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SUMMARY
Systemic inflammation is established as part of late-stage severe lung disease, butmolecular, functional, and
phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive
pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation,
emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutro-
phils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states
correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine
cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor
populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in
neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential
therapeutic targets and biomarkers for early diagnosis and patient stratification.
INTRODUCTION

The World Health Organization (WHO) recently elevated

chronic obstructive pulmonary disease (COPD) to be the third

leading cause of death worldwide, with projected substantial
This is an open access article under the CC BY-N
increases in prevalence and incidence over the next decades.1

Classified as a heterogeneous chronic respiratory disease

manifesting with inflammation, progressive and persistent

airflow limitation, alveolar emphysema, and acute exacerba-

tions,1 COPD is driven by the interaction of genetics and the
Cell Reports 42, 112525, June 27, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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environment, in which smoking and air pollution are major risk

factors.2

While mainly involving the lung, severe-stage COPD has sys-

temic involvement of elevated inflammatory markers, such as

C-reactive protein, TNF-a, IL-6, IL-8, and fibrinogen.3 Patients

with systemic inflammation have higher exacerbation frequency

and all-cause mortality.4 Furthermore, blood transcriptome

studies in COPD patients support the presence of a systemic in-

flammatory component.5–12 Yet surprisingly, little is known of the

cellular and molecular changes within the systemic immune sys-

tem in early-stage COPD. In particular, neutrophils, the most

abundant circulating immune cell, accumulate in the lung tissue

of COPD patients and are associated with alveolar damage, lung

function decline, and reduced gas exchange, as well as phago-

cytosis of opportunistic pathogens.13

Recently, the application of single-cell sequencing technolo-

gies has revealed an unexpected molecular and functional diver-

sity within the neutrophil compartment,14–20 both under homeo-

static conditions and in the context of inflammatory diseases in

affected tissues and in the circulation.14 We postulated that

such high-resolution technologies would enable us to charac-

terize the molecular and phenotypic changes in this important

immune cell type in COPD and that increased influx of neutro-

phils into the lung during early-stage disease would entail molec-

ular changes in the bone marrow and the periphery. Such

changesmight serve as surrogates for disease activity and guide

novel therapeutic interventions.

We applied several single-cell technologies to human

and murine blood and human bronchoalveolar lavage fluid

(BALF) samples, as well as murine bone marrow, to characterize

the altered neutrophil cell states in COPD. We describe elevated

and reprogrammed granulopoiesis in early-stage COPD, which

is directly linked to alterations in the human blood neutrophil

compartment that correlate with disease clinical manifestations.

RESULTS

Blood neutrophils exhibit an altered molecular
phenotype and are elevated in COPD
To assess systemic changes within the immune system in

COPD, we collected peripheral blood from 31 individuals

suffering from chronic idiopathic cough or an exquisitely sensi-
2 Cell Reports 42, 112525, June 27, 2023
tive cough reflex without underlying pathology (hereafter named

controls), as well as 69 COPD patients (Figure 1A and Table S1),

and determined the changes in the numbers of immune cell pop-

ulations (Figure 1B). Whole-blood immune cell counts were

significantly increased (p = 0.000016) in COPD patients, and

this was attributed to the elevated numbers of neutrophils

(p = 0.00012) and monocytes (p = 0.00012). Multicolor flow

cytometry analysis using previously established panels for

the myeloid and lymphoid compartments21 (Figure S1 and

Table S1) also showed the relative elevation of neutrophil fre-

quencies (p = 0.02), as well as decreases in natural killer (NK)

cell frequencies (p = 0.048) in COPD patients (Figure 1C), consis-

tent with previous reports.22 Furthermore, the absolute neutro-

phil counts correlated with disease severity, as examined by

the percentage predicted forced expiratory volume in 1 s

(FEV1) (r = �0.39; p = 0.0002), used as the major clinical severity

score in the Global Initiative for Chronic Obstructive Lung Dis-

ease (GOLD) grade classification (Figure 1D), and the degree

of emphysema (in both lungs), suggesting that theymay be impli-

cated in the loss of small airways in COPD (Figure 1E). Similarly,

blood neutrophil numbers negatively correlated with the

FEV1/FVC (forced vital capacity) ratio (r =�0.35; p = 0.0009) (Fig-

ure 1F). Altogether, neutrophils showed significant elevation in

their numbers in peripheral blood and correlated with lung func-

tion decline and degree of emphysema in COPD.

All major cellular states of blood neutrophils are altered
in COPD
To define the molecular alterations in different immune cell types

between COPD and controls, we next analyzed blood samples

from six control individuals and eight early-stage COPD

(GOLD2) patients by single-cell RNA sequencing (scRNA-seq;

Seq-well). Unsupervised clustering of 69,199 CD45+ cells identi-

fied 17 clusters (Figure S2A), which were annotated using pub-

lished gene markers for human blood cells (Figure S2B and

Table S2) and the GeneSigPro classifier labels12 (Figure S2C).

The dataset consisted of major blood immune cells (monocytes,

neutrophils, dendritic cells, eosinophils, and T, B, and NK cells),

a minor population of erythrocytes and megakaryocytes, and

lineage subsets and cellular states, for example, classical and

non-classical monocytes or resting and activated CD4+ T cells

(Figure 2A).



Figure 1. Immune-cell-specific transcriptomic signatures in the blood of control and COPD patients

(A) Sample collection and processing pipeline.

(B) Bar plot of absolute immune cell counts in the blood of 30 control and 56 COPD patients. Data are represented as the mean ± SD and statistical analysis was

carried out with a Wilcoxon test, ***p < 0.001.

(C) Bar plot of immune cell proportions in the blood of 31 control and 69 COPD patients analyzed by flow cytometry. Data are represented as the mean ± SD and

analysis was carried out with a two-tailed t test (neutrophils) or a Wilcoxon test (monocytes, eosinophils, T cells, B cells, NK cells) for non-normally distributed

data, *p < 0.05.

(D–F) Spearman correlation analysis of blood neutrophil counts with (D) percentage forced expiratory volume in 1 s (% FEV1), (E) percentage emphysema in both

lungs, and (F) FEV1/FVC ratio. Color code depicts the stratification of COPD patients according to the Global Initiative for Chronic Obstructive Lung Disease

(GOLD) guidelines.
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Molecular alterations in COPD were assessed by defining

differentially expressed (DE) genes between control and COPD

patients for all immune cell types (Figure 2B and Table S2).

Groups of DE genes were unique to neutrophils, classical/inter-

mediate monocytes, activated T cells, or dendritic cells (DCs),

and there were several others that were shared by different im-

mune cell types. Hierarchical clustering of the union of DE genes

between COPD and controls resulted in 10 distinguished clus-

ters (Figure 2B). Cluster 1 was enriched in alarmins, the neutro-

phil granule marker CD63,25 and the proteinase inhibitor

SERPINB1,26 whereas clusters 3, 4, and 5 were enriched in inter-

feron responses (IRF1, IFNAR1), oxidative phosphorylation

(NDUFA4, ATP5L, COX5B, COX7B), and antigen presentation-

related genes originating from the comparison of intermediate/

non-classical monocytes. Cluster 2 included neutrophil activa-

tion markers (FCGR3B, SOD2, IFITM2, IFIT2), clusters 7 and

10 contained B cell activation genes (CD69, CXCR4) and immu-

noglobulins, and cluster 6 (CD8+ T cells/NK cell dominated) was

enriched in cytotoxic molecules (NKG7, GZMH, GZMA, GNLY).

Last, two large clusters (8, 9) characterized by mitochondrial

(MT-CO2, MT-ND2, MT-CO1, MT-CO3) and protein translation

machinery genes (EEF1A1, ENO1, EIF4G2), respectively, were

altered in several immune cell types in COPD patients’ blood.

Pathway analysis and visualization of the top 5 enriched gene

sets (based on the upregulated and downregulated DE genes
for each immune cell type individually) revealed two major

hubs of regulated pathways for the majority of cell types

(Figures 2C and S2D). Neutrophils did not downregulate com-

mon pathways in COPD, such as nonsense-mediated decay,

translation, and metabolism of amino acids (Figure 2C, left)

and overlapped only in some molecular pathways with mono-

cytes (e.g., neutrophil degranulation), but they differed in their

molecular deviation (e.g., TLR cascades, interferon-a signaling,

interferon signaling, and interactions with lymphoid cells) (Fig-

ure 2C, right).

To further characterize the molecular phenotype of blood neu-

trophils in COPD, we subdivided the 20,670 neutrophils from the

complete dataset. They exhibited five neutrophil cellular states

that we hereafter refer to as N1S–N5S (Figures 2D and 2E).

With the exception of N4S, all neutrophil states were present in

both COPD patients and controls, with N3S and N5S having

the highest abundance (Figure S3A). Quality control assessment

showed that N1S neutrophils presented, on average, with a

higher number of unique molecular identifiers (UMIs) and

genes than the rest (Figures S3B and S3C). The neutrophil

compartment displayed distinct functional states in terms

of the expression of cluster-specific genes (Figure 2E and

Table S3): N1S (LCN2, ANXA1, LYZ), N2S (IFIT1, IFIT2, IFIT3),

N3S (CXCR2, CXCL8), N4S (PTPRC, RNF149, GLT1D1), and

N5S (S100A12, S100P, MME). Pathway analysis revealed that
Cell Reports 42, 112525, June 27, 2023 3
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the neutrophil states shared functionalities, such as degranula-

tion and interleukin/interferon signaling, but also displayed

state-specific pathways, such as translation, antigen presenta-

tion and processing, Ga12/13 signaling, and RHO GTPase

signaling (Figures S3D–S3H).

The neutrophil clusters described in our study matched the

population structure in a recent COVID-19 study.23 N1S corre-

sponded to the previously described LCN2 neutrophil state,

with a small contribution from SLPI and RIBO neutrophils; N2S

resembled the ISG (interferon-stimulated gene) state; and N3S

neutrophils corresponded to the NEAT1 state, N4S to the

G0S2 state, andN5S toS100A12 neutrophils (Figure 2F). In addi-

tion, evaluation of the expression of neutrophil granule genes al-

lowed us to classify the cell states based on their maturation sta-

tus24 (Figure 2G). With the exception of N1S/LCN2 neutrophils,

all other states were enriched in mature neutrophil granule

genes. In fact, trajectory inference analysis connected the imma-

ture N1S/LCN2 to mature N5S/S100A12 and N3S/NEAT1 states

before a bifurcation into either the N2S/ISG or the N4S/G0S2

state was identified (Figure S3I). Finally, comparison of the

blood neutrophil state frequencies between control and COPD

patients did not reveal any statistically significant differences

(Figure S3J).

When analyzing overall changes between COPD patients and

controls for all neutrophil states together, interferon signaling

was the only reduced pathway in COPD blood neutrophils, while

several pathways were upregulated, including degranulation

genes, RHO GTPase signaling, and ephrin signaling, which can

promote inflammation (Figure 2H and Table S3). Studying indi-

vidual neutrophil states (Figures 2I–2L and Table S3), alarmins

(S100A8, S100A9, S100A12), which were recently linked to

mucus hypersecretion, lung function decline, and alveolar

destruction in COPD,27,28 were mainly upregulated in the N1S/

LCN2 and N5S/S100A12 states. N1S/LCN2 neutrophils addi-

tionally had upregulated expression of resistin (encoded by

RETN) (Figure 2I), which can inhibit bacterial clearance,29 and

CD63. While overall interferon signaling was downregulated in

COPD blood neutrophils (Figure 2H), IRF1, an important tran-

scription factor for interferon response genes, was elevated

in N2S/ISG neutrophils (Figure 2J). Notably, N2S/ISG, N3S/

NEAT, and N5S/S100A12 neutrophils overexpressed genes

that are involved in cell apoptosis (BNIP2, PDCD10). In contrast,
Figure 2. Blood neutrophils are transcriptionally heterogeneous in con

(A) UMAP (Uniform Manifold Approximation and Projection) representation of 69

annotated using published canonical gene markers and using label transfer from

(B) Heatmap of the union of differentially expressed (DE) genes between control an

normalized expression per cell type and disease status. Hierarchical clustering gro

(C) Network of the top 5 enriched Reactome gene sets in control or COPD patie

regulated in COPD. In bold are gene sets mentioned in the text.

(D) UMAP representation of 20,670 neutrophils from the blood of six control and

(E) Heatmap of the top 5 markers for each neutrophil state. Each column repres

(F) Dot plot with markers from blood neutrophil states from Combes et al.23 Circle

gene, circle color shows average scaled normalized gene expression within the

(G) Single-cell enrichment analysis of neutrophil granule proteins fromCowland an

all cells within the respective neutrophil state.

(H) Gene set enrichment analysis of blood neutrophil DE genes between control

(I–L) Dot plots of DE genes in (I) N1S/LCN2, (J) N2S/ISG, (K) N3S/NEAT1, and (L

Circle size represents the percentage of cells within a cluster that express a part
the larger N3S/NEAT1 (Figure 2K) and N5S/S100A12 (Figure 2L)

neutrophil states downregulated ISGs IFIT2 and IFITM2, indi-

cating that neutrophil-state-specific regulation is apparent

already in circulating blood neutrophils in COPD. Similarly sur-

prising was the downregulation of CSF3R (Figure 2L), an impor-

tant receptor for neutrophil trafficking to the lung, reactive oxy-

gen species secretion, and degranulation,30–32 which may

represent an attempt to control inflammation. SDCBP (coding

for Syntenin-1), which has been linked to immune evasion and

proangiogenic processes in cancer,33,34 was also elevated in

these neutrophils. The apparent complexity of the transcriptional

deviation in N5S/S100A12 neutrophils is further illustrated by

the upregulation of CAP1, which on one hand is involved in

apoptotic pathways as a response to cigarette smoking35; on

the other hand, it may also serve as a receptor for aggravating

inflammation.36

Together, while there are overall changes within the blood

neutrophil compartment in COPD, in particular loss of interferon

(IFN) signaling, all five neutrophil transcriptional states in the cir-

culation show distinct deviations, which point toward a complex

influence of neutrophils on disease development, progression,

and dynamics of COPD, including infectious exacerbations.

Differential expression of surface molecules on blood
neutrophil states in COPD
Currently, a limitation in several studies is the lack of validation of

the findings of single-cell technologies in multiple cohorts to

ensure reproducibility and interpretability. We therefore applied

a combined single-cell transcriptome with targeted proteome

analysis on an additional three control and three COPD patient

cohort using the BD Rhapsody platform to define potential

cell-surface markers for COPD-related neutrophil state deviation

(Figures 3A and S4A–S4D and Table S4).

In total, 9,269 blood cells passed the filtering criteria and 13

clusters were annotated based on their cluster-specific gene

expression (Figures S4A–S4C and Table S4). We detected

4,072 neutrophils that were further divided into five states (Fig-

ure 3B) and were detected in all studied patients (Figure S4D):

N1R (LTF, LCN2, CAMP), N2R (ISG15, IFIT1, MX1), N3R

(TNFAIP3, NFKBIA), N4R (S100P, S100A12, PADI4), and N5R

(NEAT1, PHOSPHO1) (Figure 3C and Table S4). The N1R

neutrophil state had enriched CD38 expression (p = 0.0002),
trol and COPD patients

,199 blood cells from six control and eight COPD patients. Cell clusters were

the GenSigPro classifier.12

d COPD patients for immune cells. Each column represents the scaled average

uped the genes in 10 clusters. The bar plots indicate cluster gene cellular origin.

nts. Red arrows depict terms upregulated in COPD, blue arrows terms down-

seven COPD patients.

ents the average scaled normalized expression per patient.

size represents the percentage of cells within a cluster that express a particular

cluster.

d Borregaard.24 Color depicts the scaled average area under the curve score of

and COPD patients using the Reactome database.

) N5S/S100A12 blood neutrophil states between control and COPD patients.

icular gene, circle color shows average gene expression within the cluster.

Cell Reports 42, 112525, June 27, 2023 5
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Figure 3. Neutrophil transcriptional states from control and COPD patients correspond to distinct phenotypes

(A) Experimental design and analysis pipeline.

(B) UMAP representation of 4,072 neutrophils from three controls and three COPD patients.

(C) Heatmap of the top 5 marker genes for each neutrophil state. Each column represents the scaled average normalized expression per patient.

(D) Violin plots of neutrophil state-specific protein markers.

(E) Violin plots of differentially expressed protein markers between control and COPD patients for blood neutrophil states. Statistical analysis was performed with

the MAST algorithm, *p < 0.05, ***p < 0.001.
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consistent with a progenitor status,19 while N5R neutrophils ex-

pressed the highest levels of CD62L (p = 5.29e�93), a protein

involved in neutrophil adhesion and extravasation (Figure 3D

and Table S4).

The neutrophil population structure was similarly defined in

both datasets (Seq-well and BD Rhapsody) when overlaying

the top 20 genes for each cluster (Figures S4E–S4G). Impor-

tantly, when comparing the transcriptomic differences in the

neutrophil states between control and COPD patients from the

test (Seq-well) and validation (BD Rhapsody) cohorts, we

observed similar patterns. These included the significant upre-

gulation in COPD patients of cell movement-related VIM and

the HLA molecule HLA-B in N3R neutrophils (Figure S4G and

Table S4). Similarly, N4R neutrophils upregulated HLA-C and

N5R neutrophils overexpressed alarmins (S100A12) (Figure S4G

and Table S4).

The altered molecular phenotype of blood neutrophils in

COPD was further supported by increase in cell-surface activa-

tion markers, such as the adhesion markers CD15 (p = 3.26e�8;

N3R), CD66B (p = 0.026; N4R), and CD62L (p = 0.0007; N5R)

(Figure 3E and Table S4). Collectively, molecular deviations

observed for blood neutrophil states in early-stage COPD are

mirrored by changes in the expression of surface proteins

involved in neutrophil functions. Thus, in two independent co-

horts, we identified subsets of blood neutrophils with unique

gene expression patterns using two different scRNA-seq

technologies.
6 Cell Reports 42, 112525, June 27, 2023
BALF neutrophil states overlap with blood neutrophil
deviations in COPD
As COPD is a pulmonary disease with systemic responses and

co-morbidities, we next asked whether the changes observed

in blood neutrophils are linked to changes in neutrophils from

BALF,whichwould facilitate patientmonitoring and stratification.

We examined BALF from six controls and seven GOLD2 COPD

patients using the Seq-well technology to define the cellular

changes in early-stage COPD (Figure 4A). Dimensionality reduc-

tion and clustering revealed three BALF neutrophil clusters that

were present in all donors and had comparable transcript counts

(Figures 4B and S5A–S5C): N1bal (CXCL8, SOD2, TNFAIP6),

N2bal (MNDA, SYNE2, SMCHD1), and N3bal neutrophils

(FCGR3B, S100A8, S100A9, IFITM2) (Figure 4C and Table S5).

N1bal neutrophils were enriched in interleukin signaling (Fig-

ure S5D), N2bal neutrophils featured genes related to influenza

virus infection and translation (Figure S5E), whereas the N3bal

neutrophil state was characterized by gene signatures of neutro-

phil degranulation, TLR cascades, and antigen presentation (Fig-

ure S5F). The frequencies of the three identified neutrophil states

were comparable between control and COPD patients (Fig-

ure 4D). Pathway analysis on DE genes derived from all BALF

neutrophils between control and COPD patients defined degran-

ulation and TLR cascade signaling to be upregulated in COPD

BALF neutrophils, while metabolism of amino acids, translation,

signaling by RHO GTPases, and signaling via SLIT and Round-

about (ROBO) proteins was downregulated (Figure 4E).
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Figure 4. Bronchoalveolar neutrophils are transcriptionally heterogeneous in control and COPD patients

(A) Experimental design and analysis pipeline.

(B) UMAP representation of 1,203 neutrophils from the bronchoalveolar fluid (BALF) of six control and seven COPD patients.

(C) Heatmap of the top 5 marker genes for each BALF neutrophil state. Each column represents the scaled average normalized expression per patient.

(D) Bar plot of BALF neutrophil state frequencies in control and COPD patients.

(E) Gene set enrichment analysis of BALF neutrophil differentially expressed (DE) genes between control and COPD patients using the Reactome database.

(F–H) Dot plots of DE genes in (F) N1bal, (G) N2bal, and (H) N3bal BALF neutrophil states between control and COPD patients. Circle size represents the per-

centage of cells within a cluster that express a particular gene; circle color shows average gene expression within the cluster.

(I) Modified upset plot depicting the shared DE genes (COPD vs. control) between peripheral blood and BALF neutrophil states.
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We next determined DE genes in BALF neutrophil states

(Figures 4F–4H). N1bal had upregulated expression of the

ATPase H+-transporting accessory protein 2 (ATP6AP2), which

is involved in lysosomal acidification. We also identified

several genes in N2bal and N3bal that were also differentially

regulated in the blood of COPD patients (CSF3R, BNIP2,

RETN, SERPINB1, APMAP, GYG1, ENO1, GABARAPL2,

CD63, PDCD10, IRF1) (Figures 4G and 4H), demonstrating sim-

ilarities in the neutrophil responses in COPD in the two compart-

ments. This was further corroborated by the upregulation of

SDCBP in all BALF neutrophil states in COPD patients and

upon comparison of blood and BALF neutrophil cluster markers

(Figures S5G and S5H).

When comparing DE genes in both compartments, we identi-

fied 75 genes similarly altered in blood and BALF from COPD

patients (Figure 4I), although a clear one-to-one relationship be-

tween changes observed in any of the neutrophil states in blood

and those seen in the three BALF neutrophil states could not be

identified. To further examine the similarities in transcriptomic al-

terations between blood and BALF neutrophils, we next grouped
genes found in a particular neutrophil state in blood to be also

changed in at least one of the BALF neutrophil states in COPD.

Our findings show that N1S/LCN2 blood neutrophils share DE

genes between COPD and controls with BALF neutrophils that

are involved in biological processes (slate blue color), such as

eukaryotic translation (EIF4A2, EIF2B1, RPS29, RPL18A) and

rRNA processing (DIMT1, RPS29, RPL18A). For blood N2S/

ISG neutrophils (orange color), genes associated with processes

such as TLR cascades (TLR2), previously associated only with

COPD exacerbations37–39 and apoptosis (PDCD10), were DE

between COPD and healthy controls, which we also identified

in BALF neutrophils. The shared differences in gene expression

in blood N3S/NEAT1 and BALF neutrophils (red color) were

linked to RHO GTPases (ARHGAP3), lysosomal acidification

(ATP6V1B2), and cytoskeleton (SDCBP). Finally, there was a

larger group of DE genes in more than one blood neutrophil state

which were also DE in BALF (magenta color). These genes were

involved in degranulation (CD63, RAB10, DDX3X, SERPINB1),

clathrin vesicle assembly and exosome formation (PICALM),40

antiviral responses (IFNAR1, IRF1), biosynthesis (APMAP),
Cell Reports 42, 112525, June 27, 2023 7
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proteinase inhibition (SERPINB1), and cell apoptosis (BNIP2,

CFLAR).

To link our findings to lung tissue-derived neutrophils, we

defined a 21-surface-marker panel based on significant

neutrophil state surface markers (Table S3), which was

used for imaging mass cytometry (IMC) of lung biopsies

from controls, smokers, and COPD patients (Figures S6A–

S6D and Table S1). N1bal neutrophils were identified as

CD44+CD74+, N2bal neutrophils as CD45+CD66A+CD16+

CD44�CD74�CD62L�CD10�, and N3bal as CD62L+CD10+

cells. In line with previous findings from our laboratory,21 all

neutrophil state proportions were increased in early-stage

COPD patients compared with controls (p < 0.01) and

smokers (p < 0.05) (Figure S6E), which was similarly true

for macrophage abundance in COPD against controls

(p = 0.005) and smokers (p = 0.02) (Figure S6F). Finally,

CD4+ T cells were significantly higher in smokers and COPD

patients compared with controls (p = 0.04; Figure S6F).

Collectively, in addition to the elevated levels of all neutrophil

states in the lung of early-stage COPD patients, several of their

transcriptional deviations are identical to those observed in

blood neutrophils in early-stage COPD.

Murine smoke-induced COPD model reflects human
neutrophil cell states in blood and BALF
As we observed molecular deviations in blood neutrophils from

COPD patients, we hypothesized that neutrophil precursors

might be already altered in early-stage COPD.41 Since bone

marrow aspirates are not diagnostically indicated in COPD pa-

tients, we turned to an established murine model of cigarette

smoke (CS) exposure that replicates themajor features of human

COPD.42–44 Blood (Figure 5), BALF (Figure S7), and bonemarrow

(Figures 6 and S8) were harvested from female BALB/c mice

exposed to air (controls) or CS for 12 weeks (experimental

COPD group) to investigate cellular composition via scRNA-

seq with 103 Genomics technology.

Of 33,577CD45+ cells inmurine blood (Figures 5A–5C), 10,181

were neutrophils and were separated into seven main (n1b–n7b)

clusters (Figure 5D). Enrichment of murine blood neutrophil sig-

natures from Xie et al.15 showed that n3b and n6b neutrophils

contained common myeloid progenitors (CMPs) and granulo-

cyte-monocyte progenitors (GMPs), n5b neutrophils were remi-

niscent of preneutrophils, n2b and n4b contained the previously

described band cells, while n1b and n7b were fully mature neu-

trophils (Figure 5E).

To compare the cell states of murine and human blood neutro-

phils, we utilized the top 20 unique gene markers of the former

and assessed their expression patterns on the latter (Figure 5F).

We found that genes from the murine n2b–n6b clusters were

similar to the N5S human neutrophil state. The n1b neutrophil

signature was enriched in all mature human neutrophil states,

whereas n7b neutrophils were reminiscent of the N4S/G0S2

and N5S/S100A12 states (Figure 5F). To increase the transcrip-

tomic resolution in the mature neutrophil compartment, we

further characterized the n1b murine cluster, which revealed

four cellular states (S100, Il1b, Ctla2a, Isg) (Figure 5G). The top

20 unique gene markers reliably resembled the human structure;

genes from the murine S100 neutrophil signature were enriched
8 Cell Reports 42, 112525, June 27, 2023
in human N5S/S100A12 neutrophils, Ccrl2 and Ctla2a-related

signatures in the human N4S/G0S2 state, and the murine Isg

neutrophils in the human N2S/ISG state (Figure 5H), supporting

that the murine model is suitable for studying COPD-related

neutrophil biology.

Similarly, we sorted live murine BALF cells to yield 18,406

cells (Figures S7A–S7C) and 7,064 neutrophils that were

grouped in five clusters (Figure S7D and Table S6). The

absolute BALF neutrophil counts were increased in smoke-

exposed mice (Figure S7E), whereas the frequencies of

BALF neutrophil states were comparable between air- and

smoke-exposed animals (Figure S7F). Converting the top 20

unique murine BALF state gene markers to their human ortho-

logs and overlaying on the respective human blood neutrophil

transcriptomes showed that the n1bal and n2bal murine BALF

states were enriched in the human N3bal, whereas the n4b

state was enriched in N1bal (Figure S7G). Last, n5b neutro-

phils shared similarity with the N2bal neutrophils, while we

could not clearly associate the murine n3b state, due to the

low number of overlapping genes. Pathway analysis showed

that the DE genes in neutrophil and BALF neutrophil states

between air- and smoke-exposed animals resembled the dif-

ferences observed in the human cohort, such that neutrophil

degranulation, signaling by ROBO receptors, eukaryotic trans-

lation, nonsense-mediated decay, metabolism of amino acids,

and signaling by RHO GTPases were similarly different in the

murine model (Figures 5I and S7H).

The BALF neutrophil states were also reminiscent of the

lung tissue neutrophil compartment in another murine model

of smoke exposure45 that progressed from 2 to 6 months after

the beginning of CS exposure. The three neutrophil clusters

corresponded to the n1bal–n3bal and n4bal states of this

study (Figures S7I and S7J). N4bal neutrophils have been pre-

viously defined as an aged granulocyte population in human

peripheral blood and bone marrow, and they represent the

terminal stage of the neutrophil development continuum.46

Comparison of the relative frequency of cluster 3 neutrophils

at the 2, 4, and 6 month time points revealed a relative in-

crease in this population over time (Figure S7K), which sug-

gests that their accumulation might be linked to developing

pathophysiology. This was additionally supported by ordering

all neutrophils along pseudotime, confirming the time-depen-

dent correlation of the aged neutrophil state (Figure S7L) and

revealing a gene signature, involving tissue-degrading en-

zymes (Ctsb, Ctsd) and granulocyte activation markers (Ier3,

Cd63, Cd24), at progressing disease stages (Figure S7M).

Taken together, our results show that the CS-exposure model

reliably reflected the disease pathophysiology observed in

the two compartments, namely blood and BALF, of COPD

patients.

Chronic CS exposure to induce experimental COPD
causes bone marrow granulopoiesis and transcriptional
reprogramming
Having established the molecular alterations in murine blood

neutrophils, we next addressed the alterations in the neutrophil

precursor compartment in the murine bone marrow (Figure 6A).

In mass cytometry data (Figures 6B–6D and S8A–S8D),
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Figure 5. A murine model of cigarette smoke (CS)-induced COPD recapitulates the human blood neutrophil population structure

(A) Experimental design and sample processing.

(B) UMAP representation of 33,577 CD45+ cells from the blood of four air- and four CS-exposed mice.

(C) Dot plot of top 5 differentially expressed (DE) genes for each identified blood neutrophil cluster against the rest. Circle size represents the percentage of cells

within a cluster that express a particular gene, circle color shows average gene expression within the cluster.

(D) UMAP representation of 10,181 blood neutrophils from four air- and four CS-exposed mice.

(E) Heatmap of the top 20 unique genes from the n1b murine blood neutrophil population from the Xie et al.15 data on the blood neutrophil states of this study.

(F) Heatmap of the top 20 unique murine blood neutrophil genes for the human neutrophil states from Figure 2. Murine genes were first converted to their human

homologs.

(G) UMAP representation of 3,068 mature blood neutrophils from this study.

(H) Heatmap of the top 20 unique murine blood neutrophil state genes for the mature human neutrophil states from Figure 2. Murine genes were first converted to

their human homologs.

(I) Gene set enrichment analysis of DE genes between air- and smoke-exposed mice in the blood n1b neutrophil state using the Reactome database.
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Figure 6. Smoke inhalation induces activation of neutrophil progenitors in the bone marrow

(A) Experimental design and sample processing.

(B) UMAP visualization of 57,966 bone marrow neutrophils from air- and cigarette smoke (CS)-exposed mice acquired with 38-parameter mass cytometry

(CyTOF).

(C) Heatmap of selected marker expression in bone marrow neutrophil metaclusters. Each column represents the scaled average normalized expression per

neutrophil metacluster.

(D) Heatmap of bone marrow neutrophil metacluster proportions in air- and CS-exposed animals.

(E) UMAP representation of 38,277 CD45+ cells from the bone marrow of four air- and four CS-exposed mice.

(F) Dot plot of top 5 differentially expressed (DE) genes for each identified bonemarrow neutrophil cluster against the rest. Circle size represents the percentage of

cells within a cluster that express a particular gene, and circle color shows average gene expression within the cluster.

(G) UMAP representation of 18,941 bone marrow neutrophils from four air- and four CS-exposed mice.

(H) Number of DE genes of all bone marrow neutrophil clusters between CS- and air-exposed mice.

(I) Pathway analysis of early granulocyte-monocyte progenitor (GMP) DE genes between air- and CS-exposed mice using the Reactome database.

(J) Venn diagram showing the overlap of murine bone marrow DE genes between air- and CS-exposed mice with human blood and BALF neutrophil states

between control and COPD patients. Murine genes were first converted to their human homologs.
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Figure 7. Abundance of neutrophil states associates with COPD clinical traits

(A) Enrichment analysis of the conserved nine-gene differentially regulated gene signature in murine bone marrow granulocyte-monocyte progenitors (GMPs) on

human neutrophil states from control and COPD patients.

(B) Sample collection and processing pipeline.

(C) Principal-component analysis of 17,127 present genes in the dataset for blood neutrophils from 10 control and 15 COPD patients.

(D) In silico deconvolution of 10 control and 15 COPD sorted neutrophil whole-transcriptome samples with single-cell signatures from the study cohort. Data

analysis was carried out with a two-tailed t test (N5S/S100A12, N3S/NEAT1) or a Wilcoxon signed rank test (N1S/LCN2, N2S/ISG, N4S/G0S2) for non-normally

distributed data.

(E) Correlation analysis of neutrophil state (N1S/LCN2, N2S/ISG, N3S/NEAT1, N4S/G0S2, N5S/S100A12) abundance with emphysema,%FEV1, FEV1/FVC ratio,

and number of exacerbations using mixed models adjusted for age, sex, and inhaled corticosteroid treatment. Filled boxes indicate significant (p < 0.05) cor-

relation.

(F) In silico deconvolution of 44 granulocyte whole-transcriptome samples from COVID-19 patients from EGAS00001004503 with single-cell signatures from the

study cohort.

(legend continued on next page)
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we identified relative increases in CD34+CD117+CD16/32+IdU+

progenitors, CD117+CD11b+ preneutrophils, and CD11b+Ly-

6G+CD117�CD62L�CD172a� immature neutrophils in smoke-

exposed animals, while CD11b+Ly-6G+CD117�CD62L+CD172a+

mature neutrophils were relatively decreased (Figure 6D).

To determine quantitative changes within the neutrophil pre-

cursor compartment in bone marrow, we analyzed 38,277 sin-

gle-cell transcriptomes (Figures 6E and 6F). By in silico sorting

of neutrophil and precursor clusters, we obtained 18,941 cells

that were further clustered into eight clusters (n1bm–n8bm) (Fig-

ure 6G and Table S6). These clusters resembled previously sug-

gested developmental stages,47 with n6bm and n8bm neutro-

phils expressing a mixture of multipotent progenitor (MPP) and

CMP signatures, n1bm and n2bm cells equivalent to early and

late GMPs, n5bm cells corresponding to promyelocytes, n4bm

reminiscent of metamyelocytes, n3bm carrying signatures of

band cells, and n7bm neutrophils resembling mature peripheral

neutrophils (Figure S8E).

DE gene analysis between air- and CS-exposed animals re-

vealed that the transcriptional reprogramming upon CS expo-

sure was most pronounced in early GMPs (746 genes), followed

by mature neutrophils 2 (151 genes), mature neutrophils 1

(58 genes), and promyelocytes (56 genes) (Figure 6H and

Table S6), strongly supporting smoke-induced deviation of gran-

ulopoiesis. Similar to human blood neutrophils from COPD, early

GMPs in CS-exposed animals had enriched expression of

neutrophil degranulation, signaling by RHO GTPases, and inter-

leukin signaling-related genes (Figure 6I), indicating that reprog-

ramming of the neutrophil population is triggered by changes in

the precursor compartment.

Interestingly, comparison of bone marrow-derived early GMP

DE genes between air- and smoke-exposed mice with those of

human blood (Figure 2) and BALF (Figure 4) neutrophil states

between control and COPDpatients identified 9 shared genes be-

tween all compartments, 43 between bone marrow and blood,

and 63 between bone marrow and BALF (Figure 6J and

Table S6), indicating that the neutrophil transcriptomic reprogram-

ming observed in blood partly occurs already at immature

progenitor states in the bone marrow. In fact, neutrophils

from all three compartments regulate the expression of genes

that are involved in cellular metabolism (GYG1, ATP6AP2,

APMAP, ENO1), intracellular trafficking (GABARAPL2), apoptosis

(BNIP2, PDCD10), and cell activation (CD63, SERPINB1) (Fig-

ure S8F). Taken together, these results show that bone marrow

neutrophil populations in a murine experimental COPDmodel un-

dergo population size and transcriptomic changes that function-

ally include increased myelopoiesis, degranulation, and cytokine

signaling.

Blood neutrophil state signature changes associated
with alveolar destruction and lung function decline
To test whether the transcriptional reprogramming observed in

the murine neutrophil progenitor compartment is carried over
(G) Correlation analysis of neutrophil state (N2S/ISG, N3S/NEAT1, N5S/S100A12

(H) In silico deconvolution of 40 whole-transcriptome samples from sepsis patien

(I) Correlation analysis of neutrophil state (N1S/LCN2, N2S/ISG, N3S/NEAT1 N

creatinine using the Spearman test. Filled boxes indicate significant (p < 0.05) co
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to the blood compartment, we directly assessed the enrichment

of the conserved nine-gene signature altered in murine bone

marrow progenitors on human peripheral neutrophil states. We

found that, in addition to the human N1S/LCN2 (p = 0.015)

neutrophil state, the gene signature was also significantly

enriched in the N4S/G0S2 (p = 0.028) and N5S/S100A12

(p = 0.031) states from COPD patients (Figure 7A), further sup-

porting that neutrophil cell state analysis in human blood is indic-

ative of changes occurring in the bone marrow.

Finally, we asked whether transcriptome changes in blood

neutrophils are associated with clinical parameters used to di-

agnose disease severity in COPD. We combined cell sorting of

blood CD66b+CD16+ neutrophils from an additional cohort of

10 controls and 14 COPD patients with bulk transcriptomics

and subsequently computationally deconvoluted the data

using cell state information from our scRNA-seq data (Fig-

ure 7B).48 Principal-component analysis using all 17,127

present genes separated controls from COPD samples (Fig-

ure 7C). In agreement with the scRNA-seq data, the N3S/

NEAT1 and N5S/S100A12 states were the most prominent,

with N2S/ISG and N4S/G0S2 neutrophils following in

decreasing order of abundance (Figure 7D). Notably, the

N1S/LCN2 neutrophil state was negligible. There was a

relative decrease in N4S/G0S2 (p < 0.01) and N5S/S100A12

(p = 0.052) neutrophil states in COPD, partly compensated

for by a small increase in the abundance of N2S/ISG neutro-

phils (p = 0.09; Figure 7D).

We next calculated the correlation between the relative abun-

dance of neutrophil states and the critical clinical parameters

of lung function to test whether certain neutrophil states may

present with a biomarker potential for early-stage COPD in the

clinics (Figure 7E). The N2S/ISG state negatively correlated

with% FEV1 (p = 0.002) and the FEV1/FVC ratio (p < 0.001), while

the N4S/G0S2 and the N5S/S100A12 states positively corre-

lated with FEV1 (p = 0.005, p = 0.021) and the FEV1/FVC ratio

(p = 0.023, p = 0.026) as a surrogate for lung function,

respectively.

To determine whether the observed deviation of neutrophil

states is a general hallmark of inflammatory conditions, we per-

formed the same analysis in cohorts of granulocyte transcrip-

tome samples from 44 COVID-1949 and whole-blood transcrip-

tome samples from 40 sepsis patients50 (Figures 7F–7I). In the

COVID-19 cohort, computational deconvolution revealed only

the N2S/ISG, N3S/NEAT1, and N5S/S100A12 neutrophil states,

which we found increased in severe COVID-19, particularly at

later time points (Figure 7G). In contrast to COPD, the

N5S/S100A12 state positively correlated with severity (severity

p = 2.721e�09, WHO max score p = 5.121e�06), while the

N2S/ISG state negatively correlated (severity p = 0.000123,

WHO max score p = 0.033), clearly following a different pattern

of deviations in this acute systemic inflammatory condition (Fig-

ure 7G). In sepsis, computational deconvolution revealed a rela-

tive elevation of N5S/S100A12 in samples derived from patients
) abundance with severity and maximum WHO score using the Spearman test.

ts from GSE63042 with single-cell signatures from the study cohort.

5S/S100A12) abundance with sepsis outcome, respiratory rate, and serum

rrelation.
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with severe sepsis, with septic shock, and who died (Figure 7H;

sepsis death). Here, the N3S/NEAT1 state correlated with respi-

ratory rate as a surrogate for low oxygen saturation and disease

severity (Figure 7I; p = 0.048). These findings further support the

notion that deviations in the systemic neutrophil compartment

do not merely reflect a general inflammation signature, but

show disease-associated changes.

For COPD, the changes in N2S/ISG, N4S/G0S2, and N5S/

S100A12 neutrophils might serve as biomarkers associated

with disease progression. The anti-correlation of N2S/ISG

neutrophils with lung function links them to a cardinal mani-

festation of COPD,1 which may be mediated via an intermedi-

ate step of T cell activation by IFNs.51 On the other hand, the

more prominent N4S/G0S2 and N5S/S100A12 neutrophils in

patients with better lung function suggest that neutrophil

endogenous programs (alarmin production, degranulation,

interleukin signaling, G-protein-coupled signaling) are acti-

vated early on in COPD as a natural response to the ongoing

inflammatory triggers; however, they are proportionally

decreased compared with the other neutrophil states in more

severe disease.

DISCUSSION

The present study demonstrates that a systemic inflammatory

response is already occurring in early-stage COPD, which in-

volves reprogramming of the neutrophil compartment in the

bone marrow, peripheral blood, and BALF. Findings in blood

were validated in independent patient groups, as well as with

bulk RNA-seq, providing further evidence that systemic alter-

ations in neutrophils are already present in early-stage

COPD. While COPD-related changes in blood and BALF neu-

trophils, such as degranulation, RHO GTPase signaling, and

translation, overlapped, we observed an unexpectedly com-

plex relationship between cellular states in blood and BALF,

even in control samples, suggesting that the biology of neutro-

phils in these two compartments differs significantly, as also

seen by others.52 As bone marrow is not part of routine diag-

nostics in COPD, we turned to a model of nose-only CS-

induced experimental COPD that is representative of the

mode of exposure in humans and develops hallmark features

of disease similar to those in COPD patients.44 We observed

similar changes in neutrophils in both the blood and the

BALF compartments. In addition, we further elucidated the

transcriptional reprogramming within the bone marrow

compartment with the majority of changes occurring in early

GMPs. Indeed, we identified a gene set that is changed in all

three compartments, further supporting that altered transcrip-

tion of neutrophil subsets in COPD is induced at the progenitor

stage. Finally, we linked changes in the neutrophil compart-

ment to clinical severity parameters in COPD and determined

that the abundance of the N2S/ISG, N4S/G0S2, and N5S/

S100A12 neutrophil states correlated with lung function loss

as typical clinical phenotypes linked to disease severity. This

was not a general observation for inflammatory conditions,

as different neutrophil states were related to clinical severity

in COVID-19 and sepsis patients. We conclude from these

changes that the assessment of reprogramming within the
neutrophil compartment warrants further assessment as a pre-

dictor of COPD pathophysiology and progression.

We establish that the neutrophil compartment in peripheral

blood is clinically relevant, with cell-type frequency, molecu-

lar, and phenotypic changes associated with clinical parame-

ters in COPD patients. Blood neutrophil counts are elevated

in a disease severity-associated manner in COPD, and

certain molecular states (ISG, S100A12) within the neutrophil

compartment defined by single-cell transcriptomics show

unique activation patterns in this disease, including upregula-

tion of S100 molecules and exosome formation machinery,

with certain IFN-induced genes being reduced. In particular,

the abundance of the N2S/ISG neutrophil state was associ-

ated with lung function loss, a major hallmark of disease

severity. As demonstrated in our murine model system,

changes in blood neutrophils are evoked by the major cause

of COPD in humans, namely smoking, and are directly linked

to altered granulopoiesis in the bone marrow that leads to

changes in blood and airway neutrophils, most likely as a

consequence of signals derived from continuous challenge

and damage to the lung. Collectively, we propose that specific

systemic cellular responses to environmental damage of the

lungs in the context of COPD lead to elevated granulopoiesis

in the bone marrow.

In agreement with previous work,14,16,19,20,23,53–55 we identi-

fied five transcriptomic states along a developmental contin-

uum of neutrophils, starting from LCN2 progenitors to interme-

diate states (N3S/NEAT1, N5S/S100A12) and two endpoints

(N2S/ISG and N4S/G0S2 neutrophils). Our findings suggest

that, in control individuals and in COPD patients with adequate

lung function, the egress of bone marrow-derived LCN2 pro-

genitors to the circulation is rather limited, and the trajectory

of neutrophil maturation is arrested at the N5S/S100A12 state.

In COPD patients with poor lung function, however, there

seems to be an active mobilization of neutrophil progenitors,

causing a shift from the N5S/S100A12 intermediate state to

the two terminal branches. This was corroborated by in silico

neutrophil population deconvolution analysis where a relative

decrease in N5S/S100A12 neutrophil frequency was accompa-

nied by a relative increase in the N2S/ISG state. Interestingly,

the blood neutrophil structure is conserved between control

subjects and COPD patients, suggesting that the alterations

in neutrophil molecular phenotypes in COPD are mainly qualita-

tive at the transcriptomic level. The LCN2 progenitor and the in-

termediate N5S/S100A12 neutrophil state were characterized

by cellular activation and overexpressed anti-microbial and an-

tigen-presentation genes (alarmins, cell polarization, HLA class

I). The abundance of three of the molecular states, namely N2S/

ISG, N4S/G0S2, and N5S/S100A12 neutrophils, correlated with

key COPD manifestations (lung function loss), which was not

the case for more acute inflammatory conditions such as

sepsis,50 strongly suggesting that these COPD-related alter-

ations are not simply a general sign of inflammation. We spec-

ulate that the increased presence of N2S/ISG neutrophils con-

tributes to emphysema, possibly upon interactions with T cells,

as has been shown in experimental lung cancer models

where anti-tumor neutrophils expressed similar anti-viral gene

signatures.56 On the other hand, the decreased frequency of
Cell Reports 42, 112525, June 27, 2023 13



Article
ll

OPEN ACCESS
N5S/S100A12 neutrophils may be beneficial for lung function,

as this molecular state expresses inflammatory genes,

including alarmins, proteases, pathogen recognition molecules,

and proinflammatory cytokines.

We also linked findings in blood to tissue-related neutrophils

by analyzing BALF samples, which revealed three major

neutrophil states. We demonstrated the elevated cell numbers

of all three molecular neutrophil states in lung samples of

COPD patients via IMC. Interestingly, there was no direct link

between the blood neutrophil states and those observed in

BALF, indicating a complex integration of microenvironmental

signals shaping cell-state structures of neutrophils in these

two compartments. Our findings agree with recent work from

Ballesteros et al., who showed that neutrophils display distinct

tissue-specific transcriptional and chromatin profiles, whereas

transition from the blood to the lung induces additional chro-

matin modifications.52 Despite the difficulty in directly linking

neutrophil states in blood and BALF, many of the changes be-

tween COPD and controls were observed in both compart-

ments, including genes coding for degranulation, exosome for-

mation, infiltration in tissues, and pattern recognition

receptors.

Transcriptomic changes in blood neutrophil states were most

likely explained by alterations in granulopoiesis,41 which we as-

sessed in the bone marrow of the murine model of smoke expo-

sure. Deviations in transcription in neutrophils in human blood

and in BALF neutrophils clearly showed overlaps with findings

in the precursor compartment in the murine smoking model.

As a sign of elevated granulopoiesis, we observed increases in

neutrophil-committed populations in smoke-exposed animals.

Further, these progenitors showed transcriptional alterations,

including genes involved in neutrophil degranulation, interleukin

signaling, and antigen presentation. Smoke-related signatures

derived from these GMPs were significantly enriched in human

blood neutrophil progenitors, as well as the N4S/G0S2 and

N5S/S100A12 neutrophil states.

Limitations of the study
While our results from the three compartments in the murine

smoking model strongly support that the changes observed in

COPD are linked to chronic exposure to CS, it is important to

highlight the fact that lung inflammation in COPD patients may

have alternative causes, e.g., genetic predisposition, early-life

events and infections, air pollution, and exposure to occupa-

tional gasses.57 As such, it cannot be ruled out that chronic

lung inflammation may feedback to the bone marrow and alter

granulopoiesis. The molecular changes observed in the bone

marrow, blood, and BALF neutrophils upon smoke exposure

point toward a complex feedback loop between chronic chal-

lenge, lung damage, and induction of granulopoiesis, for which

we did not yet find a single factor or pathway responsible.

Most likely, due to the complex environmental stresses involved,

several mechanisms are acting simultaneously. In this respect,

potential effects of active therapeutic treatments of COPD pa-

tients on the neutrophil transcriptomic changes in peripheral

blood and BALF of COPD patients cannot be fully excluded.

Clearly, further studies are required to determine the feedback

loops between the lung and the hematopoietic system occurring
14 Cell Reports 42, 112525, June 27, 2023
in ourmousemodel and in COPD patients already at early stages

of the disease.
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SPRIselect Beckman Coulter Cat# B23318

Stain buffer (FBS) BD Pharmigen Cat# 554656
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10x Genomics Cat# 1000121
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Nextera XT DNA Library Preparation kit Illumina Cat# FC-131-1096
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NovaSeq 6000 S2 Reagent kit (100 cycles) Illumina Cat# 20012862

Qubit dsDNA HS Assay kit ThermoFisher Cat# Q32854

Single Index Kit T Set A 10x Genomics Cat# 1000213

Deposited data
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Bioconductor https://bioconductor.org v3.12

bioMart 59 v2.5.1
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clusterProfiler 61 v3.14.3

Cutadapt 62 v1.16
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DESeq2 63 v1.10.1

DoubletFinder 64 v2.0.3

Dropseq-tools https://github.com/broadinstitute/

Drop-seq/releases

v2.0.0

fgsea 65 v1.16.0

FlowJo https:/flowjo.com v10

gam https://cran.r-project.org/web/

packages/gam/index.html

v1.16.0

ggplot2 66 v3.2.1

Harmony 67 v1.0

Histocat++ 68 N/A

limma 69 v3.48.1f
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MAST 70 v1.20

Python https://python.org v3.8.5

pheatmap 71 v1.0.12

R https://r-project.org v3.6.1; v4.0.3

Rphenograph 72 v0.99.1

Seurat 73 v3.2.2

Slingshot 74 v1.4.0

SoupX 75 v1.5.0

scanpy 76 v1.8.0
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Joachim L.

Schultze (j.schultze@uni-bonn.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The human raw bulk and single-cell RNA sequencing (scRNA-seq) datasets are available through the European Genome-phe-

nome Archive (EGAS00001006281; EGAS00001006322; EGAS00001006323). The murine raw scRNA-seq dataset is available

through the Gene Expression Omnibus (GSE205078).

d All original code has been deposited at FASTGenomics (www.beta.fastgenomics.org) and is publicly available as of the date of

publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Seven-to-eight-week-old female BALB/cmicewere purchased from the Australian BioResource Facility (Moss Vale, NSW, Australia).

Mice were exposed to normal air or cigarette smoke through custom-designed and purpose-built nose-only exposure system (CH

technologies, USA). The smoke of up to 12 3R4F reference cigarettes was administered twice per day, 5 days a week for 12 weeks as

previously described.42,43,80 All experiments were approved by the institute’s animal ethics committee (protocol number: 2018–030).

Human specimens
Human studies were approved by the ethics committees of the University of Bonn and University hospital Bonn (local ethics vote

076/16). All patients provided written informed consent according to the Declaration of Helsinki and were aged at least 24 years

old (Table S1). They were recruited over a period of 41 months from the Department of Pneumology, were diagnosed with COPD if

the FEV1/FVC ratio was less than 0.7 and were stratified in grades according to the guidelines of the global initiative for chronic

obstructive lung disease (GOLD1-4).81 Current smokers had smoked in the last 3 months, ex-smokers had not smoked in the last

3 months prior to bronchoscopy and never smokers had not smoked more than 100 cigarettes in their lifetime and did not smoke

at the time of recruitment. Age-matched individuals suffering from chronic idiopathic cough and an exquisitely sensitive cough

reflex without underlying pathology and served as control donors.82 A diagnostic algorithm that considered medical history,

including medication, physical examination, echocardiography, chest X-ray, lung function, presentation at an otolaryngologist,

blood test, FeNO (excluding >50 ppb), computer tomography of the chest and bronchoscopy,83 was used for enrolment. Exclusion

criteria included hypoxemia despite oxygen supplementation, hypercapnia, increased risk of bleeding, unstable cardiac disease,

COPD exacerbations in the 4 weeks prior to recruitment and other pulmonary diseases, including asthma, asthma and COPD

overlap, bronchiectasis, cancer, fibrosis, pneumonia and sarcoidosis. Percentage of emphysema in the upper and lower
22 Cell Reports 42, 112525, June 27, 2023
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compartments of both lungs was determined radiologically. A summary of the patient clinical parameters of this study is shown in

Table S1. BALF samples which satisfied the above quality criteria and their paired peripheral blood samples were processed

further in single-cell analysis.

METHOD DETAILS

Whole blood processing
Peripheral blood was drawn in plastic tubes containing 3.2% citrate (Sarstedt) and was processed within 1 h of collection. Samples

were diluted 1:1 with PBS (Sigma-Aldrich) at room temperature and carefully overlaid on 15 ml room temperature Pancoll (PAN

Biotech). Gradients were separated by centrifugation at 700xg for 25 min at room temperature with no break. Subsequently, plasma

was collected, and aliquots were frozen at -80oC. Peripheral blood mononuclear cells were carefully transferred to a new tube in

FACS buffer (PBS/2% FBS/1 mM EDTA) and the granulocyte fraction was treated with erythrocyte lysis buffer (ELB) (15 min at

4oC, 150 mM NH4Cl, 10 mM KHCO3 and 100 uM EDTA in H2O, pH 7.4) to preferentially lyse erythrocytes. Cells were centrifuged

at 300xg for 8 min at 4oC and washed twice with 20 ml FACS buffer.

Differential cell counts
Blood leukocyte counts were routinely determined in the clinic hematology devices (XN9000/XN1000; Sysmex Europe) according to

the manufacturer’s instructions within 15 min of collection.

Murine sample collection
Animals were euthanized by intraperitoneal injection of 200 ul sodium pentobarbitone (65mg/ml) and blood was collected by cardiac

puncture in EDTA-treated tubes. Whole blood (400-500 ul) was diluted 1:40 with red blood cell (RBC) lysis buffer (155 mM NH4Cl,

12 mM NaHCO3, 0,1 uM EDTA) and incubated for 10 min on ice before a centrifugation (132xg, 5 min, 4oC). Cells were resuspended

in FACSbuffer (PBS/2%FBS/2mMEDTA) and stainedwith CD45 (30-F11; BDBiosciences, 30min on ice) followed by live/dead stain-

ing with 250 ng/ml DAPI solution. Cells were filtered with 70 um filters (In Vitro Technologies, Australia) and 20,000 cells per animal

were sorted in a BD Aria II instrument (Garvan Institute, NSW, Australia).

Bone marrow was collected by flushing murine femora and tibiae with RPMI media. Cells were pelleted (150xg, 5 min, 4oC) and

resuspended in RBC lysis buffer (5 min on ice). After one more centrifugation, cells were resuspended again in FACS buffer and

stained with CD45 (BD Biosciences, 30 min on ice) followed by live/dead staining. Cell suspensions were finally washed, filtered

and 20,000 cells per animal were sorted.

BALF was obtained from the left lung lobe by two washes with 0.5 ml PBS via a cannula inserted into the trachea. BALF cells were

pelleted (150xg, 5 min, 4oC) and resuspended in RBC buffer for 5 min on ice. Differential counts were carried out onto microscopy

slides upon cytocentrifugation (300 x g, 7 min, 4oC). The slides were stained with May-Grunwald-Giemsa and cell counts were

enumerated according to morphological criteria using a light microscope. Cells were centrifuged again and resuspended in FACS

buffer followed by live/dead staining. Cell suspensions were washed, filtered and 20,000 live cells from each animal were sorted.

For all compartments, 5,000 sorted cells from each mouse were pooled together for loading on a Chromium chip (10x Genomics)

which was the available technology in Hansbro lab (Sydney, Australia).

Human flow cytometry/sorting
Single-cell suspensions were stained with Live/Dead yellow fluorescent dye (1:1,000, ThermoFisher) for 15 min at room temperature

and washed with FACS buffer at 300xg for 5 min at 4oC. Blocking followed with 5 ul human FcR blocking reagent (Miltenyi Biotec) per

100 ul cell suspension for 15 min on ice and staining for blood immune cells was performed with the following anti-human antibodies

for 30 min on ice: CD3 (1:54; UCHT1; Biolegend), CD3 (1:27; UCHT1; BD Biosciences), CD4 (1:54; RPA-T4; Biolegend), CD8 (1:54;

SK1; Biolegend), CD11c (1:32; 3.9; Biolegend), CD14 (1:68; HCD14; Biolegend), CD14 (1:32; M5E2; BD Biosciences), CD16 (1:68;

3G8; Biolegend), CD19 (1:45; HIB19; BD Biosciences), CD19 (1:32; HIB19; Biolegend), CD33 (1:54; HIM3-4; BD Biosciences),

CD45 (1:45; HI30; Biolegend), CD56 (1:27; B159; BD Biosciences), CD56 (1:32; NCAM16.2; BD Biosciences), CD66b (1:54;

G10F5; Biolegend), CD123 (1:32; 6H6; Biolegend), CD127 (1:32; HIL-7R-M21; BD Biosciences), HLA-DR (1:68; L243; Biolegend)

and Siglec-8 (1:21; 7C9; Biolegend). Cells were centrifuged at 300xg for 5 min at 4oC and resuspended in 1 ml FACS buffer. Data

acquisition was performed on a 3 laser-FACS Aria III cell sorter (BD Biosciences) and were analyzed with FlowJo v10 software

(BD Biosciences). Sorted neutrophils (40,000) were frozen at -80oC for further processing.

Staining for imaging on hyperion (imaging mass cytometry)
The bronchial biopsieswere providedby the Tasmanian Respiratory Biobank (Ethics ID: H0013051, approvedby TasmanianHealth and

Medical Human Research Ethics Committee). Lung biopsies from controls, smokers (Normal Lung Function Smokers) and COPD

smokers were paraffin-embedded and sectioned at 8 um. Lung sections were baked for 60min at 60oC followed by dewaxing in xylene

anddescendinggradesofabsoluteethanol before twowashes in1%TBS-Tweenbuffer.Heat-mediatedantigen retrievalwasperformed

with 1M Tris/0.5 M EDTA solution on sections in a microwave (Panasonic) for 3 minutes on high power and 15 minutes on low power.

Sections were allowed to cool and were rinsed for 10 min in 1x TBS-Tween and 1X PBS. Blocking was performed for 45 min at 37oC
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with antibody diluent/block (Akoya Biosciences). Finally, sections were incubated with metal-bound antibodies: CD3-170 (polyclonal;

Dako), CD4-173 (EPR19514; Abcam), CD8-146 (D8A8Y; Cellsignal), CD10-156 (HI10a; Biolegend), CD11B-163 (EPR1344; Abcam),

CD11C-142 (EP1347Y; Abcam), CD14-149 (EPR3653; Abcam), CD16A-148 (EPR16784; Biolegend), CD16B-152 (G10F5; Biolegend),

CD20-141 (H1; BD Biosciences), CD44-166 (BJ18; Biolegend), CD45-154 (D9M8I; Cellsignal), CD56-176 (EPR2566; Abcam), CD62L-

160 (polyclonal; Abcam), CD66A-167 (B1.1/CD66; BD Biosciences), CD68-153 (KP1; Abcam), CD74-150 (PIN.1; Abcam), CCR1-169

(polyclonal; Abcam), EPCAM-159 (VU-1D9; Stemcell), HLA-DR-174 (EPR3692; Abcam), Siglec-8-165 (polyclonal; Abcam) overnight

at 4oC. The following day, sectionswere permeabilized andwashed twicewith 0.1%Triton-X in PBS for 8min. Sectionswere incubated

with Ir-Intercalator (1:400 in PBS) for 30 min to identify nucleated cells and were rinsed with dH2O. Sections were air dried for 20 min

before imaging on a Hyperion (CPS-5404).

Cytometry by time of flight
Murine bonemarrowwas collected fromboth femurs and cells were immediately incubatedwith 10 uM iododeoxyuridine for 1 hour at

37�C. RBCs were lysed with 1 ml RBC lysis buffer for 5 min at 4�C and single-cell suspensions were prepared for analysis by time-of-

flight mass cytometry. Cell numbers and viability were assessed using trypan blue and the remaining cells were transferred to a

96-well plate for staining with 5 uM cisplatin for 5 min at room temperature. Quenching in 5% FCS/5mM EDTA quenching buffer

in PBS was performed before centrifugation at 300xg for 3 min at 4�C. Fc receptor blocking with metal conjugated anti-mouse

CD16/32 antibody for 30 min at 4�C followed and quenched in quenching buffer before antibody staining for 30 min at 4�C. Cells
were washed three times in quenching buffer, resuspended in 4% PFA and stored at 4�C. The following day, cells were washed

once in PBS, permeabilized in methanol for 10 min at 4�C and washed three times before staining with intracellular antibodies for

45 min at room temperature. Samples were washed thrice in permeabilization buffer (Thermo Fisher), resuspended in 4% PFA

and stored at 4�C until analysis using a Helios instrument (Fluidigm).

BD Rhapsody library preparation
For simultaneous measurements of single transcriptomes and surface markers in neutrophils, peripheral blood from 3 control

and 3 COPD patients was labeled with Sample Tags (Human Single-Cell Multiplexing Kit, BD Biosciences) and stained with

Ab-seq Ab-Oligos (BD Biosciences) following the manufacturer’s protocol. Briefly, a total of 1x106 cells were resuspended in

180 ul of cold Stain Buffer (BD Pharmingen) and Sample Tags were added for 20 min staining at room temperature. After incu-

bation, samples were washed twice at 300xg for 5 min at 4�C. Subsequently cells were counted and were equally pooled to

obtain a total of 1x106 cells. Pooled samples were resuspended in 100 ul blocking buffer (95 ul Stain Buffer/5 ul FcgR blocking

reagent) and incubated for 10 min at room temperature. A master mix (100 ul) containing Ab-seq Ab-Oligos diluted in Stain

Buffer was added to the samples for 40 min on ice. The samples were washed twice, counted and resuspended to achieve

60,000 cells in 650 ul of cold Sample Buffer (BD Biosciences). The cell suspensions were then loaded onto a primed Rhapsody

cartridge (BD Biosciences). Single cells were isolated using Single Cell Capture and cDNA Synthesis with the BD Rhapsody Ex-

press Single-Cell Analysis System according to the manufacturer’s recommendations (BD Biosciences). cDNA libraries were

prepared using the BD Rhapsody Whole Transcriptome Analysis Amplification Kit following the BD Rhapsody System mRNA

Whole Transcriptome Analysis (WTA) and Sample Tag Library Preparation Protocol (BD Biosciences) as described previously84.

Briefly, mRNA products were separated from Sample Tag and Ab-seq products by a denaturation step at 95�C for 5 min. mRNA

transcripts were further amplified by PCR (11 cycles) and then purified using SPRIselect magnetic beads (Beckman-Coulter),

while the Sample Tag and Ab-seq products were amplified together with the PCR master mix containing the provided specific

primers. A second PCR (10 cycles) was performed for the Sample Tag product as described in the protocol. Final libraries were

indexed using 2 nM of whole transcript mRNA products and 3 ng of Sample Tag and Ab-seq PCR products by PCR (6 cycles).

After purification with SPRIselect magnetic beads, the index PCR products were quantified using a Qubit Fluorometer with the

Qubit dsDNA HS Kit (ThermoFisher).

Total RNA extraction
Total RNA was isolated with the miRNeasy Micro kit (Qiagen) according to the manufacturer’s protocol and RNA concentration and

integrity were determined with the High Sensitivity RNA assay on a TapeStation 4200 system (Agilent).

Bulk RNA-seq library preparation and sequencing

cDNA libraries were prepared from at least 400 pg total RNA with the SMART-seq2 protocol85 and 200 pmol cDNA were tagmented

with the Nextera XT DNA Library Preparation kit (Illumina). Library size selection was carried out with AMPure beads (Beckman

Coulter) and the distribution was measured with the High Sensitivity D5000 assay on a TapeStation 4200 system (Agilent). Molar

RNA sequencing library concentration was determined by combining size distribution information with a Qubit High Sensitivity

dsDNA assay (Invitrogen) for concentration. Libraries were clustered at 1.4 pM and sequenced SR 75 cycles on a NextSeq500 sys-

tem (Illumina) using High Output v2 chemistry. Upon sequencing, base call files were converted to fastq format and demultiplexed
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using bcl2fastq2 v2.20. Raw readswere pseudoaligned to the human transcriptome (GRCh38, Gencode v27 primary assembly) using

Kallisto with default settings (v0.44.2).86

BD Rhapsody library sequencing
The Rhapsody experiment libraries were generated using the BD RhapsodyTMWhole Transcriptome Analysis (WTA) Amplification Kit

according to themanufacturer’s protocol. Molar library concentration was determined using a combination of High Sensitivity D5000

assays on a Tapestation 4200 system (Agilent) for average size distribution and a Qubit High Sensitivity dsDNA assay (Invitrogen) for

concentration. Libraries were pooled and clustered at 250 pM final concentration and sequenced PE (2 x 75 cycles) on a NovaSeq

6000with NovaSeq 6000 S2 Reagent Kit (200 cycles) chemistry. Upon sequencing, base call files were converted to fastq format and

demultiplexed using bcl2fastq2 v2.20.

Murine 10x genomics library generation and sequencing
The 10x Chromium libraries were prepared using the 10x Genomics Chromium Next GEM single cell 3’ kit v3.1 at the Garvan-

Weizmann Centre for Cellular Genomics according to the manufacturer’s instructions. The libraries were sequenced on an Illumina

NovaSeq 6000 instrument using a NovaSeq S4 kit (200 cycles) v1 chemistry at an aimed depth of 30,000 paired-end reads per cell.

The sequencer generated raw data files in binary base call (BCL) format. The BCL files were demultiplexed and converted to the

FASTQ file formats using Illumina Conversion Software (bcl2fastq v2.19.0.316). The 10x Genomics cellranger -v (3.1.0) count pipeline

was used for alignment, filtering, barcode counting, and UMI counting from FASTQ files and was executed on a high-performance

cluster with 2.6.32-754.17.1.el6.x86_64 operating system.

QUANTIFICATION AND STATISTICAL ANALYSIS

To facilitate reproducibility of the results, R-based analyses were performed in a dedicated docker environment based on R 4.0.3 and

Bioconductor 3.12 (lorenzobonaguro/flowtools:v3).

Pre-processing of BD rhapsody scRNA-seq data
A barcode whitelist provided by BDBiosciences was used to filter the paired-end scRNA-seq reads for valid cell barcodes. Cutadapt

(v1.16) R package62 was used to trim adaptor sequences and to filter reads for a PHRED quality score of 20 or above. Next, STAR

(v2.6.1b)77 was used for alignment against the Gencode v27 (GRCh38p13) human reference genome and Dropseq-tools (v2.0.0)

were used to quantify gene expression and collapse to UMI count data (https://github.com/broadinstitute/Drop-seq/). For

SampleTag oligo-based demultiplexing of single-cell transcriptomes and subsequent assignment of cell barcodes to their sample

of origin, the respective multiplexing tag sequences and AB-seq sequences were added to the reference genome and quantified,

as well.84

Analysis of human Seq-well data
The single-cell datasets were analyzedwith the Seurat (v3.2.2) R package.73 FindVariableFeatures calculated the 2,000most variable

genes, ScaleData scaled the expression of all present genes, RunPCA reduced the dimensionality to 50 principal components,

FindNeighbors found local neighorhoods for 20 principal components and FindClusters with resolution equal to 0.6 and RunUMAP

were run to cluster and project the cells.

Neutrophils were ‘‘in silico sorted’’ at the cluster level based on the expression of mature (S100A8, S100A9, CXCR2, CSF3R,

IFITM2, FCGR3B) and immature (DEFA3, DEFA4, MMP8, MMP9, CAMP) neutrophil markers. Further subsetting of cells labeled

as ‘‘Mature Neutrophil’’, ‘‘Immature Neutrophil’’ and ‘‘Inflammatory Neutrophil’’ by the GenSigPro classifier from12 followed. The

2,000 most variable genes were identified, the dataset was scaled as above, dimensionality was reduced to 8 principal components

and data were clusteredwith a resolution of 0.2 for the blood dataset and 30 principal components for the BALF dataset. Differentially

expressed (DE) gene analysis for blood cluster comparisons was carried out using the FindMarkers and FindAllMarkers functions and

the MAST algorithm for min.pct=0.25 and were plotted with the pheatmap (v1.0.12) R package.

Classification and integration of human single-cell RNA-seq data
Seq-well datasets frompatients (‘‘Pat 182’’, ‘‘Pat 190’’, ‘‘Pat 192’’, ‘‘Pat 233’’) were sequenced and pre-processed,12 andwere added

to the blood dataset. Cells from each dataset were normalized with LogNormalize by a scale factor of 10,000 to account for variations

in sequencing depth and the 2,000 most variable genes were calculated with the FindVariableFeatures function in Seurat and the vst

method. Next, classification followed theGenSigPro annotation with the anchoringmethod using FindTransferAnchors and the labels

were transferred with TransferData. Finally, the new datasets were integrated to12 with FindIntegrationAnchors for 30 principal com-

ponents and IntegrateData on 91,870 identified anchors. Standard integration methods assume that there are shared or similar var-

iations between the integrated parts and attempt to understand very specific cell type batch effects. Here we describe neutrophil

states from two different human compartments (BALF, peripheral blood) which, apart from anticipated donor and cell state
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differences, include additional biological and technical variations. For example, BALF neutrophils are not functionally identical to pe-

ripheral blood neutrophils due to the influence of the alveolar space microenvironment, the differences of which between control and

COPDpatientsmay not be comparable with those of peripheral blood in the same donors.Moreover, technical differences originating

from cell isolation protocols will lead to loss of biological interpretation when integrating data from different tissue compartments.

Indeed, cell dissociation protocols often result in different sampling effects, as well as different cellular ratios which makes learning

a challenging task and impedes the identification and differentiation of distinct effects across organs. Forcing the integration of the

two compartments could result in loss of information and the reduction in cell type resolution which would be counterintuitive to

providing higher cell type resolution. Since there are currently no fully developed methods for cross-organ integration, we chose a

conservative, but at the same time more robust way to investigate the similarities between neutrophil states in the two anatomical

spaces.

Analysis of human BD Rhapsody data
The single-cell data generated with the BD Rhapsody platform were pre-processed to remove cells with less than 150 genes and

more than 20%mitochondrial genes. Two new assays for the Sample Tag and Ab-seq data were added to the generated Seurat ob-

ject and were normalized with the centered log-ratio (CLR) method. TheHTODemux function with positive.quantile=0.99 was used to

demultiplex the samples and doublets were discarded. The 2,000 most variable genes were calculated with FindVariableFeatures

and the expression of all present genes were scaled with ScaleData. Dimensionality reduction to 20 principal components was per-

formed with RunPCA and local neighborhoods were found with FindNeighbors and FindClusters at resolution equal to 0.4. Neutro-

phils clusters were subsequently subsetted and the aforementioned pipeline was followed. Fifteen principal components were used

and the dataset was clustered with resolution of 0.3. DE gene analysis for all comparisons was carried out using the FindMarkers and

FindAllMarkers functions and the MAST algorithm for min.pct=0.15 and logfcthreshold=0.25 for genes and logfcthreshold=0.2 for

protein markers.

Analysis of murine 10x genomics data
Themurine single-cell datasets were analyzedwith Seurat. Cells with at least 100 genes and less than 10%mitochondrial geneswere

kept. Genes expressed in less than 5 cells were discarded. The 2,000most variable genes were used in PCA calculations. BALF cells

were analyzed with 30 principal components (PCs) and clusteredwith 0.3 resolution, blood cells were analyzed with 25 PCs and clus-

teredwith 0.3 resolution and bonemarrow cells were analyzedwith 30 PCs and clusteredwith 0.4 resolution. Doublets were identified

in each sample with the DoubletFinder (v2.0.3) R package.64 An estimate of 8% doublets was assumed and the doublet number was

adjusted for homotypic doublets. DE genes between clusters for each compartment were calculated with FindMarkers with

min.pct=0.25 and logfc.threshold=0.4 using the MAST algorithm.

Neutrophils were identified based on the expression of canonical markers (Camp, Ngp, Ltf, Pglyrp1, Mmp8, Cd177, Ly6g, Chil3,

Elane,Mpo) and singlets were in silico sorted for further analysis in each compartment. The BALF neutrophil dataset was reduced to

20 PCs and clustered with 0.2 resolution, blood neutrophils were analyzed with 15 PCs and clustered with 0.2 resolution and bone

marrow neutrophils were analyzed with 20 PCs and clustered with 0.2 resolution. DE genes between clusters for each compartment

were calculated with FindMarkers with min.pct=0.25 and logfc.threshold=0.25 using the MAST (v1.20) algorithm.70 The parameters

for the DE gene calculation between neutrophils from air and smoke-exposed mice were min.pct=0.20 and logfc.threshold=0.25.

BALF neutrophils were additionally integrated with the Harmony (v1.0) R package67 to remove minor batch effects.

In addition to the biological differences of themicroenvironments in the three studied anatomical sites (BALF, blood, bonemarrow),

there are technical differences which are related to: 1) the collection of cells following specialized protocols; BALF: collection via a

cannula in PBS and subsequent red blood cell lysis, blood: red blood cell lysis, bone marrow: femora/tibiae flushing of cells and red

blood cell lysis and 2) cell isolation methods to optimize information gain; BALF: sorting of all live cells, blood and bone marrow: sort-

ing of live CD45+ cells. Since there are currently no fully developed methods for cross-organ integration, we opted for the separate

analysis of neutrophil state-specific gene signatures in the three anatomical spaces.

Analysis of publicly available murine scRNA-seq datasets
The single-cell multiple time point smoke exposure murine dataset45 was retrieved from GSE151674 and GSE185006. Cells with

more than 20% of mitochondrial genes or less than 200 detected genes were excluded for further analysis and cell barcodes with

400 to 6,000 counts per cell and genes detected in at least 3 cells were retained. For this study, cells from mice treated

with LTbR-Ig were further discarded. Downstream analysis was performed using the scanpy (v1.8.0) python package.76 The SoupX

(v1.5.0) R package75 was used to mitigate background mRNA contamination and the contamination fraction was set to 0.3 for count

matrix correction with adjustCounts(). Data were normalized with the scran size factor based approach and log transformed via scan-

py’s pp.log1p() function. The top 4,000 variable genes in at least 5 samples excluding known cell cycle genes were established with

the function pp.highly_variable_genes(flavor=’’cellranger’’) and used as input for PCA (8,696 genes). Neutrophils were in silico sorted

based on known cell type markers (Camp, Ngp, S100a8, Il1b) and visualization was achieved with the UMAP embedding specifying

the input parameters as 20 PCs and 20 nearest neighbors. Clustering on this subset was performed via scanpy’s leiden method at

resolution 0.3.
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Distribution-free DE gene analysis across patient groups
DE gene analysis was performed with a distribution-free method which was developed specifically for single-cell data of multiple

patients belonging to different groups.12 This method is independent of any distribution assumptions and takes all normalized sin-

gle-cell data points into account, thus it is not based on mini-bulk or pooling cells from individuals.

DE gene analysis was performed to investigate two fundamental aspects: (1) differences between the control and patient cohorts

for a particular neutrophil cluster, and (2) differences between neutrophil clusters. As input, cluster-annotated cells were used.

Before each DE analysis, individuals not possessing cells in a subcluster and genes with less than 10% of expressed cells were dis-

regarded. For each gene, the differences between all possible pairs of samples between the two groups were quantified using the

non-parametric Wilcoxon rank sum score. For the overall difference between the two groups, the median Wilcoxon scores of the

pairwise tests were considered as the test statistic. The significance of the test statistic was assessed with the permutation test,

with the null hypothesis of no differences between the two groups. For all possible permutations, the test statistic was evaluated,

providing the exact null distribution. P-values were determined by the fraction of permutations that led to a higher or equal test sta-

tistic value than the value of the test statistic of the observed patient arrangement.

Effect size
Data were sorted according to the effect size being the median of the Wilcoxon–Mann–Whitney odds (WMW odds) (39). The WMW

odds for each sample combination were calculated by dividing theWhitney U-score of one sample by the U-score of another sample;

WMWodds =
U1

U2

with the U-scores defined as

U1 = R1 � n1ðn1+1Þ
2

U1 + U2 = n1$n2

with R1 being the sum of the ranks belonging to sample 1, and n1 and n2 being the sample sizes of sample 1 and sample 2,

respectively.

TheWMW odds consider all possible pairs of data points between the two considered samples and summarize howmany pairs of

data points are actually larger in sample 1 compared to sample 2, in relation to how many pairs of data points are larger in sample 2

compared to sample 1.

For the comparison of the neutrophil clusters the same DE analysis method was performed with an adjustment of the permutation

test to ensure independence of the samples within one group. For each individual, the data were divided into two groups of cluster

comparisons (e.g., Patient 1 - cluster 0 vs Patient 1 - rest of clusters). The individuals with differing cluster annotations were subse-

quently compared. For this setting, the permutation test needed to be adjusted, such that one individual with different cluster anno-

tations belonged to separate groups.

Pathway analysis
Gene set enrichment analysis of cluster-specific markers was performed with the clusterProfiler (v3.14.3) R package.61 Reactome or

Gene Ontology gene sets were downloaded from the MSigDB and obtained from ‘‘c2.cp.reactome.all.v7.2.symbols.gmt’’ and

‘‘c5.go.bp.v7.4.symbols.gmt’’, respectively. Enrichment was computed with the enricher function using a minimum and maximum

gene set sizes of 10 and 500, respectively and all expressed genes in the cluster as the background. Enriched gene sets with less

than 3 genes were discarded and the top 5 enriched gene sets for blood immune cells were extracted and loaded in Cytoscape

(v3.7.2) (https://cytoscape.org/) for visualization with the Prefuse Force Directed layout. If a gene set appeared as both upregulated

and downregulated, the direction with the highest number of genes only is shown. An Upset plot was used to graphically visualize the

overlap of enriched gene sets using the UpsetR (v1.4.0) R package.79 To connect gene ontology terms, the pairwise similarity matrix

was calculated with pairwise_termsim.

Correlation between blood immune cell proportion and clinical parameters
The correlation between blood neutrophil counts and clinical parameters was calculated with the cor and cor.test base R functions

and the Spearman method and the data were visualized with the ggplot2 (v3.2.1) R package.66

Gene set enrichment analysis
The AUCell (v1.4.1) R package58 was used for human neutrophil granule content gene signature enrichment from.24 Cells were first

filtered for genes with more than 3 total counts. Genes were expression-ranked within every cell with AUCell_buildRankings and the

enrichment of gene signatures was computedwithAUCell_calAUC in the 5%highest genes of each cell. Data were visualized in violin

plots with the ggplot2 R package with the fill depicting the mean AUC score of all cells within each group.
Cell Reports 42, 112525, June 27, 2023 27



Article
ll

OPEN ACCESS
For the enrichment of the conserved murine bone marrow neutrophil progenitor 9-gene signature on human blood neutrophil

states, the fgsea (v1.16.0) R package65 was used. As input, the expressed genes for each human blood neutrophil state in both

the control and COPD groups was used and the analysis was performed upon log2 fold change (COPD/control)-ranking with the

fgsea function. Results were visualized in tables with the plotGseaTable command (gseaParam=0.5). Murine gene names were con-

verted to their human orthologs with convertMouseGeneList() and the bioMart (v2.50.1) R package.59 Where stated, human and mu-

rine neutrophil cluster-specific markers were filtered for unique genes and the top 20 were selected as signatures for comparisons.

Trajectory inference
Developmental relationships for blood neutrophils were inferred with the Slingshot (v1.4.0) R package.74 The function slingshot was

run on the first 50 principal components of the converted 20,670 blood neutrophil SingleCellExperiment with N1S as the starting

cluster. The curves were then embedded onto the UMAP space with embedCurves. Cells belonging to one lineage were selected

and a generalized additive model was fit to the 3,000 most variable genes with the gam R package (v1.20). The 30 most correlating

genes were plotted in a heatmap along pseudotime with the pheatmap (v1.0.12) R package.71

Whole transcriptome analysis
Processed datawere imported into theDESeq2 (v1.10.1) R package63 using the TXimport (v1.2.0) R package.78 DESeq2was used for

the calculation of normalized counts for each transcript using default parameters. All transcripts with a maximum over all group

means lower than 10 were excluded resulting in 17,189 genes. Unwanted sources of variation, such as sequencing and smoking

were removed using the function removeBatchEffect from the limma (v3.48.1f) R package69 and used for all visualizations. The

same factors were also modeled within DESeq2.

In silico cytometry
CIBERSORTx (https://cibersortx.stanford.edu/) was employed to computationally deconvolute the identified blood neutrophil states

in sorted blood neutrophil whole transcriptome samples. The normalized count table of 5,000 downsampled blood neutrophils was

provided as the input to generate a single-cell signature matrix by setting theminimum expression to 0, number of replicates to 5 and

sampling fraction to 0.5. The algorithm was subsequently run with 1,000 permutations with the normalized count table of the sorted

neutrophil samples as the mixture sample. Correlation of neutrophil state abundance was calculated using mixed models adjusted

for age, sex and inhaled corticosteroid treatment.

Analysis of imaging mass cytometry data
Ablated regions of interest (ROIs) from lung tissuewere viewed using Histocat++68 and the images of the desired ROIs were exported

as one TIFF file for every channel. All TIFF files were opened in cell profiler (v4.1.3) to perform cell segmentation and generate nucleus,

cellular and cytoplasmic masks. R was used to convert masks and TIFF files into FCS files for use in Flowjo for spatial analysis.

Pseudotime analysis
For the diffusion pseudotime (dpt) analysis, the root to the cell with the highest UMAP1 value was set and the scanpy tl.dpt() function

was employed in Python (v3.8.5). The dpt values were used to order the visualization. The cells were grouped into 500 equally sized

bins based on their dpt value and the bin-wise average expression of the top 20marker genes for each neutrophil cluster were used to

produce a row-scaled heatmap.

Analysis of mass cytometry data
The expression levels of 38 markers measured by mass cytometry (IdU, CD34, Ki67, CD64, SCA_1, CD117, CD150, CD8a, NK1.1,

ABCA1, Cyclin_B1, CD138, CD48, CD135, CD62L, CD115, CCR2, CD11c, FceR1a, CD16_32, CD4, Siglec-F, CD11b, pRb, CD45,

Ly6G, CD103, CD19, CD3e, F4_80, B220, CD172a, CD24, CD80, CD86, CD127, MHCII, Ly6C) in immune cells was used as input

for downstream analysis including dimensionality reduction and Phenograph clustering. Ten thousand cells for each sample were

randomly selected and protein expression levels were transformed with a logicle transformation (width=0.25, top=16,409, full

width=4.5). Transformed values were then used for dimensionality reduction. UMAP was calculated using the umap R package

(v0.2.7) with number of neighbors=15, number of components=2, distance metric=Euclidean and minimum distance=0.2. Cell clus-

tering was calculated with the Rphenograph (v0.99.1) R package72 with default settings and number of nearest neighbors (k)=60.

Clusters 6, 11, 18 and 20 were used for downstream analysis of the neutrophil compartment. All transformed channels were used

for UMAP dimensionality reduction (umap 0.2.7) and Phenograph clustering (v0.99.1) (k=60, Rphenograph, Github JinmiaoChenLab).

Clustering analysis resulted in 11 clusters of coherent marker expression which were merged in 4 metaclusters according to the

expression of hallmark markers. A confusion matrix was calculated normalizing first the number of cells of each experimental group

to 1,000 and later calculating the contribution of each condition in each cluster. This normalization was performed to avoid bias

deriving from a different number of cells in the three experimental groups. Finally, marker expression heatmap was calculated as

the mean marker expression in each cluster. The values for each marker were scaled for visualization. All data were visualized

with R using the ggplot2 package for the UMAPs and pheatmap for confusion matrix and heatmap of marker expression.
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Statistics
Two group comparisons were performed with two-tailed t-test (equal variances) or Welch’s test (unequal variances) for parametrical

data. A Wilcoxon signed rank test was used for non-parametric data. For multiple group comparisons, one-way ANOVA with Tukey

post-hoc corrections were employed. Normality was tested with the shapiro.test base R function and homogeneity of variance with

the leveneTest function from the car (v3.0-3) R package.60 Data are represented as mean ± standard deviation or mean ± standard

error of the mean and statistical comparisons were considered significant when p<0.05.
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