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Abstract 

Background  Oxidative stress (OS) is a key pathophysiological mechanism in Crohn’s disease (CD). OS-related genes 
can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. How-
ever, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS 
genes in CD can be either a cause or a subsequent change of intestinal inflammation. Herein, we used a multi-omics 
summary data-based Mendelian randomization (SMR) approach to identify putative causal effects and underlying 
mechanisms of OS genes in CD.

Methods  OS-related genes were extracted from the GeneCards database. Intestinal transcriptome datasets were 
collected from the Gene Expression Omnibus (GEO) database and meta-analyzed to identify differentially expressed 
genes (DEGs) related to OS in CD. Integration analyses of the largest CD genome-wide association study (GWAS) 
summaries with expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) from the blood were 
performed using SMR methods to prioritize putative blood OS genes and their regulatory elements associated with 
CD risk. Up-to-date intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated to uncover potential interac-
tions between host OS gene expression and gut microbiota through SMR and colocalization analysis. Two additional 
Mendelian randomization (MR) methods were used as sensitivity analyses. Putative results were validated in an inde-
pendent multi-omics cohort from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYS).

Results  A meta-analysis from six datasets identified 438 OS-related DEGs enriched in intestinal enterocytes in 
CD from 817 OS-related genes. Five genes from blood tissue were prioritized as candidate CD-causal genes using 
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three-step SMR methods: BAD, SHC1, STAT3, MUC1, and GPX3. Furthermore, SMR analysis also identified five putative 
intestinal genes, three of which were involved in gene–microbiota interactions through colocalization analysis: MUC1, 
CD40, and PRKAB1. Validation results showed that 88.79% of DEGs were replicated in the FAH-SYS cohort. Associations 
between pairs of MUC1–Bacillus aciditolerans and PRKAB1–Escherichia coli in the FAH-SYS cohort were consistent with 
eQTL–mbQTL colocalization.

Conclusions  This multi-omics integration study highlighted that OS genes causal to CD are regulated by DNA 
methylation and host-microbiota interactions. This provides evidence for future targeted functional research aimed at 
developing suitable therapeutic interventions and disease prevention.

Keywords  Oxidative stress, Crohn’s disease, Integrative omics, Mendelian randomization

Background
Crohn’s disease (CD) is a type of chronic and relapsing 
inflammatory bowel disease (IBD) that affects the gas-
trointestinal tract and is accompanied by extraintesti-
nal manifestations and perianal diseases [1]. Although 
the etiology of CD remains unclear, a complex inter-
play between genetic variation, environmental fac-
tors, immune dysfunction, and intestinal microbiota is 
believed to underlie disease pathogenesis [2]. Unraveling 
the complexity behind this interplay may provide crucial 
insights into CD pathogenesis and expose potential tar-
gets for therapeutic interventions and disease prevention.

Oxidative stress (OS) is defined as an imbalance 
between oxidants and antioxidants in favor of the oxi-
dants leading to a disruption of redox signaling and 
control and/or molecular damage [3]. Multiple OS-
related genes contribute to the complex multifactorial 
pathophysiology in CD [4, 5]. For example, genetic pol-
ymorphisms of the inducible nitric oxide synthase gene 
(encoded by NOS2A) are associated with IBD suscepti-
bility accompanied by increased gene expression, sug-
gesting a vital role of genetic effects on OS genes in CD 
[6]. The nicotinamide adenine dinucleotide phosphate 
oxidase genes NOX1 and DUOX2 also play a key role 
in mediating reactive oxygen species (ROS) generation. 
Overexpression of these genes is involved in impaired 
intestinal barrier integrity, microbial dysbiosis, and bac-
terial invasion, highlighting the association between host 
OS signaling and gut microbiota in CD [7–10]. Moreo-
ver, DNA methylation (DNAm) modulates redox homeo-
stasis by regulating gene expressions of NRF2, HIF1A, 
and related proteins [11–14]. However, few studies have 
addressed whether OS has a causative role in triggering 
CD or merely inflicts collateral tissue damage alongside 
intestinal inflammation. Studying the underlying dis-
ease mechanisms of OS-related genes may help identify 
potential pathogenetic factors and redox-related thera-
peutic targets for IBD [15].

Although a growing number of studies have suggested 
relevant OS genes in CD, no study has comprehensively 

and systematically identified their potential causal asso-
ciation with this disease. Genome-wide association stud-
ies (GWASs) have been employed to identify genomic 
loci containing OS genes associated with CD [16, 17]. 
However, the top associated variants may not be causal 
because of the complicated linkage disequilibrium (LD) 
structure of genomes [18, 19]. Moreover, these genetic 
variants can potentially regulate DNAm, gene expression, 
protein levels, and the abundance of gut microbiota [20, 
21]. Integration of multi-omics is an emerging approach 
in the post-GWAS era to identify critical regulators for 
exploring therapeutic targets in CD [22]. For example, 
summary data-based Mendelian randomization (SMR) 
that integrates IBD GWAS data with expression quanti-
tative trait loci (eQTLs) has been developed to prioritize 
causal variants mediated by gene expression in the blood 
[20]. However, the causal OS genes in CD-affected tissues 
and their interactions with gut microbiota are poorly 
understood [23–25].

This study presents a multi-omics-based Mendelian 
randomization (MR) study to identify the putative causal 
effects and molecular mechanisms of OS genes in CD 
using blood and intestinal tissues. A sizable intestinal 
transcriptome meta-analysis was performed to identify 
differentially expressed CD-related OS genes. Utiliz-
ing SMR methods, we integrated the largest CD GWAS 
summary statistics with eQTLs and DNA methylation 
QTLs (mQTLs) in the blood. Furthermore, up-to-date 
intestinal eQTLs and fecal microbial QTLs (mbQTLs) 
were first integrated into the current analysis to uncover 
the potential interactions between host OS genes and gut 
microbiota. Two additional MR methods were used as 
sensitivity analyses to test the heterogeneity. Finally, the 
putative results were then partially replicated in an inde-
pendent multi-omics cohort.

Methods
Study design and data resources
Figure 1 describes the design of this study. OS-related 
genes were extracted from the GeneCards database 
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(v5.10, https://​www.​genec​ards.​org) using the keyword 
“oxidative stress” with a relevance score ≥ 7 according 
to previous methods [26–28]. Six publicly available 
transcriptome datasets containing intestinal biopsies 
from patients with CD and healthy controls (HCs) 
were obtained from the Gene Expression Omnibus 
(GEO) database [29–39] and meta-analyzed to iden-
tify differentially expressed genes (DEGs) related to 
OS in CD. GWAS summary statistics for CD were 
derived from a meta-analysis of two separate IBD 
GWASs, yielding a sample size of 12,194 patients with 
CD and 28,072 HCs based on European populations 
[40]. Blood eQTL summary statistics of OS genes were 
obtained from eQTLGen including the genetic data of 
blood gene expression in 31,684 individuals derived 
from 37 datasets [41]. Blood mQTL summary data 
were generated from a meta-analysis of two European 
cohorts: the Brisbane Systems Genetics Study (n = 614) 
and the Lothian Birth Cohorts (n = 1366) [19]. Intesti-
nal eQTL data were from the Genotype-Tissue Expres-
sion (GTEx) project (n = 860) [42] and the 1000IBD 
cohorts (n = 299) [43]. The current study focused only 
on cis-eQTLs and cis-mQTLs, which constituted sin-
gle nucleotide polymorphisms (SNPs) within a 1-Mb 
distance from the start and end of the gene. Fecal 
mbQTL data was generated from the Dutch Microbi-
ome Project (DMP) study, which included data from 
7738 individuals to assess the host genetic effects on 
the gut microbiota [44].

For external validation, 46 treatment-naïve patients 
with CD and 44 HC subjects were prospectively 
recruited from the First Affiliated Hospital of Sun Yat-
sen University (FAH-SYS) IBD multi-omics cohort. 
Paired intestinal biopsies and stool specimens were 
collected for RNA sequencing (RNA-seq) and shotgun 
metagenomic sequencing, respectively.

More detailed information on study datasets for this 
study is provided in Additional file  1: Supplementary 
Methods [19, 29–45].

Statistical analysis
Meta‑analysis of DEGs
Intestinal DEGs related to OS in patients with CD and 
HCs were analyzed using a linear regression model while 
adjusting for age, sex, body mass index, and medication 
usage if metadata were available. To increase statistical 
power, we pooled ileal and colonic biopsies and added 
tissue location as a covariate in linear models. DEGs were 
analyzed separately in six gene expression datasets, fol-
lowed by a fixed-effects meta-analysis using the R pack-
age metafor.

Meta‑analysis of intestinal cis‑eQTLs
To include as many intestinal cis-eQTLs as possible, we 
first performed a meta-analysis using the meta-analysis of 
cis-eQTL in the correlated sample (MeCS) method across 
the transverse colon, sigmoid colon, and small intestine 
of the GTEx results for OS genes, considering the sam-
ple overlaps. The intestinal cis-eQTLs from the 1000IBD 
cohorts were highly comparable to those detected in the 
non-disease GTEx dataset (consistency rates > 97%) [43]. 
Therefore, we used the conventional inverse-variance-
weighted meta-analysis in SMR (v1.3.1) for the two inde-
pendent datasets.

SMR and colocalization analysis
SMR multi-tools have been established to detect whether 
the effect of SNPs on the phenotype is mediated by 
molecular traits such as gene expression, DNAm, and gut 
microbiota. Colocalization analysis aimed to investigate 
the overlapping variants likely responsible for different 
traits. The integration of data from GWAS with other 
molecular QTL data by SMR or colocalization improved 
the detection of candidate causal SNPs via specific 
pathways.

Blood tissue analysis used the SMR multi-tool to 
determine the causal inference of OS genes and the 
1000 Genomes European reference to calculate LD. A 
three-step SMR analysis was performed: (1) SNPs were 

(See figure on next page.)
Fig. 1  Workflow of the study. A series of analyses was conducted to identify candidate causal oxidative stress (OS) genes associated with Crohn’s 
disease (CD) onset. OS-related genes were extracted from the GeneCards database. Six intestinal transcriptome datasets including patients with 
CD and healthy controls (HCs) were obtained from the GEO database and meta-analyzed to identify differentially expressed CD-related OS genes, 
followed by cell type-specific expression analysis (CSEA). Integration of GWAS summaries and cis-eQTLs/cis-mQTLs data from the blood by using 
three-step SMR methods prioritized putative blood OS genes and their regulatory elements associated with the risk of CD (SMR FDR < 0.05; HEIDI 
test P > 0.05). Sensitivity analyses were performed after the primary SMR to test the heterogeneity (Cochran Q statistic implemented in MR-Egger 
and inverse variance weighting (IVW) method, P > 0.05 indicates no heterogeneity exists). Moreover, we meta-analyzed the intestinal cis-eQTLs from 
two public summaries (GTEx and 1000IBD) and further integrated the meta-intestinal cis-eQTLs with fecal mbQTLs from the Dutch Microbiome 
Project (DMP) to uncover the potential interactions between OS genes and gut microbiota through SMR, sensitivity, and colocalization analysis 
(SMR FDR < 0.05; HEIDI test P > 0.05; Cochran Q P > 0.05; colocalization PPH4 > 0.5). An external First Affiliated Hospital of Sun Yat-sen University 
(FAH-SYS) inflammatory bowel disease (IBD) multi-omics cohort with paired intestinal bulk RNA-seq and fecal metagenomics data was used 
to validate the differentially expressed genes (DEGs). The directional associations between colocalized gene-microbiota were investigated as 
complementary evidence of OS gene-microbiota interactions

https://www.genecards.org
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Fig. 1  (See legend on previous page.)
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instruments, blood gene expressions were exposure, 
and CD was the outcome; (2) SNPs were instruments, 
blood DNAms were exposure, and CD was the outcome; 
(3) SNPs were instruments, blood DNAms were expo-
sure, and blood gene expressions were the outcome. The 
third step included only significant signals from steps 1 
and 2. The final candidate signals were defined as those 
that (1) passed all three-step SMR false discovery rate 
(FDR) < 0.05; (2) were suggestively significant genome-
wide (P < 1 × 10−5) in all eQTLs, mQTLs, and GWAS; and 
(3) exhibited heterogeneity in the dependent instrument 
(HEIDI) test results with P > 0.05.

Intestinal tissue analysis used the SMR multi-tool to 
determine the causal inference between GWAS and cis-
eQTLs. This included SNPs as instruments, intestinal 
gene expressions as exposure, and CD as the outcome 
(SMR FDR < 0.05, HEIDI P > 0.05, cis-eQTLs, and GWAS 
P < 1 × 10−5).

Sensitivity analyses were conducted after completing 
the primary SMR analyses with two additional MR meth-
ods. We tested for heterogeneity across the individual 
causal effects using Cochran Q statistic implemented in 
both MR–Egger and inverse variance weighting (IVW) 
methods. The P value of Cochran’s Q test < 0.05 or the 
HEIDI < 0.05 indicates the existence of heterogeneity.

Colocalization was chosen to assess the potential 
interactions between intestinal gene expression and 
microbiota because of the limited power to assess the 
causality between gut microbiota and diseases [46, 47]. It 
is a method to assess the presence of a shared causal vari-
ant in the region for two traits. Analysis was performed 
using the coloc R package with PPH4 > 0.5 as the thresh-
old for the shared genetic effects between the two traits 
[48, 49].

Replication in the FAH‑SYS IBD multi‑omics cohort
(1) Significant DEG results from the six-dataset meta-
analysis were selected to test between patients with 
CD and healthy controls in our cohort, and (2) the sig-
nificant gene expression–microbial pathway pairs from 
the colocalization analysis were selected. The corre-
lations between intestinal gene expression and path-
way-related microbial taxa (genus- and species-level) 
abundance were then assessed using a linear regres-
sion model adjusted for age, sex, and body mass index. 
Pathway-related microbial taxa were defined using 
MetaCyc (v24.0) pathways_to_organisms definitions 
(https://​metac​yc.​org/) containing the potential micro-
biota involved in each pathway. Only taxa with a present 
rate > 10% in the FAH-SYS IBD cohort were kept for the 
analysis resulting in three species and two genera. More 
specifically, CRNFORCAT.PWY was mainly predicted 
from Methylobacterium and Cupriavidus, P164.PWY 

and PYRIDNUCSYN.PWY were mainly predicted from 
Escherichia coli, PWY.5101 was mainly predicted from 
E. coli and Saccharomyces cerevisiae, and PWY.7237 was 
mainly predicted from E. coli and Bacillus aciditolerans, 
while no PWY0.845-associated taxa survived after filter-
ing. A P value < 0.05 was considered as the significant 
threshold considering the small sample size of the FAH-
SYS IBD cohort.

Unless otherwise stated, statistical significance was 
defined as FDR < 0.05 by the Benjamini–Hochberg (BH) 
method.

Cell type‑specific enrichment and regulatory component 
annotation
The Cell type-Specific Enrichment Analysis DataBase 
(CSEA-DB, https://​bioin​fo.​uth.​edu/​CSEADB/) was used 
to investigate whether intestinal DEGs were specific to 
any cell type. Among 126 general cell types from 111 
tissues, we focused on cell types present in the intes-
tine, which resulted in seven tissues and 23 general cell 
types, after multiple testing corrections (BH method, 
FDR < 0.05).

The regulatory signature enrichment of DNAm sites 
was assessed using eFORGE (http://​eforge.​cs.​ucl.​ac.​uk/), 
including chromatin status (active and inactive) and his-
tone marker (H3K4me1 and H3K4me3) annotation. The 
regions of the individual DNAm sites were annotated at 
http://​grch37.​ensem​bl.​org/.

Results
Meta‑analysis of differentially expressed OS genes 
between patients with CD and HCs
To understand the role of OS genes in CD, a total of six 
gene expression datasets (three microarray datasets 
and three RNA-seq datasets) were included to compare 
RNA expression in the intestinal tissues of patients with 
CD (n = 704) and HCs (n = 212) through a meta-analy-
sis (Additional file 2: Table S1). In total, 817 OS-related 
genes with a relevance score ≥ 7 were downloaded from 
GeneCards (the “Methods” section; Additional file  2: 
Table S2). Subsequently, 438 OS genes were differentially 
expressed between CD and control tissues (FDR < 0.05) 
according to the meta-analysis (Fig.  2A and Additional 
file  2: Table  S3). The top five genes prioritized by effect 
size were DUOX2, MMP3, S100A8, MMP1, and IL1B, 
which are all reported to be associated with intestinal 
inflammation in IBD [7, 50–52]. Furthermore, we con-
ducted cell type-specific expression analysis (CSEA) 
of these DEGs. OS-related DEGs were significantly 
enriched in intestinal enterocytes (FDR = 0.002) among 
the 23 general cell classifications (Fig.  2B; the "Meth-
ods" section; Additional file  2: Table  S4), suggesting an 

https://metacyc.org/
https://bioinfo.uth.edu/CSEADB/
http://eforge.cs.ucl.ac.uk/
http://grch37.ensembl.org/
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essential role of the epithelial cells in regulating intestinal 
OS and maintaining mucosal homeostasis.

Integration of GWAS and OS‑related eQTL/mQTL data 
from the blood
Given such an amount of OS DEGs (53.61%, 438 out of 
817) observed in patients with CD compared with HCs, 
we then hypothesized that gene expression may explain 
the plausible causality in the disease. Additionally, 
DNAm located in promoters or enhancers commonly 
influences the regulation of disease-associated target 
genes [19]. Therefore, we aimed to identify candidate 
causal genes for CD and explore their possible underlying 
epigenetic mechanism of gene regulation in the blood. A 
three-step SMR method was used, and only the signifi-
cant results in all three SMR analyses that passed sensi-
tivity checks were interpreted as suggestive causal genes 
(the “Methods” section). Herein, 438 OS-related DEG 
cis-eQTLs (94,037 SNP–gene pairs) and their cis-mQTLs 
(52,761 SNP–CpG sites) were integrated with the largest 
available GWAS summary statistics for CD.

In concrete, the integration of eQTL results from the 
eQTLGen Consortium (n = 31,684) and CD GWAS 
summary statistics resulted in 16 OS-related genes 
(FDR < 0.05, HEIDI P > 0.05, and Cochran’s Q P > 0.05) 
(Additional file  2: Table  S5). Meanwhile, we identi-
fied 665 DNAm probes (near 127 genes within 1  Mb) 
by integrating the same CD GWAS results and mQTL 
summary statistics from the meta-analysis of Brisbane 

Systems Genetics Study and Lothian Birth Cohorts 
(n = 1980) (Additional file  2: Table  S6). Further integra-
tion analysis of putative CD-causal cis-eQTL and cis-
mQTL data prioritized eight DNAm probes potentially 
regulating five neighboring genes: BAD, SHC1, STAT3, 
MUC1, and GPX3 (SMR FDR < 0.05, HEIDI P > 0.05, and 
Cochran’s Q P > 0.05) (Additional file  2: Table  S7). As 
expected, these CpG sites were significantly enriched 
in the transcription start sites (TSSs) of peripheral 
blood cells, including primary hematopoietic stem cells 
(FDR = 1.65 × 10−16), primary T helper memory blood 
cells (FDR = 1.94 × 10−15), and primary mononuclear 
blood cells (FDR = 4.79 × 10−12) (top three significance) 
(Additional file 3: Fig. S1; Additional file 2: Table S8).

Putative CD‑causal genes mediated by blood methylation 
regulation on gene expression
Our three-step SMR analysis prioritized STAT3, a well-
known redox-regulated gene, and its expression is strictly 
affected by the intracellular redox environment [53]. 
This study showed that the SNP signals associated with 
STAT3 were significant across the data from CD GWAS, 
eQTL, and mQTL studies. The DNAm probe cg06422947 
was found to be located in the enhancer region, 427 
kbp upstream of STAT3. The methylation level of this 
site showed a negative effect on STAT3 expression 
(betaSMR =  − 0.11) and CD onset (betaSMR =  − 0.09), while 
the STAT3 expression level was positively associated with 

Fig. 2  Meta-analysis of six intestinal gene expression datasets between patients with CD and HCs. A In total, 708 out of 817 genes presented in 
all six intestinal transcriptome data were assessed for expression differences between patients with CD and HCs. The volcano plot shows the meta 
effect sizes on the x-axis while the y-axis indicates the − log10-transformed meta P values. Red dots are the 438 significant differentially expressed 
genes (DEGs), and gray dots represent non-significantly expressed genes. The dashed line indicates the significant threshold with FDR < 0.05 
corrected for the number of gene tests. B Cell type-Specific Enrichment Analysis DataBase was used to investigate whether the intestinal DEGs 
were specific to any cell type in the small intestine and colon. The x-axis indicates the cell types derived from the intestinal tissue and blood. Dots 
represent 77 small intestine and colon cell types annotated by 23 general classifications descending by order of significance. The dashed line is the 
significant threshold with FDR < 0.05



Page 7 of 16Xu et al. BMC Medicine          (2023) 21:179 	

the disease (betaSMR = 0.70). Together, our results suggest 
a putative mechanism wherein a lower DNAm level at the 
enhancer region of STAT3 upregulates the expression of 
STAT3 and subsequently increases CD risk (Fig. 3A, B).

Another key example is GPX3 (Fig.  3C, D) which 
belongs to the glutathione peroxidase family and cata-
lyzes the reduction of organic hydroperoxides and hydro-
gen peroxide by glutathione, thereby protecting cells 
against oxidative damage [54]. We found that DNAm 
probe cg08580836, located in the promoter region, 
was causally negatively associated with GPX3 expres-
sion (betaSMR =  − 0.24). Consistently, higher GPX3 gene 
expression (betaSMR =  − 0.15) and lower methylation lev-
els (betaSMR = 0.74) potentially decreased the risk of CD. 
Thus, the putative mechanism could be that the genetic 
variants upregulate GPX3 expression by influencing the 
promoter DNAm status, showing a protective effect on 
CD onset.

Integration of GWAS and OS‑eQTL/mbQTL data 
from intestinal tissue
Genetic effects on gene expression vary across blood and 
intestine tissues, which could reflect different CD-causal 
genes [55]. Moreover, host genetics and gut microbiota 
are known to play critical roles in CD [56]. Intestinal tis-
sues are in direct contact with gut microbes and sense 
local changes in OS levels; therefore, we hypothesized 
that integrating cis-eQTLs and mbQTLs from intestinal 
tissue would provide novel candidate targets with puta-
tive host–microbiota interactions. First, we performed a 
meta-analysis of cis-eQTL data from three intestinal tis-
sues (sigmoid colon, transverse colon, and small intes-
tine) obtained from the GTEx project (n = 860) adjusting 
for sample overlap. This was followed by a meta-analysis 
with intestinal cis-eQTL data from the 1000IBD project 
(n = 299). The final meta-analysis identified 43,975 cis 
SNP–gene pairs corresponding to 392 OS-related genes 
(FDR < 0.05) (Additional file 2: Table S9). The SMR analy-
sis demonstrated the potential causal role of five intes-
tinal-expressed genes in CD (SMR FDR < 0.05, HEIDI 
P > 0.05, and Cochran’s Q P > 0.05): MUC1, CD40, PARK7, 
PRKAB1, and NDUFS1 (Additional file 2: Table S10).

To further explore the role of intestinal OS genes 
from the perspective of host–microbiota interactions, 
we integrated mbQTL summary statistics with puta-
tive CD-causal cis-eQTLs by colocalization analysis. 

This analysis was assumed to determine the probability 
that the genetic determinants of mucosal gene expres-
sion were shared with gut microbiota. SMR was not used 
because of power issues suffering from the moderate 
effects of host genetics on the gut microbiota [46, 47]. In 
total, six gene expression–microbial pathway pairs were 
detected at the threshold of PPH4 > 0.5, including three 
of the above genes, MUC1, CD40, and PRKAB1 (Addi-
tional file 2: Table S11; Additional file 4: Fig. S2).

Putative CD‑causal genes involved in intestinal gene–
microbiota interactions
We prioritized MUC1 as a candidate OS causal gene in 
CD intestinal tissues associated with the gut microbi-
ota based on SMR and colocalization analysis (Fig. 4A). 
Our study showed that elevated MUC1 expression likely 
played a causal role in CD onset (betaSMR = 0.57). Fur-
thermore, SNPs regulating MUC1 expression might also 
affect the microbial metabolic functions given the colo-
calization analysis. Concretely, the creatinine degrada-
tion (CRNFORCAT.PWY; PPH4 = 0.94) and myo-inositol 
degradation (PWY.7237; PPH4 = 0.60) microbiota meta-
bolic pathways, which are associated with decreased 
inflammation or short-chain fatty acids production, 
shared genetic effects with MUC1 expression. Our find-
ings suggest that genetic variation in MUC1 might simul-
taneously regulate its gene expression and the production 
of microbiota-derived metabolites, thus increasing the 
risk of CD.

The CD40 gene for CD is another example involved 
in intestinal gene–microbiota interactions (Fig.  4B). 
CD40 and its ligand (CD40L) are associated with ROS 
production in immune and endothelial cells [57, 58]. 
They constitute the second activation signal of mac-
rophages and enhance its activation and the resultant 
production of potential antimicrobial peptides as well 
as ROS, nitric oxide, and related metabolites [59]. This 
study showed a protective effect of CD40 expression 
against CD (betaSMR =  − 0.62), which was also found in 
the case of other immune-related disease studies [60]. 
Three microbial pathways were associated with CD40 
gene expression under genetic regulation: nicotina-
mide adenine dinucleotide biosynthesis from aspartate 
(PYRIDNUCSYN.PWY; PPH4 = 0.83), L-isoleucine bio-
synthesis (PWY.5101; PPH4 = 0.72), and the superpath-
way of pyridoxal 5′-phosphate biosynthesis and salvage 

(See figure on next page.)
Fig. 3  Three-step SMR analysis prioritized putative causal OS genes and mechanisms in CD using blood tissue. Examples of well-known and novel 
CD-causal OS genes. A, C Locus zoom plots showing the consistent genetic effects from CD GWAS, cis-mQTL, and cis-eQTL nearby STAT3 and GPX3 
(from upper to lower panels, all minimum P < 1 × 10−5). B, D Three-step SMR indicating significant causal relationships between gene expressions 
and CD onset mediated by methylation (all three-step SMR FDR < 0.05, HEIDI test P > 0.05). From left to right: SMR between gene expression and CD 
GWAS, SMR between gene methylation and CD GWAS, and SMR between gene methylation and expression
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Fig. 3  (See legend on previous page.)
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(PWY0.845; PPH4 = 0.52). These microbiota-derived 
substances have also been reported to be correlated with 
intestinal inflammation [61–65]. For instance, nicotina-
mide adenine dinucleotide can be produced by certain 
gut bacteria from L-aspartate [66], which is associated 
with gut inflammation in IBD [63, 64]. L-isoleucine sup-
plementation alleviates intestinal inflammation in  vivo 
and in vitro [65]. Thus, we hypothesize a mechanism by 
which genetic variants regulate CD40 expression and 
interact with inflammation-related microbial activities 
and therefore contribute to CD pathogenesis.

Another candidate causal gene is PRKAB1 (Fig.  4C). 
This study showed that PRKAB1 expression was also 
negatively associated with the risk of developing CD 
(betaSMR =  − 0.30). Additionally, its expression shared 
genetic effects with microbial purine nucleobase 

degradation (P164.PWY; PPH4 = 0.74), indicating a 
potential interaction between gene expression and 
intestinal microbial nucleotide metabolism.

External replication of OS DEGs and plausible gene–
microbiota interactions in the FAH‑SYS cohort
To confirm the prioritized genes above, we first validated 
the DEG results from the meta-analysis using intestinal 
transcriptomic sequencing data in an independent FAH-
SYS cohort (CD n = 46; HC n = 44; the “Methods” sec-
tion; Additional file 2: Table S12). A lenient significance 
threshold (P < 0.05) was adopted considering the limited 
sample size. In total, 437 out of 438 intestinal DEGs from 
the meta-analysis were tested between patients with CD 
and HCs. Of note, 388 (88.79%) genes were consistently 
upregulated or downregulated under disease conditions 

Fig. 4  SMR and colocalization analyses prioritized intestinal causal OS genes and interactions with gut microbial pathways in CD. The left 
panels indicate the SMR between gene expressions and CD GWAS (all SMR FDR < 0.05; HEIDI test P > 0.05), while the right panels show the locus 
comparisons between cis-eQTLs and mbQTLs by colocalization analysis (all PPH4 > 0.5). The r2 value indicates the linkage disequilibrium (LD) 
between the variants and the top SNPs. A–C The genes of MUC1, CD40, and PRKAB1, respectively
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(Spearman rank’s correlation coefficient rs = 0.84; 
P = 2.2 × 10−23; Fig.  5A). A total of 320 (73.23%) genes 
achieved a P value < 0.05 (Additional file  2: Table  S13), 
suggesting a robust change in OS gene expression in CD.

Colocalization analysis demonstrated candidate genetic 
regulations of both intestinal gene expression and gut 
microbiota; however, little information is available on the 
correlative directions between the latter two. We then 
integrated the paired fecal metagenomic and intestinal 
gene expression data from the FAH-SYS cohort. Two 
genera and three species potentially involved in colocal-
ized metabolic pathways were evaluated for their asso-
ciations with intestinal gene expression (the “Methods” 
section). Five gene–microbiota pairs showed significant 
correlations in the FAH-SYS cohort (P < 0.05; Additional 
file 2: Table S14). Intestinal MUC1 gene expression was 
upregulated in patients with CD compared with that 
in HCs (beta = 3.16; P = 6.76 × 10−15; Fig.  5B). Bacillus 
aciditolerans, a species from previously reported probi-
otics involved in myo-inositol degradation (PWY.7237), 

was less abundant in the CD group than in the HC 
group (beta =  − 2.44; P = 0.0026). A negative correlation 
between MUC1 expression and B. aciditolerans abun-
dance was observed in the HC group (beta =  − 0.093; 
P = 0.05). E. coli is a purine utilizer (P164.PWY) and an 
opportunistic pathogen associated with various immune-
related diseases [67]. We identified a higher abundance of 
E. coli in CD while it was associated with a lower level 
of PRKAB1 gene expression (beta =  − 0.012; P = 0.039 
in HCs; Fig.  5C). Meanwhile, we observed an increas-
ing trend in S. cerevisiae abundance in the FAH-SYS 
CD group (beta = 0.38; P = 0.11), which participates in 
L-isoleucine biosynthesis (PWY.5101). The association 
between S. cerevisiae and CD40 expression was also 
insignificant (Fig.  5D). Notably, the lack of a significant 
correlation between these intestinal gene expressions 
and microbiota in CD was likely due to dysbiosis in the 
disease with disrupted host–microbiota interactions 
[68]. Nevertheless, the results from an external cohort 
were consistent with eQTL–mbQTL colocalization. This 

Fig. 5  External cohort validation. First Affiliated Hospital of Sun Yat-sen University (FAH-SYS) cohort with both intestinal bulk RNA-seq and fecal 
metagenomics data included in validation analysis. A A total of 388 out of 437 (88.79%) differentially expressed genes (DEGs) identified from the 
meta-analysis show consistent changes between patients with CD and HCs (Spearman rank’s correlation coefficient rs = 0.84, P = 2.2 × 10−23). The 
x- and y-axes indicate the Z score estimated from the meta-analysis and FAH-SYS cohort, respectively. Yellow dots represent the 388 consistent 
DEGs, while gray dots are non-validated. B–D Validation of DEGs, pathway-related taxa, and the association between taxa and gene expressions, 
respectively (from left to right). The upper to lower panels are for the MUC1, PRKAB1, and CD40 genes, respectively. The taxa probably involved in 
PWY.7237, P164.PWY, and PWY.5101 were selected from MetaCyc database annotation
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provides complementary evidence of the CD-causal effect 
of MUC1 expression and the protective role of PRKAB1 
expression upon interaction with gut microbiota.

Discussion
To the best of our knowledge, this study is the first to lev-
erage a multi-omics integration method to detect puta-
tive causal OS genes and the underlying mechanisms in 
CD using blood and intestinal tissues. We identified 438 
OS-related DEGs out of 817 potential genes in CD in a 
sizable meta-analysis of intestinal transcriptome data and 
successfully validated these DEGs in our cohort. Inte-
gration of GWAS with the eQTLs and mQTLs of these 
DEGs from the peripheral blood prioritized five putative 
OS genes and their regulatory elements associated with 
CD onset: BAD, SHC1, STAT3, MUC1, and GPX3. More-
over, the integration of intestinal eQTL data also identi-
fied five candidate causal genes, of which MUC1, CD40, 
and PRKAB1 were involved in intestinal gene–microbi-
ota interactions through further colocalization analysis. 
Differentially expressed OS genes in CD can either be 
a cause or a collateral effect of intestinal inflammation; 
our study is therefore fundamental as an attempt to fill 
the gaps in our understanding of discriminating between 
either causally or remotely involved OS genes and pin-
pointing the relevant interactions in CD in a genomic 
context.

Recently, more and more blood-based biomarkers are 
being used to diagnose, monitor, and predict IBD activi-
ties, and blood tissue may serve as a valuable proxy in 
terms of characterizing genetic effects on gene expres-
sion and understanding the complex etiology of IBD. 
Using an SMR analysis with blood tissue, we detected five 
putative causal associations between OS genes and CD 
susceptibility through genetically epigenomic and tran-
scriptomic regulation, suggesting a vital role of epigenetic 
factors and gene expression in the disease onset. Among 
these genes (BAD, SHC1, STAT3, MUC1, and GPX3), the 
causal roles of STAT3 and MUC1 have been extensively 
characterized in CD [69–71]. For instance, STAT3 plays 
a crucial role in many cellular processes, including cell 
growth and apoptosis in response to cellular stimuli, and 
has been regarded as a CD susceptibility gene according 
to previous GWASs [72–74]. Moreover, a T cell-specific 
STAT3 deletion has been reported to ameliorate dex-
tran sulfate sodium-induced colitis in mice by reducing 
the inflammatory response [75]. Importantly, our study 
confirmed that an increased transcript level of STAT3 
may lead to an increased CD risk (betaSMR = 0.70). Addi-
tionally, we revealed that DNAm in enhancer regions 
negatively regulated STAT3 expression, suggesting a 
link between DNAm, STAT3 expression, and CD risk. 
More importantly, another three candidate genes lacking 

intensive study were identified from blood tissue that 
might be causal to CD: GPX3, SHC1, and BAD. GPX3 
is involved in the redox-sensitive KEAP1-NRF2/ARE 
signaling system which is considered a pivotal target in 
maintaining cellular homeostasis under OS, inflamma-
tory conditions, and pro-apoptotic conditions [76]. To 
date, studies on the GPX3 gene, which is a target gene of 
NRF2, have mainly focused on cancers, including colitis-
associated carcinoma; for example, Gpx3-deficient mice 
exhibited increased tumor number and inflammation, 
suggesting a protective role of GPX3 in colitis-associated 
carcinoma [77]. Similarly, our findings indicated a nega-
tive (protective) effect of GPX3 expression on CD sus-
ceptibility (betaSMR =  − 0.15). SHC1 is a signaling adapter 
molecule that is heavily understudied in CD. This gene 
encodes three main isoforms, and the most extended iso-
form (p66Shc) is a central regulator of OS in mitochon-
dria and cells across multiple diseases [78–80]. This work 
showed that four DNAm sites near the promoter regions 
were significantly associated with SHC1 and CD, indicat-
ing a co-regulatory pattern involving multiple epigenetic 
regulatory elements [81]. BAD protein is a key partici-
pant in mitochondria-dependent apoptosis and patho-
physiological processes that involve the regulation of 
OS [82]. Although previous CD GWAS data have identi-
fied genetic variants located nearby OS genes like SHC1 
and BAD [83], it remains unclear whether these genes 
have a causal effect on CD. Based on our SMR analysis, 
we hypothesize that genetic variants could regulate the 
expression of these genes through DNA methylation, 
thereby affecting CD pathogenesis.

Tissue- and cell-specific gene expression has been 
shown to elucidate different biological molecular mech-
anisms [55, 84]. CD is a gastrointestinal disease, and 
studying its genetic effects on OS gene expression in 
the intestine using intestinal eQTLs (the most pertinent 
tissue type) may be more meaningful than that in the 
blood. As the intestinal barrier directly contacts with 
luminal microbes and oxidized compounds from exter-
nal environment factors and senses the recurrent oxida-
tive changes, OS genes in the intestine may be associated 
with CD through host–microbiota interactions. Our 
SMR-based analysis pinpointed MUC1, CD40, PARK7, 
PRKAB1, and NDUFS1 as putative causal genes in intes-
tinal tissue, of which MUC1 was also of interest in the 
blood. However, the association between MUC1 expres-
sion and CD differed in the blood compared to that in 
the intestine, suggesting tissue-specific effects during the 
onset of CD. Moreover, we identified novel genes in this 
context that might contribute to CD pathogenesis, such 
as PRKAB1 and NDUFS1. Three genes, MUC1, CD40, 
and PRKAB1, were further prioritized when considering 
the interactions between host genetics and microbiota. 
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MUC1 encodes a vital constituent of mucus and is over-
expressed and hypo-glycosylated in the development of 
inflammation and IBD given its role in regulating intes-
tinal barrier function upon multiple stimuli, including 
OS [71, 85–87]. Furthermore, Muc1 knockout mice are 
resistant to dextran sulfate sodium-induced acute intesti-
nal injury [70]. This is consistent with our findings which 
confirmed that high expression of MUC1 increases the 
risk of developing CD. Additionally, our study colocal-
ized the genetic regulations of MUC1 expression and gut 
microbiota. Microbial creatinine degradation and myo-
inositol degradation shared genetic effects with MUC1 
expression, suggesting the potential interactions between 
the gene and microbiota. Creatinine supplementation is 
identified as a potential therapeutic treatment for IBD; 
creatinine can be degraded to creatine by gut microbi-
ota [88]. Creatinine clearance is associated with reduced 
inflammation and decreased fibrosis [89]. In addition, 
myo-inositol derived from dietary phytate can be con-
verted to short-chain fatty acids through colonic bacterial 
phytase activity [90]. B. aciditolerans, one of the predicted 
pathway-related taxa, was negatively correlated with 
MUC1 expression in the FAH-SYS cohort. This suggests 
that high MUC1 expression accompanied by decreased 
beneficial microbial activities could confer an increased 
risk of CD. Our study also inferred that PRKAB1, which 
encodes the regulatory subunit of AMP-activated protein 
kinase that monitors cellular energy status and responds 
to ROS [91], was a CD-protective OS gene. We suggest 
that genetic regulation of PRKAB1 expression is associ-
ated with CD onset (betaSMR =  − 0.30). Moreover, E. coli 
and related purine nucleobase degradation pathways may 
interact with host PRKAB1 expression. IBD-associated 
E. coli strains have been reported to facilitate IBD flares 
[92]. A negative correlation between PRKAB1 expres-
sion and E. coli was consistently observed in the FAH-
SYS cohort. Interestingly, a recent study reported the role 
of PRKAB1 agonists as barrier-protective therapeutic 
agents in IBD [93]. However, further evidence based on 
genetic background (such as knockout mouse models) is 
needed to precisely explain the potential role of PRKAB1 
in CD.

Integrating multi-omics from multiple tissues enables 
researchers to dissect GWAS signals, such as the prior-
itization of genes and disease mechanisms. Peripheral 
blood tissue has a less direct and significant effect on 
CD than intestinal tissue. However, its significance in 
generating epigenomic, transcriptomic, and proteomic 
evidence for identifying causally involved genes and 
therapeutically relevant targets is well recognized [19, 
94, 95]. We prioritized a list of novel genes and DNAm 
sites for follow-up functional studies using the largest 
up-to-date CD GWAS and OS-targeted approach. More 

importantly, this is the first study providing evidence to 
support a causal role of OS genes interacting with the 
gut microbiota in intestinal tissue. Despite the moderate 
associations between host genetics and gut microbiota 
[46], we observed common genetic regulations of intes-
tinal gene expression and bacterial metabolic potentials. 
Different bacteria harboring shared genomic contents 
can participate in the same metabolic functions [96, 97]. 
However, no individual taxa were significantly colocal-
ized with the intestinal gene expression in the current 
analysis. This is likely owing to the low statistical power 
to detect zero-inflated taxa data in mbQTL studies [44]. 
Nevertheless, we used an external multi-omics cohort to 
confirm the association between the expression of these 
genes and pathway-related bacterial abundance. In addi-
tion, microbiota detected from fecal and intestinal tissues 
showed considerable differences [98–100], which might 
explain the small effect sizes from the intestinal gene–
fecal microbiota associations.

Some limitations of this study warrant recognition. 
First, the meta-analysis of intestinal DEGs included dif-
ferent data resources (microarray and bulk RNA-seq 
with varying sample sizes) which could impose hetero-
geneity. However, we successfully replicated over 80% 
of the DEGs in an independent cohort with pronounced 
transcriptomic alterations of the OS gene family in 
patients with CD compared with the controls. Second, 
cell type-dependent eQTLs vary with disease progres-
sion [101, 102]. The eQTLs from the bulk RNA-seq 
limited the identification of key molecular mechanisms 
at the intestinal cell level (enterocytes, immunocytes, 
fibrocytes) related to CD. Third, we only focused on the 
cis-regions for OS genes in the analysis, despite the pos-
sibility that trans-eQTL SNPs (SNP and the center of the 
gene > 5  Mb) may have a widespread impact on regula-
tory networks [41]. Fourth, we used a Bayesian colo-
calization method which relies on an assumption that 
two straits share the same single genomic variant while 
the case of multiple causal variants is under-explored 
[103]. Finally, functional experiments are still needed to 
validate our findings. Moreover, as multiple factors can 
influence the expression of OS genes, we believe that 
integrating other omics data at different molecular lev-
els (such as those of proteins and metabolites) with large 
sample sizes may lead to novel discoveries and improve 
the characterization of putatively involved causal mech-
anisms of OS in CD.

Conclusions
This study expands our knowledge of the potential cau-
sality of OS and the underlying biological mechanisms in 
CD based on a multi-omics MR approach. We demon-
strated that CD onset putatively results from a number 
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of candidate OS genes through DNAm, gene expression, 
and interaction with gut microbiota. Host–microbiota 
interactions between our newly identified causal OS genes 
and microbial taxa and pathways are worth studying at a 
functional level to gain more in-depth insights into the 
underlying biological mechanisms. This study advances 
fundamental research into the role of OS in CD and pin-
points potentially novel therapeutic targets for clinical 
practice.
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