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Assessment of Lesion Detectability in Dynamic Whole-Body PET
Imaging Using Compartmental and Patlak Parametric Mapping

Neda Zaker, MS,*† Fotis Kotasidis, PhD,* Valentina Garibotto, MD,* and Habib Zaidi, PhD*‡§||
Purpose: Hybrid dynamic imaging allows not only the estimation of whole-
body (WB)macroparametric maps but also the estimation of microparameters
in the initial bed position targeting the blood pool region containing the
pathology owing to the limited axial field of view of PET scanners. In
this work, we assessed the capability of multipass WB 18F-FDG PET
parametric imaging in terms of lesion detectability through qualitative
and quantitative evaluation of simulation and clinical studies.
Methods: Simulation studies were conducted by generating data incorporat-
ing 3 liver and 3 lung lesions produced by 3 noise levels and 20 noise real-
izations for each noise level to estimate bias and lesion detection features.
The total scan time for the clinical studies of 8 patients addressed for lung
and liver lesions staging, including dynamic and static WB imaging, lasted
80 minutes. An in-house–developed MATLAB code was utilized to derive
the microparametric and macroparametric maps. We compared lesion
detectability and different image-derived PET metrics including the
SUVs, Patlak-derived influx rate constant (Ki) and distribution volume
(V) and K1, k2, k3, blood volume (bv) microparameters, and Ki estimated
using the generalized linear least square approach.
Results: In total, 104 lesions were detected, amongwhich 47were located in
the targeted blood pool bed position where all quantitative parameters were
calculated, thus enabling comparative analysis across all parameters. The
evaluation encompassed visual interpretation performed by an expert
nuclear medicine specialist and quantitative analysis. High correlation
coefficients were observed between SUVmax and Kimax derived from
the generalized linear least square approach, as well as Ki generated by
Patlak graphical analysis. Moreover, 3 contrast-enhanced CT-proven malig-
nant lesions located in the liver and a biopsy-proven malignant liver lesion
not visible on static SUV images and Patlak maps were clearly pinpointed
on K1 and k2 maps.
Conclusions: Our results demonstrate that full compartmental modeling
for the region containing the pathology has the potential of providing
complementary information and, in some cases, more accurate diagnosis
than conventional static SUV imaging, favorably comparing to Patlak
graphical analysis.

Key Words: compartmental modeling, lesion detectability, oncology,
Patlak graphical analysis, PET
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P ET is a powerful imaging modality for the noninvasive assess-
ment of physiological and biological processes in vivo at the

molecular level. Following intravenous injection of a positron-
emitting probe into a patient in tracer quantities, PET can detect
its biodistribution inside the body to assess a number of biological
and physiological processes, such as glucose metabolism, perfu-
sion, and proliferation.1 Static PET data acquisition providing the
spatial distribution of activity concentration within a fixed period
of time represents the current standard for qualitative assessment
through visual inspection and interpretation of the reconstructed
images in clinical setting. However, additional underlying biologi-
cal and physiological processes in tissues can be noninvasively
characterized and quantitatively evaluated taking into account the
temporal information using dynamic PET imaging, which proved
useful in a variety of medical and clinical research scenarios,2–4

such as diagnosis and therapy monitoring.5,6

In clinical setting, nuclear medicine physicians commonly re-
view PET images to discriminate malignant disease from normal
uptake patterns, inflammation areas, or artifacts based on their expe-
rience andmedical knowledge.7 Image analysis is often a qualitative
process with physicians providing their assessment of visible fea-
tures, sometimes evidenced by semiquantitative analysis particularly
using SUV.8 In some cases, the measurement of activity concentra-
tion alone at fixed times of nonspecific tracers, such as FDG, does
not allow distinguishing between malignant and benign lesions.7–14

A more thorough assessment of physiological parameters of
interest can be obtained through tracer kinetic modeling using tem-
porally continuous dynamic data, mainly limited to one bed posi-
tion, thus confining their applicability to about 15- to 25-cm axial
field of view (FOV) on commercially available PET scanners. How-
ever, the major contribution of whole-body (WB) PET imaging in
clinical oncology lies in its ability to assess disease dissemination.15

Lately, a new approach to clinical dynamic WB imaging has been
proposed consisting of an initial blood pool (cardiac or aorta) scan,
followed by a number of WB passes to estimate Ki Patlak para-
metric images as well as full compartmental modeling by gener-
alized linear least square (GLLS) parametric images.16,17 Using
this hybrid protocol, it is possible to simultaneously perform
GLLS full compartmental modeling in the FOV covering the ini-
tial blood pool scan containing the pathology, as well as WB
Patlak analysis. For kinetic parameter estimation, an arterial input
function (IF) is required. In the imaging protocol that we used, a
noninvasive image-derived IF was utilized. Depending on the loca-
tion of the pathology, the initial blood pool scan can be chosen in
the heart region, ascending or descending aorta. Because full
compartmental modeling requires both full-time course of activity
distribution and image-derived IF and owing to the limited axial
FOV of clinical PET scanners, full compartmental modeling
can be performed only in the initial bed position. Initial results
have demonstrated superior tumor-to-background contrast, and
improved variance of Ki images can be obtained from GLLS
modeling as compared to standard Patlak analysis.17 Moreover, by
applying the hybrid protocol, parametric images are also made
available to clinicians enabling them to evaluate disease more com-
prehensively using clinically feasible dynamic imaging protocol.
www.nuclearmed.com e221

ealth, Inc. All rights reserved.

mailto:habib.zaidi@hcuge.ch
www.nuclearmed.com


Zaker et al Clinical Nuclear Medicine • Volume 45, Number 5, May 2020

D
ow

nloaded from
 http://journals.lw

w
.com

/nuclearm
ed by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 05/16/2023
In thiswork, we used simulated and clinical studies to compare
lesion detectability between SUV, Patlak, and GLLS 18F-FDG WB
PET images. Clinical studies were obtained from patients undergoing
18F-FDG WB PET for oncologic staging, whereas the simulation
studies were generated using the XCAT phantom. Our ultimate aim
is to assess the benefits of hybrid WB dynamic time-of-flight PET
imaging in terms of lesion detectability when using Patlak and
GLLS-based metrics.

MATERIALS AND METHODS

Patient Population and Data Acquisition
and Processing

In this study, data of 8 patients referred for oncologic staging
of liver and lung lesions by WB 18F-FDG PET/CTwere used. The
study protocol was approved by the local ethics committee, and all
patients gave written informed consent to participate. After injecting
a standard 18F-FDG activity of 3.5 MBq/kg (3.71 ± 1.05 MBq/kg),
PET/CT scanswere performed on a Siemens BiographmCT scanner.
The whole duration of the scanning protocol is approximately
80 minutes, consisting of sequential dynamic and static acquisitions.
The first step is a low-dose CT scan (120 kVp and 80 mAs) for
attenuation correction followed by a 6-minute dynamic single-
bed acquisition for extracting the IF in the blood pool region,
then a dynamic WB (head-to-thigh) scan at ever increasing time
intervals in continuous bed motion (CBM) mode (3 scans at
5 mm/s, 5 scans at 4.4 mm/s, and 5 scans at 4 mm/s), and finally
the acquisition of static SUV WB CBM scan of approximately
20 minutes (depending on the patient's length/weight) starting
~60 minutes after injection. A contrast-enhanced CT scan was
also acquired (6/8 patients) for diagnostic purposes. Three-
dimensional (3D) iterative ordinary Poisson-ordered subset
expectation maximization algorithm was used for image recon-
struction with 2 iterations and 21 subsets, including time-of-
flight and resolution modeling and postreconstruction Gaussian
filtering using 2-mm full width at half maximum.18

Simulation Studies Using the XCAT Phantom
The XCAT human torso phantom was used for modeling the

time-dependent activity maps for specific tissues and tumors com-
monly encountered inWB oncology PET studies.19 In this study, re-
spiratory or cardiac motion was not considered. Six lesions of
varying size were embedded in the lung (3) and liver (3). Two lung
lesions have the same size but different microparameters, whereas
the 3 liver lesions have the same microparameters but different
sizes. The XCAT phantom consists of 67 regions including the tu-
mors. For simulating dynamic WB CBM 18F-FDG PET imaging,
we implemented an in-house MATLAB code (MathWorks Inc) to
assign realistic FDG kinetic microparameters and practicable blood
volume values to the different regions (Table 1).20 Time-activity
curves are generated based on an IF, a temporal sampling protocol,
and known tracer-specific pharmacokinetic parameters (constant
TABLE 1. 18F-FDG Kinetic Microparameters Used in Simulation S

Regions K1, mL/min per mL k2, mL/min per mL

Normal lung 0.114 0.288
Lung tumor 1 0.216 0.204
Lung tumor 2 0.216 0.204
Normal liver 0.468 0.744
Liver tumor 1.056 1.032

e222 www.nuclearmed.com
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rates), which control the bidirectional flux of the tracer between
the blood and tissue compartments (for each organ structure in the
anatomical phantom). The IF is derived from arterial sampling
based on a parameterized model.20 For the sampling protocol, 33
frames (20 cardiac frames and 13 passes) were used. To simulate
the real protocol used for patient scanning, the 20 cardiac frame du-
rationswere similar to the clinical protocol (time frames of 8� 5 sec-
onds, 4 � 10 seconds, 4 � 25 seconds, and 4 � 45 seconds),
whereas CBM data framing is fixed and dictated by the pass bed
speed (3 � 44 seconds, 5 � 55 seconds, and 5 � 56 seconds).
Figure 1 illustrates schematically the simulation process.

Clinical Image Analysis
Visual Interpretation

SUVand parametric images ofKi-Patlak, V-Patlak,Ki-GLLS,K1,
k2, k3, and bvwere spatially coregistered and evaluated visually by a nu-
clear medicine specialist. Images were rated as adequate/inadequate for
visual interpretation and analyzed to identify the presence and anatomi-
cal localization of lesions visible either on the above image data sets or
on the contrast-enhanced CT exclusively, namely, in the liver. The de-
tected lesions were subsequently evaluated quantitatively.

On the basis of the electronic clinical records, including re-
sults of other imaging modalities and information derived from
clinical follow-up, namely, biopsy results for 104 lesions, lesions
were classified as malignant (biopsy-proven or proven by another
imaging modality with high accuracy, such as contrast-enhanced
CT for hepatocellular carcinoma [HCC]), benign (biopsy proven),
probably malignant, and probably benign. To minimize the bias,
we limited the number of analyzed lesions to 5 for organs or ana-
tomical regions that had a higher number of lesions.

Quantitative Analysis of Simulation Studies
A 3D spherical region of interest (ROI) was manually drawn

on each of the 6 lesions to extract the maximum and mean activity
concentrations. Two distinct 3D spherical ROIs were also defined in
the normal liver and normal lung regions defined as background. In
addition to the maximum and mean values of each ROI, tumor-to-
background ratio (TBR) and also contrast-to-noise ratio (CNR)
were also calculated for all 20 noisy realizations of the 3 noise levels.

TBR ¼ Lesion ROImax

Background ROImean
− 1 ð1Þ

CNR ¼ TBR

Background ROISD
ð2Þ

To quantify the bias and noise in the liver and lung ROIs of the de-
rived parametric images, the normalized bias (NBias) and normal-
ized SD (NSD) were calculated. Because the actual parameters
(ground truth) are known for the simulated data, NBias for each re-
gion can be determined by first calculating NBiasi for the ith voxel
tudies25

k3, mL/min per mL k4, mL/min per mL bv, mL/mL

0.036 0 0.151
0.534 0 0.251
0.336 0 0.251
0.044 0 0.105
0.318 0 0.205

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 1. Flowchart of the WB PET simulation protocol. The first dynamic acquisition is centered over the lower
thorax/upper abdomen. The following 13 WB passes are acquired in CBMmode over the same axial length as the clinical
SUV acquisition. By using the IF, acquired dynamic images, and the Patlak and GLLS analysis methods, macroparameters
and microparameters are generated.
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of an ROI over all 20 noise realizations and getting the average over
all voxels of that ROI2:

NBias ¼ 1
n

Xn
i¼1

f i − μi
�� ��

μi

 !
ð3Þ

where fi ¼ 1
R

� �PR
r¼1 f

r
i ; f

r
i corresponds to the ith voxel value from

rth noise realization; μi denotes the reference true ith voxel value; n,
the number of voxels in the ROI; and R, the number of noise reali-
zations (20 in this work). Moreover, to calculate the NSD, first the
NSDi of the ith voxelwas calculated over all R realizations followed
by averaging over all n voxels of the ROI.

NSD ¼ 1

n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R − 1

PR
r¼1

f ri − fi
� �2s

fi
ð4Þ
TABLE 2. Clinical Characteristics of the Patient Population and A

Patient No. Age, y Sex Malignancy

1 65 Male Hepatocellular carcinoma
2 74 Male Intrahepatic cholangiocarcinoma

3 45 Female Hepatic cholangiocarcinoma
4 45 Female Gastric adenocarcinoma
5 59 Female Lung neuroendocrine carcinoma
6 62 Female Lung adenocarcinoma
7 76 Female Lung adenocarcinoma
8 60 Male Hodgkin lymphoma

© 2020 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2020 Wolters Kluwer H
The NSD index quantifies noise across multiple realizations of an
ROI and in each voxel.

Quantitative Analysis of Clinical Studies
A 3D spherical ROI was manually drawn on each lesion on

all registered images of contrast-enhanced CT (whenever the
contrast-enhanced CT was not available [2 of 8 patients],
nonenhanced CT images have been used) and subsequently cop-
ied on SUV, Patlak slope, Patlak intercept, Ki-GLLS, K1, k2, k3,
and bv images. Background ROIs were also defined in nearby
healthy surrounding tissues. The maximum and average values
in the corresponding ROIs were calculated. In addition, the
TBR and CNR scores were also calculated. Eventually, all iden-
tified lesions were grouped per organ regardless of the lesion
type (primary tumor, metastasis, etc).

Statistical Analysis
Spearman rank correlation coefficient (ρ) was used to assess

the correlation between SUVmax and other microparameters and
natomical Locations of the Detected Lesions

Detected Lesions

Liver (3), parotid (1)
Liver (5), abdominal lymph nodes (16), bone (1),
Peritoneum (1), brain (1)

Abdominal lymph nodes (9), lung (1), colon (2), liver (6), bone (4)
Stomach (2), bone (2), spleen (1), abdominal lymph node (2), brain (1)
Mediastinal lymph nodes (4), adrenal gland (3), bone (1), lung (1)
Lung (1), thyroid (1), rectum (1), colon (1)
Mediastinal lymph node (2), lung (1), pleural nodule (2), bone (2)
Lymph nodes (21), lung (1), subcutaneous nodule
(1), intramuscular implant (1), bone (1)

www.nuclearmed.com e223
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FIGURE 2. Hepatocellular carcinoma case (patient 1), nonhypermetabolic on SUV and Ki-Patlak images and detected on K1
and k2 images. Top panel (from left to right): contrast-enhanced CT image, SUV PET image, and Patlak-derived influx rate
constant (Ki-Pat). Middle panel (from left to right): GLLS-derived influx rate constant (Ki-GLLS) and rate constants (K1 and k2).
Bottom panel (from left to right): rate constant (k3), Patlak-derived distribution volume (V-Pat), and GLLS-derived blood
volume (BV-GLLS).
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macroparameters and between Kimax-Patlak and Vmax-Patlak with other
microparameters (Ki, K1, k2, k3, bv). The correlation coefficient was
calculated for all lesions and background ROIs. For this test,
P < 0.01 was considered significant. Spearman correlation coef-
ficient was also calculated for the six simulated lung and liver le-
sions considering the 3 noise levels and 20 noise realizations.
FIGURE 3. Case of an HCC (patient 2) detected only on k2 imag

e224 www.nuclearmed.com

Copyright © 2020 Wolters Kluwer H
Therefore, we considered 3 (number of lesions per organ) � 3
(number of noise levels)� 20 (number of noise realizations) = 180
samples for both lung and liver separately for calculation of the cor-
relation coefficients. The nonparametric Friedman test was per-
formed on 18 malignant lesions located in the initial bed position
for TBR and CNR scores to test for differences between 5 image
e. The images shown are similar to Figure 2.

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 4. Case of an HCC (patient 2), showing part of biopsy-proven malignant lesion (arrow) detected only on K1 and k2
images. It can be claimed that microparametric images complement information on lesion detection provided by the other
modalities. The images shown are similar to Figure 2.

Clinical Nuclear Medicine • Volume 45, Number 5, May 2020 Lesion Detectability Using Compartmental Modelling
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types (Ki-Patlak, Ki-GLLS, K1, k2, and k3). P = 0.05 is considered
significant for this test.
RESULTS
Eight oncologic WB 18F-FDG PET/CT studies (5 females

and 3 males; mean age, 60.75 ± 10.77 years) were included in this
study. Table 2 summarizes the clinical indications and the anatomical
locations of the lesions assessed for each patient. The qualitative
FIGURE 5. Case of an HCC (patient 1) detected on contrast-enh
V-Patlak, and BV-GLLS images and visible on Ki-GLLS, K1, and k2 i

© 2020 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2020 Wolters Kluwer H
inspection of PET images revealed that all images were considered
adequate for visual reading. The suppression of blood pool is obvi-
ous in Ki images for organs that have nonnegligible fraction of
blood pool compartment, such as the liver, spleen, and blood ves-
sels (Figs. 2–5). This feature of Ki images commonly results in
higher contrast for lesions located close to these anatomical struc-
tures as reported in previous studies.2,3,21–23 A total of 104 malig-
nant lesions (n = 23), benign lesions (n = 2), probably malignant
(n = 71), and probably benign (n = 8) were identified and analyzed.
anced CT images, nonvisible in the SUV and Ki-Patlak, k3,
mages. The images shown are similar to Figure 2.

www.nuclearmed.com e225
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FIGURE 6. Whisker plots showing (A) TBR and (B) CNR for SUV, Patlak slope and intercept, Ki-GLLS, K1, k2, k3, and BV-GLLS
images for lesions of clinical studies located in the initial bed position.
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Of the 23 malignant lesions, 18 (78%) were detected on SUV, and
18 (78%) were detected on Ki-Patlak. Eighteen of the 23 malignant
lesions were located in the initial bed position allowing the calcula-
tion of all microparametric images (Ki, K1, k2, k3). Ki-GLLS maps
detected 14 of 18 confirmed lesions (78%), whereas K1 images de-
tected 10 of the 18 confirmed lesions (56%). k2 images pinpointed
9 of 18 (50%), whereas k3 images pinpointed 7 of 18 (39%). For the
sake of comparison, from the 18 lesions located in the initial bed
position, both SUV and Ki-Patlak images could detect 13 lesions
(72%). The TBR and CNR scores of malignant lesions located in
the initial bed position are depicted in Figure 6. The 4 lesions that
were not visible on Ki-GLLS images included (1) a known HCC
measuring 30 � 23 � 31 mm3 visible on the contrast-enhanced
CT (patient 1), nonhypermetabolic on the SUVimage (TBR=0.34),
nonhypermetabolic on Ki-Patlak image, nonhypermetabolic for
Ki-GLLS image, but visible on K1 image and k2 image and
nonvisible on k3 image (Fig. 2); (2) an HCC lesion visible on
contrast-enhanced CT images but not on any other modality;
(3) an HCC lesion not visible on any modality except k2 image
(TBR = 1.79) (Fig. 3); (4) a biopsy-proven malignant HCC of
the liver only detectable on K1 and k2 images (Fig. 4). None of
these 4 lesions was detected on SUV images, similar to the
HCC lesion detectable on Ki-GLLS, K1 and k2 images (Fig. 5).
Meanwhile, cases where Ki-Patlak could not detect the lesions
were matched on SUV images. Except the previous 5 determined
lesions, the other 13 known and biopsy-proven malignant lesions
were visible on SUV, Ki-Patlak, and Ki-GLLS but had different
visibility features on K1, k2, and k3 images.

Of the 71 probablymalignant lesions, 29 lesionswere located
in the initial bed position part.Ki-GLLS detected 25 of these 29 lesions
(86%), K1 images could not detect any of them (0%), k2 images
pinpointed 2 of 29 (7%), whereas k3 images detected 11 of these 29 le-
sions (38%). The lesions that could not be detected onKi-Patlakwere 3
thoracic lymph nodes, visible on SUVandKi-GLLS. Therewere 4 tho-
racic lymph nodes that were only visible on Ki-GLLS but not on the
other modalities. The only 2 probably malignant lesions that were
e226 www.nuclearmed.com
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detectable on k2 images were a gastric lymph node and a rib metastasis
that could also be seen on k3 images as well as SUVandKi-GLLS and
Ki-Patlak images. The only 2 biopsy-proven benign lesions were a thy-
roid nodule and a colon lesion. The thyroid nodulewas hypermetabolic
on SUV images but nonhypermetabolic on Ki-Patlak images (false-
positive), whereas the colon lesion was visible on both SUV and Ki-
Patlak images.

We assessed the accuracy and sensitivity for the 18 confirmed
malignant lesions located in the initial bed position, considering the
biopsy results as criterion standard as well as contrast-enhanced CT
indication and the clinical follow-up proof of patients. In this
group of lesions, the malignancy detection sensitivity increased
from 13 of 18 (72%) in the case of SUV and Ki-Patlak images
to 14 of 18 (78%) using Ki-GLLS imaging. As we had only 2
biopsy-confirmed benign lesions and none in the initial bed for
GLLS analysis, we are unable to compare the specificity perfor-
mance between SUVand Ki-GLLS imaging or estimate the added
value of microcompartmental modeling.

PET Metrics and Statistical Analysis of Clinical and
Simulation Studies

Overall, Spearman rank correlation coefficient (ρ) was high
and significant when analyzing clinical and simulated lesions on
all image sets, namely, 0.761 (P < 0.001) for Kimax-Pat and SUVmax,
0.808 (P < 0.001) for SUVmax andKimax-GLLS, and 0.657 (P = 0.347)
for Kimax-Patlak and Kimax-GLLS. Tables 3 to 6 summarize the correla-
tions for each anatomical region, including simulated lung and liver
lesions calculated for the 3 noise levels and 20 noise realizations.
For clinical studies, TBRKi-Patlak for 22 out of 23 malignant lesions
(95.65%) were higher than TBRSUV, whereas TBRKi-GLLS were
higher than the TBRSUV for all 23 malignant lesions (100%).

For 10 of 18 proven malignant lesions that were revealed by
K1 images, TBRK1 were higher than TBRSUV for 4 of 10 cases
(40%). For the 9 lesions detected by k2 images, TBRk2 of 6 of 9
(66.67%) were higher than TBRSUV, whereas for the 7 malignant le-
sions that were detectable on k3 images, all TBRk3 scores 7/7 (100%),
© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 3. Spearman Correlation (ρ) and P Values Between SUV andMacroparametric andMicroparametricMaps, Calculated for
the Maximum Uptake of Lesions

SUV vs Ki-Pat SUV vs V SUV vs Ki-GLLS SUV vs K1 SUV vs k2 SUV vs k3 SUV vs bv

Total 0.761 (P < 0.001) 0.309 (P = 0.003) 0.808 (P < 0.001) 0.481 (P = 0.001) 0.371 (P = 0.015) 0.395 (P = 0.01) 0.189 (P = 0.231)
Abdominal 0.583 (P = 0.077) 0.617 (P = 0.058) 0.90 (P = 0.037) −0.1 (P = 0.873) −0.1 (P = 0.873) −0.3 (P = 0.624) 0 (P = 1)
Liver 0.972 (P < 0.001) 0.406 (P = 0.191) 0.846 (P < 0.001) 0.804 (P = 0.002) 0.573 (P = 0.051) 0.664 (P = 0.521) 0.014 (P = 0.966)
Lungs 0.90 (P = 0.037) 0.90 (P = 0.037) 0.80 (P = 0.2) 0.8 (P = 0.2) 0.8 (P = 0.2) 1.0 (P < 0.001) 0.6 (P = 0.4)
Bones 0.945 (P < 0.001) 0.827 (P = 0.002) — — — — —
Lymph nodes 0.798 (P < 0.001) 0.463 (P = 0.004) 0.846 (P < 0.001) 0.385 (P = 0.217) 0.147 (P = 0.649) −0.077 (P = 0.812) 0.014 (P = 0.966)
Other 0.311 (P = 0.240) 0.024 (P = 0.930) 0.714 (P = 0.111) 0.486 (P = 0.329) 0.486 (P = 0.329) 0.086 (P = 0.872) 0.486 (P = 0.329)
Lung (sim.) 0.69 (P < 0.001) 0.32 (P < 0.001) 0.44 (P < 0.001) 0.04 (P = 0.56) 0.25 (P < 0.001) 0.35 (P < 0.001) 0.29 (P < 0.001)
Liver (sim.) 0.22 (P = 0.003) 0.32 (P < 0.001) 0.25 (P < 0.001) 0.20 (P = 0.007) 0.22 (P = 0.003) 0.18 (P = 0.013) 0.07 (P = 0.329)

The first rows are for clinical studies, whereas the last 2 rows are for the simulated lung and liver lesions. Correlation is deemed significant forP < 0.001. All values are reported
for the full data set and for the lesions grouped by localization.
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were higher than TBRSUV with large differences in magnitude (order
of 2 or 3). The Friedman test showed statistically significant differ-
ences between the TBR metric for 6 modalities (SUV, Ki-Patlak,
Ki-GLLS, K1, k2, and k3) for the 18 malignant lesions located in
the initial bed position (P < 0.001). CNRKi-Patlak values were higher
than CNRSUV values for 21 of 23 lesions (91.3%), whereas CNRKi-GLLS
values for all 18 proven lesions (100%) in the initial bed position were
higher than CNRSUV values. Likewise, CNRK1 values for 12 of
18 lesions (66.67%) were higher than TBRSUV values, whereas
CNRk2 values for 13 of 18 (72.22%) were higher than CNRSUV.

Regarding the bias and SD scores for the simulated liver and
lung lesions, it can be seen that for the lung lesions k2 and k3 have
the highest bias (>9%), whereas SUVand Ki-Patlak had the lowest
bias (<4%). For the liver lesions, the highest bias corresponds to k2
images, whereas the lowest bias was achieved for Ki-Patlak images.
Regarding the SD score, it can be seen that the highest SD is for
lung lesions and k2 images (between 40% and 70%), whereas the
lowest NSD for simulated lung lesions is between 10% and 20%
for SUV and Ki-Patlak images. For the liver lesions, the highest
NSD was achieved by BV-GLLS (between 25% and 40%), and
the lowest NSD was achieved by Ki-GLLS images (<10%).
DISCUSSION
This study demonstrated that multipass hybrid WB PET

imaging provides the capability of simultaneous estimation of
compartmental and Patlak parametric maps from CBM data acqui-
sition that may have the potential of improving standard-of-care
SUV imaging lesion detectability in routine oncology applications.
TABLE 4. Spearman Correlation (ρ) and P Values Between Ki-Patl
Values of Lesions

Ki-Pat vs Ki-GLLS Ki-Pat vs K1

Total 0.791 (P < 0.001) 0.388 (P = 0.011)
Abdominal 0.4 (P = 0.505) −0.6 (P = 0.285)
Liver 0.916 (P < 0.001) 0.783 (P = 0.003)
Lungs 1.0 (P < 0.001) 1.0 (P < 0.001)
Lymph nodes 0.748 (P = 0.005) 0.497 (P = 0.101)
Other 0.657 (P = 0.156) −0.086 (P = 0.872)
Lung (sim.) 0.56 (P < 0.001) −0.02 (P = 0.750)
Liver (sim.) 0.61 (P < 0.001) 0.16 (P = 0.027)

The first rows are for clinical studies, whereas the last 2 rows are for the simulated lung
for the full data set and for the lesions grouped by localization.

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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The implemented protocol generated static SUV images, WB para-
metric slope and intercept Patlak images using Patlak graphical
analysis, and microparametric images of Ki, K1, k2, k3, and bv for
the initial bed position in a single session, thus allowing direct com-
parisons between the modalities. Microparametric images can be
produced for only 1 bed position, yet, lesions located anywhere in
the thoracoabdominal region can be targeted because of the ability
of extracting the IF from the heart or the aorta. The produced im-
ages were all of acceptable quality and all malignant lesions visible
in SUV images were also detectable on Ki-Patlak and Ki-GLLS
images. Furthermore, microparametric images proved to be supe-
rior in 4 HCC lesions, 3 detected on K1 and k2 images (Figs. 2, 4,
and 5), and only 1 detected on k2 images (Fig. 3). In addition, 1
biopsy-proven benign thyroid lesion, positive on SUV image, was
not detectable on Ki-Patlak images.

In parametric Patlak and GLLS images, the 18F-FDG signal
in organs including blood compartment is suppressed, and this fea-
ture results in higher contrast and thus higher TBR in these regions
and neighboring organs, especially for Ki-Patlak, ki-GLLS, and k3
images. Consistent with previous studies,2,3,21–25 the higher TBR
values of Ki-GLLS and k3 images in the liver were obvious in both
clinical and simulation studies.

Although graphical Patlak analysis is a fast approach with
low complexity that can be easily adopted in the clinic, it does not
produce all model parameters. Detailed knowledge of all param-
eters reflecting tracer kinetics is ideally required for a complete
understanding of the physiological process being studied.26

Through the survey of malignant lesions, it became clear that
despite the limited axial coverage for the targeted axial FOV
ak and Microparametric Images, Calculated for the Maximum

Ki-Pat vs k2 Ki-Pat vs k3 Ki-Pat vs bv

0.319 (0.039) 0.356 (P = 0.021) 0.109 (P = 0.493)
−0.1 (P = 0.873) −0.7 (P = 0.188) −0.3 (P = 0.624)
0.538 (P = 0.071) 0.713 (P = 0.009) 0.067 (P = 0.837)
0.6 (P = 0.4) 0.8 (P = 0.2) 0.8 (P = 0.2)

0.245 (P = 0.443) −0.091 (P = 0.779) 0.014 (P = 0.966)
−0.086 (P = 0.872) 0.714 (P = 0.111) 0.2 (P = 0.704)

0.07 (P = 0.374) 0.42 (P < 0.001) 0.20 (P = 0.006)
0.14 (P = 0.055) 0.22 (P = 0.003) 0.24 (P = 0.001)

and liver lesions. Correlation is deemed significant for P < 0.01. All values are reported
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TABLE 5. Spearman Correlation (ρ) and P Values Between SUV and Macroparametric and Microparametric Images, Calculated
for the Mean Values of Background

SUVand
ki-Pat

SUVand
bv-Pat

SUVand
Ki-GLLS SUVand K1 SUVand k2 SUVand k3

SUVand
bv-GLLS

Total 0.572 (P < 0.001) 0.781 (P < 0.001) 0.217 (P = 0.167) 0.471 (P = 0.002) 0.045 (P = 0.777) −0.652 (P < 0.001) −0.531 (P < 0.001)
Abdominal 0.465 (P = 0.352) 0.96 (P = 0.002) — −0.5 (P = 0.667) — — 0.5 (P = 0.667)
Liver 0.809 (P = 0.001) 0.782 (P = 0.003) 0.256 (P = 0.422) −0.674 (P = 0.016) −0.791 (P = 0.002) 0.256 (P = 0.422) 0.244 (P = 0.445)
Lungs 0.90 (P = 0.061) 0.30 (P = 0.624) 0.40 (P = 0.6) −0.40 (P = 0.6) 0.40 (P = 0.6) 0.40 (P = 0.6) 0.80 (P = 0.2)
Bones 0.68 (P = 0.021) 0.763 (P = 0.006) — — — — —
Lymph nodes 0.535 (P < 0.001) 0.70 (P < 0.001) 0.31 (P = 0.327) 0.39 (P = 0.21) −0.011 (P = 0.974) −0.224 (P = 0.484) −0.459 (P = 0.133)
Other 0.251 (P = 0.348) 0.456 (P = 0.076) 0.714 (P = 0.111) 0.486 (P = 0.329) 0.486 (P = 0.329) −0.086 (P = 0.872) −0.486 (P = 0.329)
Lung (sim.) −0.07 (P = 0.600) 0.13 (P = 0.320) 0.04 (P = 0.760) 0.12 (P = 0.378) 0.01 (P = 0.924) −0.11 (P = 0.385) −0.13 (P = 0.318)
Liver (sim.) 0.02 (P = 0.889) −0.05 (P = 0.659) 0.05 (P = 0.678) −0.09 (P = 0.482) −0.03 (P = 0.795) 0.07 (P = 0.616) 0.15 (P = 0.266)

The first rows are for clinical studies, whereas the last 2 rows are for the simulated lung and liver lesions. Correlation is deemed significant for P < 0.01. The values are reported
for the full data set and for the lesions grouped by localization.
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supposed to contain the pathology for which microparametric
maps were generated, these images provide additional relevant
information. The 4 HCC lesions not visible on SUV images but
detected on microparametric maps strongly support the comple-
mentary role of microcompartmental modeling. Another finding
of this study regarding the model parameters is that although lesion
detectability of k3 images is relatively low (39%), these images pro-
duce superior TBR, suggesting their potential for lesion delineation
and segmentation. Strauss et al27 also mentioned that k3 maps might
be useful and have been used for supporting the volume-of-interest
positioning. Finally, the biopsy-proven benign thyroid lesion, pos-
itive on SUV images but negative on Ki and microparametric im-
ages, is in line with previous observations supporting the fact that
Ki imaging has the potential to reduce false-positives.21

We found strong positive correlations between Kimax-Patlak
and SUVmax (ρ = 0.761), between Kimax-GLLS and SUVmax
(ρ = 0.808), and between Ki-Patlak and Ki-GLLS (ρ = 0.791) and
even stronger correlations when looking separately at different
organs, such as the liver, bones, and lymph nodes. The simulation
results also indicate good correlations between SUVand Ki-Patlak,
SUV and Ki-GLLS, and Ki-Patlak and Ki-GLLS for lung and liver
lesions (Tables 3 and 4). This is an indication that Ki-Patlak and
Ki-GLLS images will identify hypermetabolic lesions if they are
depicted on SUV images. However, there were weak correlations
between SUV and Ki-Patlak and also SUV and Ki-GLLS in back-
ground neighboring regions in both clinical and simulation studies.
This was expected because of blood pool suppression in Ki images.
TABLE 6. Spearman Correlation (ρ) and P Values (Sig. 2-Tailed) B
the Mean Values of Background

Ki-Pat and Ki-GLLS Ki-Pat and K1

Total 0.65 (P < 0.001) 0.519 (P < 0.001) 0
Abdominal −0.50 (P = 0.667) —
Liver 0.162 (P = 0.615) −0.532 (P = 0.075) −
Lungs 0.40 (P = 0.60) −0.40 (P = 0.60)
Lymph nodes 0.743 (P = 0.006) 0.66 (P = 0.019)
Other 0.657 (P = 0.156) 0.086 (P = 0.872) 0
Lung (sim.) 0.58 (P < 0.001) 0.26 (P = 0.042)
Liver (sim.) 0.51 (P < 0.001) 0.12 (P = 0.368)

The first rows are for clinical studies, whereas the last 2 rows are for the simulated lung
for the full data set and for the lesions grouped by localization.
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Tumor-to-background ratio and CNR scores for malignant
lesions were higher for Ki-GLLS and Ki-Patlak images than SUV
images (Fig. 7). k3 Images also show higher TBR than SUV images
owing to suppressed background. Considering malignant and prob-
ably malignant lesions, the TBR of Ki-Patlak is higher than SUV
images (Fig. 8), although 5 individual cases had higher TBRs on
SUV images compared with Ki-Patlak images. Four of them were
Hodgkin lymphoma lesions (bone and nodal), whereas the last
onewas a retroperitoneal nodal metastasis of a cholangiocarcinoma.
The CNR of malignant and probably malignant lesions was higher
forKi-Patlak than SUV images (Fig. 8). Figure 6 shows that more or
less TBR and CNR scores for Ki GLLS are higher comparing to
other modalities (P < 0.001). Tumor-to-background ratio and
CNR scores of K1 and k2 images are commonly higher than SUV
images, which partly explains their better lesion detectability. Al-
though in simulation studies the TBR and CNR scores of K1 and
k2 images for liver lesions are lower than SUV, Ki-Patlak, Ki-GLLS,
and k3 images, drawing any conclusions is difficult given that only 1
type of liver lesions was modeled contrary to clinical situations
where there are a variety of liver lesions with different indications,
grades, and physiologies.

The bias and NSD metrics calculated for simulated lung and
liver lesions demonstrated that the bias for k2 images is the highest
among other parameters and that SUV and Ki-Patlak images have
the lowest bias for lung and liver lesions. For lung lesions, the
highest SD was associated with k2 images, whereas the lowest
NSD was associated with SUV and Ki-Patlak images. Likewise,
etween Ki-Patlak and Microparametric Images, Calculated for

Ki-Pat andk2 Ki-Pat and k3 Ki-Pat and bv_GLLS

.068 (P = 0.668) −0.378 (P = 0.013) −0.348 (P = 0.024)
0.50 (P = 0.667) −0.50 (P = 0.667) 0.50 (P = 0.667)
0.74 (P = 0.006) 0.162 (P = 0.615) 0.433 (P = 0.16)
0.40 (P = 0.60) 0.40 (P = 0.60) 0.80 (P = 0.20)
0.34 (P = 0.28) −0.807 (P = 0.002) −0.871 (P < 0.001)
.086 (P = 0.872) 0.714 (P = 0.111) 0.20 (P = 0.704)
0.44 (P < 0.001) 0.66 (P < 0.001) 0.03 (P = 0.816)
0.15 (P = 0.244) 0.39 (P = 0.002) −0.16 (P = 0.002)

and liver lesions. Correlation is deemed significant for P < 0.01. All values are reported

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 7. TBR and CNR whisker plots showing TBR for the 18 malignant lesions of clinical studies located in the initial bed
position.
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for liver lesions, it was observed that BV-GLLS had the highest
NSD scores among the different modalities, whereas Ki-GLLS
had the lowest NSD.

SUVandKi images can be equivalent under 2 special circum-
stances.8 The first condition is when the blood volume is negligible
or when specific uptake far outbalances the background uptake.
FIGURE 8. Whisker plots showing TBR and CNR for the SUV and
probably malignant lesions of the clinical studies.

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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The second condition is the proportionality of the integral of plasma
IF (PIF) (∫t0Cp τð Þdτ ) to the SUV (injected activity divided by the
patient's weight). The first condition will be invalid for less FDG-
avid tumors or for lesions located in organs with a larger fraction
of blood volume, or when high physiologic (nonspecific) uptake
may interfere with disease-specific uptake in the same tissue. For
Patlak slope and intercepts images for all malignant and
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less FDG-avid tumors or lesions located in organs, such as the liver,
these 2 parameters cannot be equivalent, and the higher perfor-
mance of Ki images than SUV images in terms of lesion detectabil-
ity is mainly due to the blood-volume suppression. The second
condition verifies when tracer infiltration or extravasation occurs
at the injection site, affecting the relationship between the PIF inte-
gral (radiotracer quantity available for uptake) and the total admin-
istered dosage, or when the PIF is modified after a treatment
regimen (such as chemotherapy or hormone therapy) or by an al-
tered cardiac output. In these cases, SUV images cannot take PIF
modification into account, whereas Ki imaging is able to account
for these changes.

Hence, from a theoretical standpoint, we can expect that
when the 2 conditions are fulfilled, SUV and Ki images will have
comparable performances, and when these conditions cannot be ful-
filled, Ki images will have an advantage over SUV images. Our
results are in agreement with these postulates. However, we
should keep in mind that some lesions remain undetectable on
SUV, macrocompartmental, and microcompartmental images.
One such example is the case of an HCC liver lesion that was de-
tectable only on contrast-enhanced CT images. Another aspect
that deserves particular attention is that parametric imaging im-
proves quantification, an important asset that static semiquantita-
tive SUV imaging can hardly cope with. Moreover, our findings
show that the higher TBR and CNR scores do not necessarily re-
sult in improved lesion detectability. In the previously described
4 HCC lesions, the high TBR and CNR scores do not always re-
flect that a lesion is detected, because of the different noise and
background levels involved. The 2 main reasons are as follows:
(i) the noise characteristics of the images, because 1 noisy pixel
in the ROI is sufficient to obtain a high TBR score even if the le-
sion is not visible; (ii) in case of extremely low background, even
a low noise pixel in an ROI can produce a large TBR or CNR
score. Therefore, the visual appreciation for lesion detectability
is mandatory.

The main limitation of this study is the small number of
patients and of biopsy-proven lesions, a common issue encoun-
tered in clinical research. From a methodological standpoint,
neglecting k4 parameter in our analysis may have resulted in
quantification errors in few organs, such as the liver.28 Yet, it has
been reported that the irreversible model is sufficient for describing
the tissue time-activity curves when the scan duration is less than
60 minutes,29–31 as in our case.
CONCLUSIONS
This work investigated lesion detectability features when

using various microcompartmental and macrocompartmental maps
and compared them with standard-of-care SUV images. Multipass
WB PET parametric imaging utilizing graphical Patlak and GLLS
analysis outperformed conventional SUV imaging, specifically for
the detectability of HCC lesions. The image-derived metrics for
the different modalities were significantly correlated, yet the sup-
pression of nonspecific 18F-FDG signal in the blood compartment
resulted in higher TBR and CNR scores in parametric images as
compared with SUV images. This work will be continued by enroll-
ing additional patients to increase the sample size, including differ-
ent primary tumors to verify if our observations are associated with
specific histological types.
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