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Abstract 
The application of state-dependent speciation and extinction models to phylogenetic trees has shown an important role for traits in diversifica-
tion. However, this role remains comparatively unexplored on islands, which can include multiple independent clades resulting from different 
colonization events. To explore whether assuming no dependence on traits leads to bias in inference on island dynamics, we extend an island 
biodiversity model, DAISIE (Dynamic Assembly of Islands through Speciation, Immigration, and Extinction) to include trait-dependent diversi-
fication simulations, and evaluate the robustness of the inference model which ignores this trait-dependence. Our results indicate that when 
the differences between colonization, extinction, and speciation rates between trait states are moderate, the model shows negligible error for 
a variety of island diversity metrics, suggesting that island diversity dynamics can be accurately estimated without the need to explicitly model 
trait dependence. We conclude that for many biologically realistic scenarios with trait-dependent diversification and colonization, this simple 
trait-less inference model is informative and robust to trait effects on colonization, speciation, and extinction. Nonetheless, our new simulation 
model may provide a useful tool for studying patterns of trait variation.
Keywords: island biogeography, trait-dependent diversification, phylogenetic inference, robustness analysis

Introduction
Understanding the mechanisms underlying species richness 
variation among clades is a key challenge in evolutionary 
biology. One of the hypotheses to explain diversity differ-
ences between clades and regions is variation in diversifica-
tion rate, where higher net diversification rates are likely to 
lead to species-rich clades (McPeek & Brown, 2007). Recent 
studies support this hypothesis, suggesting that diversifica-
tion rate variation can explain much of the richness varia-
tion among major clades under different taxonomic ranks 
(Kozak & Wiens, 2016; Li & Wiens, 2022; Scholl & Wiens, 
2016). However, this begs the question how this variation in 
diversification rates arises. Diversification rates might be af-
fected by environmental, clade-specific, or historical factors 
(Kisel et al., 2011; Tietje et al., 2022). Comparative analyses 
have suggested that traits play an important role in diversifi-
cation rates (Chevin, 2016; Cracraft, 1985; Jablonski, 2008; 
Rabosky & McCune, 2010; Simpson, 2013; Stanley, 1975), 
but this can be difficult to test. Typically, when a certain trait 
state occurs more frequently in a speciose clade than in a spe-
cies-poor clade, we may be tempted to conclude that this state 
promotes speciation or reduces extinction. However, such a 
pattern may be due to the evolutionary conservation of the 
trait (Rabosky & Goldberg, 2015). An excess of species with 
a particular state may also be due to asymmetrical transition 
rates between states (Burin et al., 2016; Goldberg & Igić, 
2012).

A geographical setting where traits have long been pro-
posed to influence diversity is islands (Cowie & Holland, 

2008; Parent et al., 2008). Biogeographical and environ-
mental characteristics of oceanic islands may lead to strong 
phenotypic divergence from the mainland, often resulting 
in island syndromes (Auffret et al., 2017; Cássia-Silva et 
al., 2020; García-Verdugo et al., 2020), such as flightless-
ness in birds, dwarfism and gigantism in vertebrates, wood-
iness in plants, and small size and inconspicuous coloring 
of flowers (Hetherington-Rauth & Johnson, 2020). At the 
same time, oceanic islands are home to some of the most 
extraordinary radiations, such as Darwin’s finches (Losos & 
Ricklefs, 2009), which may lead to large richness variation 
among clades within an insular system (Patiño et al., 2017). 
A key question is whether certain traits or trait states have 
played a role in the presence or absence of rapid radiations. 
While insular radiations are thought to be mostly driven by 
increased ecological opportunity on islands, it has long been 
hypothesized that some traits may trigger, facilitate, or hin-
der diversification in an insular setting (García-Verdugo et 
al., 2014; Zhu et al., 2020). Some characteristics of species, 
such as seed size in plants and flight ability in birds, evidently 
affect the chances of species colonizing an island or an isolat-
ed habitat (Onstein et al., 2017). Furthermore, after the suc-
cessful colonization of an island, changes in morphological 
characteristics occur, facilitated by ecological release (Losos 
et al., 1997; Millien, 2006). These character changes have 
been shown to affect in situ diversification rates of species, 
which are important to address the evolutionary assembly on 
islands (Aleixandre et al., 2013; Biddick et al., 2019; Burns, 
2016).
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The increasing availability of molecular phylogenies has 
stimulated the development of statistical methods to detect 
how traits are associated with diversification (Mitter et al., 
1988). A likelihood-based framework, based on the bina-
ry-state-dependent speciation and extinction model (BiSSE), 
resolved the shortcomings of the sister clade comparison meth-
od which could only address the variation in net diversifica-
tion rates (Maddison et al., 2007). In addition, BiSSE inspired 
a large number of state-dependent diversification models,  
which are known as the state-dependent speciation and ex-
tinction (SSE) model family. These models extend BiSSE in 
various ways to enable state-dependent analyses to infer 
state-dependent diversification under a variety of scenarios 
or to model more complex phenotypic traits (Fitzjohn, 2010; 
Fitzjohn et al., 2009; Goldberg & Igić, 2012; Goldberg et al., 
2011). Furthermore, models incorporating hidden traits were 
developed to overcome high type I errors with BiSSE (Beaulieu 
& O’Meara, 2016; Herrera-Alsina et al., 2019). However, de-
spite the fundamental role of islands in the conceptual devel-
opment of trait diversification theory, investigations of trait 
diversification dynamics on islands in a phylogenetic context 
are rare compared to those for continental phylogenies.

Current island biodiversity models focus mostly on the as-
sociations between island characteristics (e.g., area and isola-
tion) and diversification rates (Algar & Losos, 2011). These 
models help to understand the species richness variation be-
tween different islands or between islands and the mainland 
(Leidinger & Cabral, 2017). However, mostly for practical 
reasons, they tend to ignore traits, even though traits can be 
important factors that affect diversification rates, and in turn 
lead to richness variation between clades within the same is-
land (Supsup et al., 2020; Zheng & Zheng, 2022). Currently, 
there is no likelihood-based inference model focusing on 
phylogenetic data from islands that incorporates both trait 
dynamics and their effects on diversification rates (an island 
version of an SSE model, or an SSE version of an island bio-
geography model). The current practice of using models that 
ignore traits may lead to erroneous estimates of parameters 
(colonization, speciation, and extinction) if species traits help 
shape the phylogenetic trees on islands. But perhaps such 
models still do a reasonable job in describing diversification 
dynamics. While trait dependence can be relatively easily in-
corporated in simulations, deriving a likelihood of a model 
that includes trait-dependent and diversity-dependent diver-
sification does not seem feasible, and hence it is all the more 
important to explore to what extent this is problematic for 
inference.

Here, we aim to determine to what extent we can trust 
existing island biodiversity models, by answering the follow-
ing questions. In the absence of a method to estimate trait 
state-dependent colonization, extinction, and speciation 
rates (CES rates) from island communities, can we still ob-
tain meaningful results regarding island diversification using 
current island biogeography models? And under what condi-
tions can trait-less biodiversity models still be used to make 
accurate predictions of island diversity, distribution of island 
clade sizes, and diversity changes through time? To address 
these questions, we extend a phylogeny-based island bioge-
ography simulation framework, DAISIE (Dynamic Assembly 
of Islands through Speciation, Immigration, and Extinction) 
to include trait-dependent diversification rates, and evaluate 
the robustness of the trait-independent inference model data. 
DAISIE (Box 1) is the first island biodiversity model that 

uses phylogenetically informed data on island assembly in a 
whole-community framework. It allows estimation of colo-
nization and diversification, as well as simulation of the dy-
namic assembly of insular communities, which can include  
multiple phylogenetic trees resulting from several coloni-
zation events of an island (e.g., all mammals on an island) 
(Valente et al., 2015, 2018; 2020).

In this study, we assess whether this simple model can accu-
rately reconstruct diversity and phylogenies on islands with-
out considering trait effects on colonization, speciation, and 
extinction, that is, whether we can ignore trait dependence in 
phylogenetic studies of island biogeography. We investigate 
whether, in the presence of trait dependence in the model gen-
erating the data, the inference model that assumes no trait 
dependence can still accurately infer island diversity dynam-
ics through time. If so, this will suggest that simple models 
do a good job of explaining island diversity and that reliable 
analyses can be performed even without trait data of island 
species (which are often absent, incomplete, or difficult to ob-
tain), i.e., the model is robust to trait dependence. If, instead, 
we find that under certain conditions the existence of trait 
dependence substantially alters the predictions of the model, 
this will suggest that traits cannot be ignored in these cases 
and that a new estimation approach is needed.

Methods
State-dependent and state-independent simulation 
models
The DAISIE inference framework uses maximum likelihood 
to estimate colonization and diversification rates of insular 
biota from phylogenetic information. The core version of 
DAISIE assumes that all island species share the same CES 
rates, and the model is essentially neutral at the species level 
(Valente et al., 2015). However, the dynamics of trait-depen-
dent diversification and colonization within island clades are 
not modeled.

Here, we introduce a trait state-dependent island biodiver-
sity simulation model, an extension of the DAISIE simulation 
model combining it with features of the BiSSE model (Figure 1). 
To distinguish the two simulation models, the new simulation 
model is termed the state-dependent simulation (SDS) model 
(Figure Box 1B), and the original trait-less DAISIE simulation 
model is termed the state-independent simulation (SIS) model 
(Figure Box 1A). Likewise, we will call the standard DAISIE 
inference model the state-independent inference (SII) model. A 
state-dependent inference model does not yet exist. In the SDS 
model, the rates of all evolutionary processes are trait-state-de-
pendent. For simplicity, we consider a binary trait with two 
states, 1 and 2. Species in the same state have the same CES 
rates, while species with different states may differ in one or 
more rates. Mainland species can be regarded as forming two 
assemblages according to their trait states. Immigration of  
species in each assemblage to the island is determined by the 
number of mainland species in each state (M1 and M2) and 
their colonization rates (γ1 and γ2). Once an immigrant spe-
cies (which inherits the trait state from its mainland ancestor) 
successfully colonizes the island, it can undergo population 
divergence from the mainland population (via anagenesis λ1

a 
and λ2

a), in situ speciation (via cladogenesis λ1
c and λ2

c) or ex-
tinction (µ1 and µ2). Island species can shift between trait states 
at a certain rate of transition from state 1 to state 2 (q12) or 
from state 2 to state 1 (q21). The transition rates can be equal or 
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Box 1. Description of the DAISIE framework.

DAISIE (Dynamic Assembly of Island biota through Speciation, Immigration, and Extinction) is a framework to study biological communities 
on islands in a phylogenetic context. It is available as an R package.

DAISIE simulation model. DAISIE can simulate phylogenetic datasets of island communities using a set of colonization, speciation, 
and extinction (CES rates). The island can be colonized from a mainland pool of species. The model assumes that each mainland species 
can colonize the island at a rate γ, and undergo speciation at a rate λ or extinction at a rate µ. Two processes of speciation are considered: 
anagenesis (λa, island population diverges from the mainland ancestral due to long-term geographical isolation) and cladogenesis (λc, one 
island species split into two new endemic species). Cladogenesis and colonization rates can be diversity-dependent, declining linearly with 
the number of species accumulating on the island. The diversity-dependence parameter K’ can be regarded as the maximum number of 
species niches in each clade (species from the same mainland ancestor) when there is no extinction. Thus, in the DAISIE framework, the 
carrying capacity can be regarded as the strength of the effect of crowding on reducing colonization and diversification rates. The original 
DAISIE simulation model is state-independent (SIS). In this study, we add an additional state-dependent simulation (SDS) model with 
state-dependent CES rates (Figure Box 1B).

DAISIE inference model. DAISIE’s maximum likelihood inference method uses information from colonization and branching times ex-
tracted from time-calibrated phylogenetic trees (resulting from different colonization events of an island). The approach has been shown to 
accurately estimate island colonization, speciation, and extinction rates, as well as the clade-level carrying capacity.

Figure Box 1. Graphical visualization of (A) state-independent simulation (SIS) model and (B) state-dependent simulation (SDS) model.

Figure 1. (A) Schematic representation of the robustness pipeline. (1) Simulate phylogenetic data with the SDS model. The binary states are 
represented by two different colors (red and black). (2) Use the data obtained from step 1 to estimate parameters with the SII model. (3) Simulate data 
using the SIS model with parameters estimated in step 2. (4) Use the SII model again to estimate parameters. (5) Simulate data using the SIS model 
with the estimated parameters from step 4. E0—baseline error when simulation and inference model are identical; E—error when simulation and 
inference model differ. (B and C) Visualization of E and E0 distributions. The light gray and the dark gray bars correspond to the distribution of E and E0, 
respectively. The black dashed line is the 95th percentile of the baseline error distribution. ED95 is the percentage of the distribution E that lies on the 
right side of the dashed line. In (B), the E and E0 distributions almost overlap, and the ED95 in (B) is lower than that of (C).
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different. In speciation via anagenesis or cladogenesis, daughter 
lineages are assumed to inherit the trait state of their parent 
species, which means no state shifts occur during speciation 
(Fitzjohn, 2010). Furthermore, transitions are regarded as in-
traspecific changes, which occur instantaneously along lineag-
es, thus assuming that the period of time in which two states 
coexist in a polymorphic species is negligible. Transition and 
speciation events are not allowed to occur simultaneously in 
this model (Maddison et al., 2007). The equations for calculat-
ing the rates are given in the Supplementary Methods.

In both SIS and SDS simulations, we considered diversi-
ty-dependent (DD) and diversity-independent (DI) models. 
In DI models, all the rates are diversity-independent. In DD 
models, colonization and cladogenetic speciation rates are di-
versity-dependent, while the other rates are diversity-indepen-
dent. We implemented a clade-specific DD model, assuming 
that diversity-dependence only operates between species in 
the same island clade, i.e., those that descend from the same 
mainland ancestor (Etienne et al., 2022). We assume that dif-
ferences in resource utilization due to phylogenetic distance in 
species belonging to different clades are sufficient to prevent 
competition between clades. In addition, because there is no 
strong evidence of an association between trait-dependence 
and diversity-dependence, in most of our simulations we as-
sumed, for the sake of simplicity, that diversity-dependence is 
not trait-dependent, i.e., the diversity carrying capacity is the 
same regardless of the trait state of the species undergoing spe-
ciation or colonization. In addition, we also implemented sim-
ulations with different diversity carrying capacities for each 
state. The equations for calculating CES rates for this case are 
shown in Supplementary Table S1. We implemented the SDS 
model in the R package DAISIE (Etienne et al., 2020).

The SDS results record the evolutionary history of island 
species including their colonization and branching times, as 
well as the richness dynamics of each trait state. We assumed 
that the inference accuracy of the DAISIE model will be poor-
er for larger inequality between the numbers of species in each 
of the two states. To test this assumption, we used the tip ratio 
(Davis et al., 2013), which we denoted by r, as the number of 
species in state 2 divided by the number of species in state 1:

r =
N2

N1

We used seven island diversity metrics to evaluate the simulat-
ed phylogenies from the SDS and the SIS models. Four metrics 
were used to measure diversity at the end of the simulation: to-
tal number of species (NSpec), number of lineages present on the 
island (NCol) (resulting from independent colonization events), 
standard deviation of clade size (σCS), and standard deviation of 
colonization time among clades (σCT). The other three metrics 
measured richness changes through time: total species richness 
through time (SRTT) (Supplementary Figure S1); endemic spe-
cies richness through time (ESRTT); and non-endemic species 
richness through time (NESRTT) (Neves et al., 2022). We also 
studied the parameter estimates to evaluate how similar the in-
ferred parameters are to the ones used to generate the data.

Simulation scenarios
The mainland pool of 1000 species is assumed to be evenly 
distributed with 500 species in each state. This is not a strong 
limitation of our simulations because it is the difference in 
total colonization rate (the product of mainland pool size 
and per capita colonization rate) that matters (Valente et al., 

2015). In addition, we set a limit of 20 (K’ = 20) species for 
each clade for the diversity-dependent model. To measure the 
effect of transition rates independent of CES rates, we used a 
symmetric scenario as a control, where all the CES rates are 
symmetric between binary states (Table 1A). We chose two 
values for each CES rate, a low one and a high one, in such a 
way that the total number of species remains between realistic 
values of 50–150. We set four types of transitions between 
binary states (Table 1B). For high and low transition rates 
we used 0.2 and 0.02, respectively. The symmetric scenario 
consists of 128 combinations of CES rates, transition rates, 
and carrying capacities (Table 1A).

To investigate the effect of trait dependence, we ran the 
SDS simulation under a series of scenarios with varying de-
grees of asymmetry in CES rates. In these scenarios, the mean 
values of CES rates between binary states were kept the same 
as in the symmetric scenario, as well as two gradients of mean 
rates for each parameter (low and high, Table 1A). For the 
analyses with asymmetry in rates, only one CES rate was set 
to be the asymmetric per scenario, and all the others were 
kept symmetric (Table 1C).

We defined the relative rate differential (RRD) as the dif-
ference in rates for the two trait states by their mean rate val-
ue, to measure the asymmetry level between states (Gamisch, 
2016).

RRD =
|rate2 − rate1|

1
2 (rate2 + rate1)

RRD is 0 when the rates are symmetric for the two states, and 
a larger RRD means a larger rate difference between states. 
For each CES rate, we ran analyses with three different levels 
of RRD: 0.5, 1, and 1.5 (Table 1C). Therefore, in total, we 
ran 13 scenarios: 1 control plus 3 asymmetric scenarios for 
each of the 4 parameters (rates of cladogenesis, extinction, 
colonization, and anagenesis) (Table 1C). We did not consider 
combinations of asymmetric rates as the number of parame-
ter combinations would have been computationally prohibi-
tive. We set CES rate values of state 2 to always be higher or 
equal to the values of state 1 for all the asymmetric cases to 
avoid redundancy. In asymmetric scenarios, transition rates 
were chosen in the same way as for the symmetric scenario, 
with four transition types (Table 1B). We show the exact pa-
rameter values that we used in this paper in Table 1D.

Robustness analysis
We aimed to test whether ignoring trait dependence in infer-
ence affects the ability of the SII model to reconstruct diversi-
ty dynamics on islands generated by a simulation model that 
assumes an effect of trait states on CES rates. We used a com-
putational pipeline (Figure 1) to measure the error of the SII 
model when real insular diversity dynamics involve trait de-
pendence in rates (SDS), adapting the approach of Neves et al. 
(2022). The pipeline allows investigating the robustness when 
the inference model does not match the generating (simula-
tion) model. First, we simulated 1000 replicates (“islands”) 
for each parameter set (Table 1), under the SDS model. We 
converted the SDS results to the SIS output format (i.e., we 
removed trait-related information), and estimated CES rates 
and carrying capacity with the SII model. We then used the 
estimated parameters to simulate with the SIS model, again 
estimated the parameters for these simulations with the SII 
model, and used the obtained parameters to simulate a second 
set of SIS results. Because the SII model can infer diversity 
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dependence by estimating carrying capacity, we used the DD 
model for both inference processes in the pipeline. We stud-
ied several metrics of all simulation results (see below). The 
difference between the metrics of the two SIS results gives 
the baseline error (E0) in the inference that occurs even if the 
inference model is identical to the simulation model (SII = 
SIS). The difference between the metrics of the SDS results 
and the first SIS results gives the error E that occurs when the 
simulation and inference model differ (SII ≠ SDS) (Figure 1).

We calculated the errors E and E0 of seven metrics for each 
replicate, which resulted in two error distributions for each 
parameter set. E and E0 for NSpec, NCol, σCS, and σCT were cal-
culated as the absolute difference between simulations, while 
for the three diversity-through-time metrics (SRTT, ESRTT, 
and NESRTT), errors were calculated using the ΔnLTT (nor-
malized lineage-through-time) statistic (Janzen et al., 2015), 
by integrating the absolute distance between two diversi-
ty-through-time curves (Supplementary Figure S1). ΔnLTT is 
equal to zero only when the two simulated nLTT curves are 
identical. To compare the divergence between the distribution 
of the two errors, E and E0, we used a metric, ED95 (Neves et 
al., 2022). ED95 is the percentage of the distribution of E that 
exceeds the 95% percentile of the distribution of E0 (Figure 
1B). We use ED95 to tease apart inference errors that are due 
to limited information in the data and even occur when the 
inference model is identical to the generating model. Higher 
ED95 values indicate larger differences between E and E0, in 
other words, the error caused by trait effects is larger than the 
baseline error inherent to DAISIE. The ED95 of all the seven 
island diversity metrics were calculated for each parameter 
set. We also calculated Hellinger distance, a metric used to 
quantify the similarity between two probability distributions, 
to compare the difference between E and E0 for each statis-
tical metric (see Supplementary Material) (Csiszár & Shields, 
2004).

To evaluate the inference accuracy, we used the same meth-
od to calculate the ED95 of the estimation errors. The baseline 
error E0 for each estimated rate was calculated as the absolute 
difference between the two SII estimations. The mean rates 
of the two states are used as reference, to compare with the 
estimated values from the first SII results, to obtain the es-
timation error E, which measures the bias caused when the 
generating model is different from the inference model. We 
ran a total of 1664 parameter sets (128 for each of the 13 
scenarios), with 1000 replicates for each parameter set. The 
calculation of metrics and the error analysis were implement-
ed in the R package DAISIErobustness (Lambert et al., 2022).

Results
We find that DAISIE is quite robust to trait dependence in 
rates of colonization and cladogenesis. The inference errors 
are negligible for all metrics except ΔNESRTT (non-en-
demic richness through time) and σCS (clade size standard  
deviation), and they are only affected when cladogenetic 
speciation rates are asymmetric. In addition, diversity-de-
pendence and state-dependent transition rates have a negli-
gible effect on the inference errors except under asymmetric 
cladogenesis. Surprisingly, the errors are not strongly relat-
ed to the tip ratio, i.e., the ratio of the diversities between 
two trait states, but they are positively correlated with the 
variation in clade sizes. We now present these results in more 
detail. We note that the results using the metrics ED95 and (A

) 
Pa

ra
m

et
er

s 
Pa

ra
m

et
er

 v
al

ue
s

μ
0.

1
0.

1
0.

1
0.

07
5

0.
12

5
0.

05
0.

15
0.

02
5

0.
17

5

0.
2

0.
2

0.
2

0.
15

0.
25

0.
1

0.
3

0.
05

0.
35

γ
0.

00
8

0.
00

8
0.

00
8

0.
00

6
0.

01
0

0.
00

4
0.

01
2

0.
00

2
0.

01
4

0.
01

2
0.

01
2

0.
01

2
0.

00
9

0.
01

5
0.

00
6

0.
01

8
0.

00
3

0.
02

1

λa
0.

2
0.

2
0.

2
0.

15
0.

25
0.

1
0.

3
0.

05
0.

35

0.
4

0.
4

0.
4

0.
3

0.
5

0.
2

0.
6

0.
1

0.
7

Ta
b

le
 1

. C
on

tin
ue

d

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/article/77/3/670/6987175 by U

niversity of G
roningen user on 29 April 2023

http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpad006#supplementary-data
http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpad006#supplementary-data


676 Xie et al.

Hellinger Distance are highly similar, so in the main text we 
only discuss the results of ED95, and the comparisons with 
Hellinger Distance are shown in Supplementary Figures S8 
and S9.

Effect of trait-dependent CES rates on 
inference
In general, using the SII model to estimate parameters and 
subsequently the SIS model to simulate with the obtained 
parameters causes minimal error in reconstructing the SDS 
diversity patterns for most of the parameter sets (Figure 2). 
Most metrics measuring the diversity at present (NSpec, NCol, 
and σCT) show the minimal difference between E and E0 for 
all scenarios (Figure 2). However, among the three ΔnLTT sta-
tistical metrics, the error in ΔNESRTT is large when there is a 
high asymmetry in the cladogenesis rate (RRD = 1.5) (Figure 
2). σCS shows the largest error difference among all the metrics 
and is positively correlated to the RRD of the cladogenesis 
rate. Even in the symmetric case, most of the ED95 in σCS is 
higher than 0.05. In addition, we test the error in σCS using the 
SIS model in the whole pipeline to confirm if the symmetric 
case performs the same as the null model (SIS model). For all 
the seven metrics, including σCS, the results of using the sym-
metric SDS model and using the SIS model are highly similar 
(Supplementary Figure S11).

Because only asymmetry in the cladogenesis rate has a 
substantial effect, we zoom in on the comparison of the 
results of the symmetric scenario with the three scenarios 
that have different asymmetry levels in the cladogenesis rate. 
Large inference error in ΔNESRTT only occurs when the 
mean cladogenesis rate is greater than the anagenesis rate 
(Supplementary Figure S2), which leads to fewer non-en-
demic species and more endemic species at present on the 
island.

Effects of diversity-dependence and state-
dependent transitions on inference
Diversity-dependence and state-dependent transitions have 
a negligible effect on the inference errors in ΔNESRTT 
and σCS, except when cladogenesis rates are largely asym-
metric between states (Supplementary Figure S3). Among 
the four transition types, with low or high, symmetric or 
asymmetric transitions, parameter sets with higher transi-
tion rate from high-rate state to low-rate state (“low q12 
high q21”) cause a larger error in σCS than in the reverse 
direction (“high q12 low q21”) (Supplementary Figure S3). 
Considering trait dependence and diversity dependence si-
multaneously, i.e., a different capacity for each trait state, 
has negligible effects on the performance of the model 
(Supplementary Figure S10).

Parameter estimation
In this study, we consider only cases where only one of the 
CES rates is asymmetric between binary states, while the oth-
er parameters are equal between states. Therefore, the estima-
tion error in the CES rates that are symmetric can be easily 
calculated from the generating parameters and the estimated 
values. For the asymmetric parameter in each scenario, we use 
the mean rates between states in the SDS model as a reference. 
Note that the reference value for the asymmetric parameter 
is not the true value, and the bias based on the mean value is 
not an error.

When comparing the mean parameter values for simula-
tions using the SDS model and the parameters inferred from 
the SDS results, the colonization and extinction rates are well 
estimated for most of the parameter sets (Supplementary 
Figures S6 and S7). However, nearly all scenarios show a 
systematic bias, with underestimated anagenesis and overes-
timated cladogenesis rates when asymmetry in cladogenesis 

Figure 2. Distribution of ED95 for seven island diversity metrics. Each point corresponds to a parameter set. The orange points correspond to the 
parameter sets in the control scenario with all CES rates symmetric, and the other colors correspond to the 12 scenarios with asymmetric rates in 
different degrees. The x-axis shows the degree of asymmetry (RRD) of each CES rate. The dashed line at 0.05, indicates the expected ED95 for the null 
model.
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rate. The inference errors are positively correlated with the 
bias in cladogenesis and anagenesis when cladogenesis rates 
are largely asymmetric between states (Supplementary Figures 
S6 and S7). However, the baseline error in the anagenesis rate 
for most of the parameter sets is high, resulting in low ED95 
for the anagenesis rate.

In general, asymmetry in CES rates has a negligible effect on 
the estimation accuracy of the parameters that are symmetric 
between states (Figure 3). For example, in scenarios where 
only the cladogenesis rate is asymmetric, the estimation accu-
racy is high for the other three CES rates which are symmet-
ric (Figure 3A). When cladogenesis rates are very asymmetric 
between states, this causes higher estimated cladogenesis rates 
than the mean of the two generating values, especially when 
the transition rate from low-rate state to high-rate state is 
high (Figure 3A). This is because the asymmetry in cladogen-
esis and transition rates results in most of the existing spe-
cies being in a high-rate state, and hence the effective rate of 
cladogenesis is actually higher than simply the mean between 
the two generating values.

Richness variation among clades and among 
states
We calculated the richness variation among clades (clade size 
variation) and the richness among states (tip ratio), using the 
median value of 1000 replicates to represent the variation for 
each parameter set. As expected, when all the CES rates and 
transition rates are symmetric between states, there is nearly 
no species richness variation between states, with relatively 

low clade size variation (yellow points in Supplementary 
Figures S12 and S13). Large cladogenesis rate variation  
between states in SDS models can result in species richness 
variation between states, but it can also lead to clade size vari-
ation (Supplementary Figure S13). State-dependent transition 
rates may reinforce or reduce these variations to some extent. 
To understand what kind of empirical data may cause large 
errors using the DAISIE model, we checked the relationships 
between the inference errors with the tip ratio (r) and the 
clade size variation in SDS results. We find that larger infer-
ence error does not always occur when the species richness is 
highly different between states (Supplementary Figure S4). In 
other words, the tip ratio does not decisively control the ro-
bustness of the DAISIE model, because the phylogenies can be 
accurately reconstructed even with large richness differences 
between states (Supplementary Figure S4). The clade size vari-
ation of SDS results barely affects ΔNESRTT, but substantial-
ly affects the inference error in σCS (Supplementary Figure S5).

In addition, even though asymmetry in colonization rate 
can also result in large richness variation between states 
(Supplementary Figure S12), it does not lead to high inference 
error, because the symmetric cladogenesis rates in these sce-
narios do not affect the clade size variation. This also suggests 
that variation among clades, rather than variation among 
states, is a more likely factor that may cause inference error.

Discussion
Species traits are hypothesized to affect biological assemblages 
by altering diversification rates (Fitzjohn et al., 2009; Mitter 
et al., 1988). Our results indicate that not incorporating the 

Figure 3. Parameter estimation performance. ED95 of the four CES rates across all the parameter combinations. The parameter sets are grouped by 
RRD and transition types. The colors represent the asymmetry level (RRD) of CES rates between states. The facet plots indicate the combination of the 
scenarios with different asymmetry levels in (A) cladogenesis rate (scenarios 1 and 2–4 in Table 1C); (B) extinction rate (scenarios 1 and 5–7 in Table 1C); 
(C) colonization rate (scenarios 1 and 8–10 in Table 1C); (D) anagenesis rate (scenarios 1 and 11–13 in Table 1C).
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effect of trait dependence on species diversification in the in-
ference model and subsequently simulating the model with 
the obtained parameters allows surprisingly accurate esti-
mation of diversification and colonization rates, as well as 
accurate reconstruction of the evolutionary history of spe-
cies on an island under a wide range of scenarios. Hence, we 
conclude that the model is robust to leaving out the details 
of trait-dependent colonization and diversification. Only in 
exceptional cases we see large differences between the simu-
lations of a model with trait dependence and a model with-
out. This is specifically the case for two metrics: non-endemic 
richness through time (ΔNESRTT) and clade size standard 
deviation (σCS).

Large differences between endemic species richness and 
non-endemic species richness may lead to large inference er-
rors in ΔNESRTT. Within the parameter space investigated in 
this study, a large error in ΔNESRTT occurs only when the 
mean cladogenesis rate between states is much higher than 
the mean anagenesis rate (Supplementary Figure S2). In this 
case, species with the higher cladogenesis rate state can rap-
idly speciate into a large clade, which leads to the endemic  
species richness being 5–10 times the non-endemic species 
richness. Without accounting for trait dependence, the es-
timated cladogenesis rate is closer to the higher cladogene-
sis rate than to the mean value of the two states in the SDS 
model. In contrast, the anagenesis rate is underestimat-
ed (Supplementary Figures S6 and S7). This leads to fewer 
non-endemic species, and more endemic species in the subse-
quent SIS simulations than in the SDS simulations, resulting 
in a large error in ΔNESRTT.

The other metric whose estimation is affected by trait de-
pendence is σCS. When trait states are conserved, and clades 
with a certain trait state have higher rates of diversification, 
clades with that trait state will likely become much more spe-
cies-rich than clades with the other state. In inference, DAISIE 
assumes that all lineages diversify with the same rates, which 
generates balanced clades and leads to less clade size varia-
tion in the SIS results than in the SDS outputs. In addition, 
when the cladogenetic speciation rate is diversity-dependent, 
competition between species in the same clade restricts the 
increase in species number, preventing clades from growing 
above a certain diversity level. Therefore, clade size cannot 
become extremely large, leading to lower error in σCS in di-
versity-dependent models than in diversity-independent mod-
els. However, we emphasize that even though DAISIE cannot 
accurately model the fine-scale variation between clades for 
some exceptional parameter combinations, it can still accu-
rately reconstruct the dynamics of the whole community with 
multiple independent clades. We attribute the fact that the av-
erage level of the error in σCS is higher than 0.05 even in the 
scenario where all the CES rates are symmetric to the bias in 
the parameter estimation, inherent in maximum likelihood, 
which means in some cases DAISIE may not perform well in 
reconstructing clade sizes for the phylogenies with multiple 
clades. However, it was not our aim here to test the inference 
errors in DAISIE. We showed that even using trait-indepen-
dent simulations, the error in σCS is still higher than expected 
(Supplementary Figure S11).

We attempted to determine the features of the data simu-
lated under trait dependence that led to large inference errors 
in the two metrics where the non-negligible error was found 
(ΔNESRTT, σCS). The results indicate that clade size variation, 
which is the difference in species richness between clades, has 

a larger impact on the model accuracy than tip ratio, which is 
the species richness difference between states (Supplementary 
Figures S4, S5, S12, and S13). This means DAISIE may cause 
error when fitting substantially unbalanced phylogenet-
ic data, no matter if the variation between clades is caused 
by state-dependent diversification. In a study that used the 
DAISIE model to fit terrestrial birds of the Galapagos (Valente 
et al., 2015), the species richness of the clade of Darwin’s 
finches is reported to be much higher than the other clades 
of birds on the islands. The model that best fits the dataset 
assumes that Darwin’s finches have different cladogenesis and 
extinction rates than non-Darwin’s finches. Spectacular adap-
tive radiations such as Darwin’s finches are well-known on 
oceanic islands, and obviously lead to large clades. However, 
except for a handful of classic examples of adaptive radiations 
(Grant & Grant, 2008; Losos & Ricklefs, 2009; Robichaux 
et al., 1990; Seehausen, 2006), most island lineages do not 
diversify to form large clades (Patiño et al., 2017). Therefore, 
for most islands, clade size variation will rarely be extremely 
large when the whole assemblage of species of a given taxon 
is considered, suggesting the performance of models ignoring 
trait dependence may not be affected for typical islands.

Most studies on island traits and diversity are statistical 
studies based on empirical data, while phylogenetic-based 
theoretical methods on island traits are very limited, espe-
cially compared with the studies on continents. One reason 
for this is that insular communities are typically less diverse 
than continents, and thus their phylogenies are comparative-
ly small and information-poor. Even though the process of 
adaptive radiation can create some large clades on oceanic 
islands, radiations tend to be limited to certain clades, and 
most lineages only diversify to a limited extent (Patiño et 
al., 2014). Therefore, most island clades and radiations are 
not amenable to fitting SSE models, which generally require 
relatively large phylogenetic trees (Davis et al., 2013). While 
SSE models were not designed for this purpose, it is relative-
ly straightforward to extend them to apply to multiple trees. 
However, insular communities assemble via colonization and 
potentially subsequent diversification, and thus focusing only 
on trees of clades that have radiated (and not on colonization 
times or singleton lineages that have not diversified) ignores 
an important part of the processes that form insular com-
munities. Currently, the DAISIE framework is the only tool 
available to test the trait effects on evolutionary rates in the 
whole community with multiple phylogenies on islands. We 
believe that the conclusion in our study does not depend on 
the details of the DAISIE model, but analyses with other still-
to-be-developed models with trait dependence have to be per-
formed to confirm this. Our approach will also be applicable 
to these models.

Because numerous empirical datasets demonstrate the im-
portance of traits for understanding biodiversity, it is cru-
cial to test the effect of trait absence on the accuracy of the  
existing island models. The power and accuracy of state-de-
pendent biodiversity models have previously been evaluat-
ed for ancestral state reconstruction (Holland et al., 2020) 
and parameter estimation (Davis et al., 2013). However, in 
these models the parameter inference model is the same as 
the simulation model, i.e., the model used to generate phy-
logenies for estimation. Inference may go awry when this 
is no longer the case, but this is a more general problem 
of whether the model accurately describes reality. A statis-
tical approach that does not rely on a formal model for 
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the coupling between states and diversification is available 
to detect the correlation between trait states and diversi-
fication with low type I error (Rabosky & Huang, 2016). 
However, this method cannot be used to reconstruct the 
ancestral state or to estimate parameters. In our approach, 
we apply a robustness analysis that uses the data from the 
complex model (SDS model) to evaluate the inference pow-
er of the simple model (SIS model). In general, the compar-
ison between a complex model and a simple model is to 
use both models to fit the same datasets, and then compare 
the estimations using the Akaike information criterion to 
test which model can describe the data better. However, 
sometimes complex models are vulnerable to overfitting of 
the data, and this leads to difficulty in accurately estimat-
ing parameters (Kelchner & Thomas, 2006). The pipeline 
used in this study identifies whether the simple model can 
accurately reconstruct diversity and phylogenies on islands 
without considering complex factors. This statistical meth-
od not only tests if an additional consideration (trait ef-
fects) of interest can affect the power of a simple model but 
can also reveal under what conditions the additional factor 
needs to be taken into account. In this way, it constitutes 
a tool to determine whether it is useful to attempt to find 
a likelihood for the complex model or develop some oth-
er method to estimate parameters for the complex model. 
While we find that the trait-independent DAISIE inference 
model seems to be robust to trait dependence, it may still be 
meaningful to develop trait-dependent inference methods if 
one is interested in detecting the association between trait 
states and diversification, or in comparing diversification 
between mainland and island species with different traits 
(Patiño et al., 2017).
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