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Abstract. Delineation of Gross Tumor Volume (GTV) is essential for
the treatment of cancer with radiotherapy. GTV contouring is a time-
consuming specialized manual task performed by radiation oncologists.
Deep Learning (DL) algorithms have shown potential in creating auto-
matic segmentations, reducing delineation time and inter-observer varia-
tion. The aim of this work was to create automatic segmentations of pri-
mary tumors (GTVp) and pathological lymph nodes (GTVn) in oropha-
ryngeal cancer patients using DL. The organizers of the HECKTOR 2022
challenge provided 3D Computed Tomography (CT) and Positron Emis-
sion Tomography (PET) scans with ground-truth GTV segmentations
acquired from nine different centers. Bounding box cropping was applied
to obtain an anatomic based region of interest. We used the Swin UNETR
model in combination with transfer learning. The Swin UNETR encoder
weights were initialized by pre-trained weights of a self-supervised Swin
UNETR model. An average Dice score of 0.656 was achieved on a test set
of 359 patients from the HECKTOR 2022 challenge. Code is available
at: https://github.com/HC94/swin unetr hecktor 2022.

Aicrowd Group Name: RT UMCG

Keywords: Head and neck cancer · Deep learning · Swin UNETR ·
HECKTOR 2022 · Radiotherapy · Tumor segmentation · Lymph node
segmentation · Auto contouring · Image processing

1 Introduction

Head and neck cancers (HNC) are among the most common worldwide (5th
leading cancer by incidence) [8]. Radiation therapy (RT) is pivotal in the treat-
ment of HNC patients, however more than one out of four of all HNC patients in
Europe did not receive RT due to limited trained personnel and equipment [9].
Accurate delineation of the tumor contour is important for delivering high dose
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in the tumor area without damaging surrounding normal tissues. However, delin-
eation of the tumor contour is usually performed by experts and is susceptible
to inter-observer variability. Treatment planning would benefit from automatic
analysis of medical imaging data, as automatic segmenting tumors can reduce
delineation time and interobserver variability.

In recent years, Deep Learning (DL) models have shown to be great poten-
tial for the medical field. More specifically, DL-based algorithms using fluo-
rodeoxyglucose (FDG) Positron Emission Tomography (PET) and Computed
Tomography (CT) as inputs have been explored in previous HECKTOR chal-
lenges for auto-segmenting GTV contour of the primary tumor, herewith showing
promising results in terms of Dice scores [1,2].

The aim of this paper is to segment Head and Neck (H&N) primary tumors
and lymph nodes in FDG-PET/CT images using a DL algorithm. We propose
the Swin UNETR model, which showed top performance results for 3D semantic
segmentation of brain tumors in Magnetic Resonance Imaging (MRI) images
[4]. Furthermore, we performed transfer learning by using weights from a self-
supervised Swin UNETR model [10].

2 Methods and Materials

2.1 Data

The training dataset available consisted of 524 HNC patients with histo-
logically proven oropharyngeal cancer who underwent radiotherapy and/or
radiochemotherapy treatment planning. The data was collected from seven differ-
ent medical centers and provided by the organizers of the HECKTOR (HEad and
neCK TumOR) 2022 challenge [1,7] (Table 1). For each patient a 3D FDG-PET
scan, a 3D CT scan and the GTVp and GTVn segmentations (RTSTRUCT) were
available. The GTVp and GTVn contours, used as ground-truth during training,
were manually delineated by an annotator and cross checked by another annota-
tor. Delineation guidelines were elaborated to ensure unification. The FDG-PET
and low-dose non-contrast-enhanced CT images were acquired with combined
PET/CT scanners. The independent test set (i.e. not used in model training)
was a cohort of 359 HNC patients with FDG-PET and CT scans collected from
three different centers (Table 1).

Table 1. Number of patients from each center.

CHUM CHUP CHUS CHUV MDA HGJ HMR USZ CHB Total

Training 56 72 72 53 198 55 18 0 0 524

Test 0 0 0 0 200 0 0 101 58 359

All files were provided in Nifti format. More information about medical data
centers, scanners and data availability can be found at the following link: https://
hecktor.grand-challenge.org/Data/.

https://hecktor.grand-challenge.org/Data/
https://hecktor.grand-challenge.org/Data/
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2.2 Data Preprocessing

As data was collected by different centers, we preprocessed the data to obtain
unification and adapted it to the input type required by our model. Firstly, we
resampled the FDG-PET, CT and segmentations to an isotropic voxel spacing
of 1 × 1 × 1 mm3. The FDG-PET and CT scans were resampled with spline
interpolation of degree 3, and the segmentations with nearest neighbor interpo-
lation. Then we cropped a bounding box region using the automatic bounding
box extraction algorithm from last year’s HECKTOR challenge [3]: firstly, the
brain is detected as the largest component containing SUV larger than 3, and
secondly a rigid sized bounding box was placed at anatomic midpoints voxels
in the x and y-axis, and at the lowest brain voxel in the z-axis. To increase
the field of view, we increased the bounding box size from 144 × 144 × 144
(height (H)×width (W )×depth (D)) to 192×192×192. The FDG-PET and CT
intensity values were expressed in Standard Uptake Value (SUV) and Hounsfield
Units (HU) respectively, and were clipped between [0, 25] SUV and [−200, 400]
HU. Lastly, we normalized the values to [0, 1] as per xnorm = x−xmin

xmax−xmin
, where

xmin = 0, xmax = 25 SUV for the PET modality and xmin = −200, xmax = 400
HU for the CT modality.

2.3 Model Architecture

We used the Swin UNETR model [10]. An overview of the original Swin UNETR
model architecture is depicted in Fig. 1. Firstly, the model projected the multi-
modal input data into a 1D embedding sequence. Secondly, the embedding
sequence was used as input for the Swin UNETR encoder, which was composed
of a stack of Swin Transformer blocks. The output of each block was used in a
U-Net style.

We tailored the Swin UNETR model for our task. Our model accepted FDG-
PET and CT as inputs with combined size 96 × 96 × 96 × 2, and generated a
segmentation map of size 96 × 96 × 96 × 3 for background, GTVp and GTVn
combined. The Swin UNETR encoder weights were initialized with pre-trained
weights from a self-supervised Swin UNETR encoder that was trained on a
cohort of 5050 CT scans from publicly available datasets [10]. The encoder was
pre-trained on three different tasks: inpainting, contrastive learning and rotation
prediction. To be able to use the pre-trained encoder weights, we used the same
embedding size as the pre-trained model (i.e. 48 features). The reason for this is
that an embedding of size 48 was used as input by the pre-trained encoder.

An ensemble model was created from the seven models of a 7-fold cross-
validation (CV) (‘leave-one-center-out’-approach): one model from each CV fold.
More specifically, for each patient in the test set we averaged the probability seg-
mentation map of the seven models, and then discretized by applying arguments
of the maxima (arg max) to obtain the ensemble segmentation map.
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Fig. 1. Overview of the Swin UNETR model architecture, taken with permission from
[10]. Firstly, the input data was projected into a 1D embedding sequence, which conse-
quently was used as input for the encoder. A linear embedding of 48 features was used,
same as the pre-trained model, to be able to use the pre-trained encoder weights.

2.4 Experiments

In each training iteration we randomly selected two fixed sized regions of size
96 × 96 × 96 from a full input of size 192 × 192 × 192. Since the majority of
background voxels imbalanced the data, we selected the regions such that half
of the all selected regions had a foreground (either from GTVp or GTVn) voxel
in the center of the region, and the other half had a background voxel in the
center of the region. The cropped regions were used as input batch of size two
for the model. For model inferences we performed a sliding window approach as
depicted in Fig. 2.

The model was trained for 200 epochs using the Dice + Cross-Entropy
(DiceCE) loss function and the AdamW optimizer [5], and validated on the
held-out fold with multi-class mean Dice score. The model weights were saved
at the epoch with the highest validation score. The learning rate was updated
using cosine annealing schedule with warm restarts [6]. Data augmentation tech-
niques were adopted such as random translation, zooming, flipping, rotating and
intensity shifting1. Each data augmentation technique was independently applied
with 0.5 probability. The data augmentation and modeling were implemented
using Project MONAI 0.9 in PyTorch 1.10. A comprehensive list of all train-
ing methodology is summarized in Table 2. The experiments were conducted on
NVIDIA V100 GPU with 32 GB GPU memory.

2.5 Quantitative Evaluation

The experimental results were evaluated in terms of the aggregated Dice similar-
ity coefficient DSCagg = 2

∑N
i

∑
k ŷi,k·yi,k∑N

i

∑
k(ŷi,k+yi,k)

, where N is the total number of test
images, yi,k is the ground truth (either GTVp or GTVn) for voxel k of image i,
and ŷi,k is the prediction.

1 https://docs.monai.io/en/stable/transforms.html.

https://docs.monai.io/en/stable/transforms.html
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Fig. 2. Sliding window approach. Firstly, divide the full input of size 192 × 192 ×
192 × 2 uniformly into four windows of size 96 × 96 × 96 × 2. Secondly, perform model
inference on each windows. Finally, aggregate the output into a single segmentation
map of size 192 × 192 × 192 × 3 for background, GTVp and GTVn combined.

Table 2. Training methodology and hyper-parameters.

Component Value

Epochs 200

Batch size 2

Initial learning rate 1e−4

Loss function DiceCE

Optimizer AdamW (β1 = 0.9, β2 = 0.999)

Scheduler Cosine (T0 = 40)

Weight decay 1e−5

Data augmentation Translating [−10, 10], zooming [90, 110]%, flipping,
rotating [−180◦, 180◦], intensity shifting [−0.1, 0.1]

3 Results

Table 3 presents the results of the 7-fold CV for each fold separately as well as
the average over all folds. We observe that the DSCagg of GTVp is always higher
than that of GTVn. Moreover, the scores can differ significantly across folds.

For this challenge we submitted predictions from the ensemble model and the
model from fold 5, which had the highest average DSCagg in CV. Table 4 presents
the results on the test set. The average Dice of GTVp and GTVn contouring is
higher on the test set than the average CV result. Interestingly, we observed a
significantly lower Dice score of GTVp segmentation on the test set than in CV,
and the opposite for GTVn segmentation. Furthermore, the performance of the
ensemble and fold 5 model are similar.
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Table 3. Evaluation performance of each CV fold during training as well as the average
over all folds.

DSCagg GTV p DSCagg GTV n
DSCagg GTV p + DSCagg GTV n

2

Fold 1 0.675 0.600 0.638

Fold 2 0.753 0.504 0.629

Fold 3 0.613 0.580 0.596

Fold 4 0.711 0.536 0.623

Fold 5 0.752 0.583 0.667

Fold 6 0.688 0.587 0.637

Fold 7 0.758 0.419 0.589

Average 0.707 0.582 0.626

Table 4. Evaluation performance of the ensemble model and the model from fold 5 on
the test set.

DSCagg GTV p DSCagg GTV n
DSCagg GTV p + DSCagg GTV n

2

Ensemble 0.642 0.670 0.656

Fold 5 0.633 0.673 0.653

4 Discussion and Conclusion

In this paper we proposed to use Swin UNETR model in conjunction with trans-
fer learning. We combined FDG-PET and CT images into a single input for our
end-to-end model.

The self-supervised pre-trained Swin UNETR model was trained on CT scans
and no FDG-PET imaging. Therefore the pre-trained weights may not be help-
ful for the FDG-PET modality. Another limitation is the computational time:
training the model for 200 epochs for a single CV fold iteration took about two
days. Therefore we did not do any hyperparameter tuning. With one GPU we
recommend to apply training-validation split instead of CV and train for more
than 200 epochs, because the validation performance in the CV interations was
still improving at 200 epochs.

Also, we observed unexpected values in the provided training and test data.
The CT input intensity values (i.e. after cropping the bounding boxes and resam-
pling) in the training and test data was in the interval [−17.200, 32.636] and
[−10.223, 38.010], respectively. However, CT intensity values in HU should be
in the interval [−1.024, 3.000]. In fact, only 6% of the training patients complied
with that, and 66% of the training patients had CT intensity value in [−4.000,
4.000]. This holds similarly for the test data. These findings suggest that most
CT scans were not represented in HU. Different data normalization techniques
should have been applied to obtain data unification. We did not deal with these
issues due to late discovery of these issues and therefore lack of time.
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The ensemble and fold 5 model have similar Dice scores on the test set. On
top of that, DSCagg of GTVp is higher than that of GTVn in CV, while this
is opposite for the test set. Therefore we suspect that the data across centers
may differ significantly, possibly due to different PET/CT scanners, and require
additional data preprocessing to obtain data unification.

For future work we suggest to use pre-trained weights trained on FDG-PET
imaging, perform hyperparameter tuning, train for more than 200 epochs, and
improve uniformity of the data modalities.
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