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Data-Driven Criteria for Detectability and Observer Design for LTI
Systems

Vikas Kumar Mishra1, Henk J. van Waarde2, and Naim Bajcinca1

Abstract— We study the problems of determining the de-
tectability and designing a state observer for linear time-
invariant systems from measured data. First, we establish
algebraic criteria to verify the detectability of the system from
noise-free data. Then, we formulate data-driven linear matrix
inequality-based conditions for observer design. Finally, we give
conditions to infer the detectability of the system from noisy
data.

I. INTRODUCTION

It is known that detectability is necessary and sufficient
for observer design of linear time-invariant (LTI) systems.
An observer is an algorithm that estimates the state variables
from input/output measurements of a known system and the
process of building an observer is called observer design. In
this paper, we are interested in developing data-driven criteria
to verify the observability/detectability of an LTI system and
to design a state observer for the system.

The notion of observers dates back to the seminal contri-
bution by Luenberger [1]. Since then the theory of observers
has witnessed tremendous developments in several directions
[2], [3]. Recently, due to the ever-increasing interest in
machine learning tools across communities, control theory
has regained a considerable amount of interest in data-driven
control. Data-driven control essentially means data-driven
analysis or designing control laws directly from the measured
data, without explicit model identification (estimating model
parameters from measured data). The root of this surge in
data-driven control may be traced back to the idea of viewing
systems as a set of “valid” trajectories. Here, valid refers to
the fact that the trajectories must satisfy a set of dynamical
equations that defines the system. This idea first conceived
by Willems in the 1980s is known as the behavioral system
theory.

About almost two decades ago, Willems and co-workers
proved a result that provides sufficient conditions under
which the set of input/output trajectories of a deterministic
linear time-invariant (LTI) system can be recovered from a
single measured input/output trajectory [4, Theorem 1]. This
result is popularly known as the fundamental lemma. The
fundamental lemma is a cornerstone of data-driven control
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theory and has been further extended in many directions such
as the development of necessary and sufficient conditions
[5], [6], uncontrollable LTI systems [7], [8], stochastic LTI
systems [9], multiple trajectories [10], several classes of
nonlinear systems [11]–[13] to name a few. Further, the
fundamental lemma has been directly used in tackling several
problems such as data-driven simulation and control [14],
data-driven stabilization [15], data-driven predictive control
[16]–[18], data-driven observers [19], and data-driven input
design [20] to name a few. See a more recent survey [21]
for an overview.

However, here we are interested in an alternative approach,
namely data informativity. Inspired by robust control, in
this approach, instead of recovering/investigating the true
system, we investigate the set of systems that explain the
given data and then tackle the control problem at hand
for this set of systems, and thus the problem is naturally
solved for the true system that generated the data [22]. This
approach has been used in solving several control problems
such as verifying structural properties of LTI systems [23],
[24], closed-loop parametrization from open-loop data [25],
stabilization problem [26], dissipativity problem [27], and
algebraic regulator problem [28] to name a few.

In this paper, we develop data-driven criteria to determine
the observability/detectability and to design a state observer
for LTI systems. A work similar to our observability result
has been developed in [24], wherein, unlike ours, it is as-
sumed that the output matrix is known. Data-driven observers
have been considered in [19]. However, unlike ours, their
approach is based on the fundamental lemma. Further, we
will provide necessary and sufficient conditions to verify the
detectability of the system from noisy data.

Our notation is standard. The set of real and complex
numbers are denoted by R and C, respectively. The set of real
k×m matrices is denoted by Rk×m. The transpose and the
Moore-Penrose pseudo-inverse of any matrix A ∈ Rk×m are
denoted by A⊤ and A†, respectively. The identity and zero
matrices of appropriate dimensions are denoted by I and 0,
respectively. For any symmetric matrix A ∈ Rk×k, In(A)
denotes its inertia and is defined as In(A) = (σ−, σ0, σ+),
where σ−, σ0, and σ+ denotes, respectively, the number of
negative, zero, and positive eigenvalues of the matrix A. If
A is positive definite or positive semidefinite, we denote it
by A > 0 or A ≥ 0. The symbol Λ(A,B) := {λ ∈ C |
det(A−λB) = 0} denotes the set of generalized eigenvalues
of a pair of square matrices (A,B). Finally, im(A) denotes
the image of the matrix A.

The rest of the paper is organized as follows. We study
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observability/detectability from noise-free data in Section III,
and then observer design in Section IV. In Section V, we
investigate detectability from noisy data. Section VI contains
our numerical experiments. Finally, Section VII contains
concluding remarks and future research directions.

II. PROBLEM FORMULATION

This paper is devoted to study the problems of deriving
data-driven criteria for observability/detectability and ob-
server design for the linear time-invariant (LTI) system

x(t+ 1) = Asx(t) (1a)
y(t) = Csx(t). (1b)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rp the
output vector. Parameter matrices As, Cs are of appropriate
dimensions. In the following, we recall the Hautus lemma
for observability/detectability of system (1).

Lemma 1: System (1) is observable if and only if for all
λ ∈ C

rank
[
As − λI

Cs

]
= n (2)

holds. Likewise, the system is detectable if and only if (2)
holds for all λ ∈ C with |λ| ≥ 1.
A full-order observer for system (1) is described by

x̂(t+ 1) = Asx̂(t) + L(y(t)− ŷ(t)) (3a)
ŷ(t) = Csx̂(t). (3b)

Here, x̂(t) ∈ Rn is an estimate of x(t) and L is a to-
be-designed matrix of appropriate dimensions. System (3)
is called an asymptotic observer for (1) if the error vector
e(t) = x(t) − x̂(t) → 0 as t → ∞. Using (1) and (3), the
error dynamics is given by

e(t+ 1) = (As − LCs)e(t) (4)

Thus, we aim at designing L such that As − LCs is Schur,
i.e., all the eigenvalues of As −LCs lie inside the unit disk.
We now recall the following standard result that provides
necessary and sufficient conditions for observer design.

Theorem 1: [2] The following statements are equivalent:

1) There exists asymptotic observer (3) for system (1);
2) Matrix pair (As, Cs) is detectable;
3) There exists L such that As − LCs is Schur;
4) There exist L and P = P⊤ > 0 such that

P − (As − LCs)
⊤P (As − LCs) > 0.

Because we are interested in data-driven analysis and design
problems for system (1), we assume that the true parameter
matrices As and Cs are unknown. However, we have access
to the state/output data. Following the notation of [22],
system (1) can be rewritten as

X+ = AsX− (5a)
Y− = CsX−, (5b)

with

X :=
[
x(0) x(1) . . . x(T − 1) x(T )

]
∈ Rn×(T+1)

X+ :=
[
x(1) x(2) . . . x(T − 1) x(T )

]
∈ Rn×T

X− :=
[
x(0) x(1) x(2) . . . x(T − 1)

]
∈ Rn×T

Y− :=
[
y(0) y(1) y(2) . . . y(T − 1)

]
∈ Rp×T .

Naturally, the set of systems explaining the data is given by

Σ = {(A,C) ∈ Rn×n × Rp×n |
[
X+

Y−

]
=

[
A
C

]
X−}. (6)

Definition 1: We say that the data (X,Y−) are informative
for observability/detectability if every pair (A,C) ∈ Σ is
observable/detectable.

The system is identifiable if one can uniquely recover the
parameters (A,C) from the data. The following proposition
on identifiability of system (1) is a straightforward conse-
quence of [22, Proposition 6].

Proposition 1: System (1) is identifiable if and only if X−
is of full row rank. In this case, we have

As = X+X
†
− and Cs = Y−X

†
−. (7)

Remark 1: The observer design discussed in this paper
relies on the state data X , which are usually obtained via an
observer. However, these data are collected offline and once
the observer is constructed, it can be used to estimate the
state at any point in time and also in online experiments.
See also [19, Remark 4]. Further, this work can be seen as a
stepping stone to a more general problem, where only (noisy)
input/output data will be used to design an observer.
We are now in a position to state the problems that we tackle
in this paper.

1) Find conditions under which the noise-free data
(X,Y−) are informative for observability/detectability.

2) If the noise-free data (X,Y−) are informative for
detectability, design an asymptotic observer for (1) on
the basis of the given data.

3) Extend 1) to noisy data, as explained in more detail in
Section V.

III. DATA-DRIVEN TESTS FOR
OBSERVABILITY/DETECTABILITY

In this section, we develop a data-driven tests for observ-
ability/detectability of system (1). First we show that the
full row of X− is a necessary condition for detectability and
then give data-driven necessary and sufficient conditions for
observability/detectability of the system.

Theorem 2: If the data (X,Y−) are informative for de-
tectability, then X− is of full row rank.
Prior to proving this theorem, we first state and prove an
auxiliary lemma.

Lemma 2: Let A ∈ Rn×n and nonzero ξ ∈ Rn. Then, for
every δ > 0 there exists β ∈ R such that ρ(A+ βξξ⊤) > δ,
where ρ(·) denotes spectral radius.

Proof: Assume on contrary that there exists δ > 0 such
that

ρ(A+ βξξ⊤) ≤ δ for every β ∈ R.
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This implies

ρ(
1

β
A+ ξξ⊤) ≤ δ

β
for every β > 0.

Now, taking the limit β → ∞ and using the continuity of the
spectral radius, we can conclude that ρ(ξξ⊤) = 0, which is
a contradiction to the fact that ξ ̸= 0. Hence, lemma holds.

Proof: [Proof of Theorem 2] Assume on the contrary
that ξ⊤X− = 0 for ξ ̸= 0. Let (A,C) ∈ Σ. By Lemma 2,
we can choose a β ∈ R such that

ρ(A+ βξξ⊤) ≥ 1 and (8)

ρ(A+ βξξ⊤) > ρ(A) (9)

Let η ∈ Cn be such that

(A+ βξξ⊤)η = λη, (10)

where λ is an eigenvalue of A + βξξ⊤ whose modulus
coincides with ρ(A + βξξ⊤). Note that ξ⊤η ̸= 0 by (9).
Now, we consider three cases:

1) Let λ ∈ R. Then, without loss of generality, η ∈ Rn.
Now define [

Ā
C̄

]
:=

[
A+ βξξ⊤

C − 1
ξ⊤η

Cηξ⊤

]
.

Then, (Ā, C̄) ∈ Σ and
[
Ā− λI

C̄

]
η = 0. Thus, the pair

(Ā, C̄) ∈ Σ and is not detectable.
2) Let λ ̸∈ R, and η = η1 + iη2, where η1 ∈ Rn and

η2 ∈ Rn are linearly dependent. Then η = (a + ib)ζ
with ζ ∈ Rn and (A+βξξ⊤−λI)ζ = 0, which implies
λ is real and we are back in case 1).

3) Let λ ̸∈ R, and η = η1 + iη2, where η1 ∈ Rn and
η2 ∈ Rn are linearly independent. Since ξ⊤η ̸= 0, we
have η ̸∈ im(X−). We claim that it is without loss of
generality to assume that both η1, η2 ̸∈ im(X−). For
otherwise, we have two cases: either η1 ∈ im(X−),
η2 ̸∈ im(X−) or η1 ̸∈ im(X−), η2 ∈ im(X−). Define

η̄ := (1 + i)η = (η1 − η2) + i(η1 + η2).

Note that both (η1 − η2), (η1 + η2) ̸∈ im(X−).
Our claim will be established provided we prove that
(η1 − η2), (η1 + η2) are linearly independent, which
follows from our assumption that η1, η2 are linearly
independent. Thus, it is without loss of generality to
assume that both η1, η2 ̸∈ im(X−). Hence, there exists
matrix C0 such that

C0X− = 0, C0η1 = −Re(Cη), C0η2 = −Im(Cη).

Now define [
Ā
C̄

]
:=

[
A+ βξξ⊤

C + C0

]
.

It can be seen that

(Ā, C̄) ∈ Σ and
[
Ā− λI

C̄

]
η = 0.

Therefore, if X− is not of full row rank, there exists a pair
(Ā, C̄) ∈ Σ, which is not detectable. This completes the
proof of the theorem.
The following theorem provides necessary and sufficient
conditions for observability/detectability.

Theorem 3: The data (X,Y−) are informative for observ-
ability if and only if for all λ ∈ C

rank
[
X+ − λX−

Y−

]
= n (11)

holds. Likewise, the data are informative for detectability if
and only if (11) holds for all λ ∈ C with |λ| ≥ 1.

Proof: We will prove the result for observability. The
result for detectability can be proven essentially in a similar
fashion. To prove the “if” part, note that (11) implies

rank
[
A− λI

C

]
X− = n ∀λ ∈ C (12)

for all (A,C) ∈ Σ. The last equality implies

rank
[
A− λI

C

]
≥ n ∀λ ∈ C. (13)

Because
[
A− λI

C

]
has n number of columns, the result

follows.
Conversely, suppose that the data (X,Y−) are informative

for observability, but that (11) does not hold. That is, there
exists λ ∈ C such that

rank
[
X+ − λX−

Y−

]
̸= n. (14)

This implies that for this λ

rank
[
A− λI

C

]
X− ̸= n. (15)

Because X− is of full row rank (Theorem 2), the above
implies

rank
[
A− λI

C

]
< n. (16)

That is, the system is not observable. This completes the
proof of the theorem.
Remark that to verify the model-based observability using
Lemma 1, it is sufficient to test (2) for all λ that are
the eigenvalues of the matrix As. However, the matrix[
X+ − λX−

]
in (11) is in general not square. Hence, this

idea of eigenvalues cannot be directly used to verify (11).
Nevertheless, following [7, Algorithm 1], a similar algorithm
can be developed to verify the data-driven observability
condition (11).

Algorithm 1: Data-driven observability test
Input: Observed data matrices X and Y−.
Output: The system is observable/unobservable.

1: Construct the data matrices X−, X+ from X .
2: If rank X− < n, the data are not informative for

observability.
3: If rank X− = n, let U⊤X−V =

[
S 0

]
(SVD of X−).
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4: Partition X+ as U⊤X+V =
[
X+,11 X+,12

]
, where

X+,11 ∈ Rn×n and partition Y− conformably as
Y−V =

[
Y−,11 Y−,12

]
.

5: Compute the generalized eigenvalues of (X+,11, S).

6: Compute the rank of Yλ :=

[
X+,11 − λS X+,12

Y−,11 Y−,12

]
for

all λ ∈ Λ(X+,11, S).
7: If rankYλ = n for all λ ∈ Λ(X+,11, S), the data are

informative for observability.
It is important to note that we can compute the rank of the
matrix Yλ for all λ ∈ Λ(X+,11, S) with |λ| ≥ 1 to check
whether or not the system is detectable.

IV. DATA-DRIVEN OBSERVER DESIGN

In this section, first, we give another condition under
which the noise-free data (X,Y−) is informative for de-
tectability. Then, by using this result, we build a data-driven
asymptotic state observer.

Theorem 4: The data (X,Y−) are informative for de-
tectability if and only if X− is of full row rank and there
exist K and P = P⊤ > 0 such that[

P (PX+X
†
− −KY−X

†
−)

⊤

PX+X
†
− −KY−X

†
− P

]
> 0.

(17)
Proof: “if” part: Suppose that X− is of full row rank

and (17) is feasible. From Schur complement lemma, (17) is
equivalent to

P−(PX+X
†
−−KY−X

†
−)

⊤P−1(PX+X
†
−−KY−X

†
−) > 0.

Substituting L = P−1K, equivalently K = PL, the above
inequality reduces to

P − (X+X
†
−−LY−X

†
−)

⊤P (X+X
†
−−LY−X

†
−) > 0. (18)

Because X− is of full row rank, from Proposition 1, Σ =
{(As, Cs)} and As, Cs are given by (7). In view of Theo-
rem 1, together (18) and (7) imply that the data (X,Y−) are
informative for detectability.

“Only if” part: Suppose that the data (X,Y−) are infor-
mative for detectability. Then, from Theorem 2, X− is of
full row rank. Now, from Proposition 1 and Theorem 1, it
follows that there exist L and P = P⊤ > 0 such that (18)
holds. Substituting K = PL, equivalently L = P−1K and
by using Schur complement lemma, it can be shown that
(18) is equivalent to (17). Thus, (17) is feasible.
In view of Theorem 4, we can design a full-order data-driven
observer as follows

x̂(t+ 1) = X+X
†
−x̂(t) + L(y(t)− ŷ(t)) (19a)

ŷ(t) = Y−X
†
−x̂(t), (19b)

where L = P−1K can be obtained by solving LMI (17) for
P and K.

Remark 2: Although Theorem 4 provides a way to com-
pute the observer gain matrix L from the data, this approach
to designing an observer is equivalent to the model-based
approach. The reason is that here we need X− to be of full
row rank, which is equivalent to the identifiability of the
system (cf. Proposition 1).

V. DETECTABILITY FROM NOISY DATA

Consider the system

x(t+ 1) = Asx(t) + w(t) (20a)
y(t) = Csx(t) + v(t). (20b)

Here, w(t) ∈ Rn is the process noise and v(t) ∈ Rp is the
measurement noise. Following our notation (see Section II),
system (20) can be rewritten as

X+ = AX− +W− (21a)
Y− = CX− + V−, (21b)

where the noise matrices W− and V− are defined as

W− :=
[
w(0) w(1) . . . w(T − 1)

]
∈ Rn×T

V− :=
[
v(0) v(1) . . . v(T − 1)

]
∈ Rp×T .

We assume that W− and V− satisfy[
I[

W⊤
− V ⊤

−
] ]⊤ [

Φ11 Φ12

Φ⊤
12 Φ22

] [
I[

W⊤
− V ⊤

−
] ]

≥ 0,

(22)
where Φij , i, j = 1, 2, are known matrices of appropriate
dimensions with Φ11 = Φ⊤

11, Φ22 = Φ⊤
22 < 0, and Φ11 −

Φ12Φ
−1
22 Φ

⊤
12 > 0. For a discussion on this assumption, we

refer the readers to [26], [27]. In view of (21), inequality (22)
can be reformulated as inequality (23). Thus, under the noise
model (22), the set of systems given by matrix pair (A,C)
that explain the data is given by

Σ̃ =
{
(A,C) ∈ Rn×n × Rp×n | (23) is satisfied

}
. (24)

Definition 2: We say that the data (X,Y−) are informative
for quadratic detectability if there exist matrices L and P =
P⊤ > 0 such that

P − (A− LC)⊤P (A− LC) > 0 (25)

for all (A,C) ∈ Σ̃.
Inequality (25) can be written as I

A
C

⊤  P 0

0 −
[

I
−L⊤

]
P

[
I

−L⊤

]⊤  I
A
C

 > 0.

(26)
Thus, to find conditions for data informativity for quadratic
detectability is equivalent to finding conditions under which
there exist L and P = P⊤ > 0 such that inequality (26)
holds for all matrix pairs (A,C) with the satisfaction of
inequality (23). Our idea is to use the matrix S-lemma to
tackle this problem. To this end, we recall the matrix S-
lemma [26, Section III].

Lemma 3 (Matrix S-lemma): Let two symmetric matrices
M,N ∈ R(k+m)×(k+m) be given such that

M =

[
M11 M12

M⊤
12 M22

]
, N =

[
N11 N12

N⊤
12 N22

]
.
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[
I[

A⊤ C⊤] ]⊤  I

[
X+

Y−

]
0 −X−

[
Φ11 Φ12

Φ⊤
12 Φ22

] I

[
X+

Y−

]
0 −X−

⊤ [
I[

A⊤ C⊤] ]
≥ 0. (23)

Suppose that M22 ≤ 0, N22 ≤ 0, and kerN22 ⊆ kerN12.
Further, assume that there exists matrix Z̄ ∈ Rm×k that
satisfies the Slater condition[

I
Z̄

]⊤
N

[
I
Z̄

]
> 0. (27)

Then[
I
Z

]⊤
M

[
I
Z

]
> 0 ∀ Z ∈ Rm×k with

[
I
Z

]⊤
N

[
I
Z

]
≥ 0

if and only if there exist scalars α ≥ 0 and β > 0 such that

M − αN ≥
[
βI 0
0 0

]
.

We remark that (26) is in terms of (A,C) while (23) is
in terms of the transposed matrices A⊤ and C⊤. We thus
need a dualization result to transpose again the matrices A⊤

and C⊤ in order to use the matrix S-lemma. This can be
achieved by the following lemma.

Lemma 4 (Dualization lemma): Define the matrix

Ψ =

 I

[
X+

Y−

]
0 −X−

[
Φ11 Φ12

Φ⊤
12 Φ22

] I

[
X+

Y−

]
0 −X−

⊤

(28)

=:

[
Ψ11 Ψ12

Ψ21 Ψ22

]
, (29)

where

Ψ11 = Φ11 +

[
X+

Y−

]
Φ⊤

12 +

(
Φ12 +

[
X+

Y−

]
Φ22

)[
X+

Y−

]⊤
Ψ12 =

(
Φ12 +

[
X+

Y−

]
Φ22

)
X⊤

−

Ψ21 = Ψ⊤
12

Ψ22 = X−Φ22X
⊤
− .

Assume that In(Ψ) = (n, 0, n+ p). Given a pair (A,C), the
inequality (23) holds if and only if I

A
C

⊤

N

 I
A
C

 ≥ 0, (30)

with

N =

[
0 −I
I 0

]
Ψ−1

[
0 −I
I 0

]
. (31)

Proof: Note that Ψ11 = Ψ⊤
11 and Ψ22 = Ψ⊤

22. Further,
by our assumption the matrix Ψ has the correct inertia
required for [27, Lemma 3]. The lemma thus follows from
[27, Lemma 3].
Remark that the assumption In(Ψ) = (n, 0, n + p) is a
combined assumption on the noise model as well as the

data matrices. Relaxing this assumption is a topic of future
research. We define

Ψ−1 =

[
Ψ̃11 Ψ̃12

Ψ̃21 Ψ̃22

]
and thus

N =

[
−Ψ̃22 Ψ̃21

Ψ̃12 −Ψ̃11

]
, (32)

where

Ψ̃11 = (Ψ/Ψ22)
−1

Ψ̃12 = −(Ψ/Ψ22)
−1Ψ12Ψ

−1
22

Ψ̃21 = −Ψ−1
22 Ψ

⊤
12(Ψ/Ψ22)

−1

Ψ̃22 = Ψ−1
22 +Ψ−1

22 Ψ
⊤
12(Ψ/Ψ22)

−1Ψ12Ψ
−1
22 .

(33)

Here Ψ/Ψ22 = Ψ11−Ψ12Ψ
−1
22 Ψ

⊤
12 is the Schur complement

of Ψ22. In view of the symbols used in the matrix S-lemma,
we define

M =

 P 0

0 −
[

I
−L⊤

]
P

[
I

−L⊤

]⊤  (34)

and N as in Eq. (32).
We now verify the assumptions of the matrix S-lemma.

Because P > 0,

M22 = −
[

I
−L⊤

]
P

[
I

−L⊤

]⊤
≤ 0.

Next, under the inertia assumption on Ψ,

N22 = −Ψ̃11 ≤ 0.

Finally, kerN22 ⊆ kerN12 follows directly from the fact
that N22 is nonsingular. Combining the above discussion, the
following theorem is stated, which gives necessary and suffi-
cient conditions for the data being informative for quadratic
detectability.

Theorem 5: Let In(Ψ) = (n, 0, n + p). Then, the data
(X,Y−) are informative for quadratic detectability if and
only if the LMI (35), where Ψ̃11, Ψ̃12, Ψ̃21, Ψ̃22 are defined
in (33), is solvable for matrices P = P⊤ > 0, K, and scalars
α ≥ 0 and β > 0.

Proof: Note that In(Ψ) = (n, 0, n+p) implies In(N) =
(n+p, 0, n), where N is given in (32). Thus, condition (27)
holds for the matrix N and for some Z̄ ∈ Rn×(n+p).

To prove the “if” part, let LMI (35) be solvable for P =
P⊤ > 0, K, and scalars α ≥ 0, β > 0. Then, by using
K = PL, where L ∈ Rn×p, and the Schur complement
lemma, it can be shown that (35) is equivalent to

M − αN ≥
[
βI 0
0 0

]
, (36)
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P − βI 0 0 0

0 −P K 0
0 K⊤ 0 K⊤

0 0 K P

− α

 I 0
0 I
0 0

[
−Ψ̃22 Ψ̃21

Ψ̃12 −Ψ̃11

] I 0
0 I
0 0

⊤

≥ 0 (35)

where M and N are defined in (34) and (32). Now, from
Lemma 3, it follows that (26) holds for all pairs (A,C)
satisfying (30). Further, from Lemma 4, (30) holds if and
only if (23) holds. Thus, (26) holds for all pairs (A,C) ∈ Σ̃.
That is, the data are informative for quadratic detectability.

Conversely, suppose that the data are informative for
quadratic detectability. That is, there exist L and P =
P⊤ > 0 such that (26) holds for all pairs (A,C) with the
satisfaction of (23). From Lemma 4, (23) holds if and only
if (30) holds. Now, from Lemma 3, there exist scalars α ≥ 0
and β > 0 such that (36) holds, where M and N are defined
in (34) and (32). By using L = P−1K, where K ∈ Rn×p,
and the Schur complement lemma, it follows that (36) is
equivalent to (35). This completes the proof.
Unlike in the noise-free data setting, data informativity for
quadratic detectability does not imply that Σ̃ is a singleton
set. Therefore, although we could characterize quadratic
detectability, which is a necessary condition for observer
design, for the entire set of systems Σ̃, it is in general not
possible to obtain a single observer for all systems in Σ̃. The
reason is that the observer dynamics depend on the particular
system (A,C) ∈ Σ̃. Designing an observer from noisy data
is a subject of future research.

VI. NUMERICAL EXPERIMENTS

We consider a pendulum, see for instance [3, Exam-
ple 10.5.4], whose dynamics is given by

mℓ2θ̈ +mℓg sin θ = 0, (37)

where m is the mass of the pendulum, ℓ its length, θ the
angle, and g the constant of gravity. For the purposes of
simulation, let us take m = 1, ℓ = 1, and g = 9.8. For
small values of θ, sin θ ≈ θ. In that case, taking x1 = θ and
x2 = θ̇, the nonlinear second order dynamics (37) can be
written as the first order linear dynamics:

ẋ =

[
0 1

−9.8 0

]
x, (38)

where x =

[
x1

x2

]
. Assuming that we can observe the variable

x1, we can write the output equation as

y =
[
1 0

]
x. (39)

We then discretize (38)-(39) by using the built-in function
c2d of Matlab with sampling time 0.4 s. This yields an
unstable discrete-time system

x(t+ 1) =

[
0.3132 0.3034
−2.973 0.3132

]
x(t) (40a)

y(t) =
[
1 0

]
x(t). (40b)

We consider Gaussian distributed random initial state with
zero mean and unit variance and generate the sampled data
of length T = 20. It can be verified that system (40) is
detectable by using Algorithm 1. Solving (17), we obtain
the matrices

P =

[
2.8369 −0.0928
−0.0928 3.2641

]
and K =

[
1.1937
−9.6994

]
.

Hence, by using the backslash operator \ of Matlab, we
obtain the desired observer gain matrix

L =

[
0.3238
−2.9624

]
from K = PL,

and thus the observer (19) can be designed. The plots for the
true and estimated states are given in Fig. 1.
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Fig. 1. True and estimated states.

Noisy case
We adapt the set-up of noise-free case above. However,

unlike the noise-free case, here we consider system (20),
where we assume that the noise samples of both w(t) and
v(t) are bounded in norm as∥∥∥[w⊤(t) v⊤(t)

]⊤∥∥∥2
2
≤ κ for all t. (41)

It has been shown in [26, Section II] that the above noise
bound (41) is satisfied if we take our noise model (22) as
Φ11 = κTI, Φ12 = 0, and Φ22 = −I. We choose κ =
0.1 and use Theorem 5 to infer the quadratic detectability.
The matrix Ψ has 2 negative eigenvalues and 3 positive
eigenvalues. Thus, the inertia assumption on Ψ is satisfied.
Upon solving the LMI (35), we obtain a desired solution as
follows.

P =

[
0.1086 −0.0045
−0.0045 0.0310

]
, K =

[
0.0465
−0.0779

]
,
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α = 0.6121, β = 0.0034, L =

[
0.3256
−2.4641

]
.

As such, the data are informative for quadratic detectabil-
ity. We have solved the LMIs in Matlab using Yalmip [29]
in both noise-free and noisy cases.

VII. CONCLUDING REMARKS AND OUTLOOK

We have formulated necessary and sufficient data-driven
criteria to verify the observability/detectability of an LTI
system. Based on this, we have developed a numerically
reliable algorithm to check whether or not the system is
observable/detectable. After that, we have considered the
problem of data-driven observer design. An LMI-based data-
driven method has been developed to design an observer,
which can be easily implemented on a computer. Next, we
have studied the quadratic detectability from noisy data using
a recently developed matrix S-lemma. We have taken the
pendulum system as an example to illustrate our developed
results.

This work opens up several interesting research questions.
So far, we have assumed that we have access to few samples
of offline state data; however, it would indeed be interesting
to develop analogous results based on the input/output data
(cf. Remark 1). One can consider the noisy input/output data
case as well. Another problem of interest would be to design
data-driven reduced-order observers. Further, to generalize
these results to different system classes, for instance linear
differential-algebraic systems or nonlinear systems would be
interesting.
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[17] J. Berberich, J. Köhler, M. A. Muller, and F. Allgower, “Data-driven
model predictive control with stability and robustness guarantees,”
IEEE Trans. Autom. Control, 2020.

[18] S. Baros, C.-Y. Chang, G. E. Colon-Reyes, and A. Bernstein, “Online
data-enabled predictive control,” arXiv preprint arXiv:2003.03866,
2020.

[19] M. S. Turan and G. Ferrari-Trecate, “Data-driven unknown-input
observers and state estimation,” IEEE Control Syst. Lett., vol. 6, pp.
1424–1429, 2021.

[20] J. Shi, Y. Lian, and C. N. Jones, “Data-driven input reconstruction and
experimental validation,” arXiv preprint arXiv:2203.02827, 2022.

[21] I. Markovsky and F. Dörfler, “Behavioral systems theory in data-driven
analysis, signal processing, and control,” Annu. Rev. Control, vol. 52,
pp. 42–64, 2021.

[22] H. J. Van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel,
“Data informativity: a new perspective on data-driven analysis and
control,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4753–4768,
2020.

[23] J. Eising and H. L. Trentelman, “Informativity of noisy data for
structural properties of linear systems,” Syst. Control Lett., vol. 158,
p. 105058, 2021.

[24] J. Eising, H. L. Trentelman, and M. K. Camlibel, “Data informativity
for observability: An invariance-based approach,” in 2020 European
Control Conference (ECC). IEEE, 2020, pp. 1057–1059.

[25] J. Berberich, A. Koch, C. W. Scherer, and F. Allgöwer, “Robust data-
driven state-feedback design,” in Proc. Amer. Control Conf. IEEE,
2020, pp. 1532–1538.

[26] H. J. van Waarde, M. K. Camlibel, and M. Mesbahi, “From noisy
data to feedback controllers: non-conservative design via a matrix S-
lemma,” IEEE Trans. Autom. Control, 2020.

[27] H. J. van Waarde, M. K. Camlibel, P. Rapisarda, and H. L. Trentel-
man, “Data-driven dissipativity analysis: application of the matrix S-
lemma,” arXiv preprint arXiv:2109.02090, 2021.

[28] H. L. Trentelman, H. J. Van Waarde, and M. K. Camlibel, “An
informativity approach to the data-driven algebraic regulator problem,”
IEEE Trans. Autom. Control, 2021.
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