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Abstract
Lately, many studies were offered to introduce the population dynamics of COVID-19.
In this investigation, we extend different physical conditions of the growth by
employing fractional calculus. We study a system of coupled differential equations,
which describes the dynamics of the infection spreading between infected and
asymptomatic styles. The healthy population properties are measured due to the
social meeting. The result is associated with a macroscopic law for the population.
This dynamic system is appropriate to describe the performance of growth rate of the
infection and to verify if its control is appropriately employed. A unique solution,
under self-mapping possessions, is investigated. Approximate solutions are presented
by utilizing fractional integral of Chebyshev polynomials. Our methodology is based
on the Atangana–Baleanu calculus, which provides various activity results in the
simulation. We tested the suggested system by using live data. We found positive
action in the graphs.

Keywords: Conformable calculus; Fractional calculus; Fractional differential
operator; Fractional integral operator; Dynamic system; COVID-19

1 Introduction
Coronavirus disease COVID-19 is an infectious disease caused by a newly discovered
coronavirus. It has been diffusing quickly in the world and the World Health Organization
(WHO) characterized it as a pandemic. The first WHO indication of dyed-in-the-wool sit-
uations of COVID-19 was labeled on January 21, 2020 with 282 recognized cases, which is
developed with the most present certificate on March 18, 2020, which extends to 191,127
concluded cases (see [1, 2]). Normal growth approaches have been tested to describe the
time development of the COVID-19 infection [3]. Fundamentally, by applying the system

d
dt

ϕ(t) = ϕ(t), t ∈ [0,∞),
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where ϕ denotes the sum of infected people and the spreading phase, the increasing num-
ber of asymptomatic infected individuals was labeled. Recently, an extensive presentation
of the fractal-fractional dynamic system of COVID-19 spread was introduced by Atangana
[4].

The current investigation concerns the fractional dynamic system of the growth laws by
exploiting the idea of fractional calculus. This idea contains an important term, which
is the exponential law to find and accept the graph of the growth. The existence and
uniqueness consequences are deliberated in the application of the fixed-point theory of
self-mappings. Other properties are observed, such as the approximate solvability using
the fractional Chebyshev polynomials.

2 Fractional dynamic system (FDS)
In this section, we construct the dynamic system of coupled equations. Before that, we
need the following preliminaries about the conformable calculus.

2.1 Atangana–Baleanu calculus (ABC)
In recent decades, several physical complications have been displayed when employing the
fractional calculus. The fundamental clarifications for applying fractional derivative illus-
trations are that various arrangements, constructions, and inequalities show the ability to
remember past, or nonlocal properties, which cannot be stimulated using normal order
derivatives. The fundamental ideas and applications of fractional calculus and fractional
differential equations can now be found in many surveys. While most of the principal
studies were based on the procedure of the Riemann–Liouville fractional order deriva-
tive, or the Caputo fractional order derivative, it has been observed that these derivatives
have the property that their kernels have a singularity at the end of the interval of interest.
The essential differences among the arbitrary derivatives are their unlike kernels which
can be selected to fit the requirements of different applications. For example, the central
variations between the Caputo fractional derivative, the Caputo–Fabrizio derivative [5],
and others are that the Caputo calculus is expressed by employing a power law, while the
Caputo–Fabrizio derivative is characterized by using an exponential decay. Atangana–
Baleanu operator is introduced by suggesting the generalized Mittag-Leffler function [6].

Definition 1 (Fractional differential operator) A differential operator �ν ,ν ∈ (0, 1) is
called a fractional Atangana–Baleanu derivative of order ν of a function ϕ if and only
if �ν can be written as

�νϕ(t) =
1

1 – ν

∫ t

0
ϕ′(τ )Ξν

(
–ν

1 – ν
(t – τ )ν

)
dτ , t ≥ 0,

where Ξ indicates the Mittag-Leffler function. The fractional integral is formulated by

Jνϕ(t) = (1 – ν)ϕ(t) +
ν

Γ (ν)

∫ t

0
ϕ(τ )(t – τ )ν–1 dτ .

2.2 Construction of FDS
In the construction of FDS, we denote by Ξ (t) the increasing overall number of infected
persons, which is the sum of the number of the increasing recognized infected individuals
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ϕ(t) and of the asymptomatic transmissions ψ(t), that is, Ξ (t) = ϕ(t) + ψ(t). Regarding the
statistics of ϕ(t), the number of transitions on and off, and cured people are convoluted,
because they have been previously ill. Therefore, there are rate functions linking ϕ and ψ .
We formulate the coupled-FDS as follows:

�νϕ(t) = α1(t)ϕ(t) + α(t)ψ(t),

�νψ(t) = β1(t)ψ(t) + β(t)ϕ(t),
(1)

where α,α1 and β ,β1 are the connection rate continuous functions of ψ in �μϕ(t) and
ϕ in �νψ(t), respectively. They describe the damping properties in line for the control
energy.

3 Results
In this section, we proceed to discuss the solution existence and uniqueness for system
(1). Moreover, we investigate the controller solution from different views.

3.1 Stability of solution
In this section, we deal with the stability of the unique solution via fixed point theorem.
System (1) can be expressed by the general system

�νϕ(t) = X(t,ϕ,ψ),

�νψ(t) = A(t,ϕ,ψ),
(2)

satisfying the following hypotheses:
(A1) Assume that X : [0, T] ×R×R →R is a nondecreasing continuously

differentiable function with X(0, 0, 0) = 0 and nonvanishing in a compact interval
(0, T]. Furthermore, there is a positive constant κ such that

∣∣X(t,ϕ1,ψ1) – X(t,ϕ2,ψ2)
∣∣ ≤ κ

(|ϕ1 – ϕ2| + |ψ1 – ψ2|
)
.

(A2) Assume that A : [0, T] ×R×R →R is a nondecreasing continuously
differentiable function with A(0, 0, 0) = 0 and nonvanishing in a compact interval
(0, T]. In addition, assume that there exists a positive constant K such that

∣∣A(t,ϕ1,ψ1) – A(t,ϕ2,ψ2)
∣∣ ≤ K

(|ϕ1 – ϕ2| + |ψ1 – ψ2|
)
.

We aim to establish the existence and uniqueness of solution to system (2) using self-
mapping fixed point theorem [7].

Lemma 3.1 Let (ℵ,�) be a complete metric space and U : ℵ → ℵ a self-mapping satisfying
the relation

�
(
�

(
U (χ ),U (η)

)) ≤ �
(
� (χ ,η)

)
– ℘

(
� (χ ,η)

)
(3)

for all χ ,η ∈ ℵ, where �,℘ : [0,∞) → [0,∞) are both continuous and nondecreasing func-
tions with �(0) = ℘(0) = 0. Then U admits a unique fixed point.
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Put ℵ = R and define an operator P : R×R →R×R as follows:

(
P(ϕ,ψ)

)
(t) =

(
P1(ϕ,ψ),P2(ϕ,ψ)

)
(t)

=
(

(1 – ν)X(t,ϕ,ψ) +
ν

Γ (ν)

∫ t

0
X(τ ,ϕ,ψ)(t – τ )ν–1 dτ ,

(1 – ν)A(t,ϕ,ψ) +
ν

Γ (ν)

∫ t

0
A(τ ,ϕ,ψ)(t – τ )ν–1 dτ

)
. (4)

Since (ϕ,ψ) ∈R×R, P is a self-mapping.

Lemma 3.2 Let the functions B : R3 →R
+ be defined as follows:

B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
= max

{|ϕı – ϕj | + |ψı – ψj | : ı, j = 1, 2, 3, ı 	= j
}

.

Then the function B ∈R forms a metric.

Proof Clearly, B(0) = 0. Furthermore, we have

B
(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

)
+ B

(
(ϕ2,ψ2), (ϕ2,ψ2), (ϕj,ψj)

)

+ B
(
(ϕ3,ψ3), (ϕ2,ψ2), (ϕk ,ψk)

)

= max
i=2,3

{|ϕ1 – ϕi| + |ψ1 – ψi|
}

+ max
j=1,3

{|ϕ2 – ϕj| + |ψ2 – ψj|
}

+ max
k=1,2

{|ϕ3 – ϕk| + |ψ3 – ψk|
}

= max
{|ϕ1 – ϕ2| + |ψ1 – ψ2|, |ϕ1 – ϕ3| + |ψ1 – ψ3|

}

+ max
{|ϕ2 – ϕ1| + |ψ2 – ψ1|, |ϕ2 – ϕ3| + |ψ2 – ψ3

}

+ max
{|ϕ3 – ϕ1| + |ψ3 – ψ1|, |ϕ3 – ϕ2| + |ψ3 – ψ2|

}

= 2 max
{|ϕ1 – ϕ2| + |ψ1 – ψ2|, |ϕ2 – ϕ3| + |ψ2 – ψ3|, |ϕ3 – ϕ1| + |ψ3 – ψ1|

}

> max
{|ϕ1 – ϕ2| + |ψ1 – ψ2|, |ϕ2 – ϕ3| + |ψ2 – ψ3|, |ϕ3 – ϕ1| + |ψ3 – ψ1|

}

= max
{|ϕı – ϕj | + |ψı – ψj | : ı, j = 1, 2, 3, ı 	= j

}

:= B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
. (5)

Hence, the function B((ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)) is a metric. �

This metric forms the maximum measurement between the three cases of growth of
COVID-19. Note that this metric can be extended to include other cases in dynamic sys-
tems.

Theorem 3.3 Suppose that the dynamic system (2) satisfies hypotheses (A1) and (A2). If
the positive constants κ and K are such that

κ <
1

1 – ν + Tν

Γ (ν)
and K <

1
1 – ν + Tν

Γ (ν)
, T < ∞,

then P has a unique fixed point in the ball Br , where r ≤ 1.
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Proof In view of the assumption on κ , and the definition of the metric in Lemma 3.2, we
have

B
(
P1(ϕ1,ψ1)(t),P1(ϕ2,ψ2)(t),P1(ϕ3,ψ3)(t)

)

= max
{∣∣P1(ϕı ,ψı)(t) – P1(ϕj ,ψj )(t)

∣∣ : ı, j = 1, 2, 3, ı 	= j
}

= max

{∣∣∣∣(1 – ν)X(t,ϕı ,ψı) +
ν

Γ (ν)

∫ t

0
X(τ ,ϕı ,ψı)(t – τ )ν–1 dτ

– (1 – ν)X(t,ϕj ,ψj ) –
ν

Γ (ν)

∫ t

0
X(τ ,ϕj ,ψj )(t – τ )ν–1 dτ

∣∣∣∣ : ı, j = 1, 2, 3, ı 	= j

}

≤ max

{
(1 – ν)κ

(|ϕı – ϕj | + |ψı – ψj |
)

+
Tν

Γ (ν)
κ
(|ϕı – ϕj | + |ψı – ψj |

)
:

ı, j = 1, 2, 3, ı 	= j

}

= max

{
κ

(
1 – ν +

Tν

Γ (ν)

)(|ϕı – ϕj | + |ψı – ψj |
)

: ı, j = 1, 2, 3, ı 	= j

}

= κ

(
1 – ν +

Tν

Γ (ν)

)
max

{(|ϕı – ϕj | + |ψı – ψj |
)

: ı, j = 1, 2, 3, ı 	= j
}

:= r1B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
, r1 < 1.

This proves the boundedness of the operator P1 in the unit ball Br1 of radius 0 < r1 < 1.
Similarly for P2,

B
(
P2(ϕ1,ψ1)(t),P2(ϕ2,ψ2)(t),P2(ϕ3,ψ3)(t)

)

≤ r2B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
, r2 < 1,

which is bounded in the ball Br2, 0 < r2 < 1. Combining the above conclusions, we obtain
that the operator P = (P1,P2) is bounded in Br = (Br1, Br2).

We proceed to investigate other properties of operator P1. Let t, τ ∈ (0, T) be such that
if t > τ then ϕ(t) > ϕ(τ ) (increasing function). A simple calculation implies that

B(P1(ϕ1,ψ1)(t),P1(ϕ2,ψ2)(t),P1(ϕ3,ψ3)(t)

–
(
P1(ϕ1,ψ1)(τ ),P1(ϕ2,ψ2)(τ ),P1(χ3,ψ3)(τ )

)

= B
(
P1

(
ϕ1(t) – ϕ1(τ ),ψ1(t) – ψ1(τ )

)
,P1

(
ϕ2(t) – ϕ2(τ ),ψ2(t) – ψ2(τ )

)
,

P1
(
ϕ3(t) – ϕ3(τ ),ψ3(t) – ψ3(τ )

))

= B
(
P1

(
ϕ1(t – τ ),ψ1(t – τ )

)
,P1

(
ϕ2(t – τ ),ψ2(t – τ )

)
,P1

(
ϕ3(t – τ ),ψ3(t – τ )

))

≤ B
(
P1

(
ϕ1(t),ψ1(t)

)
,P1

(
ϕ2(t),ψ2(t)

)
,P1

(
ϕ3(t),ψ3(t)

))

= B
(
P1(ϕ1,ψ1)(t),P1(ϕ2,ψ2)(t),P1(ϕ3,ψ3)(t)

)

≤ r1B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

Thus, P1 is equicontinuous on Br1. Similarly for P2,

B(P2(ϕ1,ψ1)(t),P2(ϕ2,ψ2)(t),P2(ϕ3,ψ3)(t)
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–
(
P2(ϕ1,ψ1)(τ ),P2(ϕ2,ψ2)(τ ),P2(ϕ3,ψ3)(τ )

)

= B
(
P2

(
ϕ1(t) – ϕ1(τ ),ψ1(t) – ψ1(τ )

)
,P2

(
ϕ2(t) – ϕ2(τ ),ψ2(t) – ψ2(τ )

)
,

P2
(
ϕ3(t) – ϕ3(τ ),ψ3(t) – ψ3(τ )

))

≤ r2B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

Thus, the integral operator P is equicontinuous on Br .
Next, we check the continuity of the integral operator P ∈ Br . By assuming ϕl(t) –ηl(t) =

ξl(t), and ψl(t) – λl(t) = υl(t), l = 1, 2, 3, we obtain

B
(
P1

(
ϕ1(t) – η1(t),ψl(t) – λl(t)

)
,P1

(
ϕ2(t) – η2(t),ψ2(t) – λ2(t)

)
,

P1
(
ϕ3(t) – η3(t),ψ3(t) – λ3(t)

))

= B
(
P1

((
ξ1(t),υ1(t)

))
,P1

((
ξ2(t),υ2(t)

))
,P1

((
ξ3(t),υ3(t)

)))

≤ max

{
(1 – ν)κ

(|ξı – ξj | + |υı – υj |
)

+ κ
Tν

Γ (ν)
(|ξı – ξj | + |υı – υj |

)
:

ı, j = 1, 2, 3, ı 	= j

}

= κ

(
1 – ν +

Tν

Γ (ν)

)
max

{(|ξı – ξj | + |υı – υj |
)

: ı, j = 1, 2, 3, ı 	= j
}

= r1B(ξ1,υ1), (ξ2,υ2), (ξ3,υ3)), r1 < 1

≤ r1B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

Therefore, the operator P1 is continuous in Br1. Similarly, for P2, which leads to the con-
clusion that P has a fixed point P(ϕ,ψ) = (ϕ,ψ) corresponding to the solution of the dy-
namic system (2).

Next, we aim to check inequality (3). Suppose that there are two continuous and non-
decreasing functions �1,℘1 : [0,∞) → [0,∞) such that �1(t),℘1(t) > 0 for t > 0 and �1(0) =
℘1(0) = 0. Now, suppose that

�1(ε) = ε/r1, ℘1(ε) =
ε(1 – r1)

r1
.

Then by the boundedness of P1, we conclude that

�1(BP1
(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

)

= BP1
(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

)
/r1

≤ B
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)

≤ B
(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

)
+ B

(
(ϕ2,ψ2), (ϕ2,ψ2), (ϕj,ψj)

)

+ B
(
(ϕ3,ψ3), (ϕ3,ψ3), (ϕk ,ψk)

)

= �1
(
B

(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

))

– ℘1
(
B

(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

)
+ B

(
(ϕ2,ψ2), (ϕ2,ψ2), (ϕj,ψj)

)
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+ B
(
(ϕ3,ψ3), (ϕ3,ψ3), (ϕk ,ψk)

))

≤ �1
(
B

(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

))
– ℘1

(
B

(
(ϕ1,ψ1), (ϕ1,ψ1), (ϕi,ψi)

))

+ min
{
B

(
(ϕ2,ψ2), (ϕ2,ψ2),P1(ϕ2,ψ2)

)
,B

(
(ϕ2,ψ2), (χ2,ψ2),P1(ϕ1,ψ1)

)
,

B
(
(ϕ1,ψ1), (ϕ1,ψ1),P1(ϕ1,ψ1)

)
,

B
(
(ϕ1,ψ1), (ϕ1,ψ1),P1(ϕ2,ψ2)

)}
.

Hence, this implies that inequality (3) holds. Similarly, for P2, which implies that the in-
tegral operator P has a unique fixed point lying in Br = (Br1, Br2), r ≤ 1. �

By taking X(t,ϕ,ψ) := α1(t)ϕ(t) + α(t)ψ(t) and A(t,ϕ,ψ) := β1(t)ψ(t) + β(t)α(t) in The-
orem 3.3, we have the following result:

Theorem 3.4 Consider the dynamic system (1). If Tν ≤ ν,ν ∈ (0, 1] then it admits a unique
fixed point in the ball Br , where r = (αmax,βmax) = (max{α1(t),α(t)}, max{β1(t),β(t)}).

Proof Define an operator Q : R×R →R×R as follows:

(
Q(ϕ,ψ)

)
(t)

=
(
Q1(ϕ,ψ),Q2(ϕ,ψ)

)
(t)

=
(

(1 – ν)
(
α1(t)ϕ(t) + α(t)ψ(t)

)

+
ν

Γ (ν)

∫ t

0

(
α1(τ )ϕ(τ ) + α(τ )ψ(τ )

)
(t – τ )ν–1 dτ ,

(1 – ν)
(
β1(t)ψ(t) + β(t)ϕ(t)

)

+
ν

Γ (ν)

∫ t

0

(
β1(τ )ψ(τ ) + β(τ )ϕ(τ )

)
(t – τ )ν–1 dτ

)
,

B
(
Q1(ϕ1,ψ1)(t),Q1(ϕ2,ψ2)(t),Q1(ϕ3,ψ3)(t)

)

= max
{∣∣Q1(ϕı ,ψı)(t) – Q1(ϕj ,ψj )(t)

∣∣ : ı, j = 1, 2, 3, ı 	= j
}

= max

{∣∣∣∣(1 – ν)
(
α1(t)ϕı(t) + α(t)ψı(t)

)
(6)

+
ν

Γ (ν)

∫ t

0

(
α1(τ )ϕı(τ ) + α(τ )ψı(τ )

)
(t – τ )ν–1 dτ

– (1 – ν)
(
α1(t)ϕj (t) – α(t)ψj (t)

)

–
ν

Γ (ν)

∫ t

0

(
α1(τ )ϕj (τ ) + α(τ )ψj (τ )

)
(t – τ )ν–1 dτ

∣∣∣∣ : ı, j = 1, 2, 3, ı 	= j

}

≤ (1 – ν)αmax
(|ϕı – ϕj | + |ψı – ψj |

)
+

Tν

Γ (ν)
αmax

(|ϕı – ϕj | + |ψı – ψj |
)

≤ (1 – ν)αmax
(|ϕı – ϕj | + |ψı – ψj |

)
+

ν

Γ (ν)
αmax

(|ϕı – ϕj | + |ψı – ψj |
)

≤ (1 – ν)αmax
(|ϕı – ϕj | + |ψı – ψj |

)
+ ναmax

(|ϕı – ϕj | + |ψı – ψj |
)

= αmax
(|ϕı – ϕj | + |ψı – ψj |

)
, ν ∈ (0, 1)
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= αmaxB
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

This yields the boundedness of the operator Q1 in the unit ball Bαmax . Similarly for Q2,

B
(
Q2(ϕ1,ψ1)(t),Q2(ϕ2,ψ2)(t),Q2(ϕ3,ψ3)(t)

) ≤ βmaxB
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
,

which is bounded in the ball Bβmax . Combining the above conclusions, we obtain that the
operator Q = (Q1,Q2) is bounded in Br = (Bαmax , Bβmax ).

We proceed to investigate other properties of operator Q1. Let t, τ ∈ (0, T) be such that
if t > τ then ϕ(t) > ϕ(τ ) (increasing function). A simple calculation implies that

B(Q1(ϕ1,ψ1)(t),Q1(ϕ2,ψ2)(t),Q1(ϕ3,ψ3)(t)

–
(
Q1ϕ1(τ ),Q1(ϕ2,ψ2)(τ ),Q1(ϕ3,ψ3)(τ )

)

= B
(
Q1

(
ϕ1(t) – ϕ1(τ ),ψ1(t) – ψ1(τ )

)
,Q1

(
ϕ2(t) – ϕ2(τ ),ψ2(t) – ψ2(τ )

)
,

Q1
(
ϕ3(t) – ϕ3(τ ),ψ3(t) – ψ3(τ )

))

= B
(
Q1

(
ϕ1(t – τ ),ψ1(t – τ )

)
,Q1

(
ϕ2(t – τ ),ψ2(t – τ )

)
,Q1

(
ϕ3(t – τ ),ψ3(t – τ )

))

≤ B
(
P1

(
ϕ1(t),ψ1(t)

)
,Q1

(
ϕ2(t),ψ2(t)

)
,Q1

(
ϕ3(t),ψ3(t)

))

= B
(
Q1(ϕ1,ψ1)(t),Q1(ϕ2,ψ2)(t),Q1(ϕ3,ψ3)(t)

)

≤ αmaxB
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

Thus, Q1 is equicontinuous on Bαmax . Similarly for Q2,

B(Q2(ϕ1,ψ1)(t),Q2(ϕ2,ψ2)(t),Q2(ϕ3,ψ3)(t)

–
(
Q2(ϕ1,ψ1)(τ ),Q2(ϕ2,ψ2)(τ ),Q2(ϕ3,ψ3)(τ )

)

= B
(
Q2

(
ϕ1(t) – ϕ1(τ ),ψ1(t) – ψ1(τ )

)
,Q2

(
ϕ2(t) – ϕ2(τ ),ψ2(t) – ψ2(τ )

)
,

Q2
(
ϕ3(t) – ϕ3(τ ),ψ3(t) – ψ3(τ )

))

≤ βmaxB
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

Thus, the integral operator Q is equicontinuous on Br = (Bαmax , Bβmax ).
Next, we check the continuity of the integral operator Q ∈ Br . Now, by letting ϕj(t) –

ηj(t) = ξj(t) and ψj(t) – λj(t) = υj(t), j = 1, 2, 3, we get

B
(
Q1

(
ϕ1(t) – η1(t),ψl(t) – λl(t)

)
,Q1

(
ϕ2(t) – η2(t),ψ2(t) – λ2(t)

)
,

Q1
(
ϕ3(t) – η3(t),ψ3(t) – λ3(t)

))

= B
(
Q1

((
ξ1(t),υ1(t)

))
,Q1

((
ξ2(t),υ2(t)

))
,Q1

((
ξ3(t),υ3(t)

)))

≤ αmaxB
(
(ϕ1,ψ1), (ϕ2,ψ2), (ϕ3,ψ3)

)
.

Therefore, the operator Q1 is continuous in Bαmax . Similarly, for Q2, which leads to a con-
clusion that Q has a fixed point Q(ϕ,ψ) = (ϕ,ψ) corresponding to the solution of the
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dynamic system (2). Finally, condition (3) can be verified in the same manner as in Theo-
rem 3.4, by assuming

�1(ε) = ε/αmax, ℘1(ε) =
ε(1 – αmax)

αmax
, 0 < αmax < 1.

Thus, Q has a unique fixed point lying in Bαmax ,βmax = (Bαmax , Bβmax ). This completes the
proof. �

3.2 Approximate solvability
In this section, we consider a generalization for the Chebyshev polynomials of the first
type by using the ABC operator. We shall present two cases. The first one uses constant
connections, and is called the symmetric solution. This case represents the setting when
both ϕ and ψ have the same number of infected and cured. While the second case con-
siders the connections as functions with respect to t.

3.2.1 Symmetric solvability with constant connections
Define the expanded formula of the solution by

ϕ(t) =
∞∑

n=0

αnTn(t), ψ(t) =
∞∑

n=0

βnTn(t), (7)

where Tn(t) indicates the Chebyshev polynomials of the first kind such that T0(t) =
1, Tn+1(t) = 2tTn(t) – Tn–1(t), n ≥ 1. Chebyshev polynomials are of unlimited significance
in various parts of mathematics, mainly approximation theory. The integrals of Chebyshev
polynomials are (see [8])

∫
Tn(t) =

1
2

(
Tn+1(t)
n + 1

–
Tn–1(t)
n – 1

)
, n > 1. (8)

The solution of (1) is given by the following construction:

(
ϕ(t),ψ(t)

)

=
(

(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0

(
ϕ(τ ) + ψ(τ )

)
(t – τ )ν–1 dτ ,

(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0

(
ϕ(τ ) + ψ(τ )

)
(t – τ )ν–1 dτ

)

≈ 2ν–1
(

(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0

(
ϕ(τ ) + ψ(τ )

)
dτ ,

(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0

(
ϕ(τ ) + ψ(τ )

)
dτ

)
. (9)

Now, by using the definition of ϕ in (7) and the integral formula of Tn in (8), we have

ϕ(t) = 2ν–1
(

(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0

(
ϕ(τ ) + ψ(τ )

)
dτ

)

= 2ν–1

(
(1 – ν)

( ∞∑
n=0

αnTn(t) +
∞∑

n=0

βnTn(t)

)
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+
ν

Γ (ν)

∫ t

0

( ∞∑
n=0

αnTn(τ ) +
∞∑

n=0

βnTn(τ )

)
dτ

)

= 2ν–1

(
(1 – ν)

( ∞∑
n=0

αnTn(t) +
∞∑

n=0

βnTn(t)

)

+
ν

Γ (ν)

( ∞∑
n=0

αn

∫ t

0
Tn(τ ) dτ +

∞∑
n=0

βn

∫ t

0
Tn(τ ) dτ

))

≈ 2ν–1(1 – ν)

( ∞∑
n=0

αnTn(t) +
∞∑

n=0

βnTn(t)

)
+

ν

22–νΓ (ν)

∞∑
n=2

αn

(
Tn+1(t)
n + 1

–
Tn–1(t)
n – 1

)

+
ν

22–νΓ (ν)

∞∑
n=2

βn

(
Tn+1(t)
n + 1

–
Tn–1(t)
n – 1

)
. (10)

By symmetry, we obtain

ϕ(t) = ψ(t)

≈ 2ν(1 – ν)

( ∞∑
n=0

αnTn(t)

)
+

ν

21–νΓ (ν)

∞∑
n=2

αn

(
Tn+1(t)
n + 1

–
Tn–1(t)
n – 1

)
. (11)

By the assumption t ≤ tν < Tν ≤ ν ≤ 1 (see Theorem 3.4), we have that the asymptotic
behavior of the Chebyshev polynomials is

Tn(t) ∼ 1, ∀n, t → 1.

Thus, the finite case of (11) becomes

ϕN (t) = ψN (t)

≈ 2ν(1 – ν)

( N∑
n=0

αn

)
+

ν

21–νΓ (ν)

N∑
n=2

αn

(
1

n + 1
–

1
n – 1

)
. (12)

Consequently, by the convexity of the functions ϕ(t) = ψ(t) which are majored by 1
1–t , t ∈

(0, 1), we have the following construction:

α2 ≤ 1
(2ν(1 – ν) + ν

21–νΓ (ν) (– 2
3 ))

,

α3 ≤ 1
(2ν(1 – ν) + ν

21–νΓ (ν) (– 1
4 ))

,

α4 ≤ 1
(2ν(1 – ν) + ν

21–νΓ (ν) (– 2
15 ))

,

...

(13)

For example,

ν = 0.1 → α2 = 1.040,α3 = 1.038,α4 = 1.037, . . . ,
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ν = 0.25 → α2 = 1.156,α3 = 1.134,α4 = 1.128, . . . ,

ν = 0.5 → α2 = 1.741,α3 = 1.521,α4 = 1.469, . . . ,

ν = 0.75 → α2 = 12.929,α3 = 3.427,α4 = 2.842, . . . ,
(14)

ν = 0.9 → α2 = –2.965,α3 = –101.588,α4 = 12.220, . . . ,

ν = 1 → α2 = –3/2,α3 = –4,α4 = –15/2, . . . .

Thus, the approximate symmetric solution can be seen as follows:

ϕ2(t) = α2T2(t) ≈ 2t2 – 1
(2ν(1 – ν) + ν

21–νΓ (ν) (– 2
3 ))

,

ϕ3(t) = α2T2(t) + α3T3(t) ≈ 2t2 – 1
(2ν(1 – ν) + ν

21–νΓ (ν) (– 2
3 ))

+
4t3 – 3t

(2ν(1 – ν) + ν

21–νΓ (ν) (– 1
4 ))

,

ϕ4(t) = α2T2(t) + α3T3(t) + α4T4(t)

≈ 2t2 – 1
(2ν(1 – ν) + ν

21–νΓ (ν) (– 2
3 ))

+
4t3 – 3t

(2ν(1 – ν) + ν

21–νΓ (ν) (– 1
4 ))

+
8t4 – 8t2 + 1

(2ν(1 – ν) + ν

21–νΓ (ν) (– 2
15 ))

,

...
(15)

3.2.2 Symmetric solvability with functional connections
In this case, we have the following power series of the solution of (1):

ϕ(t) =
∞∑

n=0

αn(t)Tn(t), ψ(t) =
∞∑

n=0

βn(t)Tn(t). (16)

The approximate solvability of (1) can be presented in the next result.

Theorem 3.5 Consider system (1) with suitable nonconstant connections α(t),α1(t),β(t),
and β1(t) such that δ(t) := maxt{α(t),α1(t),β(t),β1(t)}. The approximate solution of (1) is

(
ϕ(t),ψ(t)

) ≈
( ∞∑

n=0

δν,n(1 + Cν,n)Tn(t),
∞∑

n=0

δν,n(1 + Cν,n)Tn(t)

)
,

where δν,n are constant coefficients and

Cν,n =
(–2)Γ (ν + 1

2 )
cnΓ ( 1

2 )Γ (ν + 1 – n)Γ (ν + 1 + n)
.

Proof From (1), we have the following solution for ϕ(t) and similar conclusion for ψ(t):

ϕ(t) ≈ δ(t)(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0
δ(τ )

(
ϕ(τ ) + ψ(τ )

)
(t – τ )ν–1 dτ
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≈ μν

(
f (t) +

1
Γ (ν)

∫ t

0
f (τ )(t – τ )ν–1 dτ

)

= μν

(
f (t) + Iν f (t)

)
, ν > 0, t > 0, (17)

where μν := max(ν, 1 – ν), f (t) = δ(t)(ϕ(t) + ψ(t)) and Iν f (t) is the Riemann–Liouville in-
tegral operator. Assuming that

f (t) =
∞∑

n=0

δn(t)Tn(t),

where (see [9])

δn(t) ≈ 1
�n

∫ 1

0
f (t)Tn(t)ω(t) dt

:=
2

cnπ

∫ 1

0
f (t)Tn(t)

1√
t – t2

dt

≈ 2
π

∫ 1

0
f (t) dt

:= δn, ∀n, (18)

where the parameters satisfy t < Tν < ν < 1 (see Theorem 3.4), and cn = 1, c0 = 2, Tn ∼ 1.
Moreover, in view of Theorem 3.1 [9], we have

ϕ(t) ≈ δ(t)(1 – ν)
(
ϕ(t) + ψ(t)

)
+

ν

Γ (ν)

∫ t

0
δ(τ )

(
ϕ(τ ) + ψ(τ )

)
(t – τ )ν–1 dτ

≈ μν

(
f (t) +

1
Γ (ν)

∫ t

0
f (τ )(t – τ )ν–1 dτ

)

= μν

(
f (t) + Iν f (t)

)
, ν > 0, t > 0,

= μν

( ∞∑
n=0

δnTn(t) +
∞∑

n=0

δnCν,nTn(t)

)

= μν

∞∑
n=0

δnTn(t)(1 + Cν,n)

:=
∞∑

n=0

δν,n(1 + Cν,n)Tn(t), (19)

where

Cν,n :=
(–2)Γ (ν + 1

2 )
cnΓ ( 1

2 )Γ (ν + 1 – n)Γ (ν + 1 + n)
.

This completes the proof. �

Note that

δν,n ≈
⎧⎨
⎩

1
π

if ν ≥ 1/2,
2
π

if ν < 1/2.
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And

ν = 0.5, n = 2 → Cν,n = 0.0957, ν = 0.75, n = 2 → Cν,n = 0.0471,

ν = 0.5, n = 3 → Cν,n = –0.0410, ν = 0.75, n = 3 → Cν,n = –0.0157,

ν = 0.5, n = 4 → Cν,n = 0.0228, ν = 0.75, n = 4 → Cν,n = 0.0074,

ν = 0.5, n = 5 → Cν,n = –0.0145, ν = 0.75, n = 5 → Cν,n = –0.0042.

It is clear that |Cν,n| < 1 for all n ≥ 2 and ν ∈ [0, 1]. Therefore, for the finite case, the ap-
proximate solution can be evaluated as follows:

ϕ0(t) ≈ 2
π

T0(t) =
2
π

, ν ≥ 0.5, or

ϕ0(t) ≈ 4
π

, ν < 0.5,

ϕ1(t) ≈ 2
π

(
T0(t) + T1(t)

)
=

2t + 2
π

, ν ≥ 0.5, or

ϕ1(t) ≈ 4t + 4
π

, ν < 0.5,

ϕ2(t) ≈ 2
π

(
T0(t) + T1(t) + T2(t)

)
=

2(t + 2t2)
π

, ν ≥ 0.5, or

ϕ2(t) ≈ 4(t + 2t2)
π

, ν < 0.5,

...

(20)

and similarly for ψ(t).

4 Application
As an application, we assess our scheme by fitting real statistics from the Internet. Figure 1
illustrates the imitated data in March for the worst affected countries. We consider the
following dynamic system:

�0.5ϕ(t) = α1(t)ϕ(t) + α(t)ψ(t),

�0.5ψ(t) = β1(t)ψ(t) + β(t)ϕ(t).
(21)

By employing different approximations (20), in Fig. 1 we plot them depending on the statis-
tics of the data. The approximate solution of (21), in the case of Spain and Italy, is (ϕ2,ψ2) =
( 2(t+2t2)

π
, 2(t+2t2)

π
) for the connection constants C0.5,2 = 0.0957 and C0.5,2 = 0.0471, respec-

tively. While the data of China indicate using (ϕ1,ψ1) = ( 2t+2
π

, 2t+2
π

) with the maximum
value of connection C0.5,1 = 1. The information about USA recognizes rapidly increasing
cases, therefore, we used the combined function of ϕ1 as follows: ϕ1(t)(exp(

√
ϕ1(t)) – 1)

with connection value C0.5,1 = 0.023. Note that the confirmed cases are measured in thou-
sands, for example, in Spain, the number of confirmed cases in March was 95.9 K, while in
April it was 236.899 K, therefore, the approximate solution is given by (ϕ4,ψ4). Figure 2 in-
dicates the cases in Russia in March and April. The data show that in March the number of
infections was very low (per person), but in April it was increasing rapidly (per K = 1000)
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Figure 1 The dynamic evolution of system (21) when ν = 0.5, with the approximate solution by fractional

Chebyshev polynomials (ϕ2,ψ2) = ( 2(t+2t
2)

π , 2(t+2t
2)

π ) for Spain and for Italy with different coefficients C0.5,2 .
China statistics in March has steady circulation; consequently, we propose (ϕ1,ψ1) = ( 2t+2π , 2t+2π ). For USA data,
the chart shows high rising confirmed cases, therefore we apply exponential connections
ϕ1(t)(exp(

√
ϕ1(t)) – 1) similarly for ψ (t). Note that the data are shown in March

Figure 2 The dynamic evolution of system (21) when ν = 0.5, with the approximate solution by fractional

Chebyshev polynomials (ϕ2,ψ2) = ( 2(t+2t
2)

π , 2(t+2t
2)

π ) for Russia in March and April, respectively. In March the
number of infections was per person, while in April it was per K (thousand). The connection coefficient in
March is C0.5,2 = 0.79, while in April it is C0.5,2 = 0.099

but it is still approximated by (ϕ2,ψ2). We confirmed that the approximate solution by
fractional Chebyshev polynomials fits the future expectation of the number of infections.
We added also the case of Brazil. The picture is similar also for Brazil data, which indicates
huge changes from March to April (see Fig. 3).
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Figure 3 The dynamic evolution of system (21) when ν = 0.5, for Brazil in March and April, respectively. In
March the number of infections was per person, therefore, we used (ϕ3,ψ3). In April the data was per
K = 1000, therefore, we find that (ϕ2,ψ2) is a suitable solution

5 Conclusion
Based on the above, we conclude that the fractional-fractal dynamic system based on the
Atangana–Baleanu fractional operator indicates flexibility and accuracy of introducing
approximate solutions by fractional Chebyshev polynomials. For our future work, we aim
to use the same calculus (ABC) to generalize different polynomials to get an optimal so-
lution.
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