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This paper is devoted to an investigation of blow-up phenomena occurring in high-
contrast fiber-reinforced composites. When the distance between perfect conductors 
or between the conductors and the matrix boundary tends to zero, the electric 
field may appear blow-up. The major objective of this paper is to give a precise 
description for the singular behavior of such a high concentration in the presence of 
C1,α-inclusions with extreme conductivities. Our results contain the boundary and 
interior asymptotics of the concentrated field in all dimensions. In particular, the 
blow-up factor for each dimension is accurately captured.

© 2021 Elsevier Inc. All rights reserved.

1. Background

This work is concerned with studying the asymptotic behavior of the electric field concentration in the 
thin gaps between inclusions or the narrow regions between the inclusions and the external boundary. We 
focus on high-contrast fiber-reinforced composite materials when the concentrated field of inclusions is close 
to maximal, which means that the distance between neighboring fibers or between the fibers and the matrix 
boundary is much smaller than their sizes.

Initially our interest is motivated by the issue of material failure initiation. It is well known that elliptic 
equations with discontinuous coefficients can be used to describe heterogeneous media with fibers close to 
touching. Stimulated by the great work [6,20,35] on damage analysis in composite materials, there has been 
a long list of literature, beginning with [12,32,33], on gradient estimates for solutions of elliptic equations 
and systems with piecewise coefficients. The estimates in [32,33] depend on the ellipticity of the coefficients. 
When elliptic constants degenerate to infinity, we consider a mathematical model of a composite of a 
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homogeneous medium in which perfectly conducting inclusions are close to touching or the inclusions are 
nearly touching the matrix boundary. The key quantity of interest in describing the singularities of the 
concentration is the blow-up rate of the gradient of a solution to the perfect conductivity problem. Denote 
by ε the distance between two inclusions or between the inclusions and the external boundary. In the 
close touching regime, Ammari, Kang and Lim [3] were the first to show the blow-up rate of the field 
is ε−1/2 for two circular fibers in two dimensions by constructing a lower bound on the gradient and 
then the authors, collaborated with H. Lee and J. Lee, proved its optimality in [4]. Subsequently, many 
mathematicians made use of different methods to demonstrate that the blow-up rate of the gradient of a 
solution to the perfect conductivity problem is ε−1/2 in two dimensions, |ε ln ε|−1 in three dimensions, and 
ε−1 in dimensions greater than or equal to four. See Bao, Li and Yin [8,9], as well as Lim and Yun [34], and 
Yun [37,38].

Further, for the purpose of driving the development of numerical approaches to multiscale problem, it 
is critical to give a precise characterization for the singularities of the concentrated field. Kang, Lim and 
Yun [21,22] established an asymptotic formula of the gradient for two circular inclusions in two dimensions 
and spherical inclusions in three dimensions, respectively. Ammari et al. [2] used the technique of disks 
osculating to convex domains to generalize the result in [21] to the case when inclusions are strictly convex 
domains in two dimensions. Recently, Li, Li and Yang [28] gave a sharp description of the electric field in 
dimensions two and three for two arbitrarily 2-convex inclusions and explicitly revealed the effect of relative 
principal curvatures of inclusions. When the relative curvature of inclusions degenerates to zero, that is, we 
consider m-convex inclusions with m > 2, Li [31] extended the asymptotics in [28] to the case of m-convex 
inclusions in dimensions two and three and captured a blow-up factor different from that in [28]. Recently, 
Zhao [39] established a boundary asymptotic formula of the concentrated field for m-convex inclusions and 
the boundary data of k-order growth in all dimensions and showed that this type of boundary data can 
strengthen the singularity of the electric field. Additionally, it is worthwhile to mention that for core-shell 
geometry with circular boundaries, Kim and Lim [25] derived an asymptotic formula of the potential function 
by using the single and double layer potentials with image line charges. For high-contrast composites with 
the matrix described by nonlinear p-Laplace equation, Gorb and Novikov [18] utilized the method of barriers 
to obtain a qualitative characterization of the concentration. For more related results and for an extensive 
bibliography we also refer to papers [1,5,7,10,11,13,14,16,19,23,26,29,30,36] and references therein.

In the present work, we consider the following two situations: when one inclusion is very close to touching 
the external boundary and when two inclusions are very close but not touching. This paper is based on 
the work [15] completed by Chen, Li and Xu, where they used De Giorgi-Nash estimates and Campanato’s 
approach to create an adapted version of the iteration technique with respect to the energy in the presence 
of C1,α-inclusions and then established the optimal gradient estimates of the concentrated field. It is worth 
emphasizing that they overcome the difficulty that the constructed auxiliary function is not smooth enough 
to apply the W 2,p-estimates as in [30] for the case of C2,α-inclusions. Moreover, this paper, as a continuation 
of [28,39], extends the precise characterization of the electric field for C2,α-inclusions there to C1,α-inclusions 
here.

The outline of this paper is as follows. We establish the boundary asymptotics of the concentrated field 
in Sections 2–5 and the interior asymptotics in Sections 6–7. Specifically, in Section 2, we first list our 
main results of the boundary asymptotics and then use the linear decomposition (2.14) below to reduce the 
original problem to establishing the following three types of asymptotic expansions, that is, (i) asymptotics 
of ∇vi, i = 0, 1 in Section 3, where v1 and v0 solve the following equations (2.5) and (2.12), respectively; 
(ii) asymptotic of the blow-up factor Q[ϕ] defined by (2.13) below in Section 4; (iii) asymptotic of the 
energy 

∫
Ω |∇v1|2 in Section 5. In Section 6 we state the interior asymptotic results in Theorem 6.1 and then 

complete its proof in Section 7.
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2. The boundary asymptotics for the perfect conductivity problem

2.1. Governing equation

Consider a bounded domain D ⊂ Rn (n ≥ 2) with its boundary being of C1,α (0 < α < 1). Assume that 
there is a C1,α-subdomain D∗

1 inside D such that D∗
1 touches the external boundary ∂D only at one point. 

By a translation and rotation of the coordinates, if necessary, we let

∂D∗
1 ∩ ∂D = {0′} ⊂ Rn, D ⊂ {(x′, xn) ∈ Rn| xn > 0}.

Here and below, we use superscript prime to denote (n − 1)-dimensional domains and variables, such as B′

and x′. After translating D∗
1 by ε along xn-axis, we have

Dε
1 := D∗

1 + (0′, ε),

where ε > 0 is an arbitrarily small constant. For simplicity, denote

D1 := Dε
1, and Ω := D \D1.

In this paper we first consider the following boundary value problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δu = 0, in D \D1,

u = C1, in D1,∫
∂D1

∂u
∂ν

∣∣
+ = 0,

u = ϕ, on ∂D,

(2.1)

where the free constant C1 is determined later by the third line of (2.1) and

∂u

∂ν

∣∣∣
+

:= lim
τ→0

u(x + ντ) − u(x)
τ

.

Here and below ν represents the outward unit normal to the domain and the subscript ± indicates the limit 
from outside and inside the domain, respectively.

We further describe our domain. Suppose that there exists a small constant R > 0 independent of ε, such 
that the partial boundaries of ∂D1 and ∂D near the origin can be represented as follows:

xn = ε + h1(x′) and xn = h(x′), x′ ∈ B′
2R,

where h1 and h satisfy that for β > 0,

(A1) h1(x′) − h(x′) = λ|x′|1+α + O(|x′|1+α+β),
(A2) |∇x′h1(x′)|, |∇x′h(x′)| ≤ κ1|x′|α,
(A3) ‖h1‖C1,α(B′

2R) + ‖h‖C1,α(B′
2R) ≤ κ2.

For z′ ∈ B′
R, 0 < t ≤ 2R, define

Ωt(z′) :=
{
x ∈ Rn

∣∣ h(x′) < xn < ε + h1(x′), |x′ − z′| < t
}
.

For simplicity, we let Ωt be the abbreviated notation for the domain Ωt(0′) in the following. Construct two 
scalar auxiliary functions ū ∈ C1,α(Rn) and ū0 ∈ C1,α(Rn) satisfying that ū = 1 on ∂D1, ū = 0 on ∂D and
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ū(x) = xn − h(x′)
ε + h1(x′) − h(x′) , in Ω2R, ‖ū‖C1,α(Ω\ΩR) ≤ C, (2.2)

and ū0 = 0 on ∂D1, ū0 = ϕ(x) on ∂D, and

ū0 = ϕ(x′, h(x′))(1 − ū), in Ω2R, ‖ū0‖C1,α(Ω\ΩR) ≤ C‖ϕ‖C1,α(∂D). (2.3)

To simplify notations, we denote

Γα =Γ
(

1 − 1
1 + α

)
Γ
(

1
1 + α

)
,

where Γ(s) =
∫ +∞
0 ts−1e−t dt, s > 0 is the Gamma function. Denote by ωn−1 the area of the surface of unit 

sphere in (n − 1)-dimension. For (x′, xn) ∈ Ω2R, denote

δ(x′) := ε + h1(x′) − h(x′). (2.4)

Note that in the following the universal constant C or order O(1), whose values may vary from line to 
line, depends only on λ, κ1, κ2, R and an upper bound of the C1,α norms of ∂D1 and ∂D, but not on ε. For 
the sake of simplicity, we let ϕ(0) = 0. Otherwise, we replace u by u − ϕ(0) throughout the paper.

2.2. Main results

To derive a precise characterization for the gradient of a solution to the perfect conductivity problem 
(2.1), the key issue lies in calculating the energy of the harmonic function v1 defined by the following⎧⎪⎪⎨⎪⎪⎩

Δv1 = 0, in D \D1,

v1 = 1, on ∂D1,

v1 = 0, on ∂D.

(2.5)

That is,

Theorem 2.1 (The energy). Assume that D1 ⊂ D ⊆ Rn (n ≥ 2) are defined as above, conditions (A1)–(A3) 
hold. Let v1 ∈ H1(D \D1) be the solution of (2.5). Then, for a sufficiently small ε > 0,

(i) for n = 2,

∫
Ω

|∇v1|2 = 2Γα

(1 + α)λ
1

1+α

ε−
α

1+α

{
1 + O(1)ε

β
1+α , α > β,

1 + O(1)ε
α

1+α | ln ε|, 0 < α ≤ β;

(ii) for n ≥ 3,

∫
Ω

|∇v1|2 =
∫
Ω∗

|∇v∗1 |2 + O(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε

α2(1−α)
2(2+α)(1+α)2 , n = 3,

ε
α2

2(2+α)(1+α)2 min{1+α,2−α}
, n = 4,

ε
α2

2(2+α)(1+α) , n ≥ 5,

where v∗1 satisfies
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⎧⎪⎪⎨⎪⎪⎩
Δv∗1 = 0, in D \D∗

1 ,

v∗1 = 1, on ∂D∗
1 \ {0},

v∗1 = 0, on ∂D.

(2.6)

Denote Ω∗ := D \D∗
1 . We define a linear functional with respect to ϕ,

Q∗[ϕ] :=
∫

∂D∗
1

∂v∗0
∂ν

, (2.7)

where v∗0 is a solution of the following problem:⎧⎪⎪⎨⎪⎪⎩
Δv∗0 = 0, in Ω∗,

v∗0 = 0, on ∂D∗
1 ,

v∗0 = ϕ(x), on ∂D.

(2.8)

For the order of the rest term, we denote

rε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εmin{ β
1+α , (1−α)α

2(2+α) }, α > β, n = 2,
ε

(1−α)α
2(2+α) , 0 < α ≤ β, n = 2,

ε
α2(1−α)

2(2+α)(1+α)2 , n = 3,

ε
α2

2(2+α)(1+α)2 min{1+α,2−α}
, n = 4,

ε
α2

2(2+α)(1+α) , n ≥ 5.

(2.9)

Theorem 2.2. Assume that D1 ⊂ D ⊆ Rn (n ≥ 2) are defined as above, conditions (A1)–(A3) hold. For 
ϕ ∈ C1,α(∂D), let u ∈ H1(D; Rn) ∩ C1(Ω; Rn) be the solution of (2.1). Then for a sufficiently small ε > 0
and x ∈ ΩR, if Q∗[ϕ] 
= 0,

(i) for n = 2,

∇u = (1 + α)λ
1

1+αQ∗[ϕ]
2Γα

(1 + O(rε))ε
α

1+α∇ū + ∇ū0 + O(1)δ−
1−α
1+α ‖ϕ‖C1(∂D);

(ii) for n ≥ 3,

∇u = Q∗[ϕ]∫
Ω∗ |∇v∗1 |2

(1 + O(rε))∇ū + ∇ū0 + O(1)δ−
1

1+α ‖ϕ‖C1(∂D), (2.10)

where ū and ū0 are defined by (2.2) and (2.3), respectively, δ is defined by (2.4), Q∗[ϕ] is defined by 
(2.7), v∗1 solves (2.6) and rε is defined in (2.9).

Remark 2.3. Let ϕ ∈ C1,α(∂D) satisfy that ϕ(0) = 0, ϕ 
≡ 0 and ϕ ≥ 0 on ∂D. For example, take ϕ = |x′|1+α

on ∂D. We now claim that this type of boundary data can make Q∗[ϕ] 
= 0. Recalling the definition of Q∗[ϕ]
and using integration by parts, we obtain that Q∗[ϕ] = − 

∫
∂D\{0}

∂v∗
1

∂ν ϕ. Then applying the Hopf Lemma 

for v∗1 , we have ∂v
∗
1

∂ν

∣∣
∂D\{0} < 0. Since ϕ 
≡ 0 and ϕ ≥ 0 on ∂D, we then obtain that Q∗[ϕ] 
= 0.

Remark 2.4. It is worth mentioning that in contrast to the boundary asymptotics of [39] in the presence 
of m-convex inclusions for m ≥ 2, the blow-up factor Q[ϕ] here can’t strengthen the singularities of the 
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concentrated field for any boundary data ϕ. In addition, we improve the upper and lower bounds of the 
gradient in [15] to the exact asymptotic expansions here and below.

Remark 2.5. We would like to remark that the major singularity of |∇ū0| lies in |∂nū0| = |ϕ(x′,h(x′))|
ε+h1−h ≤

C|x′|‖ϕ‖C1(∂D)
ε+|x′|1+α and is thus no more than ε−

α
1+α on the cylinder surface {|x′| = ε

1
1+α } ∩ Ω. Similarly, the 

singularity of |∇ū| is determined by ∂xn
ū = 1

ε+λ|x′|1+α+O(|x′|1+α+β) with its greatest blow-up rate ε−1

arriving at the (n − 1)-dimension sphere {|x′| ≤ ε
1

1+α } ∩Ω. Then in view of the linear decomposition (2.14)
below, we see from the asymptotics of ∇u in Theorem 2.2 that the greatest blow-up rate arises from the 
first part Q[ϕ]∫

Ω |∇v1|2∇v1 of (2.14) with its blow-up rate being ε−
1

1+α in two dimensions and ε−1 in dimensions 
greater than or equal to three.

Remark 2.6. If n ≥ 3, since the energy degenerates to no singularity, we can obtain the same asymptotic 
result as (2.10) for more general C1,α-inclusions as follows:

λ1|x′|1+α ≤ h1 − h ≤ λ2|x′|1+α, in Ω2R,

where λ1 and λ2 are two positive constants independent of ε.

As shown in [30] and [39], we have a linear decomposition of the solution u to problem (2.1) as follows:

u(x) = C1v1(x) + v0(x), in Ω, (2.11)

where v1 is defined by (2.5) and v0 solves⎧⎪⎪⎨⎪⎪⎩
Δv0 = 0, in D \D1,

v0 = 0, on ∂D1,

v0 = ϕ(x), on ∂D.

(2.12)

Analogous to (2.7) and (2.8), we introduce a linear functional with respect to ϕ as follows:

Q[ϕ] =
∫

∂D1

∂v0

∂ν
. (2.13)

From the third line of (2.1) and (2.11), we get

C1

∫
∂D1

∂v1

∂ν
+
∫

∂D1

∂v0

∂ν
= 0.

Then it follows from integration by parts that

∇u = Q[ϕ]∫
Ω |∇v1|2

∇v1 + ∇v0. (2.14)

3. Identification of the leading terms

Before expanding ∇v0 with respect to the distance ε, we first state a result with its detailed proofs seen 
in [15].
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Theorem 3.1. Let Q be a bounded domain in Rn, n ≥ 2, with a C1,α (0 < α < 1) boundary portion Γ ⊂ ∂Q. 
Let w ∈ H1(Q) ∩ C1(Q ∪ Γ) be the solution of

{
−Δw = divf , in Q,

w = 0, on Γ,

where f ∈ Cα(Q; Rn). Then for any domain Q′ ⊂⊂ Q ∪ Γ,

‖w‖C1,α(Q′) ≤ C(‖w‖L∞(Q) + [f ]α,Q),

where C = C(n, α, Q′, Q).

Here, the Hölder semi-norm of f = (f1, f2, · · · , fn) is defined by

[f ]α,Q := max
1≤i≤n

sup
x,y∈Q

|fi(x) − fi(y)|
|x− y|α .

Remark 3.2. Theorem 3.1 actually improves the classical C1,α estimates [17] in the setting with partially 
zero boundary condition, which plays a key role in the iteration scheme with respect to the energy.

We now demonstrate that ∇ū0 is the main term of ∇v0.

Theorem 3.3. Assume as above. Let v0 be the weak solution of (2.12). Then, for a sufficiently small ε > 0,

∇v0 = ∇ū0 + O(1)δ−
1

1+α (|ϕ(x′, h(x′))| + δ
1

1+α ‖ϕ‖C1(∂D)), in ΩR, (3.1)

and

‖∇v0‖L∞(Ω\ΩR) ≤ C‖ϕ‖C1,α(∂D),

where ū0 is defined by (2.3).

Remark 3.4. Since ϕ ∈ C1(∂D) and ϕ(0) = 0, we can further refine the result (3.1) as follows:

∇v0 = ∇ū0 + O(1)‖ϕ‖C1(∂D).

Proof of Theorem 3.3. From hypotheses (A1)–(A2), we deduce that for 0 < s ≤ 1
8κ1 max{1,λ− 1

1+α }
δ

1
1+α ,

[∇ū0]α,Ωs(z′) ≤ C
(
|ϕ(z′, h(z′))|δ−

2+α
1+α + ‖ϕ‖C1(∂D)δ

−1
)
s1−α. (3.2)

To simplify the notation, we use ‖ϕ‖C1 to denote ‖ϕ‖C1(∂D) in the following. Define

w0 := v0 − ū0. (3.3)

Step 1. Proof of

‖∇w0‖L2(Ω) ≤ C‖ϕ‖C1 . (3.4)
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From (3.3), we see that w0 solves {
Δw0 = −div(∇ū0), in Ω,

w0 = 0, on ∂Ω.
(3.5)

Picking the test function w0 in equation (3.5) and integrating by parts, it follows from (2.3) and ∂nnū0 = 0
in ΩR that ∫

Ω

|∇w0|2 = −
∫

Ω\ΩR

∇ū0∇w0 −
∫

ΩR

∇x′ ū0∇x′w0 −
∫

|x′|=R,
h(x′)<xn<ε+h1(x′)

w0∂nū0νn

≤‖∇ū0‖L2(Ω\ΩR)‖∇w0‖L2(Ω\ΩR) + ‖∇x′ ū0‖L2(ΩR)‖∇x′w0‖L2(ΩR)

+
∫

|x′|=R,
h(x′)<xn<ε+h1(x′)

C‖ϕ‖C0(∂D)|w0|

≤C‖ϕ‖C1‖w0‖L2(Ω),

where in last line we use the Sobolev trace embedding theorem as follows:

∫
|x′|=R,

h(x′)<xn<ε+h1(x′)

|w0| ≤ C

⎛⎜⎝ ∫
Ω\ΩR

|∇w0|2dx

⎞⎟⎠
1
2

.

Thus,

‖∇w0‖L2(Ω) ≤ C‖ϕ‖C1 .

That is, (3.4) holds.
Step 2. Proof of ∫

Ωδ(z′)

|∇w0|2dx ≤ Cδn−
2

1+α

(
|ϕ(z′, h(z′))|2 + δ

2
1+α ‖ϕ‖2

C1

)
, (3.6)

where δ is defined by (2.4). For 0 < t < s < R, let η be a smooth cutoff function such that η = 1 if 
|x′ − z′| < t, η = 0 if |x′ − z′| > s, 0 ≤ η ≤ 1 if t ≤ |x′ − z′| ≤ s, and |∇x′η| ≤ 2

s−t . Observe that w0 also 
satisfies {

−Δw0 = div(∇ū0 − (∇ū0)Ωs(z′)), in Ω2R,

w0 = 0, on Γ±
2R,

(3.7)

where

(∇ū0)Ωs(z′) = 1
|Ωs(z′)|

∫
Ωs(z′)

∇ū0(x)dx.

Taking the test function w0η
2 in (3.7) and integrating by parts, we obtain the following iteration formula:
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∫
Ωt(z′)

|∇w0|2dx ≤ C

(s− t)2

∫
Ωs(z′)

|w0|2dx + C

∫
Ωs(z′)

|∇ū0 − (∇ū0)Ωs(z′)|2dx.

For |z′| < R, δ(z′) < s < 2
3 max{ε 1

1+α , |z′|}, we have δ(z
′)

C ≤ δ(x′) ≤ Cδ(z′) in Ωs(z′). Since w0 = 0 on 
Γ−
R, we deduce that ∫

Ωs(z′)

|w0|2 ≤ Cδ2
∫

Ωs(z′)

|∇w0|2, (3.8)

and due to (3.2), we have ∫
Ωs(z′)

|∇ū0 − (∇ū0)Ωs(z′)|2dx

≤ Csn+1δ−
3+α
1+α (|ϕ(z′, h(z′))|2 + δ

2
1+α ‖ϕ‖2

C1). (3.9)

Denote

F (t) :=
∫

Ωt(z′)

|∇w0|2.

From (3.8)–(3.9), we derive

F (t) ≤
(

cδ

s− t

)2

F (s) + Csn+1δ−
3+α
1+α (|ϕ(z′, h(z′))|2 + δ

2
1+α ‖ϕ‖2

C1), (3.10)

where c and C are universal constants.
Pick k =

[
1

4cδ
α

2(1+α)

]
+ 1 and ti = δ + 2ciδ, i = 0, 1, 2, · · · , k. Then, (3.10), together with s = ti+1 and 

t = ti, leads to

F (ti) ≤
1
4F (ti+1) + C(i + 1)n+1δn−

2
1+α

(
|ϕ(z′, h(z′))|2 + δ

2
1+α ‖ϕ‖2

C1

)
.

It follows from k iterations and (3.4) that for a sufficiently small ε > 0,

F (t0) ≤ Cδn−
2

1+α

(
|ϕ(z′, h(z′))|2 + δ

2
1+α ‖ϕ‖2

C1

)
.

Thus, (3.6) is proved.
Step 3. Proof of

|∇w0| ≤ Cδ−
1

1+α (|ϕ(x′, h(x′))| + δ
1

1+α ‖ϕ‖C1(∂D)), in ΩR. (3.11)

We first make a change of variables in Ωδ(z′) as follows:

{
x′ − z′ = δy′,

xn = δyn,

which turns it into Q1 of nearly unit size, where, for 0 < r ≤ 1,
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Qr =
{
y ∈ Rn

∣∣∣ 1
δ
h(δy′ + z′) < yn <

ε

δ
+ 1

δ
h1(δy′ + z′), |y′| < r

}
,

with its top and bottom boundaries denoted, respectively, by

Σ+
r =

{
y ∈ Rn

∣∣∣ yn = ε

δ
+ 1

δ
h1(δy′ + z′), |y′| < r

}
,

and

Σ−
r =

{
y ∈ Rn

∣∣∣ yn = 1
δ
h(δy′ + z′), |y′| < r

}
.

For y ∈ Q1, write

W0(y′, yn) = w(δy′ + z′, δyn), V0(y′, yn) := ū0(δy′ + z′, δyn).

From (3.5), we see that W0 satisfies {
ΔW0 = −div(∇V0), in Q1,

W0 = 0, on Σ±
1 .

Step 3.1. We first utilize De Giorgi-Nash approach to establish the L∞ estimate of W0 as follows:

‖W0‖L∞(Q1/2) ≤ C(‖W0‖L2(Q1) + [∇V0]α,Q1). (3.12)

For θ ≥ 1, N ≥ k > 0, we define a function H ∈ C1([k, ∞)) such that H(t) = tβ − kβ for t ∈ [k, N ] and 
H is linear for t ∈ [N, ∞). Let ψ = W+

0 +k and v = G(ψ) =
∫ ψ

k
|H ′(s)|ds. Pick the test function η2v, where 

the smooth cut-off function η satisfies that for 1
2 ≤ r1 < r2 ≤ 1, η = 1 for |y′| ≤ r1, η = 0 for |y′| ≥ r2, and 

|∇η| ≤ 2
r2−r1

.
In light of the fact that G(s) ≤ G′(s)s and ∇W0 = ∇ψ when v = G(ψ) > 0, it follows from integration 

by parts and Young’s inequality that∫
Q1

η2G′(ψ)|∇ψ| ≤ C

∫
Q1

|∇η|2G′(ψ)ψ2 + C

∫
Q1

η2 |∇V0|2
k2 G′(ψ)ψ2.

Set k = ‖∇V0‖Lq(Q1) for q > n. From the definition of G and the Hölder inequality, we have

‖η∇H(ψ)‖2
L2(Q1) ≤ C‖∇ηH ′(ψ)ψ‖2

L2(Q1) + C‖ηH ′(ψ)ψ‖2
L

2q
q−2 (Q1)

. (3.13)

By virtue of the interpolation inequality, we obtain that for any τ > 0,

‖ηH ′(ψ)ψ‖
L

2q
q−2 (Q1)

≤ τ‖ηH ′(ψ)ψ‖
L

2n̂
n̂−2 (Q1)

+ Cτ−
n̂

q−n̂ ‖ηH ′(ψ)ψ‖L2(Q1), (3.14)

where n̂ ∈ (2, q) for n = 2 and n̂ = n for n > 2. Since ηH(ψ) ∈ H1
0 (Q1), it follows from the Sobolev 

inequality that

‖ηH(ψ)‖
L

2n̂
n̂−2 (Q1)

≤ C(‖η∇H(ψ)‖L2(Q1) + ‖H(ψ)∇η‖L2(Q1)). (3.15)

Substituting (3.13)–(3.14) into (3.15), we obtain
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‖ηH(ψ)‖
L

2n̂
n̂−2 (Q1)

≤C(τ‖ηH ′(ψ)ψ‖
L

2n̂
n̂−2 (Q1)

+ Cτ−
n̂

q−n̂ ‖ηH ′(ψ)ψ‖L2(Q1))

+ C

⎛⎝ ∫
Q1

|∇η|2(|H ′(ψ)ψ|2 + H2(ψ))

⎞⎠
1
2

.

For a small constant τ > 0, we have

‖ηH(ψ)‖
L

2n̂
n̂−2 (Q1)

≤ C

⎛⎝ ∫
Q1

|ηH ′(ψ)ψ|2 +
∫
Q1

|∇η|2(|H ′(ψ)ψ|2 + H2(ψ))

⎞⎠
1
2

,

where C = C(n, q). Further, by letting N tend to infinity, we obtain

‖ηψβ‖
L

2n̂
n̂−2 (Q1)

≤ Cβ

⎛⎝ ∫
Q1

(η2 + |∇η|2)ψ2β

⎞⎠
1
2

.

Denote χ = n̂
n̂−2 . Recalling the definition of η, we have

‖ψ‖L2βχ(Qr1 ) ≤
(

Cβ

r2 − r1

)β−1

‖ψ‖L2β(Qr2 ).

Thus, we iterate by β = χi and ri = 1
2 + 1

2i+1 , i = 0, 1, · · · ,

‖ψ‖L2χi+1 (Qri+1 ) ≤
(

Cχi

ri − ri+1

)χ−i

‖ψ‖L2χi (Qri
) ≤ (Cχ)

i∑
j=0

j

χj ‖ψ‖L2(Q1).

By letting i → ∞, we obtain

‖ψ‖L∞(Q1/2) ≤ C‖ψ‖L2(Q1),

where C = C(n, q, Q1). In view of the definition of ψ, we have

‖W+
0 ‖L∞(Q1/2) ≤ C(‖W0‖L2(Q1) + ‖∇V0‖Lq(Q1)). (3.16)

By replacing W0 by −W0, (3.16) also holds. Consequently,

‖W0‖L∞(Q1/2) ≤ C(‖W0‖L2(Q1) + ‖∇V0‖Lq(Q1)).

Observe that W0 also solves

−ΔW0 = div(∇V0 − (∇V0)Q1).

Arguing as before, we obtain

‖W0‖L∞(Q1/2) ≤C(‖W0‖L2(Q1) + ‖∇V0 − (∇V0)Q1‖Lq(Q1))

≤C(‖W0‖L2(Q1) + [∇V0]α,Q1).

Step 3.2. By making use of Theorem 3.1, the Poincaré inequality and (3.12), we have
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‖∇W0‖L∞(Q1/2) ≤ C(‖∇W0‖L2(Q1) + [∇V0]α,Q1).

Then rescaling back to the original region Ωδ(z′), we derive

‖∇w0‖L∞(Ωδ/4(z′)) ≤
C

δ

(
δ1−n

2 ‖∇w0‖L2(Ωδ(z′)) + δ1+α[∇ū0]α,Ωδ(z′)
)
. (3.17)

Substituting (3.2) and (3.6) into (3.17), we obtain that (3.11) holds. On the other hand, it follows from the 
standard interior estimates and boundary estimates for the Laplace equation that

‖∇v0‖L∞(Ω\ΩR) ≤ C‖ϕ‖C1,α(∂D).

Thus, Theorem 3.3 is proved. �
Applying Theorem 3.3, we have

Lemma 3.5. Assume as above. Let v1 ∈ H1(Ω) be a weak solution of (2.5). Then, for a sufficiently small 
ε > 0,

∇v1 = ∇ū + O(1)δ−
1

1+α , in ΩR, (3.18)

and

‖∇v1‖L∞(Ω\ΩR) ≤ C.

4. Expansion of the blow-up factor Q[ϕ]

In this section our major goal is to give an expansion of Q[ϕ] with respect to ε as follows.

Lemma 4.1. Assume as above. Then, for a sufficiently small ε > 0,

Q[ϕ] =Q∗[ϕ] + O(1)‖ϕ‖C1(∂D)ε
(n−1−α)α

n(2+α) ,

where Q∗[ϕ] and Q[ϕ] are defined by (2.7) and (2.13), respectively.

Proof. Recalling the definitions of Q[ϕ] and Q∗[ϕ] and integrating by parts, we have

Q[ϕ] =
∫
∂D

∂v1

∂ν
ϕ(x), Q∗[ϕ] =

∫
∂D

∂v∗1
∂ν

ϕ(x),

where v1 and v∗1 satisfy (2.5) and (2.6), respectively. Thus,

Q[ϕ] −Q∗[ϕ] =
∫
∂D

∂(v1 − v∗1)
∂ν

· ϕ(x).

Observe that the unit outward normal ν to ∂D is given by

ν = (∇x′h(x′),−1)√
1 + |∇x′h(x′)|2

, for x ∈ ΩR.

It follows from (A2) that for i = 1, · · · , n − 1,
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|νi| ≤ C|x′|α, |νn| ≤ 1, in ΩR. (4.1)

For 0 < r < R, denote

Cr :=
{
x ∈ Rn

∣∣∣ |x′| < r,
1
2 min

|x′|≤r
h(x′) ≤ xn ≤ ε + 2 max

|x′|≤r
h1(x′)

}
.

We next divide into two steps to estimate the difference between Q[ϕ] and Q∗[ϕ].
Step 2.1. Note that v1 − v∗1 solves

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ(v1 − v∗1) = 0, in D \ (D1 ∪D∗

1),
v1 − v∗1 = 1 − v∗1 , on ∂D1 \D∗

1 ,

v1 − v∗1 = v1 − 1, on ∂D∗
1 \ (D1 ∪ {0}),

v1 − v∗1 = 0, on ∂D.

We first estimate |v1−v∗1 | on ∂(D1∪D∗
1) \Cεγ , where 0 < γ < 1/2 to be determined later. For x ∈ ∂D1 \D∗

1 , 
it follows from the definition of v∗1 that

|v1 − v∗1 | = |v∗1(x′, xn − ε) − v∗1(x′, xn)| ≤ Cε. (4.2)

From (3.18), we see that for x ∈ ∂D∗
1 \ (D1 ∪ Cεγ ),

|v1 − v∗1 | ≤ Cε1−(1+α)γ . (4.3)

Introduce an auxiliary function ū∗ such that ū∗ = 1 on ∂D∗
1 \ {0}, ū∗ = 0 on ∂D, and

ū∗ = xn − h(x′)
h1(x′) − h(x′) , in Ω∗

2R, ‖ū∗‖C2(Ω∗\Ω∗
R) ≤ C,

where Ω∗
r := Ω∗ ∩ {|x′| < r}, 0 < r ≤ 2R. From (A1)–(A2), we derive that for x ∈ Ω∗

R,

|∇x′(ū− ū∗)| ≤ C

|x′| , |∂n(ū− ū∗)| ≤ Cε

|x′|1+α(ε + |x′|1+α) . (4.4)

Applying Theorem 3.3 to (2.6), it follows that for x ∈ Ω∗
R,

|∇(v∗1 − ū∗)| ≤ C

|x′| . (4.5)

Then using Theorem 3.3 and (4.4)–(4.5), we deduce that for x ∈ Ω∗
R ∩ {|x′| = εγ},

|∂n(v1 − v∗1)| ≤|∂n(v1 − ū)| + |∂n(ū− ū∗)| + |∂n(v∗1 − ū∗)|

≤C

(
1

ε2(1+α)γ−1 + 1
εγ

)
.

This, in combination with v1 − v∗1 = 0 on ∂D, reads that

|(v1 − v∗1)(x′, xn)| =|(v1 − v∗1)(x′, xn) − (v1 − v∗1)(x′, h(x′))|
≤C

(
ε1−(1+α)γ + εαγ

)
. (4.6)
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Making use of (4.2)–(4.3) and (4.6) and choosing γ = 1
2+α , we derive

|v1 − v∗1 | ≤ Cε
α

2+α , on ∂
(
D \

(
D1 ∪D∗

1 ∪ C
ε

1
2+α

))
,

which in combination with the maximum principle yields that

|v1 − v∗1 | ≤ Cε
α

2+α , in D \
(
D1 ∪D∗

1 ∪ C
ε

1
2+α

)
. (4.7)

In view of (4.7), it follows from the standard interior and boundary estimates that 1
(1+α)(2+α) < γ̃ < 1

2+α ,

|∇(v1 − v∗1)| ≤ Cε(1+α)γ̃− 1
2+α , on ∂D \ C

ε
1

2+α
−γ̃ .

Therefore,

|Aout| :=

∣∣∣∣∣∣∣∣
∫

∂D\C
ε

1
2+α

−γ̃

∂(v1 − v∗1)
∂ν

· ϕ(x)

∣∣∣∣∣∣∣∣ ≤ C‖ϕ‖L∞(∂D)ε
(1+α)γ̃− 1

2+α . (4.8)

Step 2.2. We now estimate the remainder as follows:

Ain :=
∫

∂D∩C
ε

1
2+α

−γ̃

∂(v1 − v∗1)
∂ν

· ϕ(x)

=
∫

∂D∩C
ε

1
2+α

−γ̃

∂(w1 − w∗
1)

∂ν
· ϕ(x) +

∫
∂D∩C

ε
1

2+α
−γ̃

∂(ū− ū∗)
∂ν

· ϕ(x)

= : Aw + Au,

where w1 = v1 − ū and w∗
1 = v∗1 − ū∗. A direct application of Theorem 3.3 yields that

|Aw| ≤ C

∫
∂D∩C

ε
1

2+α
−γ̃

‖ϕ‖C1(∂D) ≤ C‖ϕ‖C1(∂D)ε
( 1
2+α−γ̃)(n−1). (4.9)

As for Au, combining (4.1) and (4.4), we have

|Au| ≤

∣∣∣∣∣∣∣∣
∫

∂D∩C
ε

1
2+α

−γ̃

n−1∑
i=1

∂i(ū− ū∗)νiϕ(x)

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

∫
∂D∩C

ε
1

2+α
−γ̃

∂n(ū− ū∗)νnϕ(x)

∣∣∣∣∣∣∣∣
≤C‖ϕ‖C1(∂D)ε

( 1
2+α−γ̃)(n−1−α). (4.10)

Consequently, by taking γ̃ = n−α
n(2+α) and using (4.8)–(4.10), we obtain

|Q[ϕ] −Q∗[ϕ]| ≤ C‖ϕ‖C1(∂D)ε
(n−1−α)α

n(2+α) .

That is, Lemma 4.1 holds. �
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5. Proofs of Theorem 2.1 and Theorem 2.2

5.1. Proof of Theorem 2.1

Fix γ̄ = α2

2(2+α)(1+α)2 . Decompose the energy 
∫
Ω |∇v1|2 as follows:

∫
Ω

|∇v1|2 =
∫

Ωεγ̄

|∇v1|2 +
∫

ΩR\Ωεγ̄

|∇v1|2 +
∫

Ω\ΩR

|∇v1|2 =: I + II + III.

Step 1. For the first term I, in light of the definition of ū, it follows from Theorem 3.3 that

I =
∫

Ωεγ̄

|∂nū|2 +
∫

Ωεγ̄

|∂x′ ū|2 + 2
∫

Ωεγ̄

∇ū · ∇(v1 − ū) +
∫

Ωεγ̄

|∇(v1 − ū)|2

=
∫

|x′|<εγ̄

dx′

ε + h1(x′) − h(x′) + O(1)
{
| ln ε|, n = 2,
ε(n−2)γ̄ , n ≥ 3.

(5.1)

As for the second term II, it can be split as follows

II1 =
∫

(ΩR\Ωεγ̄ )\(Ω∗
R\Ω∗

εγ̄
)

|∇v1|2,

II2 =
∫

Ω∗
R\Ω∗

εγ̄

|∇v∗1 |2,

II3 =
∫

Ω∗
R\Ω∗

εγ̄

|∇(v1 − v∗1)|2 + 2
∫

Ω∗
R\Ω∗

εγ̄

∇v∗1 · ∇(v1 − v∗1).

In view of (3.18) and the fact that the thickness of (ΩR \ Ωεγ̄ ) \ (Ω∗
R \ Ω∗

εγ̄ ) is ε, we have

II1 ≤Cε

∫
εγ̄<|x′|<R

dx′

|x′|2(1+α) ≤ C

⎧⎪⎪⎨⎪⎪⎩
ε, n > 1 + 2(1 + α),
ε| ln ε|, n = 1 + 2(1 + α),

ε
(n+5)α2+10α+4
2(2+α)(1+α)2 , n < 1 + 2(1 + α).

(5.2)

From (4.5), we obtain that for n = 2,

II2 =
∫

Ω∗
R\Ω∗

εγ̄

|∇ū∗|2 + 2
∫

Ω∗
R\Ω∗

εγ̄

∇ū∗ · ∇(v∗1 − ū∗) +
∫

Ω∗
R\Ω∗

εγ̄

|∇(v∗1 − ū∗)|2

=
∫

εγ̄<|x1|<R

dx1

h1(x1) − h(x1)
+ O(1)| ln ε|; (5.3)

for n ≥ 3,

II2 =
∫

Ω∗ \Ω∗

|∇ū∗|2 + 2
∫

Ω∗ \Ω∗

∇ū∗ · ∇(v∗1 − ū∗) +
∫

Ω∗ \Ω∗

|∇(v∗1 − ū∗)|2
R εγ̄ R εγ̄ R εγ̄
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=
∫

εγ̄<|x′|<R

dx′

h1(x′) − h(x′) +
∫

Ω∗
R

(
|∇(v∗1 − ū∗)|2 + |∇x′ ū∗|2

)

+ 2
∫

Ω∗
R

∇ū∗ · ∇(v∗1 − ū∗) + O(1)ε(n−2)γ̄ . (5.4)

For εγ̄ ≤ |z′| ≤ R, we utilize the change of variable

{
x′ − z′ = |z′|1+αy′,

xn = |z′|1+αyn,

to rescale Ω|z′|+|z′|1+α \Ω|z′| and Ω∗
|z′|+|z′|1+α \Ω∗

|z′| into two nearly unit-size squares (or cylinders) Q1 and 
Q∗

1, respectively. Let

V1(y) = v1(z′ + |z′|1+αy′, |z′|1+αyn), in Q1,

and

V ∗
1 (y) = v∗1(z′ + |z′|1+αy′, |z′|1+αyn), in Q∗

1.

Since 0 < V1, V ∗
1 < 1, we see from the standard elliptic estimate that

‖V1‖C1,α(Q1) ≤ C, and ‖V ∗
1 ‖C1,α(Q∗

1) ≤ C.

Applying an interpolation with (4.7), we derive

|∇(V1 − V ∗
1 )| ≤ Cε

α
2+α (1− 1

1+α ) ≤ Cε
α2

(2+α)(1+α) .

Hence, rescaling it back to v1 − v∗1 and in light of ε
α2

2(2+α)(1+α)2 ≤ |z′| ≤ R, we have

|∇(v1 − v∗1)(x)| ≤ Cε
α2

(2+α)(1+α) |z′|−1−α ≤ Cε
α2

2(2+α)(1+α) , x ∈ Ω∗
|z′|+|z′|1+α \ Ω|z′|.

Consequently,

|∇(v1 − v∗1)| ≤ Cε
α2

2(2+α)(1+α) , in D \
(
D1 ∪D∗

1 ∪ C
ε

α2
2(2+α)(1+α)2

)
. (5.5)

Combining (4.5) and (5.5), we obtain that

|II3| ≤Cε
α2

2(2+α)(1+α) . (5.6)

Thus, it follows from (5.2)–(5.4) and (5.6) that for n = 2,

II =
∫

εγ̄<|x1|<R

dx1

h1(x1) − h(x1)
+ O(1)| ln ε|; (5.7)

for n ≥ 3,
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II =
∫

εγ̄<|x′|<R

dx′

h1(x′) − h(x′) +
∫

Ω∗
R

(
|∇(v∗1 − ū∗)|2 + |∂x′ ū∗|2

)

+ 2
∫

Ω∗
R

∇ū∗ · ∇(v∗1 − ū∗) + O(1)
{
εγ̄ , n = 3,
ε(1+α)γ̄ , n ≥ 4.

(5.8)

For the term III, (5.5), together with the fact that |∇v1| is bounded in D∗
1 \ (D1 ∪ ΩR) and D1 \D∗

1 and 
the volume of D∗

1 \ (D1 ∪ ΩR) and D1 \D∗
1 is of order O(ε), leads to that

III =
∫

D\(D1∪D∗
1∪ΩR)

|∇v1|2 + O(1)ε

=
∫

D\(D1∪D∗
1∪ΩR)

|∇v∗1 |2 + 2
∫

D\(D1∪D∗
1∪ΩR)

∇v∗1 · ∇(v1 − v∗1)

+
∫

D\(D1∪D∗
1∪ΩR)

|∇(v1 − v∗1)|2 + O(1)ε

=
∫

Ω∗\Ω∗
R

|∇v∗1 |2 + O(1)ε
α2

2(2+α)(1+α) . (5.9)

From (5.1) and (5.7)–(5.9), we see∫
Ω

|∇v1|2 =
∫

εγ̄<|x′|<R

dx′

h1(x′) − h(x′) +
∫

|x′|<εγ̄

dx′

ε + h1(x′) − h(x′)

+

⎧⎪⎪⎨⎪⎪⎩
O(1)| ln ε|, n = 2,

M∗
R + O(1)

{
εγ̄ , n = 3,
ε(1+α)γ̄ , n ≥ 4,

where

M∗
R =

∫
Ω∗\Ω∗

R

|∇v∗1 |2 + 2
∫

Ω∗
R

∇ū∗ · ∇(v∗1 − ū∗)

+
∫

Ω∗
R

(
|∇(v∗1 − ū∗)|2 + |∂x′ ū∗|2

)
.

Step 2. For n = 2,∫
|x1|<R

dx1

ε + h1 − h
+

∫
εγ̄<|x1|<R

ε dx1

(h1 − h)(ε + h1 − h)

=
∫

|x1|<R

1
ε + λ|x1|1+α

+
∫

|x1|<R

(
1

ε + h1 − h
− 1

ε + λ|x1|1+α

)
+ O(1)ε

2+3α
(2+α)(1+α)

=2
R∫ 1
ε + λs1+α

+ O(1)
R∫

sβ

ε + λs1+α
0 0
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= 2Γα

(1 + α)λ
1

1+α

ε−
α

1+α

⎧⎪⎪⎨⎪⎪⎩
1 + O(1)ε

β
1+α , α > β,

1 + O(1)ε
α

1+α | ln ε|, α = β,

1 + O(1)ε
α

1+α , 0 < α < β;

for n ≥ 3, ∫
|x′|<R

dx′

h1 − h
−

∫
|x′|<εγ̄

ε dx′

(h1 − h)(ε + h1 − h)

=
∫

Ω∗
R

|∂nū∗|2 + O(1)ε(n−2−α)γ̄ .

Consequently, Theorem 2.1 is proved by combining Step 1 and Step 2.

5.2. Proof of Theorem 2.2

Recalling decomposition (2.14), it follows from Theorem 2.1, Theorem 3.3, Lemma 3.5 and Lemma 4.1
that Theorem 2.2 holds.

6. The interior asymptotics for the perfect conductivity problem

In the following, we mainly deal with the asymptotic expansions for the electric field in the thin gap 
between two inclusions. The corresponding assumptions for the case of two adjacent inclusions can be made 
similarly. We would like to emphasize the following differences in comparison with previous assumptions. 
Let D∗

1 and D∗
2 be two C1,α-subdomains of a bounded open set D ⊂ Rn (n ≥ 2) with C1,α boundary, 

where 0 < α < 1. Assume that D∗
1 and D∗

2 touch only at one point and they are far away from ∂D. By 
a translation and rotation of the coordinates, if necessary, we let their intersection point be located at the 
origin, and

D∗
1 ⊂ {(x′, xn) ∈ Rn|xn > 0}, D∗

2 ⊂ {(x′, xn) ∈ Rn|xn < 0}.

Translating D∗
i , i = 1, 2, by ± ε

2 along xn-axis, respectively, we denote

D1 := D∗
1 + (0′, ε2), D2 := D∗

2 + (0′, ε2),

where ε > 0 is a sufficiently small constant.
The perfect conductivity problem with two adjacent inclusions is modeled as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δu = 0, in Ω,

u = Ci, on ∂Di, i = 1, 2,∫
∂Di

∂u
∂ν

∣∣
+ = 0, i = 1, 2,

u = ϕ, on ∂D,

(6.1)

where the free constants C1 and C2 are determined later by the third line of (6.1). Similarly as above, we 
assume that there exists a small constant R > 0 independent of ε, such that the portions of ∂D1 and ∂D2
near the origin can be written as

xn = ε

2 + h1(x′) and xn = −ε

2 + h2(x′), x′ ∈ B′
2R,
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where hi, i = 1, 2 satisfy

(H1) h1(x′) − h2(x′) = λ|x′|1+α, if x′ ∈ B′
2R,

(H2) |∇x′hi(x′)| ≤ κ1|x′|α, if x′ ∈ B′
2R, i = 1, 2,

(H3) ‖h1‖C1,α(B′
2R) + ‖h2‖C1,α(B′

2R) ≤ κ2,

where λ and κi, i = 1, 2, are three positive constants independent of ε. Note that we get rid of the remainder 
O(|x′|1+α+β) in assumption (H1) compared with the preceding condition (A1).

With slight abuse of notations, we also use the preceding notations to define

Ω := D \ (D1 ∪D2), Ω∗ := D \ (D∗
1 ∪D∗

2),

and

Ωt :=
{
x ∈ Rn

∣∣ − ε

2 + h2(x′) < xn <
ε

2 + h1(x′), |x′| < t
}
, 0 < t ≤ 2R,

and

δ(x′) := ε + h1(x′) − h2(x′), (x′, xn) ∈ Ω2R. (6.2)

Similarly as before, we introduce a scalar auxiliary functions ū ∈ C1,α(Rn) satisfying that ū = 1 on ∂D1, 
ū = 0 on ∂D ∪ ∂D2 and

ū(x) =
xn − h2(x′) + ε

2
ε + h1(x′) − h2(x′) , in Ω2R, ‖ū‖C1,α(Ω\ΩR) ≤ C. (6.3)

Before stating our main result, we first define

Q∗[ϕ] =
∫

∂D∗
1

∂v∗0
∂ν

∫
∂D

∂v∗2
∂ν

−
∫

∂D∗
2

∂v∗0
∂ν

∫
∂D

∂v∗1
∂ν

, (6.4)

Θ∗ = −K
∫
∂D

∂(v∗1 + v∗2)
∂ν

, (6.5)

S∗ = −
∫

∂D∗
1

∂v∗1
∂ν

∫
∂D

∂v∗2
∂ν

+
∫

∂D∗
1

∂v∗2
∂ν

∫
∂D

∂v∗1
∂ν

, (6.6)

where K = 2Γα

(1+α)λ
1

1+α
and v∗i , i = 0, 1, 2, verify

⎧⎪⎪⎨⎪⎪⎩
Δv∗0 = 0, in Ω∗,

v∗0 = 0, on ∂D∗
1 ∪ ∂D∗

2 ,

v∗0 = ϕ(x), on ∂D,

⎧⎪⎪⎨⎪⎪⎩
Δv∗i = 0, in Ω∗,

v∗i = δij , on ∂D∗
j \ {0},

v∗i = 0, on ∂D,

i = 1, 2, (6.7)

respectively. We would like to point out that the definition of S∗ is only valid under the case of n ≥ 3. 
Denote
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r̃ε =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε
α

2+α , n = 2,

ε
α2(1−α)

2(2+α)(1+α)2 , n = 3,

ε
α2

2(2+α)(1+α)2 min{1+α,2−α}
, n = 4,

ε
α2

2(2+α)(1+α) , n ≥ 5.

(6.8)

Our main result in this section is presented as follows:

Theorem 6.1. Assume as above, conditions (H1)–(H3) hold. For ϕ ∈ C1,α(∂D), let u ∈ H1(D) ∩ C1(Ω) be 
the solution of (6.1). Then for a sufficiently small ε > 0 and x ∈ ΩR, if Q∗[ϕ] 
= 0,

(i) for n = 2,

∇u = Q∗[ϕ]
Θ∗

(
1

1 − M̃∗ε
α

1+α

+ O(r̃ε)
)
ε

α
1+α∇ū + O(1)δ−

1−α
1+α ; (6.9)

(ii) for n ≥ 3,

∇u = Q∗[ϕ]
S∗ (1 + O(r̃ε))∇ū + O(1)δ−

1
1+α , (6.10)

where δ is defined by (6.2), ū is defined by (6.3), Q∗[ϕ], Θ∗ and S∗ are defined by (6.4)–(6.6), respec-
tively, and M̃∗ is defined by (7.15), and r̃ε is defined by (6.8).

Remark 6.2. We here remark that for n ≥ 3, the lower bound obtained by Chen, Li and Xu in Section 
3.3 of [15] is not rigorous since they didn’t capture the explicit blow-up factor Q∗[ϕ] as in the asymptotic 
(6.10). So our asymptotic result (6.10) gives a perfect answer to the optimality of the blow-up rate in 
dimensions greater than or equal to three. For the purpose of demonstrating the validity of assumption 
condition Q∗[ϕ] 
= 0, we provide some special examples in terms of the domain and the boundary data, 
which were previously given in [8]. Specifically, let Ω∗ := D \ (D∗

1 ∪D∗
2) be a bounded open set in Rn

with C1,α boundary, which is symmetric with respect to xn-variable, that is, (x′, xn) ∈ Ω∗ if and only if 
(x′, −xn) ∈ Ω∗. For (x′, xn) ∈ (∂D)+ := {(x′, xn)| xn > 0}, let ϕ ∈ C1,α(∂D) satisfy the following condition:

ϕodd(x′, xn) := 1
2(ϕ(x′, xn) − ϕ(x′,−xn)) ≤ 0 (or ≥ 0).

For example, take α = 2
3 , ϕ = x

5
3
n on ∂D and then ϕodd = x

5
3
n ≥ 0 on (∂D)+. Denote

(v∗0)odd(x′, xn) := 1
2(v∗0(x′, xn) − v∗0(x′,−xn)).

In light of symmetry, the strong maximum principle and the Hopf Lemma, we have∫
∂D

∂v∗1
∂ν

=
∫
∂D

∂v∗2
∂ν

.

Thus,

Q∗[ϕ] =
∫

∂v∗1
∂ν

⎛⎜⎝ ∫
∗

∂v∗0
∂ν

−
∫

∗

∂v∗0
∂ν

⎞⎟⎠

∂D ∂D1 ∂D2
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=
∫
∂D

∂v∗1
∂ν

⎛⎜⎝ ∫
∂D∗

1

∂(v∗0)odd
∂ν

−
∫

∂D∗
2

∂(v∗0)odd
∂ν

⎞⎟⎠
=2

∫
∂D

∂v∗1
∂ν

∫
∂D∗

1

∂(v∗0)odd
∂ν

.

Observe that (v∗0)odd is harmonic with (v∗0)odd(x′, 0) = 0 and (v∗0)odd = ϕodd ≤ 0 (or ≥ 0) but not identically 
zero on (∂D)+. Then it follows from the strong maximum principle and the Hopf Lemma that 

∫
∂D∗

1

∂(v∗
0 )odd
∂ν 
=

0. Consequently, Q∗[ϕ] 
= 0.

Remark 6.3. In comparison with the asymptotic results of C2,α-inclusions in [28,31,39], the results of C1,α-
inclusions in this paper together with the blow-up analysis for perfect conductors of a bow-tie structure in 
[24] show that the singularities of the field will enhance with the deterioration of smoothness of inclusions.

7. The proof of Theorem 6.1

Similarly as in (2.11), we split the solution u of (6.1) as follows:

u =
2∑

i=1
Civi + v0, in Ω, (7.1)

where vi, i = 0, 1, 2, solve⎧⎪⎪⎨⎪⎪⎩
Δv0 = 0, in Ω,

v0 = 0, on ∂D1 ∪ ∂D2,

v0 = ϕ(x), on ∂D,

⎧⎪⎪⎨⎪⎪⎩
Δvi = 0, in Ω,

vi = δij , on ∂Dj , i, j = 1, 2,
vi = 0, on ∂D,

(7.2)

respectively. Similarly as in [8], we denote

aij :=
∫

∂Di

∂vj
∂ν

, bi := −
∫

∂Di

∂v0

∂ν
, i, j = 1, 2.

Then from the third line of (6.1) and (7.1), we know{
a11C1 + a12C2 = b1,

a21C1 + a22C2 = b2,

which in combination with Cramer’s rule yields that

C1 − C2 = b1(a21 + a22) − b2(a11 + a12)
a11a22 − a12a21

. (7.3)

Making use of the Green’s formula, we obtain that a12 = a21,

a11 + a12 = a11 + a21 = −
∫
∂D

∂v1

∂ν
, a21 + a22 = a12 + a22 = −

∫
∂D

∂v2

∂ν
. (7.4)

Since
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∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =
∣∣∣∣a11 a11 + a12
a21 a21 + a22

∣∣∣∣ ,
it follows from (7.3)–(7.4) that

C1 − C2 = ρn(ε)Q[ϕ]
Θ ,

where

ρn(ε) =
{
ε

α
1+α , n = 2,

1, n ≥ 3,

and

Q[ϕ] =
∫

∂D1

∂v0

∂ν

∫
∂D

∂v2

∂ν
−
∫

∂D2

∂v0

∂ν

∫
∂D

∂v1

∂ν
, (7.5)

Θ = −

⎛⎝ρn(ε)
∫

∂D1

∂v1

∂ν

⎞⎠ ∫
∂D

∂v2

∂ν
+

⎛⎝ρn(ε)
∫

∂D1

∂v2

∂ν

⎞⎠ ∫
∂D

∂v1

∂ν
. (7.6)

Thus, in view of the decomposition (7.1), we have

∇u = Q[ϕ]
Θ ρn(ε)∇v1 + C2∇(v1 + v2) + ∇v0. (7.7)

Due to the fact that u = Ci on ∂Di and ‖u‖H1(Ω) ≤ C (independent of ε), from the trace embedding 
theorem we see

|C1| + |C2| ≤ C.

Since Δv0 = 0 in Ω with v0 = 0 on ∂D1 ∪ ∂D2, and Δ(v1 + v2 − 1) = 0 in Ω with v1 + v2 − 1 = 0 on 
∂D1 ∪ ∂D2, it follows from Theorem 1.1 in [27] and the standard elliptic theory that

‖∇v0‖L∞(Ω) ≤ C, ‖∇(v1 + v2)‖L∞(Ω) ≤ C.

On the other hand, applying Theorem 3.3 again, we obtain that Lemma 3.5 also holds for the solution v1
of (7.2), that is, ∇v1 = ∇ū + O(1)δ−

1
1+α in ΩR. Then combining these facts, (7.7) becomes

∇u = Q[ϕ]
Θ ρn(ε)∇ū + O(1)ρn(ε)δ−

1
1+α , (7.8)

where ū is defined by (6.3).
A direct application of Lemma 4.1 yields that

Corollary 7.1. Assume as in Theorem 2.2. Then, for a sufficiently small ε > 0, i = 1, 2,∫
∂Di

∂v0

∂ν
=

∫
∂D∗

i

∂v∗0
∂ν

+ O(1)ε
α

2+α ,

∫
∂D

∂vi
∂ν

=
∫
∂D

∂v∗i
∂ν

+ O(1)ε
α

2+α . (7.9)

Consequently,
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Q[ϕ] = Q∗[ϕ] + O(1)ε
α

2+α , (7.10)

where v∗i and vi, i = 0, 1, 2, are defined by (6.7) and (7.2), respectively, Q∗[ϕ] and Q[ϕ] are defined by (6.4)
and (7.5), respectively.

The proof of Corollary 7.1 is almost the same to Step 2.1 in the proof of Lemma 4.1 with a slight 
modification and thus omitted here.

Recalling the decomposition (7.8) and in light of the asymptotic results (7.9)–(7.10), we need to establish 
the asymptotic expansion of the blow-up factor Θ defined by (7.6) for the purpose of proving Theorem 6.1. 
In order to calculate Θ, it suffices to compute the energy 

∫
Ω |∇v1|2 =

∫
∂D1

∂v1
∂ν by using integration by parts.

Analogously as in Theorem 2.1, we obtain

Lemma 7.2. Assume as above, conditions (H1)–(H3) hold. Let v1 be the solution of (7.2). Then, for a 
sufficiently small ε > 0,

(i) for n = 2, ∫
Ω

|∇v1|2 = Kε−
α

1+α + AR + O(1)| ln ε|, (7.11)

(ii) for n ≥ 3,

∫
Ω

|∇v1|2 =
∫
Ω∗

|∇v∗1 |2 + O(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε

α2(1−α)
2(2+α)(1+α)2 , n = 3,

ε
α2

2(2+α)(1+α)2 min{1+α,2−α}
, n = 4,

ε
α2

2(2+α)(1+α) , n ≥ 5,

(7.12)

where K = 2Γα

(1+α)λ
1

1+α
and AR is defined by (7.14).

Proof. Denote Ω∗
r := Ω∗ ∩ {|x′| < r}, 0 < r ≤ 2R. Similar to Step 1 in the proof of Theorem 2.1, we have∫

Ω

|∇v1|2 =
∫

εγ̄<|x′|<R

dx′

h1(x′) − h2(x′) +
∫

|x′|<εγ̄

dx′

ε + h1(x′) − h2(x′)

+

⎧⎪⎪⎨⎪⎪⎩
O(1)| ln ε|, n = 2,

M∗
R + O(1)

{
εγ̄ , n = 3,
ε(1+α)γ̄ , n ≥ 4,

(7.13)

where

M∗
R =

∫
Ω∗\Ω∗

R

|∇v∗1 |2 + 2
∫

Ω∗
R

∇ū∗ · ∇(v∗1 − ū∗)

+
∫

Ω∗
R

(
|∇(v∗1 − ū∗)|2 + |∂x′ ū∗|2

)
.

The case of n ≥ 3 is the same to Step 2 in the proof of Theorem 2.1 and thus omitted here. We now 
consider the case of n = 2. Since
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∫
εγ̄<|x1|<R

dx′

h1(x1) − h2(x1)
+

∫
|x1|<εγ̄

dx1

ε + h1(x1) − h2(x1)

=
∫

εγ̄<|x1|<R

dx1

λ|x1|1+α
+

∫
|x1|<εγ̄

dx1

ε + λ|x1|1+α

=2

⎛⎝ +∞∫
0

1
ε + λx1+α

1
−

+∞∫
R

1
λx1+α

1
+

+∞∫
εγ̄

ε

λx1+α
1 (ε + λx1+α

1 )

⎞⎠
= 2Γα

(1 + α)λ
1

1+α

ε−
α

1+α − 2
αλRα

+ O(1)ε
5α+4

2(1+α)(2+α) ,

then from (7.13), we have ∫
Ω

|∇v1|2 = Kε−
α

1+α + AR + O(1)| ln ε|,

where

AR = − 2
αλRα

. (7.14)

That is, (7.11) holds. �
7.1. The proof of Theorem 6.1

Proof of (6.9). For n = 2, recalling the definitions of v1 and v2 and making use of the Green’s formulas, 
we have ∫

∂D1

∂v2

∂ν
=
∫

∂D2

∂v1

∂ν
= −

∫
∂D1

∂v1

∂ν
−
∫
∂D

∂v1

∂ν
,

which implies that

Θ = −

⎛⎝ρ2(ε)
∫

∂D1

∂v1

∂ν

⎞⎠ ∫
∂D

∂v2

∂ν
+

⎛⎝ρ2(ε)
∫

∂D1

∂v2

∂ν

⎞⎠ ∫
∂D

∂v1

∂ν

= −

⎛⎝ρ2(ε)
∫

∂D1

∂v1

∂ν

⎞⎠ ∫
∂D

∂(v1 + v2)
∂ν

− ρ2(ε)

⎛⎝ ∫
∂D

∂v1

∂ν

⎞⎠2

.

Then in view of (7.9), we have

Θ − Θ∗ = −

⎛⎝ρ2(ε)
∫

∂D1

∂v1

∂ν
−K

⎞⎠ ∫
∂D

∂(v∗1 + v∗2)
∂ν

− ρ2(ε)

⎛⎝ ∫
∂v∗1
∂ν

⎞⎠2

+ O(ε
α

2+α )

∂D
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= − ρ2(ε)(AR + O(| ln ε|)
∫
∂D

∂(v∗1 + v∗2)
∂ν

− ρ2(ε)

⎛⎝ ∫
∂D

∂v∗1
∂ν

⎞⎠2

+ O(ε
α

2+α )

= − ρ2(ε)

⎛⎜⎝AR

∫
∂D

∂(v∗1 + v∗2)
∂ν

+

⎛⎝ ∫
∂D

∂v∗1
∂ν

⎞⎠2
⎞⎟⎠+ O(ε

α
2+α ).

Denote

M̃∗ = − AR

K + (α∗
1)2

Θ∗ , α∗
1 =

∫
∂D

∂v∗1
∂ν

. (7.15)

Thus,

Q[ϕ]
Θ − Q∗[ϕ]

Θ∗ =Q∗[ϕ]
Θ∗

Θ∗−Θ
Θ∗

1 − Θ∗−Θ
Θ∗

+ Q[ϕ] −Q∗[ϕ]
Θ

=Q∗[ϕ]
Θ∗

M̃∗ρ2(ε) + O(ε
α

2+α )
1 − M̃∗ρ2(ε) + O(ε

α
2+α )

+ O(ε
α

2+α )

=Q∗[ϕ]
Θ∗

M̃∗ρ2(ε)
1 − M̃∗ρ2(ε)

+ O(ε
α

2+α ),

which indicates that

Q[ϕ]
Θ = Q∗[ϕ]

Θ∗
1

1 − M̃∗ρ2(ε)
+ O(ε

α
2+α ). (7.16)

Then combining with (7.8) and (7.16), we obtain that (6.9) holds.
Proof of (6.10). For n ≥ 3, we know that ρn(ε) = 1. Then recalling the definitions of Θ and S∗ above, it 

follows from (7.9) that

Θ = S∗ + O(1)ε
α

2+α . (7.17)

We now claim that S∗ 
= 0. In fact, we see from the Hopf Lemma that

∂v∗1
∂ν

∣∣∣
∂D∗

1\{0}
> 0, ∂v∗1

∂ν

∣∣∣
∂D

< 0, ∂v∗2
∂ν

∣∣∣
∂D∗

1\{0}
< 0, ∂v∗2

∂ν

∣∣∣
∂D

< 0.

Then, we have

S∗ = −
∫

∂D∗
1

∂v∗1
∂ν

∫
∂D

∂v∗2
∂ν

+
∫

∂D∗
1

∂v∗2
∂ν

∫
∂D

∂v∗1
∂ν

> 0.

Therefore, it follows from (7.8), (7.10), (7.12) and (7.17) that (6.10) holds.
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