where the N 
= 1 study in Application 2 was extended to a sample of 41 
individuals. A pilot (Smit et al., 2019) was used to plan the 
study, and choose appropriate variables and settings for the 
EWMA procedure. The advantage of such a design is that it 
combines the personalized control limits for detecting 
within-person change, with the possibility to provide impor-
tant between-persons summary statistics such as the sensi-
tivity and specificity of the method, and the average timing 
of the first out-of-control EWMA score. Although a sub-
stantial investment of time and resources is required to 
obtain the data necessary, such studies do provide important 
information on the reliability, and overall usefulness of the 
EWMA procedure in psychological research and clinical 
practice.

Although SPC provides a practical statistical way of 
detecting significant changes in time series data, future 
research is needed to investigate the effectiveness of SPC-
based interventions. Depending on the application and the 
intervention costs, benefits, and risks for both researchers/
clinicians and participants/patients, parameters of the con-
trol chart need to be chosen in such a way that an appropri-
ate balance between sensitivity and specificity is achieved. 
For low-cost interventions like Just-In-Time Adaptive 
Interventions, one could prefer a lower ARL0  as the useful-
ness of quick detection may outweigh the issues that could 
arise from an increase in false positives; for more costly or 
burdensome interventions, such as restarting therapy or 
medication, a higher ARL0  may be more appropriate, to 
avoid applying such an interventions in patients that do not 
need it.

In conclusion, the EWMA procedure is a general pur-
pose statistical method that can be used to detect changes 
(a) in individual patients (i.e., without the need for a sample 
of multiple participants), allowing the user to personalize 
which variables are most relevant for each individual and 
(b) in real-time (i.e., data can be analyzed as soon as it is 
collected), making the EWMA is a unique new tool for ana-
lyzing time series data in psychology, that may be promis-
ing for clinical applications. Although some recent studies 
applying the EWMA procedure in multiple participants 
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seem to confirm this potential usefulness (Smit et al., 2019; 
Smit & Snippe, n.d.), more research is needed to test the 
usefulness of this procedure in a wider range of psychologi-
cal applications. The current study was an important step in 
this direction, by (a) demonstrating how the EWMA proce-
dure was relatively straightforward to implement in three 
different psychological time series, and (b) exploring how 
the results could be used and interpreted in a range of 
applications.
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Note

1. Depressive symptoms were measured weekly using the 
Symptom Checklist-90 (Arrindell & Ettema, 2003). A strong 
increase in depressive symptoms was detected in the data 
using the ECP package for detecting change points (James 
& Matteson, 2015). The clinical relevance of this change was 

confirmed by the participant and his psychiatrist decided to 
restart antidepressant medication shortly after the data collec-
tion was completed.
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