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ABSTRACT
We develop a generalized linear mixed model (GLMM) for bivari-
ate count responses for statistically analyzing dragonfly population
data from the Northern Netherlands. The populations of the threat-
ened dragonfly species Aeshna viridis were counted in the years
2015–2018 at 17 different locations (ponds and ditches). Two dif-
ferent widely applied population size measures were used to quan-
tify the population sizes, namely the number of found exoskele-
tons (‘exuviae’) and the number of spotted egg-laying females were
counted. Since both measures (responses) led to many zero counts
but also feature very large counts, our GLMM model builds on a
zero-inflated bivariate geometric (ZIBGe) distribution, for which we
show that it can be easily parameterized in terms of a correlation
parameter and its two marginal medians. We model the medians
with linear combinations of fixed (environmental covariates) and
random (location-specific intercepts) effects. Modeling the medians
yields a decreased sensitivity to overly large counts; in particular, in
light of growing marginal zero inflation rates. Because of the rela-
tively small sample size (n = 114) we follow a Bayesian modeling
approach and use Metropolis-Hastings Markov Chain Monte Carlo
(MCMC) simulations for generating posterior samples.
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1. Introduction

Generalized linear mixed models (GLMMs) are a popular statistical tool for modeling eco-
logical data; see, e.g. [19,24,28,29]. The framework of generalized linear models (GLMs)
is needed since many ecological responses are not continuous but binary, counts, or pro-
portions [2]. Another typical characteristic is that ecological data often contain repeated
observations on the samemeasurement units. This yields non-trivial dependencies among
the observations that can be accounted for by including fixed and random (mixed) effects,
leading to GLMMs. For ecological count data, two more common characteristics are the
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presence of unreasonably many zero counts (‘zero inflation’) and the presence of unrea-
sonably large counts (‘outliers’). For univariate responses, there are many well-established
methods to deal with these data features. However, in some applications, the data contain
bivariate (or multivariate) responses. One sub-optimal approach is then to apply a univari-
ate GLMM to each response separately. The disadvantage is that intrinsic dependencies
(correlations) between the responses are ignored. A more natural and methodologically
preferred approach is to work with multivariate response distributions. Nonetheless, the
conceptual problem is that many of the proposed multivariate models do not easily allow
to account for zero inflation and/or large outliers and/or random effects to be integrated.
Henceforth, some of the required model features might get lost when switching from a
univariate to a bi- or multivariate GLMM.

In this paper, we present a new GLMM for bivariate count data. Our model assumes
that the data follow a bivariate geometric distribution and we design the model such that
we can easily integrate all the important features of the univariate GLMMs.

The data that motivated us to design the newmodel stem from a recent ecological study
on Aeshna viridis (‘green hawker’) dragonfly populations in the Northern Netherlands.1
For four consecutive years (2015–2018), field studies were performed at various locations
(ponds and ditches). The dragonflies were counted in two distinct ways: the traditional
way of counting live specimens, but also by collecting and counting the exoskeletons (exu-
viae) shed by the dragonflies upon transition from the larval to the adult stage. In the
ecological literature, there is some disagreement on which count type yields more rep-
resentative/reliable results [13]. For the data analysis, we thus designed a bivariate GLMM
to model both population measures simultaneously while taking potential correlations
between them into account. The available dragonfly population data set (see Section 5.1) is
of relatively small size (n = 114), includes repeated measurements (at m = 17 locations),
and contains many zero counts (potential zero inflation) as well as large counts (potential
outliers). These data characteristics urged the need for designing a tailored model for the
data analysis.

We design the model in successive steps. First, we derive the probability mass function
(PMF) of a bivariate geometric (BGe) distribution. Thenwe show that the BGe distribution
can be easily parameterized in terms of its marginal medians and a correlation parameter.
Modeling themedians yields a decreased sensitivity towards large outliers. Next, we extend
the BGe distribution to a zero-inflated bivariate geometric (ZIBGe) distribution, so as to
be able to deal with unreasonablymany zero counts. Finally, we use the ZIBGe distribution
to build the likelihood of a GLMM, which we refer to as ZIBGe-GLMM. The advantage of
the ZIBGe-GLMMmodel is that the underlying ZIBGe distribution can intrinsically cope
with zero inflation and outliers, and that it is conceptually straightforward to model the
marginal medians based on fixed effects (here: environmental factors) and random effects
(here: location-specific intercepts). We follow a Bayesian approach and use Markov Chain
Monte Carlo (MCMC) simulations for model inference. For a detailed model description,
we refer to Section 2.

In the literature, many bivariate distributions for count data have been proposed, and
different derivation techniques have been used to extend univariate to bivariate count
distributions. The existing bivariate count distributions have different strengths and weak-
nesses when dealing with data features, such as zero inflation, outliers, and/or overdisper-
sion issues. In particular, bivariate Poisson distributions have become very popular. For
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example, [1] propose a bivariate Poisson distribution derived from conditional probabili-
ties of two dependent random counts, while [9] use a multiplicative factor parameter for
defining a bivariate Poisson distribution. And in [16], the so-called Sarmanov approach
[25] has been used to derive a bivariate Poisson distribution. When following the Sar-
manov approach, the bivariate probabilitymass function (PMF) is obtained by introducing
a multiplicative coupling term between the univariate PMFs.

In [8], the Sarmanov approach has been used for deriving a bivariate (zero-inflated)
exponentiated-exponential distribution. Although widely applicable, the Saramanov
approach comes with the technical difficulty that it can lead to negative probability masses,
which can only be avoided by imposing tailored restrictions on the parameter spaces; for
discussions on this see, e.g. [16]. In [6], integration was used to derive a bivariate nega-
tive binomial distribution that can additionally include zero inflation along the coordinate
axes.

In this paper, we use the bivariate geometric (BGe) distribution from [18] to build a
GLMMmodel for the dragonfly data. An important property of the BGe distribution is that
it can be easily parameterized in terms of only three parameters, namely the two marginal
medians and a correlation parameter (cf. Section 2). These three parameters have intuitive
meanings and are thus very easy to interpret. When compared with the competing distri-
butions for bivariate count data (see above), we see the following advantages of the BGe
distribution:

• For the dragonfly data, we observe marginal modes close to zero and very large tails (cf.
right panel of Figure 3). These data features are not compatible with the characteristic
shape of Poisson distributions. Hence, it can be expected that the geometric distribution
yields a better fit to the data. To provide empirical evidence for this claim, we com-
pare our model with the BZIP model from [22] which employs the bivariate Poisson
distribution (cf. Section 5.2.3).

• The bivariate exponentiated-exponential distribution from [8] and the bivariate neg-
ative Binomial distribution from [6] require additional overdispersion parameters (to
accommodate large outliers), and both distributions cannot be parameterized such that
there is an explicit correlation parameter. On the other hand, the three parameters of
the bivariate geometric (BGe) distribution from [18] are easy to interpret and allow us
to explicitly model the correlation between the two components.2

Our modeling approach was not only motivated by but also borrows and combines
ideas from several works. For example, the idea to parameterize the BGe distribution in
terms of its marginal medians has been inspired by [3], where a discretized univariate
Weibull distribution has been parameterized in terms of its median, so as to make it more
robust to outliers. Moreover, we follow [22] and borrow the idea from [20] when extend-
ing the bivariate geometric (BGe) distribution from [18] to a zero-inflated BGe (ZIBGe)
distribution. We then use the ZIBGe distribution to build the GLMM likelihood, and like
[10], we make use of random effects to account for repeated measurements on the same
units.

The remainder of this paper is organized as follows. In Section 2, we derive the new
ZIBGe-GLMM, and in Section 3, we provide the implementation details. The results of
a small study on synthetic data, which serves as a proof of concept, are presented in
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Section 4. In Section 5, we describe and statistically analyze the A. viridis dragonfly popu-
lation data. In Section 6, we conclude with a short discussion. A formal proof, theoretical
considerations, and amap of the study locations have been delegated to the Supplementary
Material.

2. Methods

A robust Bayesian generalized linear mixed model (GLMM) for univariate count response
data has been proposed in [3]. The model employs a univariate discretized Weibull dis-
tribution, which has the advantage that it can be parameterized in terms of its median. By
modeling themedian, themodel facilitates decreased sensitivity to extreme outliers. In this
paper, we adapt the idea of [3] to define a new GLMM for bivariate count responses. To
this end, we replace the univariate discretized Weibull distribution from [3] by a bivariate
geometric distribution, and we propose further to parameterize it in terms of its marginal
medians.

2.1. The geometric (Ge) distribution and its ‘continuitized’ median

The geometric distribution describes the distribution of the number of failures when
performing independent experiments with success probability q ∈ [0, 1] until a success
is observed, symbolically we write: Ge(q). Its probability mass function (PMF) and its
cumulative distribution function (CDF) are given by

p(x | q) = (1 − q)xq (x ∈ N0) and Fq(x) = 1 − (1 − q)x+1 (x ∈ N0),

whereN0 denotes the set of natural numbers together with 0. As every parameter q implies
a unique mean, μ := 1

q − 1 ⇔ q = 1
μ+1 , the geometric distribution can as well be param-

eterized in terms of μ, symbolically Ge(μ). The median [M] of the geometric distribution
is3

[M] =
⌈ −1
log2(1 − q)

− 1
⌉

=
⎡
⎢⎢⎢

1

log2
(
μ+1
μ

) − 1

⎤
⎥⎥⎥ , (1)

where �·� is the ceiling function. But unlike for themeanμ, there is no one-to-onemapping
between q and [M]; different parameters q yield the samemedian [M] ∈ N0. Therefore, we
introduce the concept of the ‘continuitized’ (continuous)medianM ∈ R

+
0 (R+

0 denotes the
set of non-negative real numbers), which we define via the relationship

Fq(M) = 1
2

⇔ M = 1

log2
(
μ+1
μ

) − 1.

Since there is a one-to-one mapping between q and the continuitized median M, we can
parameterize the geometric distribution in terms of M. We have [M] − M < 1, so that
M is close to the true median. In our GLMM regression framework, we therefore model
M ∈ R

+
0 rather than the true median [M] ∈ N0.

In the sameway that distributions are uniquely determined by theirmoment-generating
functions (MGFs), distributions with sample space S = N0 are uniquely determined by
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their probability-generating functions (PGFs) [12, Chapter 5]. For a random variable X,
the PGF is defined as G(s) := E{sX} with |s| ≤ r, where r ≥ 1 is called the radius of
convergence. The PGF of the Ge(μ) geometric distribution is given by

G(s) = 1
1 + μ(1 − s)

(|s| � 1). (2)

2.2. A bivariate geometric distribution (BGe)

The PGF of a bivariate random vector (X,Y) is defined asG(s, t) := E{sXtY}with |s|, |t| ≤
r. In [18], a bivariate geometric (BGe) distribution, denoted BGe(μ, ν, θ), has been defined
by extending the PGF from (2) to the bivariate PGF

G(s, t) = 1
(1 + μ(1 − s))(1 + ν(1 − t))− θμν(1 − s)(1 − t)

(|s|, |t| ≤ 1). (3)

The parameters μ, ν > 0 correspond to the marginal means and the parameter θ ∈ [0, 1]
affects the covariance between the two components. The marginal distributions are the
Ge(μ) and the Ge(ν) geometric distributions since

E{sX} = G(s, 1) = 1
1 + μ(1 − s)

and E{tY} = G(1, t) = 1
1 + ν(1 − t)

.

We have Cov{X,Y} = ∂2G
∂s∂t (1, 1)− μν = θμν. For large μ, ν, the parameter θ resembles

the correlation coefficient, ρ, between the components since

ρ = Cov{X,Y}√
VarX

√
VarY

= θμν√
μ(μ+ 1)

√
ν(ν + 1)

= θ

√
μν

(μ+ 1)(ν + 1)
μ,ν→∞−−−−→ θ . (4)

The probability mass function (PMF) of the BGe distribution is uniquely defined through
the PGF in (3), but the PMF has not been provided in [18]. As we need the PMF for com-
puting the likelihood of the GLMM, we derive it in Supplementary Material A.1. By taking
derivatives of G(s, t), we obtain the following result:

Proposition 2.1: The PGF of the BGe(μ, ν, θ) distribution provided in (3) implies the
following probability mass function (PMF). For x, y ∈ N0,

g(x, y | μ, ν, θ) =
min{x,y}∑

j=0
(−1)j

(
x + y − j

j, x − j, y − j

)
ζ j(μ+ ζ )x−j(ν + ζ )y−j

(1 + μ+ ν + ζ )x+y−j+1 , (5)

where ζ := (1 − θ)μν.

Proof: Since the proof is long and technical, we have delegated it to Supplementary
Material A.1. �
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2.3. A zero-inflated bivariate geometric (ZIBGe) distribution

Data are zero-inflated with respect to a given distribution when they contain more zeros
than the distribution can support. To be able to model zero-inflated data, one can define a
zero-inflated variant of the given distribution. As [20] show, zero inflation can be included
for any subspace of the support for multivariate distributions. We follow this approach to
define a Zero-Inflated Bivariate Geometric (ZIBGe) distribution as

ZIBGe(μ, ν, θ ,π) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0) with probability π1,
(Ge(μ), 0) with probability π2,
(0, Ge(ν)) with probability π3,
BGe(μ, ν, θ) with probability 1 − π1 − π2 − π3,

(6)

where π = (π1,π2,π3) is a vector of zero inflation probabilities with π1 + π2 + π3 ≤ 1.
Accounting for zero inflation is particularly important when modeling data with distribu-
tions that do not feature any dispersion parameters, like the geometric distribution. For the
PMF of the ZIBGe(μ, ν, θ ,π) distribution, we obtain for x, y ∈ N0:

f (x, y | μ, ν, θ ,π) = π11{(0,0)}(x, y)+ π21{0}(y)
μx

(μ+ 1)x+1 + π31{0}(x)
νy

(ν + 1)y+1

+ (1 − π1 − π2 − π3)g(x, y | μ, ν, θ), (7)

where 1A(·) denotes the indicator function on a set A, and the PMF g(x, y | μ, ν, θ) was
defined in (5).

2.4. Reparameterization in terms of continuitizedmarginal medians

For the BGe(μ, ν, θ) distribution, we have a one-to-one mapping between the marginal
means μ, ν and the respective marginal continuitized medians M, N, which we defined
such that they are continuous. Henceforth, we can parameterize the BGe(μ, ν, θ) distribu-
tion (and so the ZIBGe(μ, ν, θ ,π) distribution) in terms ofM, N, and θ .

A zero-inflated (univariate) geometric (ZIGe) distribution with mean μ (without zero
inflation) and zero inflation probability parameter π has CDF

Fμ,π(x) = π + (1 − π)

(
1 −

(
1 − 1

μ+ 1

)x+1
)

(x ∈ N0)

and its continuitized median M solves the equation Fμ,π(M) = 1
2 . As π � 1

2 implies
M = 0, we assume that the zero-inflation probability π < 1

2 . Solving Fμ,π(M) = 1
2 forM

yields

M = log(2(1 − π))

log(μ+1
μ
)

− 1 ⇔ μ = ((2(1 − π))
1

M+1 − 1)−1. (8)

From (6), it can be seen that the marginal zero inflation probabilities for the first and
second component of the ZIBGe(μ, ν, θ ,π) distribution are π1 + π3 and π1 + π2, respec-
tively. Using (8), we can parameterize the distribution in terms of itsmarginal continuitized
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mediansM, N, from which we can easily get the marginal means:

μ = ((2(1 − π1 − π3))
1

M+1 − 1)−1 and ν = ((2(1 − π1 − π2))
1

N+1 − 1)−1. (9)

This reparameterization facilitates decreased sensitivity to large outliers, see Supplemen-
tary Material A.2 for an illustrative explanation. We denote the resulting distribution
by ZIBGe(M,N, θ ,π), whereby we impose on the zero-inflation probability parameters
π = (π1,π2,π3) the restrictions: π1 + π2 <

1
2 and π1 + π3 <

1
2 .

2.5. The ZIBGe-GLMMmodel

Consider a set ofn observations of the form (yi, xi, zi), where each yi = (y1,i, y2,i) is a bivari-
ate random vector whose elements y1,i and y2,i refer to two potentially correlated counts,
each xi is a k-dimensional vector of covariate values that may also include a constant inter-
cept term, and each zi is a known and observed grouping factor that divides the n data
points intom groups {1, . . . ,m}. We assume that the distribution of the vector yi depends
on the covariate values xi as well as on the group label zi. With regard to the dragonfly data
(compare Section 5.1), we assume further that the discrete covariates have only a few possi-
ble levels, while the number of groups,m, is relatively large. Therefore, to keep the number
of parameters low, we use random intercepts to account for systematic offsets among the
m groups.

We employ the zero inflated bivariate geometric (ZIBGe) distribution from Subsec-
tion 2.3 and its continuitized median parametrization from Section 2.4 to model the
bivariate count vectors y1, . . . , yn in a GLMM, and we refer to the resulting new model
as the ZIBGe-GLMM model. For the likelihood, we get

yi | (Mi,Ni, θ ,π) ∼ ZIBGe(Mi,Ni, θ ,π) (i = 1, . . . , n), (10)

where the continuitized median parameters Mi,Ni ∈ R
+
0 depend on the covariate values

xi and the group label zi (i = 1, . . . , n). More precisely, we assume a generalized linear
relationship:

Mi = exp{xi · β(M) + b(M)zi },
Ni = exp{xi · β(N) + b(N)zi },

(11)

where β(M),β(N) are k-dimensional vectors of fixed effects, and the subscripts zi ∈
{1, . . . ,m} of the intercepts indicate the group to which observation i belongs. As we
supposed the number of groups, m, to be large, we treat the vectors of group offsets
bj := (b(M)j , b(N)j ) (j = 1, . . . ,m) as random intercepts, for which we assume

b1, . . . , bm | �
iid∼ N(0,�), 0 < � ∈ R

2×2. (12)

We note that the 2m random intercepts allow us to account for group-specific offsets in the
two marginal medians, while keeping the effective number of parameters low; the matrix
� consists of only 3 (<2m) free parameters.
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Wemodel the correlation parameter θ via the logistic function

θ = 1
1 + e−η

⇐⇒ logit(θ) = η, (13)

where η ∈ R is a real-valued intercept parameter, and we employ a multinomial logistic
regression approach for the zero-inflation probability parameters π = (π1,π2,π3):

π	 = eγ	

2(1 + eγ1 + eγ2 + eγ3)
(	 = 1, 2, 3) ⇔ mlogit(2π) = γ , (14)

where γ = (γ1, γ2, γ3) ∈ R3 is a vector of real-valued intercept parameters. The function
mlogit(·) is the generalization of the logistic link .4 By multiplying its argument by 2, we
ensure π1 + π2 + π3 < 0.5, so that (9) refers to a valid parameterization.

2.6. Inferring the ZIBGe-GLMMmodel

In Section 2.5, we have kept the description of the ZIBGe-GLMM model generic, and
model inference can be done by following either a frequentist or a Bayesian approach.
Because of the small sample size, n, we follow the Bayesian way, whereby we have to
impose prior distributions on the unknownparameters. For the fixed effect regression coef-
ficient vectors β(M),β(N), the correlation parameter’s intercept η, and the zero inflation
parameters’ intercept vector γ , we use Gaussian prior distributions:

β(M) ∼ N(0, σ 2
MIk), β(N) ∼ N(0, σ 2

NIk), η ∼ N(0, σ 2
θ ), and γ ∼ N(0, σ 2

π I3),
(15)

where Il denotes the l × l identity matrix and σ 2
M , σ 2

N , σ
2
θ , σ

2
π > 0 are fixed variance hyper-

parameters. In the absence of genuine prior knowledge, we will select the hyperparameters
such that we get uninformative prior distributions (cf. Section 3).

For the random effect covariance matrix � in (12), we follow [3] and impose a
Multivariate Generalized Hyperbolic t prior distribution on its inverse:

�−1 ∼ MGH−t(λ, v, d), (16)

where d = 2 is the dimension of � and λ, v > 0 are fixed hyperparameters. As argued in
[17], the MGH-t distribution is less informative than an inverse-Wishart distribution in a
marginal sense. TheMGH−t distribution is a compound distribution defined as aWishart
distribution with scale matrix (2v�)−1 and v+ d−1 degrees of freedom, where

� = diag(ω1, . . . ,ωd) with ω1, . . . ,ωd
iid∼ �(0.5, λ−2).

Note that in the above, λ−2 denotes the rate parameter of the Gamma distribution. For the
density of the joint posterior distribution of the model parameters, we obtain

p(β(M),β(N), η, γ , b1, . . . , bm,�,� | y1, . . . , yn)

∝
( n∏
i=1

f (yi | Mi,Ni, θ ,π)

)
p(β(M))p(β(N))p(η)p(γ )

×
⎛
⎝ m∏

j=1
p(bj | �)

⎞
⎠ p(� | �)p(�), (17)



JOURNAL OF APPLIED STATISTICS 2179

Figure 1. Graphical representation of the hierarchical Bayesian model specified by (10)–(17). Arrows
indicateddependencies,with distributional relationships indicatedby labeled squares (‘Norm’, ‘Wis’, and
‘Gam’ indicate thenormal,Wishart, andGammadistributions, respectively). Observedquantities are indi-
cated in gray andhyperparameters are given as plain nodes. The top-right panel contains the hierarchical
distribution that makes up the MGH−t(λ, v, d = 2) prior for�.

where bj := (b(M)j , b(N)j ) are the random effect intercepts for group j (j = 1, . . . ,m), and
f (yi | Mi,Ni, θ ,π) is the PMF from (7) but parameterized through its continuitized medi-
ans from (9). The relationship betweenMi,Ni and the fixed and random regression param-
eters were defined in (11). A graphical representation of the model is given in Figure 1. To
generate parameter samples from the posterior distribution, we use a Metropolis-Hastings
Markov Chain Monte Carlo (MCMC) sampling scheme. We refer to Section 3 for more
technical details.

3. Implementation details and software availability

To generate posterior samples from the ZIBGe-GLMM model, we use the Metropolis-
Hastings Markov Chain Monte Carlo (MCMC) algorithm, as implemented in the JAGS
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(Just Another Gibbs Sampler) software [23]. JAGS is written in C++ and uses the BUGS
language for model definitions [21]. JAGS has a graphical user interface with the R soft-
ware environment so that it can be easily called from R. We invoke JAGS in R using the
package runjags [5]. Our R/JAGS code is available from our GitHub repository5 [27].

We employ the following hyperparameter setting (cf. Section 2.6). To achieve very unin-
formative fixed effect priors, we choose σ 2

M = σ 2
N = 100. To ensure that the priors of θ and

π resemble uniform distributions on [0, 1] and on the simplex on which π is supported,
respectively, we set σ 2

θ = σ 2
π = 4. To obtain a uniform distribution for the correlation

between the components of each bj, we follow [17] and set v = 2 in (12). Finally, setting
λ = 10 ensures moderately uninformative standard deviations.6

For generating posterior samples for the dragonfly data (cf. Section 5), we proceeded as
follows: After a short adaption phase of 1 k (1000) iterations, in which JAGS automatically
optimized the proposal moves, we ran eight independent Markov chains in parallel to be
able to monitor and assess convergence. Each chain was run for 260 k iterations, and by
setting the burn-in phase to 10 k and the thinning factor to 2500, we obtained 100 posterior
samples per chain (i.e. 800 posterior samples in total). To assess convergence, we relied on
trace plot diagnostics and potential scale reduction factors (PSRFs); see [11] for details.
The PSRFs provided in Table 5 are below the widely applied thresholdψ = 1.05, and hence
suggest sufficient convergence.

For the small simulated data sets in Section 4, 100 iterations of adaptation were satisfac-
tory for JAGS to optimize the proposal moves. We found that 550 iterations with a burn-in
phase length of 50 and thinning factor 5 already leads to sufficient convergence.

TheMCMC simulations for the ZIBGe-GLMMmodel were run on a PC with an Intel R©

CoreTM i7-7700HQ processor (eight 2.80GHz cores, running one chain per core) with 16
GB of RAM running R version 4.1.0 and JAGS 4.3.0 on Ubuntu 20.04.2 LTS. Generating
the simulation study results (cf. Section 4) took around 40min. Generating the dragonfly
results (cf. Section 5) took around 36 h.

4. Simulation study

To familiarize with the proposed ZIBGe-GLMM, we performed various studies on simu-
lated data. Here, we report the results of a small simulation study to show that the ZIBGe
distribution can be inferred from data.

In (10), we use constant (i.e. without covariates or a grouping factor) continuitized
mediansMi = M and Ni = M across all n observations, and we use three median settings
crossed with five correlation parameters as distribution parameters:

(M,N) ∈ {(3, 3), (4, 2), (1, 5)}, θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

We set the three zero-inflation probability parameters to

π = (0.1, 0.05, 0.025).
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Figure 2. Scatter plots of simulated data (cf. Section 4). For three (M,N) combinations, we overlaid the
scatter plots for θ = 0.1 (circles) and θ = 0.9 (dots). It can be seen that the dots (θ = 0.9) are more
strongly correlated than the circles (θ = 0.1). To visualize overlaid points as clusters, we added jitter and
reduced the opacity of points closer to (0, 0). The theoretical and the empirical correlations are provided
in Table 1.

Table 1. ZIBGe parameter combinations (M,N, θ) (in bold) and the resulting correlation coefficient ρ;
cf. (4) and (8).

(M,N) (3, 3) (2, 4) (1, 5)

θ 0.10 0.90 0.10 0.90 0.10 0.90

ρ 0.09 0.79 0.09 0.78 0.08 0.75
ρ̂ 0.13 0.76 0.31 0.70 0.23 0.66

Note: The bottom row lists the sample correlation coefficients ρ̂ for the data shown in Figure 2.

This translates (rounded to 2 decimal places) into the regression parameters

(β(M),β(N)) =: (β(M),β(N)) ∈ {(1.10, 1.10), (0.69, 1.39), (0, 1.61)}
η ∈ {−2.20,−0.85, 0, 0.85, 2.20}
γ = (γ1, γ2, γ3) = (−1.18,−1.87,−2.56).

For each of the 15 model configurations, we generate7 a data set with n = 200 data points.
Scatter plots of the sampled bivariate count data for the lowest (θ = 0.1) and highest
(θ = 0.9) correlation parameter are shown in Figure 2. The corresponding theoretical and
empirical correlation coefficients are provided in Table 1.

For each of the 15 data sets, we then generated a posterior sample (cf. Section 3). Each
model has 6 parameters (β(M),β(N), η, γ1, γ2, γ3) and Table 2 provides their inferred poste-
rior medians along with 95% confidence intervals. Most of the posterior medians are close
to the true parameter values and 87 out of 90 confidence intervals cover the true parameter,
suggesting that the model can be inferred from data.8

5. Statistical analysis of dragonfly population data

This section treats the statistical analysis of dragonfly population data from the Northern
Netherlands, for which we designed the ZIBGe-GLMMmodel (cf. Section 2). The data are
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Table 2. Simulation study posterior results (cf. Section 4).

{η}
Parameter {β(M) ,β(N)} {−2.20} {−0.85} {0.00} {0.85} {2.20}
β(M) {1.10, 1.10} 1.20 (0.95, 1.42) 0.78 (0.47, 1.08)∗ 0.94 (0.70, 1.18) 0.89 (0.65, 1.13) 1.04 (0.78, 1.29)

{0.69, 1.39} 0.21 (−0.26, 0.67)∗ 0.60 (0.30, 0.89) 0.50 (0.19, 0.84) 0.58 (0.17, 0.83) 0.59 (0.35, 0.86)
{0.00, 1.61} −0.37 (−1.29, 0.32) −0.17 (−0.93, 0.34) −0.19 (−0.69, 0.28) −0.04 (−0.44, 0.34) −0.14 (−0.48, 0.24)

β(N) {1.10, 1.10} 1.07 (0.79, 1.32) 1.07 (0.75, 1.33) 0.97 (0.70, 1.27) 0.97 (0.71, 1.22) 1.10 (0.82, 1.35)
{0.69, 1.39} 1.46 (1.21, 1.73) 1.33 (1.07, 1.58) 1.32 (1.08, 1.54) 1.28 (1.04, 1.51) 1.29 (1.00, 1.52)
{0.00, 1.61} 1.49 (1.19, 1.75) 1.68 (1.42, 1.95) 1.59 (1.38, 1.82) 1.65 (1.44, 1.88) 1.65 (1.48, 1.85)

η {1.10, 1.10} −2.36 (−4.30,−0.83) −0.71 (−1.74, 0.12) −0.30 (−1.18, 0.46) 1.07 (0.38, 1.71) 1.73 (1.18, 2.34)
{see top row} {0.69, 1.39} −0.95 (−2.16,−0.03)∗ −1.22 (−2.83,−0.29) −0.57 (−1.41, 0.24) 0.95 (0.43, 1.58) 2.13 (1.44, 2.86)

{0.00, 1.61} −1.37 (−3.09,−0.29) −0.81 (−2.15, 0.25) −0.42 (−1.33, 0.38) 0.60 (0.08, 1.25) 1.51 (0.69, 2.32)
γ1 {1.10, 1.10} −1.24 (−1.97,−0.60) −0.89 (−1.54,−0.08) −1.06 (−1.61,−0.41) −1.35 (−2.17,−0.66) −1.17 (−1.83,−0.49)
{−1.18} {0.69, 1.39} −0.87 (−1.54,−0.14) −1.03 (−1.64,−0.34) −1.22 (−1.88,−0.54) −0.95 (−1.57,−0.24) −1.00 (−1.75,−0.34)

{0.00, 1.61} −0.63 (−1.37, 0.26) −0.80 (−1.67,−0.06) −1.62 (−2.82,−0.68) −0.92 (−1.48,−0.31) −1.95 (−3.32,−1.09)
γ2 {1.10, 1.10} −1.47 (−2.69,−0.47) −1.05 (−2.21,−0.00) −1.78 (−3.64,−0.63) −1.66 (−2.97,−0.60) −1.60 (−2.48,−0.80)
{−1.87} {0.69, 1.39} −1.76 (−3.52,−0.65) −1.30 (−2.53,−0.36) −2.08 (−3.97,−1.04) −2.89 (−4.93,−1.43) −1.38 (−2.28,−0.65)

{0.00, 1.61} −1.87 (−3.93,−0.61) −1.41 (−2.64,−0.21) −1.46 (−2.60,−0.52) −3.12 (−5.04,−1.38) −2.49 (−4.97,−1.43)
γ3 {1.10, 1.10} −3.34 (−5.37,−1.52) −1.25 (−2.58,−0.04) −3.02 (−5.46,−1.43) −2.35 (−4.12,−0.93) −2.38 (−4.21,−1.17)
{−2.56} {0.69, 1.39} −1.70 (−4.38,−0.32) −2.49 (−4.99,−0.76) −2.21 (−4.26,−0.64) −2.41 (−4.13,−1.02) −3.19 (−4.72,−1.70)

{0.00, 1.61} −1.41 (−3.49, 0.47) −1.57 (−3.70, 0.48) −1.82 (−4.61,−0.14) −2.87 (−5.18,−1.35) −2.56 (−4.61,−1.13)

Notes: For 15 models with 6 parameters each, the table provides posterior medians along with 95% posterior confidence intervals (CIs). True parameter values are in curly braces and the ones
relevant for the row are in bold. Three entries, where the CI did not cover the true parameter, have been marked with asterisks. The true parameters (β(M) ,β(N) , η, γ1, γ2, γ3) refer to: (M,N)
varying in between (3, 3), (2, 4), and (1, 5), θ ∈ {0.1, 0.3, . . . , 0.9}, andπ = (0.1, 0.05, 0.025); cf. (11), (13), and (14) for themathematical relationships. Independent replicates of the experiment
led to comparable results.
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Figure 3. Aeshna viridis count distribution. Left: Scatter plot of the dragonfly count data in log-log scale;
the points have been slightly jittered to reveal clusters of observations. The sample Pearson correlation
coefficient is ρ̂ = 0.299. Right: Overlaid histograms showing themarginal count distributions alongwith
fitted univariate zero-inflated geometric distributions in semi-log scale. The fitted zero-inflation parame-
ter isπ = 0.233 (π = 0.137) and the fitted continuitizedmedian isM = 5.68 (M = 2.74) for the exuviae
(egg-laying female) counts.

described in Section 5.1, and in Section 5.2 we report the posterior results. The dragonfly
population data can be downloaded from our GitHub repository9 [27].

5.1. Ecological background and data

Aeshna viridis (‘green hawker’) is a rare and threatened dragonfly species. To conserve and
protect the species, in 2001, the DutchMinistry for Agriculture, Nature, and Fisheries pub-
lished a national protection plan forA. viridis [4]. Unlike other dragonfly species,A. viridis
only lays its eggs into the host plant Stratiotes aloides (‘water soldier’), so that its presence is
essential for A. viridis. In the Netherlands, the water soldier is commonly found in ditches
that separate patches of agricultural land. But increased agricultural activity has sped up
the growth of the water soldier, and its increased proliferation causes a thickened layer of
sludge (formed by the decaying plants) at the bottom of the ditches. This sludge layer leads
to a deteriorated water quality, damaging the ecosystem, and a decreased water depth. The
decreased water depth reduces the natural frost protection of the water soldier.

To prevent the destruction and to conserve the A. viridis species, ecological managers
have to intervene. Periodically the amount of water soldier plants has to be reduced by
cleaning a maximum of 50% of the water surface.

The data contain counted A. viridis population sizes from 5 ecological managers cover-
ingm = 17 locations (areas, ditches, or ponds) across the provinces Groningen, Friesland,
and Drenthe of the Northern Netherlands. The exact locations are marked on a map in
Figure B.1 of Supplementary Material B. The data stem from field studies that were per-
formed by Bureau Biota (Groningen, NL) and financially supported by the provinces and
ecological managers. To cross-compare the effects of two water-surface cleaning strategies,
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Table 3. Aeshna viridis data overview: We have n = 114 observations from 5 ecological managers
coveringm = 17 locations (i.e. ditches).

Per ecological manager Per location Per year

Groninger Landschap: 24 8 + 8 + 8 2015: 32
Gemeente Veendam: 22 6 + 2 + 6 + 8 2016: 28
Staatsbosbeheer Twijzel: 24 8 + 8 + 8 2017: 28
Staatsbosbeheer Groningen: 2 2 2018: 26
Waterschap Hunze en Aa’s: 42 8 + 8 + 2 + 8 + 8 + 8

Notes: The sums in the 2nd column indicate the numbers of observations per location. We have 8 observations (one per
treatment per year) only if the location participated each year and all field studies took place. For example, in Groninger
Landschap, there are three locations and for each, we have all 8 observations (24 in total). Gemeente (municipality) Veen-
dam covers 4 locations, but we have only 2 (6) observations from the 2nd (3rd) location. The last column lists the number
of observations per year.

which we refer to as ‘treatments’, each location was divided into two equally spaced parts.
At each location, the treatmentswere randomly assigned to the two parts and differed in the
way how 50% of the water surfaces were cleaned during the study period: (T1) ‘Clean one
large rectangle-shaped area ’. vs. (T2) ‘Clean small rectangle-shaped areas that are arranged
in the form of a chessboard ’.10 The dragonflies were counted in 4 consecutive years (2015
to 2018), and in each year for each location, multiple counting sessions were scheduled.

The numbers of dragonflies were quantified in two different ways: 1. The exoskele-
tons (‘exuviae’) shed during metamorphosis (from larvae to adult) were collected and
counted (y1). 2. Flying dragonflies were spotted and the egg-laying females were identified
and counted (y2).11 During each session, biologists from Bureau Biota (Groningen, NL)
searched in both location parts for 45 minutes and recorded the numbers of skeletons (y1)
and the number of egg-laying females (y2), yielding for each location part a bivariate count
response vector y = (y1, y2) per session. In each session, the percentage of covered water
surface (host plant emersion) was recorded as well. From the recorded data, we computed
the yearly total sums of dragonfly counts and the yearly average host plant emersion.

In addition to the dragonfly population counts, the binary treatment, and the host plant
emersion, once per year, seven more water quality factors were measured: the pH value,
the redox potential, the oxygen concentration, the electrical conductivity (EC), the water
temperature, the water depth, and the sludge layer thickness.

Table 3 lists the numbers of observations per ecological manager, per location, and per
year. For most locations, we have 8 measurements, one for each year-treatment combina-
tion, but some have less, indicating that locations did not participate for the whole study
period or that scheduled field studies could not take place.

Summary statistics on the 10 numeric variables (2 responses and 8 covariates) can be
found in Table 4. The measurement units of the 8 covariates are conventional and produce
covariate value ranges in comparable orders of magnitude. The right-skewed empirical
distributions of the two dragonfly count measures are shown in Figure 3.

5.2. Posterior results for A. viridis dragonfly data

The data contain n = 114 observations of the form (yi, xi, zi), each consisting of a bivari-
ate count response vector yi = (y1,i, y2,i), k = 13 covariate values in xi, and a grouping
factor zi that indicates at which location j ∈ {1, . . . , 17} the observation i was made. The
k = 13 covariate values cover an initial ‘1’ for the intercept, the binary treatment variable,
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Table 4. Summary statistics for the two responses (y1 and y2) and the 8 numeric covariates (x1, . . . , x8).

Mean SD Min Median Max

y1 Exuviae 11.61 19.33 0 3 99
y2 Egg-laying females 5.50 6.84 0 3 31
x1 Emersion (fraction) 0.77 0.25 0.00 0.84 1.00
x2 pH 7.01 0.55 4.90 6.96 8.10
x3 Redox (V) 0.10 0.07 −0.09 0.11 0.28
x4 Oxygen (fraction) 0.56 0.29 0.00 0.56 1.44
x5 EC (mS/cm) 0.52 0.24 0.13 0.49 1.08
x6 Temperature (◦C) 13.95 4.20 5.50 15.20 21.00
x7 Water depth (m) 0.62 0.18 0.23 0.65 1.10
x8 Sludge thickness (m) 0.31 0.15 0.06 0.28 0.75

Notes: The table provides the mean, standard deviation (SD), minimum, median, and the maximum. In addition, our
model includes the binary surface-cleaning treatment variable (57 × T1, 57 × T2), the categorical variable year with the
distribution shown in the last column of Table 3, and random intercepts for them = 17 locations.

8 numeric variables, and the categorical variable year with four levels {2015, . . . , 2018},
which we encode via 3 dummy variables with 2015 being the reference year. The data thus
fit into the framework of the ZIBGe-GLMM model from Section 2.5. For both responses
(y1: exuviae and y2: egg-laying females), the covariates are included as fixed effects and the
m = 17 locations are included as random intercepts.

We generate posterior samples (cf. Section 3), and the inference results are summarized
in Table 5. The table lists posterior medians along with 95% confidence intervals, potential
scale reduction factors (PSRF), and fractions of positive samples (F+).

5.2.1. Covariate effects
To assess how the covariates affect the two responses, we focus our attention on the
response-specific fractions of positive parameters, F+. A high (low) value of F+ means
that the majority of sampled parameters is positive (negative), and hence suggests a con-
sistently positive (negative) effect. Figure 4 shows a scatter plot and a grouped bar chart of
the response-specific fractions F+. Its most important implications are:

• The surface cleaning treatment (T1 vs. T2) parameters have no systematic signs, and
thus the treatment seems not to affect the dragonfly population sizes. This is consistent
among both responses.

• The results show that there is a yearly trend. And the year effects seem to be rather
consistent among the two responses. In particular, almost all the posterior sampled
parameters for 2018were negative, indicating that the dragonflypopulation sizes in 2018
were significantly smaller than in 2015 (reference year).

• We also observe consistent effects for the oxygen level. The results suggest for both
response measures that the dragonfly population size decreases with the oxygen level.

• Moreover, both responsemeasures agree in suggesting that the two covariates redox and
water depth have no effect on the dragonfly population sizes.

• However, for two covariates, we observe different effects on the two count measures.
This applies to the electrical conductivity (EC) and the temperature. For these two covari-
ates, the response-specific parameter medians have different signs (cf. Table 5), and the
fractions of positive parameters are relatively high for the one and relatively low for the
other response. This difference suggests that the opposite direction of the effects is rather
systematic.
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Table 5. Results for dragonfly population data (cf. Section 5.1).

Component Lower95 Median Upper95 PSRF F+
(y1) Exuviae: (Intercept) −4.11 1.20 6.38 1.017 0.672

Treatment −0.86 −0.13 0.58 1.001 0.384
2016 −1.79 0.57 2.75 1.008 0.716
2017 −2.64 −1.39 −0.32 1.004 0.009
2018 −3.52 −1.95 −0.66 1.007 0.004
Emersion (fraction) −1.09 0.85 3.11 0.999 0.795
pH −0.68 0.11 0.88 1.013 0.595
Redox (V) −4.31 −0.12 4.20 1.013 0.474
Oxygen (fraction) −4.47 −2.66 −0.68 1.005 0.005
EC (mS/cm) −3.01 −0.71 1.59 0.999 0.264
Temperature (◦C) −0.12 0.10 0.31 1.014 0.812
Water depth (m) −3.13 0.01 2.68 1.005 0.504
Sludge thickness (m) −4.92 −1.27 1.59 1.003 0.199

(y2) Egg-laying females: (Intercept) −6.53 −1.43 3.31 1.029 0.281
Treatment −0.77 −0.05 0.78 1.004 0.463
2016 −3.02 −0.74 1.90 1.015 0.266
2017 −1.29 −0.22 0.76 0.998 0.355
2018 −4.66 −2.65 −0.97 1.014 0.000
Emersion (fraction) −2.97 −0.68 1.99 1.020 0.319
pH −0.49 0.62 1.51 1.037 0.892
Redox (V) −3.96 0.80 4.93 1.002 0.620
Oxygen (fraction) −3.04 −1.18 0.81 1.015 0.101
EC (mS/cm) 0.30 2.46 4.83 1.012 0.973
Temperature (◦C) −0.41 −0.13 0.14 1.013 0.159
Water depth (m) −2.00 0.26 2.27 0.999 0.593
Sludge thickness (m) −2.94 −0.47 2.27 0.999 0.352

(θ ) Correlation: 0.22 0.53 0.80 1.010
(π ) Zero inflation: π1: (0, 0) 0.00 0.07 0.14 1.012

π2: (Exuviae, 0) 0.00 0.04 0.13 1.002
π3: (0, Eggl.females) 0.00 0.05 0.14 1.005

(�) Random effects: �11: Variance (Ex.) 0.23 1.94 5.24 0.999
�12: Covariance −0.53 0.11 1.75 1.012
�22: Variance (Egg-l. f.) 0.00 0.09 1.76 1.012

Notes: The 1st and 3rd columns give the bounds of 95% posterior confidence intervals, computed as the 0.025 and the
0.975 empirical quantiles of the posterior samples; the 2nd column lists the posterior median. The 4th column lists the
Gelman-Rubin potential scale reduction factors (PSRFs). The last column gives the fraction of posterior samples that were
positive. High (low) fractions indicate that themajority of posterior samples were positive (negative), indicating a system-
atic effect. Covariates for which at least 80% of the sampled parameters had the same sign have been put in bold. The
relative covariate effects on the marginal medians are listed in Table 6.

• For two covariates, we have identical signs of the parameter medians (cf. Table 5), but
observe only for one of the two responses a systematic trend. The sludge thickness seems
to have a negative effect on exuviae (y1) but a less pronounced negative effect on the
egg-laying females (y2), while increasing pH values seem to have a positive effect on
egg-laying females (y2) but no noteworthy effect on exuviae (y1).

For completeness, we provide the estimated relative covariate effects on the population
size medians in Table 6. From the percentages, it can be seen that the predominantly pos-
itive (F+ > 0.8) and negative (F+ < 0.2) effects refer to potentially relevant changes in
the dragonfly populations sizes. Most notably, for both count types, the relative difference
in the population medians between 2015 and 2018 was around 90%, indicating a strong
yearly trend.



JOURNAL OF APPLIED STATISTICS 2187

Table 6. Results for dragonfly population data continued.

Relative effects on medians

Covariate
unit (u) Exuviae

Egg-laying
females

Treatment (T2) – −11.9% −4.6%
Year (2016) – 76.5% −52.5%
Year (2017) – −75.2% −19.6%
Year (2018) – −85.8% −92.9%
Emersion 10% 8.8% −6.6%
pH 1 12.1% 86.0%
Redox 100 mV −1.2% 8.3%
Oxygen 10% −23.4% −11.1%
EC 100 μS/cm −6.8% 27.9%
Temperature 1◦C 10.4% −12.2%
Water depth 10 cm 0.1% 2.6%
Sludge thickness 10 cm −12.0% −4.6%

Estimated relative effects on the marginal medians per covariate unit increase.
Notes: For each covariate with median posterior parameter β (cf. Table 5), an increase
of u covariate units yields the relative change (euβ − 1) · 100%. Percentages in bold
refer to covariate effects that were consistently positive (F+ > 0.8) or negative
(F+ < 0.2); cf. Table 5.

Figure 4. Graphical comparison of the covariate effects on the two population measures. Left: Scatter
plot of the fractions of positive posterior samples for all covariates (egg-laying females vs. exuviae). A
covariate effect is consistent across both population measures if the point is close to the diagonal. The
dashed lines separate the positive and negative effects. Right: A grouped bar chart of the positive frac-
tions. Values close to 1 (0) indicate significant positive (negative) effects. Covariate effects are consistent
when the two bars point in the same direction and have approximately the same height.

5.2.2. Othermodel parameters
Table 5 also shows the posterior results for the correlation parameter θ , the zero inflation
probabilities π , and the random effect covariance matrix �.

• For the correlation parameter θ , we have the posterior median 0.53 with confidence
interval [0.22, 0.80]. This shows that the covariate effects do not fully explain the
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Figure 5. Location effects on the dragonfly population sizes. For each of them = 17 locations (x-axis),
the figure shows 95%confidence intervals for the random intercept parameters for exuviae (in dark gray)
and egg-laying females (in light gray). The triangles and dots mark the posterior medians.

correlation but leave a significant amount of (unexplained) correlation between the two
components. This suggests that the two count types are likely to be subject to addi-
tional unobserved factors or trends. We note that the correction factor from (4) has to
be taken into account when ‘translating’ the correlation parameter θ into an actual cor-
relation. Using the median covariate parameters from the second column of Table 5,
we get that θ = 0.53 refers to the correlation ρ = 0.44, which is even higher than the
sample correlation of the raw data (ρ̂ = 0.30); cf. caption of Figure 3.

• The posterior zero inflation probabilities are moderate but significant. We observe the
median probabilityπ1 = 0.07 for both counts to be zero-inflated, and themarginal zero-
inflation probability medians π1 + π2 = 0.11 and π1 + π3 = 0.12 for the exuviae and
the egg-laying females, respectively. This shows that the data are indeed zero-inflated
w.r.t. the ZIBGe-GLMMmodel.

• The random location intercepts for exuviae vary with a posterior median variance of
1.94, while the posterior median variance of egg-laying females is rather small (0.09).
The posterior median variances (1.94 and 0.09) and covariance (0.11), yield a correla-
tion coefficient of 0.26. Figure 5 shows posterior confidence parameters for all location
intercept parameters. It can be seen that the exuviae populations are relatively large
in 3–4 locations (GL1, WHA5, and WHA6 and maybe SBFF3) and relatively low in
only one location (GL2). This shows that the exuviae-based population measure needs
adjustment for the locations. In agreement with the small posterior variance, all loca-
tion intercepts for the egg-laying females are close to 0, indicating that this population
measure is not subject to location-specific effects.

5.2.3. Model diagnostics and comparisonwith bivariate Poisson distribution
To assess the fit of the ZIBGe-GLMMmodel to the dragonfly data, we employ the concept
of randomized quantile residuals (RQRs) from [7]. For Bayesian models, the RQRs can be
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Figure 6. Diagnostic plots. Top: Q-Q plots of response-specific randomized quantile residual (RQR)
quantiles w.r.t. Unif([0, 1]) quantiles. Bottom: Histograms of response-specific Pearson residuals, where
the observations’ expectations and variances have been approximatedusing the respectivemodel’s pos-
terior sample. Left:Model diagnostics for the proposed ZIBGe-GLMMmodel. Right:Model diagnostics for
themodel from [22], which is very akin to our ZIBGe-GLMMmodel except that it uses a bivariate Poisson
distribution to build the GLMM likelihood.

computed along the lines of [14]. Since the ZIBGe-GLMM model is a bivariate response
model, we assess the fit for both response components by computing separate RQRs for
the two marginal distributions.

For both response components, we have n = 114 observations, andwe use the posterior
sampled parameters to Monte Carlo approximate the marginal predictive cumulative dis-
tribution function (CDF) at the n = 114 observed response values. If there is nomismatch
betweenmodel and data, the RQRquantiles are samples from a uniformdistribution on the
interval [0, 1], symbolically U([0, 1]); see [7] for details. The bottom-left panel of Figure 6
shows the two quantile-quantile (Q-Q) plots of the marginal RQR quantiles against the
theoretical quantiles of the U([0, 1]) distribution. Since it is hard to assess whether the
two curves are ‘satisfactorily straight’, we cross-compare with the Q-Q plots of a related
model. As a competitor, we use the bivariate zero-inflated Poisson (BZIP)model from [22],
which is akin to our ZIBGe-GLMMmodel except that it uses a bivariate Poisson distribu-
tion rather than the proposed bivariate geometric (BGe) distribution from (7) to build the
likelihood. Like for the ZIBGe-GLMMmodel, we include the environmental covariates as
fixed effects and random intercepts to account for location-specific effects. Because of the
resulting similarity between the two models, we refer to this variant of the BZIP model as
the BZIP-GLMMmodel.
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We generate a posterior sample for the BZIP-GLMM model (posterior results not
shown) and use the sample to approximate the marginal RQR quantiles. The two resulting
Q-Q plots are shown in the bottom-right panel of Figure 6. A cross-comparison reveals
that the proposed ZIBGe-GLMMmodel (left) yields ‘more straight curves’ and so a better
fit to the theoretical quantiles than the BZIP-GLMMmodel (right panel).

The bottom panels of Figure 6 show response-specific Pearson residual12 histograms
for the ZIBGe-GLMMmodel (left) and the BZIP-GLMMmodel (right). The residuals are
clearly smaller for the ZIBGe-GLMM model, so this alternative diagnostic is in line with
the better model fit suggested by the Q-Q plots. In the context of mixed effects, however,
the Pearson residuals’ distribution can be considerably disrupted by random offsets [15],
possibly leading to less reliable conclusions pertaining to model fit. To confirm the better
model fit with a quantitative measure, we also use the posterior samples to compute the
model-specific deviance information criteria (DIC); see [26] for details. The DIC of the
proposed ZIBGe-GLMM model (DIC=1492.6) is much lower than the DIC of the BZIP-
GLMM model (DIC=1925.2) so that the ZIBGe-GLMM model is also preferred in terms
of the widely applied DIC criterion.

6. Conclusions and discussion

For the statistical analysis of an Aeshna viridis dragonfly population data set from the
Northern Netherlands, we have proposed a new generalized linear mixed-effects (GLMM)
model for bivariate count data. The proposed model uses a zero-inflated bivariate geo-
metric (ZIBGe) distribution for building the likelihood. We have shown that the bivariate
geometric (BGe) distribution can be parameterized easily in terms of three parameters,
namely the two marginal medians and a correlation parameter. The advantage of this
parameterization is that the three parameters have intuitive meanings and are thus very
easy to interpret. Moreover, the possibility to model the medians (rather than the means)
makes the model less sensitive to large counts (potential outliers). For modeling the medi-
ans, we have included environmental factors as fixed effects and we have made use of
random effect intercepts to account for repeated measurements at the same locations.
Given the relatively small sample size of the dragonfly data set, we have selected a Bayesian
approach with Markov Chain Monte Carlo (MCMC) simulations for model inference.
After a small simulation study on synthetic data, whose main purpose was to demonstrate
that the model parameters can be inferred from data, we have analyzed the dragonfly data
set, where the two responses refer to the number of collected exoskeletons (exuviae) and
the number of spotted living specimens (egg-laying females). Both measures have been
used to quantify dragonfly population sizes [13], but in the literature, we could not find
any ecological study in which both quantification measures were used simultaneously and
cross-compared.

The results of our statistical analysis show that the two response types can lead to dif-
ferent conclusions. That is, although we found the two responses (response medians) to
be slightly correlated, the two responses seem to be subject to different covariate effects.
Only two covariates (yearly trend, oxygen) were found to affect the two responses in the
same way, while some covariates (temperature and electrical conductivity) even had oppo-
site effects on them. The most important content-wise finding is that the surface cleaning
treatment appears to have no noteworthy effect on the dragonfly population sizes. This
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result is consistent between both responses. A proper ecological interpretation is beyond
the scope of our work, but our results suggest that the two quantificationmeasures differ in
nature and are thus not exchangeable. Relying just on one single measure might not show
the full picture and lead to biased results and erroneous conclusions. Therefore, we advise
to use both measures – or at least to carefully choose the measure to quantify dragonfly
population sizes – in future ecological field studies.

When studying the related literature, we found that hardly any software for modeling
bivariate count data is available. To fill this gap, we decided to make our R/JAGS software
available on our GitHub repository [27]. A computational bottleneck of our algorithm is
the expensive computation of the bivariate geometric (BGe) likelihood. Our future work
might aim to reduce the computational inference costs. One potential idea is to switch
to the marginal likelihood and to approximate it by a Laplace approximation. Another
interesting route of research might be to try to extend the bivariate geometric distribution
to multivariate geometric distributions. In principle, the probability generating function
(PGF) from [18] can easily be extended to define multivariate geometric distributions,
but the mathematical challenge would be to derive the corresponding probability mass
function (PMF).

Notes

1. We provide the dragonfly population data set in our GitHub repository: https://github.com/
yulanvanoppen/ZIBGe-GLMM/tree/main/data.

2. We note that, unlike the univariate case, the bivariate geometric (BGe) distribution from [18] is
not a special case of the bivariate negative binomial (BNB) distribution from [6]. This is because
the different methods to extend univariate to bivariate distributions also yield different bivariate
distribution variants. Hence, the BNB distribution from [6] has a bivariate geometric distribu-
tion as special case, but this distribution differs from the BGe distribution of [18]. Only the BGe
distribution from [18] can be easily parameterized such that there are two marginal median
parameters and an explicit correlation parameter (cf. Section 2).

3. When 1/ log2(1 − q) is integer, the median is not unique. In this case, both [M] and [M] + 1
are considered medians.

4. Specifically, the mlogit(·) link maps the simplex {x ∈ R
d
>0 | ‖x‖1 < 1} to Rd through the map-

ping x �→ log(x/(1 − ‖x‖1)), where ‖ · ‖1 is the absolute-value norm and the logarithm is
applied component-wise.

5. GitHub repository: https://github.com/yulanvanoppen/ZIBGe-GLMM Instructions and tech-
nical details are provided in the repository’s README file.

6. For slightly varied hyperparameters, we observed very similar posterior results.
7. The script /generate.R in our GitHub repository [27] generates data for (M,N) = (3, 3)

and θ = 0.5.
8. We repeated the study. For newly generated data sets, we obtained similar (consistent) posterior

results.
9. See https://github.com/yulanvanoppen/ZIBGe-GLMM/tree/main/data
10. While (T1) is easier to achieve/cheaper, (T2) is supposed to create amore natural irregular water

surface.
11. Only egg-laying females tend to stay in one district/location, so their numbers can be assumed

to be proportional to the true population sizes.
12. As Pearson residuals of the observed counts yi, we use ri := (yi − μ̃i)/σ̃i, where μ̃i and σ̃ 2

i are
Monte Carlo approximations of the expectation and the variance of yi, which are computed from
the posterior samples.

https://github.com/yulanvanoppen/ZIBGe-GLMM/tree/main/data
https://github.com/yulanvanoppen/ZIBGe-GLMM
https://github.com/yulanvanoppen/ZIBGe-GLMM/tree/main/data
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