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Behavioral uncertainty quantification for data-driven control

Alberto Padoan, Jeremy Coulson, Henk J. van Waarde, John Lygeros, and Florian Dörfler

Abstract— This paper explores the problem of uncertainty
quantification in the behavioral setting for data-driven control.
Building on classical ideas from robust control, the problem
is regarded as that of selecting a metric which is best suited
to a data-based description of uncertainties. Leveraging on
Willems’ fundamental lemma, restricted behaviors are viewed as
subspaces of fixed dimension, which may be represented by data
matrices. Consequently, metrics between restricted behaviors
are defined as distances between points on the Grassmannian,
i.e., the set of all subspaces of equal dimension in a given vector
space. A new metric is defined on the set of restricted behaviors
as a direct finite-time counterpart of the classical gap metric.
The metric is shown to capture parametric uncertainty for
the class of autoregressive (AR) models. Numerical simulations
illustrate the value of the new metric with a data-driven mode
recognition and control case study.

I. INTRODUCTION

In a typical control design problem, the role of data (time
series) has been long dictated by indirect approaches [1 , 2],
where system identification is sequentially followed by model-
based control. However, the advent of large data sets and the
ever-increasing computing power, combined with the ongoing
revolution brought about by machine learning methodologies,
has recently triggered a renewed appreciation for direct
approaches, where the objective is to infer optimal decisions
directly from measured data.

A cornerstone of this newly emerging trend in control
is a far-reaching result due to Willems and co-authors [3],
commonly known as the fundamental lemma. Leveraging on
the behavioral approach to system theory [4 , 5], the funda-
mental lemma establishes that parametric models of a data-
generating linear time-invariant (LTI) system may be replaced
by a raw data matrix time series, provided the dynamics are
sufficiently excited. Following the contributions [6 – 8], the
number of new data-driven control algorithms has boomed
over the past few years, see, e.g., [9] for a recent overview. A
convincing demonstration of the potential of direct approaches
to data-driven control is the successful implementation of
the DeePC algorithm [6] in a wide range of experimental
case studies, including synchronous motor drives [10], grid-
connected power converters [11], and aerial robotics [12].

The new wave of data-driven control algorithms has
primarily modeled uncertainty by ellipsoids [12 – 17]. While
effective in many circumstances, this approach disregards the
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geometric structure of the data, leading to a possibly coarse
characterization of uncertainty.

This paper explores the problem of uncertainty quantifi-
cation in data-driven control of LTI systems. We seek a
data-based behavioral description of uncertainty. Building
on the rich legacy of robust control theory [18 – 21], we
identify the problem of uncertainty quantification with that of
selecting a “natural” metric to study robustness questions. The
starting point of our analysis is a seemingly elementary, yet
profound consequence of the fundamental lemma: restricted
behaviors may be regarded as subspaces of fixed dimension
and represented directly by data matrices. Building on this
premise, we identify restricted behaviors with points on the
Grassmannian Gr(k,N), i.e., the set of all subspaces of
dimension k in RN , endowed with the structure of a (quotient)
manifold. The L-gap metric is then introduced as a direct
finite-time counterpart of the classical gap metric [18 – 24],
which measures the distance between graphs of input-output
operators and allows one to compare the closed-loop behavior
of different systems subject to the same feedback controller.

Contributions: The contributions of the paper are fourfold:
(i) we define a new (representation free) metric on the set
of restricted behaviors; we show that this metric is easily
computed via measured data and readily understood as a
distance between trajectories; (ii) we show that our metric can
be used for uncertainty quantification for behaviors described
by AR models; (iii) we connect the L-gap to the classical
gap metric on `2 from robust control theory; and (iv) we
demonstrate the benefits brought by the L-gap in a data-driven
mode recognition and control case study.

Paper organization: The remainder of this paper is
organized as follows. Section II provides basic definitions
regarding behavioral systems. Section III introduces a new
metric between restricted behaviors, which is then used for
uncertainty quantification purposes and shown to be closely
connected to the classical gap metric on `2. Section IV
illustrates the theory with a numerical case study. Section V
provides a summary of the main results and an outlook to
future research directions. The proofs of our main results can
be found in [25].

Notation: The set of positive and non-negative integers
are denoted by N and Z+, respectively. The set of positive
integers {1, 2, . . . , p} is denoted by p for every p ∈ N. The
set of real numbers is denoted by R. The transpose, image,
and kernel of the matrix M ∈ Rp×m are denoted by MT,
imM , and kerM , respectively. A map f from X to Y is
denoted by f : X → Y ; (Y )X denotes the collection of all
such maps. The backward t-shift denoted by σt is defined as
(σtf)(t′) = f(t+ t′) for all t, t′ ∈ Z+.
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II. BEHAVIORAL SYSTEMS

A. Preliminaries in behavioral system theory

Following [5], we introduce some basic notions and results
on behavioral systems.

Definition 1. A dynamical system Σ is a triple Σ =
(Z+,R

q,B), where Z+ is the time set, Rq is the signal
space, and B ⊆ (Rq)Z+ is the behavior of the system.

Definition 2. A dynamical system Σ = (Z+,R
q,B) is

linear if B is a linear subspace of (Rq)Z+ , time invariant if
σt(B) ⊆ B for all t ∈ Z+, and complete if B is closed in the
topology of pointwise convergence.

The structure of an LTI dynamical system is characterized
by a set of integer invariants known as structure indices [4,
Section 7]. The most important ones are the number of inputs
(or free variables) m, the lag l, and the order n. The structure
indices are intrinsic properties of a dynamical system, as they
do not depend on its representation. The complexity of a
dynamical system is defined as c = (m, l, n). The class of all
complete linear, time invariant systems (with complexity c)
is denoted by Lq (Lq,c). By a convenient abuse of notation,
we shall also write B ∈ Lq (B ∈ Lq,c).

Definition 3. Let B ∈ Lq and T ∈ N. The restricted behavior
(in the interval [1, T ]) is the set B|T = {w = (w1, . . . , wT ) ∈
RqT | ∃ v ∈ B : wt = vt, ∀ t ∈ T}. A vector w ∈ B|T is a
T -length trajectory of the dynamical system B.

The following lemma characterizes the dimension of a
restricted behavior B|L ∈ Lq,c in terms of its complexity.

Lemma 1. [26, Lemma 2.1] Let B ∈ Lq,c. Then
B|L is a subspace of RqL, the dimension of which is
dimB|L = mL+ n, for L > l.

Definition 4. A dynamical system B ∈ Lq is controllable
if for every T ∈ N, w1 ∈ B|T , and w2 ∈ B there exists
T ′ ∈ Z+, and w ∈ B such that wt = w1

t for t ∈ T and
wt = w2

t−T−T ′ for t > T + T ′.

In other words, a dynamical system is controllable if any two
trajectories can be patched together in finite time.

B. The fundamental lemma

Given a T -length trajectory w ∈ RqT of a controllable
dynamical system B ∈ Lq , one may obtain a non-parametric
representation of the restricted behavior using a result first
presented in [3], which over time became known as the
fundamental lemma. To state this result, we introduce some
preliminary notions.

Definition 5. The Hankel matrix of depth L ∈ T associated
with w ∈ RqT is defined as

HL(w) =


w1 w2 · · · wT−L+1

w2 w3 · · · wT−L+2

...
...

. . .
...

wL wL+1 · · · wT

 ∈ R(qL)×(T−L+1).

Definition 6. A vector u ∈ RmT is persistently exciting of
order L if HL(u) is full row rank, i.e., rankHL(u) = mL.

Persistency of excitation plays a key role in system identifi-
cation and adaptive control [1 , 2 , 27]. A necessary condition
for u ∈ RmT to be persistently exciting of order L is
that HL(u) has at least as many columns as rows, i.e.,
T ≥ Tmin = (m+ 1)L− 1. We are now ready to state the
fundamental lemma [3].

Lemma 2 (Fundamental lemma). Consider a controllable
dynamical system B ∈ Lq,c, with input/output partition
w = (u, y). Assume wd = (ud, yd) ∈ B|T and ud is persis-
tently exciting of order L+ n. Then B|L = imHL(wd).

Lemma 2 is of paramount importance in data-driven con-
trol [28]. It provides conditions for the restricted behavior
B|L to be completely characterized by the image of the Hankel
matrix HL(wd). As a result, the subspace imHL(wd) can be
regarded as a non-parametric representation of the dynamical
system B, so long as L-length trajectories are considered. The
controllability and persistency of excitation assumptions can
be removed by focusing on behaviors of fixed complexity and
instead using the rank condition descending from Lemma 2

rankHL(wd) = mL+ n. (1)

Lemma 3. [28, Corollary 19] Consider a dynamical system
B ∈ Lq,c and an associated T -length trajectory wd ∈ B|T .
For L > l, B|L = imHL(wd) if and only if (1) holds.

For convenience, in the sequel a T -length trajectory wd

of B ∈ Lq,c is said to be sufficiently excited of order L if
it satisfies the rank condition (1). All of these “low rank”
results hold obviously for the deterministic LTI case, but they
can also be used to design effective de-noising schemes by
low-rank approximation or relaxations thereof [9].

III. A METRIC ON RESTRICTED BEHAVIORS

This section explores the issue of uncertainty quantification
using a data-based behavioral description of uncertainties. The
starting point of our analysis is a seemingly elementary, yet
profound consequence of the fundamental lemma: restricted
behaviors may be regarded as subspaces of equal dimension,
which may be represented directly by data matrices. Thus,
restricted behaviors may be identified with points on the
Grassmannian Gr(k,N), i.e., the set of all subspaces of
dimension k in RN , endowed with the structure of a (quotient)
manifold [29, p.63]. Metrics between restricted behaviors thus
arise from the underlying Grassmannian structure.

Proposition 1. The function d is a metric on the set of all
restricted behaviors B|L ∈ Lq,c, with L > l, whenever d is a
metric on Gr(mL+ n, qL).

Proof. Let L > l and let d be a metric on Gr(mL+ n, qL).
By Lemma 1, the set of all restricted behaviors B|L ∈ Lq,c

is a subset of Gr(mL+ n, qL). Then the set of all restricted
behaviors B|L ∈ Lq,c endowed with the metric d is also a
metric space, since any subset of a metric space is itself a
metric space with respect to the induced metric [30, p.38].
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With these premises, a natural question is: what is a good
notion of distance for restricted behaviors? Ideally, a metric
should be intrinsic, easily computed, and readily understood
in system-theoretic terms. The aforementioned properties
provide an identikit of the desired distance and pave the way
for the discussion in this section, where we explore a notion
of distance between restricted behaviors.

A. The gap between restricted behaviors
The gap metric plays a pivotal role in control theory [18 –

24] and, in many ways, it reflects the intuitive notion of
distance between subspaces. This section introduces the L-
gap metric as a direct finite-time counterpart of the classical
gap metric. To this end, we recall a few preliminary notions.

Let S be a normed space with norm ‖ · ‖. Let v ∈ S
and let W be subspace of S. The distance between v and
W is defined as δ(v,W) = infw∈W ‖v − w‖ [31, p.7]. If
‖ · ‖2 is the Euclidean 2-norm in RN , the distance between v
and W is the distance between v and its projection onto W ,
i.e., δ(v,W) = ‖(I − PW)v‖2 , where PW is the orthogonal
projector onto the subspaceW . Hence, the distance between a
vector v of unit norm projected onto V andW is ‖PV − PW‖.
This motivates the following definition.

Definition 7. [19, p.30] Let V and W be closed subspaces
of a Hilbert space H. The gap between V and W is defined
as

gapH(V,W) = ‖PV − PW‖ , (2)

where PV and PW are the orthogonal projectors onto V and
W , respectively.

The gap between V and W may be expressed as [19, p.30]

gapH(V,W) = max {‖(I − PW)PV‖ , ‖(I − PV)PW‖} .

In particular, 0 ≤ gapH(V,W) ≤ 1 for all V and W . To
streamline the exposition, we also recall the notion of directed
gap between V and W which is defined as

⇀
gapH(V,W) = sup

v∈V
‖v‖=1

δ(v,W) = ‖(I − PW)PV‖ . (3)

Clearly, gapH(V,W) = max{ ⇀
gapH(V,W),

⇀
gapH(W,V) }.

Note that no explicit mention to any particular choice of
‖ · ‖ is actually needed when the ambient Hilbert space
H is RN , since all the gap functions are equivalent [32,
p.91]. Throughout the paper, we consider the gap metric
corresponding the Euclidean 2-norm ‖ · ‖2 for simplicity.

We are now ready to introduce a notion of distance between
restricted behaviors.

Definition 8. Let B ∈ Lq,c and B̃ ∈ Lq,c. For L ∈ Z+, the
L-gap between B and B̃ is defined as

gapL(B, B̃) = gap(B|L, B̃|L). (4)

The directed L-gap between B and B̃ is defined as
⇀

gapL(B, B̃) =
⇀

gap(B|L, B̃|L).

The L-gap can also be defined for behaviors with different
lags. However, for clarity of exposition we define it here for
behaviors of the same complexity c.

1) System-theoretic interpretation. Given B ∈ Lq,c, con-
sider the problem of estimating the closest trajectory w ∈ B|L
to a given measured trajectory w̃ ∈ RqL which belongs to a
possibly distinct behavior B̃ ∈ Lq,c, i.e.,

minimize
w∈B|L

‖w − w̃‖22,

subject to w̃ ∈ B̃|L.

By Lemma 1, B|L is a subspace and the estimation error is

inf
w∈B|L

‖w − w̃‖2 =
∥∥(I − PB|L)w̃

∥∥
2
. (5)

Now suppose B̃ is known to be such that gapL(B, B̃) ≤ ε.
Then

sup
w̃∈B̃|L
‖w̃‖2 6=0

inf
w∈B|L

‖w − w̃‖2
‖w̃‖2

≤ ε.

In other words, gapL(B, B̃) is an upper bound for the worst
case relative estimation error. The domain of the L-gap metric
may be extended to measure distances between subspaces of
different dimension [33], so these results may be used, e.g.,
for tracking a reference or smoothing of a noisy trajectory
w̃. We elaborate more on this in Section V.

2) Geometry and data-based computation. The gap metric
has a well-known geometric interpretation in terms of the sine
of the largest principal angle between two subspaces [32].
In particular, as an immediate consequence of [32, Theorem
4.5], for L > l, the L-gap between B ∈ Lq,c and B̃ ∈ Lq,c is
gapL(B, B̃) = sin θmax, where θmax is the largest principal
angle between the subspaces B|L and B̃|L. Furthermore, by
Proposition 1 and since gap is a metric on Gr(k,N) for
k,N ∈ N [32, p.93], we have the following result.

Corollary 1. The set of all restricted behaviors B|L ∈ Lq,c,
with L > l, equipped with gapL is a metric space.

The L-gap between behaviors can be directly computed
from the knowledge of sufficiently excited trajectories. Let
wd ∈ B|T and w̃d ∈ B̃|T be sufficiently excited T -length
trajectories of order L, with L > l. Let

HL(wd) = [U1 U2 ]

[
S 0
0 0

] [
V1
V2

]
,

HL(w̃d) = [ Ũ1 Ũ2 ]

[
S̃ 0
0 0

] [
Ṽ1
Ṽ2

]
be the singular value decomposition (SVD) of the Hankel
matrices HL(wd) and HL(w̃d) with U1 ∈ RqL×(mL+n) and
Ũ1 ∈ RqL×(mL+n), respectively. Then

gapL(B, B̃) = ‖HL(wd)HL(wd)† −HL(w̃d)HL(w̃d)†‖2
= ‖U1U

T
1 − Ũ1Ũ

T
1 ‖2 = ‖ŨT

2 U1‖2 (6)

where the first identity follows from gapL(B, B̃) =
‖PB|L − PB̃|L‖2 and since PB|L = U1U

T
1 and PB̃|L = Ũ1Ũ

T
1

[34, p.82]. The second identity is due to [34, Thm 2.5.1].
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B. Uncertainty quantification

The following theorem, which is inspired by [35, Prop. 7],
provides an upper and a lower bound on the L-gap in case
the restricted behaviors have a specific form.

Theorem 1. Let B ∈ Lq,c and B̃ ∈ Lq,c. Given L ∈ Z+, with
L > l, assume

B|L = im

[
I
F

]
and B̃|L = im

[
I

F̃

]
.

Then

‖F − F̃‖2√
1 + ‖F‖22

√
1 + ‖F̃‖22

≤ gapL(B, B̃) ≤ ‖F − F̃‖2.

Theorem 1 can be used to quantify uncertainty for a wide
class of systems. For example, assume B ∈ Lq,c is defined
by the AR model

yt+L−1 =

L−2∑
k=0

akyt+k +

L−1∑
k=0

bkut+k, (7)

where ak ∈ R, bk ∈ R, and L ∈ N is such that L > l. Then

B|L = ker
[
F −I

]
= im

[
I
F

]
,

with F = [ a0 b0 . . . aL−2 bL−2 bL−1 ]. Based on this
observation, we have the following corollary for AR models.

Corollary 2. Let B ∈ Lq,c and B̃ ∈ Lq,c. Given L ∈ Z+,
with L > l, assume B and B̃ are defined by the AR models (7)
and

ỹt+L−1 =

L−2∑
k=0

ãkỹt+k +

L−1∑
k=0

b̃kũt+k, (8)

with ãk ∈ R and b̃k ∈ R, respectively. Assume

F =
[
a0 b0 . . . aL−2 bL−2 bL−1

]
,

F̃ =
[
ã0 b̃0 . . . ãL−2 b̃L−2 b̃L−1

]
.

are such that ‖F − F̃‖2 ≤ ε. Then gapL(B, B̃) ≤ ε.

Remark 1. We presented Corollary 2 for the AR models (7)
and (8) for clarity of exposition, but the result holds for
more general multi-input multi-output systems. Corollary 2
raises the natural open question of how to relate the L-gap
to classical uncertainty models [18 – 21] including additive,
multiplicative, and coprime factor uncertainties. This is left
as an area of future work. M

C. Connection with the gap metric on `2
The gap metric plays a central role in robust control

theory [18 – 21], where finite-dimensional, LTI systems are
regarded as operators acting on a given Hilbert space H,
such as1 `2 or H2. In this context, the distance between
finite-dimensional, LTI systems is defined in terms of the

1`2 is the Hilbert space of square summable sequences u : Z+ → Rm.
H2 is the Hardy space of functions f : C→ Cm which are analytic in the
complement of the closed unit disk [19, p.13].

gap between the graphs of the corresponding input-output
operators.

Definition 9. [19, p.30] Let2 H = U × Y , with U and Y
Hilbert spaces. Let P : V → Y and P̃ : Ṽ → Y be closed
operators, with V and Ṽ subspaces of U . The gap between
P and P̃ is defined as

gapH(P, P̃ ) = gapH(graph(P ), graph(P̃ )).

The gap metric on H2 admits a classical interpretation in terms
of Nyquist diagrams (plotted on the Riemann sphere) and
can be computed as the H∞ norm of a transfer matrix [21].
We now establish that, under certain assumptions, the L-gap
metric can be connected to the gap metric on `2.

Theorem 2. Let B ∈ Lq,c and B̃ ∈ Lq,c. Assume B =
graph(P ) and B = graph(P̃ ), with P and P̃ bounded linear
operators on `2. Then

lim
L→∞

gapL(B, B̃) ≤ gap`2(P, P̃ ).

IV. APPLICATION: MODE RECOGNITION AND CONTROL

We envision many applications of the L-gap metric, e.g.,
prediction error quantification, robustification in data-driven
control, and fault detection and isolation. In the following
case study, we use it as an analysis tool in the spirit of mode
recognition and control. Namely, we determine the mode of
a switched autoregressive exogenous (SARX) system directly
from data for the purpose of data-driven control.

Consider a SARX system [36] with 2 modes given by

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 + nt,

yt = 0.7yt−1 − 0.12yt−2 + 1ut−1 + nt,
(9)

where ut ∈ R and yt ∈ R are the inputs and outputs at
time t ∈ Z+, and nt ∼ N (0, σ2) is observation noise with
σ = 10−4 and truncated to the interval [−3σ, 3σ].

We consider the problem of performing data-driven con-
trol [6], while recognizing switches in the system’s mode. To
this end, we use DeePC [6] which solves the following optimal
control problem in a receding horizon fashion for some
data matrix D serving as a predictive model for allowable
trajectories:

minimize
y,u,g

2000‖y − r‖2 + ‖u‖2 + 20‖g‖2

subject to Dg = (uini, u, yini, y),
(10)

where (uini, yini) is the most recent Tini-length trajectory of
the system (used to implicitly fix the initial condition from
which the Tf-length prediction, (u, y) evolves), and r ∈ RTf

is a given reference trajectory. We select Tini = 2 and Tf = 5.
By Lemma 3, any data matrix D containing sufficiently

exciting data from a particular system mode describes (approx-
imately due to noise) the subspace in which trajectories live
for that mode. By performing an SVD of D, we can identify a
large decrease in the singular values indicating the dimension
of the subspace of allowable trajectories. Note that SVD

2The graph of an operator P : U → Y is defined as graph(P ) =
{(u, Pu) ∈ U × Y : u ∈ U} [19, p.17].
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does not necessarily preserve structure, but we only require
a basis for the restricted behavior. In this case, the subspace
dimension is given by (1) and is equal to Tini + Tf + n = 9,
as shown in Fig. 1.

0 2 4 6 8 10 12 14
10

-5

10
0

Fig. 1: Singular values of data matrices representing restricted
behaviors of each mode of system (9).

Distinguishing the modes would not be possible by looking
at the singular values of the data matrices alone. We propose
the following data-driven mode recognition and control
strategy based on the use of the L-gap to distinguish the
modes. Before starting, let t ≥ 0 denote the current time, and
fix the matrix D in (10). The first step is to compute an SVD
of D and form a basis Dbasis using the first Tini + Tf + n
left singular vectors. Next compute an SVD of a matrix
with M columns containing the most recent Tini + Tf-length
trajectories, denoted Ht, and form a basis, denoted Ht,basis,
using the first Tini+Tf+n left singular vectors. Fix a threshold
ε > 0. If gapTini+Tf

(imHt,basis, imDbasis) > ε, set D = Ht.
This can be thought of as adopting the most recent data as
the predictive model in (10) only when the gap between the
predictive model D and the most recent data Ht is larger
than some pre-defined threshold. Equipped with the data
matrix D, solve (10) for the optimal predicted input trajectory
(u?1, . . . , u

?
Tf

) and apply ut = u?1 to the system. Measure
yt and set (uini, yini) in (10) to the most recent Tini-length
trajectory of the system. Update Ht by deleting the first
column and adding the most recent Tini +Tf-length trajectory
as the last column. This process is repeated to perform
simultaneous data-driven mode recognition and control.

The strategy above has been simulated with ε = 0.3
on system (9) for t ∈ [0, 70]. We arbitrarily initialize
the predictive model D in (10) to be a matrix containing
sufficiently exciting data from mode 1. However, the system
starts in mode 2 and only switches to mode 1 at t = 40.
The strategy is compared to data-driven control without
mode recognition, i.e., where D is kept constant in (10).
The results are shown in Fig. 2 and Fig. 3. We observe
in Figure 2 that the controlled output trajectory is offset
from the desired reference. This is due to the fact that we
are using the wrong data set in (10) for predicting optimal
trajectories. However, the L-gap between Dbasis and Ht,basis
quickly increases above the threshold ε, thus successfully
recognizing a discrepancy between the current mode of the
system and the data being used for control (see Fig. 3). During
this transient phase, the moving window contains a mixture
of data containing trajectories from mode 2, and mode 1.
However, at approximately t = 22, the L-gap successfully

0 10 20 30 40 50 60 70
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0

2

4

6

8

Fig. 2: Performance of mode recognition and control strategy
on the SARX system with switches between modes compared
to data-driven control without mode recognition.

recognizes that the data matrix D used in (10) is consistent
with the current mode of the system (mode 2). The control
performance after this transient phase then improves. This
is again illustrated during the mode switch at t = 40. On
the other hand, the data-driven control strategy with no
mode recognition does not adapt to mode switches and has
poor performance until t = 40 where the system switches
incidentally to mode 1 thus matching with the fixed data
matrix D being used in this strategy. This case study suggests
that the L-gap is a suitable tool for data-driven online mode
recognition and control.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Fig. 3: Distance computed with the L-gap between Ht,basis
and Dbasis for L = Tini + Tf.

V. CONCLUSION

This paper has explored the issue of uncertainty quan-
tification in the behavioral setting. A new metric has been
defined on the set of restricted behaviors and shown to capture
parametric uncertainty for the class of AR models. The metric
is a direct finite-time counterpart of the classical gap metric.
A data-driven control case study has illustrated the value of
the new metric through numerical simulations.

The paper has shown that the gap induces a metric space
structure on the set of restricted behaviors. However, there are
many other common metrics defined on Grassmannians [37].
In fact, all such distances depend on the principal angles.
This is not a coincidence. The geometry of the Grassmannian
is such that any rotationally invariant metric between k-
dimensional subspaces in RN (i.e., dependent only on the
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relative the position of subspaces) is necessarily a function
of the principal angles.

Theorem 3. [33, Theorem 2] Let d be a rotationally
invariant3 metric on Gr(k,N). Then d(V,W) is a function
of the principal angles between the subspaces V and W .

Each metric induces a particular geometry, which comes
with its own advantages and disadvantages. For example, the
Grassmann metric is the geodesic distance on Gr(k,N) [33,
Theorem 2], viewed as a Riemannian (quotient) manifold and
the corresponding geodesics admit an explicit expression [38].
This, in turn, suggests that the choice of the metric structure
on the set of restricted behaviors is crucial, raising a number
of important questions. For instance, any metric on Gr(k,N)
that induces a differentiable structure opens up the possibility
of directly optimizing over behaviors. So can one exploit
any such structure to improve the performance of data-
driven control algorithms (e.g., DeePC)? In practice, non-
parametric representations of restricted behaviors are typically
constructed from noisy measurements. This can be a serious
drawback, because noisy restricted behaviors may appear to
be far apart, even when close and/or of the same dimension.
This issue may be resolved by considering metrics on infinite
Grassmannians [33]. So can one leverage these results in an
online, real-time, noisy setting where behaviors are constantly
changing? We leave the exploration of these important
questions as future research directions.
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